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A TOPOLOGICAL CRITERION FOR THE EXISTENCE OF
HALF-BOUND STATES

GILLES CARRON

Abstract

The following theorem is proved: if (M4n+1, g) is a complete Riemannian manifold and Σ ⊂ M is an
oriented hypersurface partitioning M and with non-zero signature, then the spectrum of the Hodge–
deRham Laplacian is [0,∞[. This result is obtained by a new Callias-type index. This new formula links
half-bound harmonic forms (that is, nearly L2 but not in L2) with the signature of Σ.

0. Introduction

In this paper, we obtain the following result.

Theorem 0.1. If (M4n+1, g) is a complete Riemannian manifold and Σ ⊂ M is an
oriented hypersurface partitioning M and with non-zero signature, then the spectrum
of the Hodge–deRham Laplacian is [0,∞[.

Our proof also gives a similar result for the Dirac operator of a spin Riemannian
manifold, and we recover the following result of J. Roe [18].

Theorem 0.2. If (M2n+1, g) is a complete spin Riemannian manifold, such that there
is a compact oriented hypersurface Σ in M with non-zero Â genus, then the spectrum
of the Dirac operator is R.

In [12], N. Higson gives a Callias-type index formula which implies J. Roe’s result.
Another important corollary of Higson’s paper is a beautiful and short proof of the
cobordism invariance of the index.

A Callias-type index formula is a formula for the L2 index of an operator of the
type D+ ia, where D : C∞(E) −→ C∞(E) is a Dirac-type operator on a non-compact
manifold and a is a symmetric endomorphism of E. This formula says that this
index is an index of a Dirac operator on a hypersurface and on a bundle built with
the eigenspaces of a. We refer to the papers of Callias [6] and of Bott and Seeley
[4] on Euclidean space and of Anghel [2], Bunke [5] and Rade [17] on Riemannian
manifolds. Our proof of Theorems 0.1 and 0.2 also relies upon a new Callias-type
index formula. Under the assumptions of Theorem 0.1, we give a formula which
links the signature of Σ with the dimension of the space of harmonic forms which
are not square integrable but which have slow decay at infinity. In many examples,
these almost (or extended) L2 harmonic forms appear as zero energy resonances or
equivalently in the singular part of the resolvent of the Hodge–deRham Laplacian
near 0.
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Our index theorem also provides a bound on the Novikov–Shubin type invariant.

Theorem 0.3. Let (M4n+1, g) be a complete Riemannian manifold and Σ ⊂ M be
an oriented hypersurface partitioning M, with non-zero signature. If we denote by e−t∆
the heat operator associated with the Hodge–deRham Laplacian then

lim sup
t→∞

log ‖e−t∆(x, x)‖L∞(M)

log(t)
6 1.

1. Preliminaries

In this section, we describe the results of [10] and [7], which will be needed to
prove Theorems 0.1 and 0.3.

1.1. Non-parabolicity at infinity

In [10], we introduced the following definition.

Definition 1.1. A Dirac-type operator D : C∞(E) −→ C∞(E) on a complete
Riemannian manifold (M, g) is called non-parabolic at infinity if there is a compact
set K of M such that for any bounded open subset U of M −K there is a constant
C(U) > 0 with the inequality

for all σ ∈ C∞0 (M −K,E), C(U)

∫
U

|σ|2 6
∫
M−K

|Dσ|2. (1.1)

This definition came from potential theory and N. Anghel’s characterization of
Dirac-type operators not having zero in their spectrum. The main property of these
operators is the following [10].

Proposition 1.2. If D : C∞(E) −→ C∞(E) is non-parabolic at infinity then

dim{σ ∈ L2(E), Dσ = 0} < ∞.
Let W (E) be the Sobolev space obtained by completion of C∞0 (E) with the norm

σ 7→
∫
K

|σ|2 +

∫
M

|Dσ|2.
Then this space is continuously embedded into H1

loc and

D : W (E) −→ L2(E)

is a Fredholm operator.

Furthermore, the inclusions H1(E) ⊂ W (E) ⊂ H1
loc(E) are true; so that any L2

harmonic spinor is a W (E)-harmonic spinor, that is, we have

kerL2 D ⊂ kerW D.

This concept provides a unified framework for index theorems on non-compact
manifolds. Let us give some examples (see [7, 10]).

(i) If D : C∞(E) −→ C∞(E) is Fredholm on its L2 domain, or according to
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N. Anghel [1], there exists a compact set K of M and a constant Λ > 0 such that

for all σ ∈ C∞0 (M −K,E), Λ

∫
M−K

|σ|2 6
∫
M−K

|Dσ|2,
then obviously D is non-parabolic at infinity and W (E) = H1(E) = {σ ∈ L2, Dσ ∈
L2}. For instance, the Dirac operator of a Riemannian spin manifold with uniformly
positive scalar curvature at infinity is non-parabolic at infinity.

(ii) If (M, g) is a complete Riemannian manifold whose curvature vanishes at
infinity then its Gauss–Bonnet operator is non-parabolic at infinity.

(iii) The Dirac operator of a complete Riemannian spin manifold with non-
negative scalar curvature at infinity is non-parabolic at infinity.

In these two last cases, the Sobolev space W is the completion of C∞0 (E) with the
norm σ 7→ ‖∇σ‖L2(M) + ‖σ‖L2(K), where ∇ is the Levi–Civita connexion and where
K is a compact outside which the curvature is zero.

(iv) If (M, g) is a manifold with one cylindrical end, that is, there is a compact
subset K of M such that M−K is isometric to the Riemannian product ∂K×]0,∞[,
then all geometric Dirac-type operators on M are non-parabolic at infinity, and the
Sobolev space W is{

σ ∈ H1
loc(E), Dσ ∈ L2,

σ

1 + dist(x,K)
∈ L2

}
.

These operators have been studied by Atiyah, Patodi and Singer in order to give a
formula for the signature of compact manifold with boundary [3]. Harmonic spinors
in W are there called extended L2 harmonic spinors. This is why we call the index
of the operator D : W (E) −→ L2(E) the extended index. We note:

inde D = dim kerW D − dim kerL2 D.

1.2. The Dirac–Neumann operator

In [7], we developed a theory in order to give a formula for the index of
D : W (E) −→ L2(E). Our analysis relies upon the resolution of the Dirichlet prob-
lem: assume that D : C∞(E) −→ C∞(E) is a Dirac-type operator on a complete Rie-
mannian manifold (Ω, g) with compact boundary Σ, and that D : C∞(E) −→ C∞(E)
is non-parabolic, that is to say for any bounded open subset U of Ω there is a
constant C(U) > 0 with the inequality

C(U)

∫
U

|σ|2 6
∫

Ω

|Dσ|2, ∀ σ ∈ C∞0 (Ω, E). (1.2)

Theorem 1.3. For each σ ∈ C∞(Σ, E), there is a unique E(σ) ∈ C∞(Ω, E) ∩W such
that {

D2E(σ) = 0 on Ω

E(σ) = σ on Σ.

This allowed us to define the Dirac–Neumann operator

T : C∞(Σ, E) −→ C∞(σ, E)

σ 7→ D(Eσ)|Σ.
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As the harmonic extension of D(Eσ)|Σ is D(Eσ), T ◦ T = 0, and moreover, we have
the following theorem.

Theorem 1.4. T is a pseudo-differential operator of order 1, and the adjoint of T
is T ∗ = nTn, where n is the Clifford multiplication by the unit inward normal vector
field of Σ in Ω. The operator D = T + T ∗ is elliptic and its principal symbol is

σ(D)(x, ξ) = 2iξ, ξ ∈ T ∗x (Σ) .

Hence, T defines an elliptic complex on E → ∂M. The cohomology of T was
interpreted in [7].

Proposition 1.5. Via restriction along the boundary we have the identification

{σ ∈W ∩ C∞(M,E), Dσ = 0} ' kerT ;

{σ ∈ L2 ∩ C∞(M,E), Dσ = 0} ' ImT .

The quotient kerT/ ImT is then isomorphic to the space of harmonic spinors in
W modulo those in L2. In fact a harmonic spinor σ is in W if and only if there is
a sequence (σk) ∈ C∞0 (M,E) such that{

limk σk = σ in H1
loc

limk Dσk = 0 in L2.

The complex defined by T is elliptic, therefore we have a Hodge-type decomposition:
if H∞(M) = kerD = kerT ∩ kerT ∗ then

kerT =H∞(M)⊕ ImT .

This finally yields the identification H∞(M) ' kerT/ ImT .
As an example, we describe the case of a geometric operator on a Riemannian

manifold with one cylindrical end. Assume that outside some compact set K , (M −
K, g) is isometric to the Riemannian product ]0,+∞[×∂K , and that the Hermitian
bundle E|M−K is the pull-back of some Hermitian bundle E on ∂K . Assume moreover
that the Dirac operator D takes the following form on ]0,+∞[×∂K:

D = γ

(
∂

∂r
+ A

)
,

where A : C∞(∂K, E) −→ C∞(∂K, E) is a Dirac-type operator on ∂K and γ is the
Clifford multiplication by the unit outward normal vector to {t} × ∂K ⊂]0, t]× ∂K .
A is an elliptic self-adjoint operator on ∂K , so we have the following spectral
decomposition:

L2(∂K, E) =
⊕
λ∈SpA

Cϕλ,

where

Aϕλ = λϕλ,∫
∂K

|ϕλ|2 = 1.

Now every σ ∈ C∞(∂K, E) can be expanded in Fourier series with respect to this
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decomposition

σ(θ) =
∑
λ∈SpA

σλϕλ(θ),

and the harmonic extension of such a σ is given by

E(σ)(r, θ) =
∑
λ∈SpA

σλe
−|λ|rϕλ(θ).

Therefore the operator T is given by

(Tσ)(θ) =
∑
λ∈SpA

(λ− |λ|) σλ γ.ϕλ(θ),

and we compute:

kerT =
⊕

λ∈SpA, λ>0

Cϕλ

ImT =
⊕

λ∈SpA, λ>0

Cϕλ.

Thus in this example, we have

kerA =H∞(M) ' kerT/ ImT .

In [7], we proved the following theorem.

Theorem 1.6. If the Dirac-type operator D : C∞(E) −→ C∞(E) is non-parabolic
at infinity, and if K is a compact subset of M with smooth boundary Σ, outside of
which estimates (1.2) hold, then

inde D = dim
{σ ∈W (M,E), Dσ = 0}
{σ ∈ L2(M,E), Dσ = 0} =

dimH∞(M −K)

2
.

This theorem is the generalisation of a formula in a paper by Atiyah, Patodi
and Singer [3, (3.25)]. Here the quotient space in the left-hand side is the space of
harmonic spinors in W modulo those in L2. In the case of a manifold with one
cylindrical end, W. Müller showed that extended L2 harmonic spinors appear as zero
energy resonances, that is to say they appear in the singular part of the resolvant
ζ 7→ (D2 − ζ2)−1, at ζ = 0 [15]. Such zero energy resonances are called half-bound
states in quantum mechanics; and in the general case of a non-parabolic at infinity
Dirac-type operator, we will also call a harmonic spinor in W but not in L2 a half-
bound state. The absence of such states for D implies that the cohomology defined
with the Dirac–Neumann operator T is trivial. According to our first example, we
can assert the following.

Proposition 1.7. If D : C∞(E) −→ C∞(E) is a Dirac-type operator which is Fred-
holm on its L2-domain, then D is non-parabolic at infinity and it has no half-bound
states: inde D = 0.

1.3. Novikov–Shubin invariants and non-parabolicity at infinity

We give a new spectral condition which implies that a Dirac-type operator which
is non-parabolic at infinity has no half-bound states.
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Proposition 1.8. Assume that D : C∞(E) −→ C∞(E) is a Dirac-type operator such
that there is an α > 2 and a locally bounded function C(x), x ∈M with

‖e−tD2

(x, x)‖ 6 C(x)t−α/2, ∀ t > 1, x ∈M,

then D is non-parabolic at infinity and it has no bound or half-bound states, so that
inde D = 0.

Proof. We claim that under these assumptions the integral

G =

∫∞
0

De−tD2

dt

defines a bounded operator from L2 to H1
loc and moreover

DG = IdL2 , GD = IdC∞0 .

The second equality implies that D is non-parabolic at infinity and also that D has
no L2-kernel. Moreover if we define W (E) as the completion of the space C∞0 (E)
with respect to the norm

σ 7→ ‖Dσ‖L2 ,

then the injection of C∞0 (E) into H1
loc extends by continuity to an injection of W (E)

into H1
loc; since D : W −→ L2 is an isometry, D has no W -kernel.

We have to prove the convergence; for this we cut the integral at t = 1

G =

∫ 1

0

De−tD2

dt+

∫∞
1

De−tD2

dt.

The first integral converges because of standard parabolic estimates, the second is
convergent in the norm topology in the space of bounded operators from L2 to L∞loc.
As a matter of fact, the spectral theorem shows that

‖De−t/2D2‖L2→L2 6

√
2

t
;

moreover if f ∈ L2(E), we have

‖De−tD2

f(x)‖ = ‖e−t/2D2

De−t/2D2

f(x)‖

6
√
‖e−tD2

(x, x)‖
√

2

t
‖f‖

6
√

2C(x)t−1/2−α/4‖f‖.
This proves the convergence of the second integral. The two equalities are conse-
quences of our hypothesis and of the formula

D

∫T
0

De−tD2

dt = Id− e−TD2

.

q

Remark 1.9. The non-parabolicity at infinity property depends only on the
geometry at infinity, so D : C∞(E) −→ C∞(E) is non-parabolic at infinity when there
is a positive function with compact support χ so that there is an α > 2 and a locally
bounded function C(x), x ∈M with

‖e−t(D2+χ)(x, x)‖ 6 C(x)t−α/2, ∀ t > 1, x ∈M.
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Remark 1.10. By the Karamata theorem, our assumption is equivalent to the
following on E the spectral resolution of D2

‖E([0, λ], x, x)‖ 6 C̃(x)λα/2, ∀ λ ∈ [0, 1], ∀ x ∈M.

In fact the best possible exponent α is linked with the Novikov–Shubin invariants:
if (M, g) is the universal covering of a compact manifold M and if D = d + δ is
the Gauss–Bonnet operator acting on differential forms on M, and if F ⊂ M is a
fundamental domain of the covering M →M, then

β = inf

{
α |
∫
F

traceΛT ∗xMe
−tD2

(x, x) dx = O(t−α/2)

}
is a Novikov–Shubin invariant of M, it does not depend on the metric [16], nor on
the differential structure [14] and it is a homotopy invariant of M [11].

According to the calculus done by M. Rumin [19] and by L. Schubert [20] we
have the following corollary.

Corollary 1.11. If n > 1 then the Gauss–Bonnet operator of the Heisenberg
group

H2n+1 =





1 x1 x2 . . . xn z

0 1 0 . . . 0 y1

. . . . . . . . .

. . . . . . . . .

. . . . . . 0 1 yn

0 . . . . . . . 1


; x1, . . . , xn, y1, . . . , yn, z ∈ R


with a left-invariant metric is non-parabolic at infinity and has no half-bound states.

Proof. It is shown in [19] and [20] that the hypothesis of our Proposition 1.8
holds with α = n+ 1 for the Gauss–Bonnet operator of the Heisenberg group H2n+1

with a left-invariant metric. q

2. Application to the Dirac operator

In this part, we will prove a new Callias index type formula. Such a formula
usually deals with non-self-adjoint Dirac-type operators and relates their indices to
an index on a compact hypersurface. Here we relate half-bound states to an index
on a compact hypersurface.

2.1. Callias-type theorem

Theorem 2.1. Let (M2n+1, g) be a complete Riemannian spin manifold with com-
pact boundary. If the Dirac operator is non-parabolic (that is, satisfies the estimates
(1.2)), then we have

Â(∂M) =
1

i
traceH∞n

where n is Clifford multiplication by the unit inward normal vector field of ∂M in M.
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Proof. This follows directly from the analysis described in the first section: as
T ∗ = nTn, the operator D = T + T ∗ = T + nTn anticommutes with Clifford
multiplication by n. However the splitting of the spinor bundle of M along ∂M with
respect to the eigenspaces of n is precisely the splitting with respect to the chirality

S |∂M = S+ ⊕ S− = ker{n− iId} ⊕ ker{n+ iId}.
Hence D splits as (

0 D−
D+ 0

)
.

Now the operator

D+ : C∞(∂M, S+) −→ C∞(∂M, S−)

is an elliptic pseudo-differential operator of order 1 and up to a constant it has the
same principal symbol as the Dirac operator of ∂M:

/D : C∞(∂M, S+) −→ C∞(∂M, S−);

hence they have the same index, that is, the Â-genus Â(∂M), but

indD+ = dim{σ ∈ H∞ | nσ = iσ} − dim{σ ∈ H∞ | nσ = −iσ} =
1

i
traceH∞n.

q

Remark 2.2. If a ∈ C∞(M, Sym(S)) and D = /D + a satisfies the estimates (1.2),
then the same formula links the half-bound states of /D + a and Â(∂M).

2.2. Topological consequences

We can now give some corollaries of this theorem.

Corollary 2.3. Under the assumption of Theorem 2.1, if there are no half-bound
states then

Â(∂M) = 0.

For instance, if /D is invertible, for example, if M has uniformly positive scalar
curvature at infinity, we recover part of a result of M. Lesch: the Â-genus of the
boundary is vanishing [13, Theorem 4.3.6].

Corollary 2.4. If (M2n+1, g) is a complete Riemannian spin manifold with com-
pact boundary, if for a ν > 4 we have the Sobolev inequality

µν(M)

(∫
M

|u|2ν/(ν−2)(x) dx

)1−2/ν

6

∫
M

|du|2(x) dx, ∀ u ∈ C∞0 (M),

and if the negative part of the scalar curvature is in Lν/2, then

Â(∂M) = 0.

As a matter of fact, it is shown in this case in [8] that every harmonic spinor in
W = H1

0 (S) is in fact in L2. Similar results can be given by using the heat kernel on
functions rather than a Sobolev inequality, see [9, Theorem 3.7].
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2.3. Spectral consequences

We also recover the following result of J. Roe.

Corollary 2.5. If (M2n+1, g) is a complete Riemannian spin manifold without
boundary, such that there is a compact hypersurface Σ in M with non-zero Â genus,
then the spectrum of the Dirac operator is R.

Proof. If a real number λ does not belong to the spectrum of the Dirac operator
/D, then the operator /D−λ is an invertible operator, so that the complex on C∞(Σ, S)
defined by the Dirac–Neumann operator associated to /D − λ has no cohomology.
By Remark 2.2, Â(∂M) = 0. q

With Remark 2.2, we can assert the following.

Corollary 2.6. If M2n+1 is a non-compact spin manifold without boundary, and
Σ is a compact hypersurface in M with non-zero Â genus, then for every complete
metric on M and every a ∈ C∞(M, Sym(S)), we have

Spectrum(/D + a) = R.

In fact, we have more than Roe’s result.

Corollary 2.7. Let (M2n+1, g) be a complete Riemannian spin manifold without
boundary, and Σ be a compact hypersurface in M with non-zero Â genus. If E is the
spectral resolution of the Dirac operator then for every real λ,

lim sup
µ→0

log ‖E([λ− µ, λ+ µ], x, x)‖L∞
log(1/µ)

6 1.

In other words, if there are no bound states of energy λ2 then there is enough
spectrum near λ.

3. Application to the signature operator

We are going to show analogous results for the signature. Whereas most of the
results of the previous section were well known, the results here are new.

3.1. Callias-type theorem

Theorem 3.1. Let (M4n+1, g) be a complete oriented Riemannian manifold with
compact boundary whose signature operator is non-parabolic (that is, satisfies the
estimates (1.2)). Then

2 Sign(∂M) = traceH∞ω0,

where ω0 is Clifford multiplication by the unit oriented volume form of ∂M, that is, if
(e1, . . . , e4n) is an oriented orthonormal basis of ∂M, then ω0 is the Clifford multipli-
cation by e1 · e2 . . . e4n.

Proof. We start by recalling that D = T ∗ + T is an elliptic pseudo-differential
operator of order 1 on Cl(M)|∂M and thatH∞ = kerT ∩ kerT ∗ = kerD is the space
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of boundary values of the half-bound states. First we claim that D is anticommuting
with ω0: as a matter of factD is anticommuting with n and moreover it is commuting
with the Clifford multiplication by ω0n, because this last operator is globally defined
on M, is parallel and is commuting with the signature operator. Second, ω0 ·ω0 = 1,
so that with respect to the splitting

Cl(M)|∂M = Cl(M)+|∂M ⊕ Cl(M)−|∂M = ker{ω0 − Id} ⊕ ker{ω0 + Id},
D splits as (

0 D−
D+ 0

)
.

Since Cl(M)|∂M ' Cl(∂M)⊗̂Cl1, where Cl1 is the sub-algebra of Cl(M) gener-
ated by n, Cl(M)+|∂M = Cl(∂M)+⊗̂Cl1 and the same for Cl(M)−|∂M , because
ω0 and n are commuting. If D is the Cl1-ification of the signature operator
of ∂M to C∞(∂M,Cl(M)) then D : C∞(∂M,Cl+(M)) −→ C∞(∂M,Cl−(M)) and
D+ : C∞(∂M,Cl+(M)) −→ C∞(∂M,Cl−(M)) have up to a constant factor the same
principal symbol, so they have the same index: indD+ = 2 indCl1 D = 2Sign(∂M).
One concludes with:

indD+ = dim{σ ∈ H∞|ω0σ = σ} − dim{σ ∈ H∞|ω0σ = −σ} = traceH∞ω0.

q

Remark 3.2. If a ∈ C∞(M, Sym(ΛT ∗M)) and D = d+δ+a satisfies the estimates
(1.2), then the same formula links the half-bound states of d+δ+a and the signature
of ∂M.

3.2. Topological consequences

Corollary 3.3. Under the hypothesis of Theorem 3.1, if there are no half-bound
states then Sign(∂M) = 0.

Remark 3.4. This result can be shown in an alternative and more classical way:
with the assumptions of Corollary 3.3, our result in [9] is that an exact sequence
links the cohomology of ∂M and the (reduced) L2-cohomology of M:

. . .→ H2n
2 (M)→ H2n(∂M)→ H2n+1

2 (M, ∂M)→ . . .

where H2n
2 (M) is the absolute reduced L2-cohomology space of M or alternatively the

space of harmonic L2 form whose normal components vanish along ∂M, and where
H2n+1

2 (M, ∂M) is the relative reduced L2-cohomology space of M or alternatively the
space of harmonic L2 form whose tangential components vanish along ∂M. These
two spaces are isomorphic via the star Hodge operator. We can show that the image
of H2n(M) into H2n

2 (∂M) is a Lagrangian for the intersection form (α, β) 7→ ∫
∂M
α∧β,

for this we have to use the Stokes formula∫
∂M

α ∧ β =

∫
M

d(α ∧ β)

which is valid for every α, β ∈ L2 with dα, dβ ∈ L2.

As in the previous section (Corollary 2.4), we can assert the following.
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Corollary 3.5. If (M4n+1, g) is a complete oriented Riemannian manifold with
compact boundary, if for a ν > 4 we have the Sobolev inequality

µν(M)

(∫
M

|u|2ν/(ν−2)(x) dx

)1−2/ν

6

∫
M

|du|2(x) dx, ∀ u ∈ C∞0 (M),

and if the Riemannian curvature of (M, g) is in Lν/2, then

Sign(∂M) = 0.

For instance there is no such metric on P 2(C) × [0,∞[, and in dimension 5, this
implies that ∂M bounds a compact manifold.

3.3. Spectral consequences

We give here results similar to Corollary 2.7.

Corollary 3.6. If (M4n+1, g) is a complete Riemannian manifold (without bound-
ary) and Σ ⊂M is an oriented hypersurface with non-zero signature, then the spectrum
of the Hodge–deRahm Laplacian is [0,∞[.

Moreover, if E is the spectral resolution of the Hodge–deRahm Laplacian then

lim sup
µ→0

log ‖E([0, µ], x, x)‖L∞
log(1/µ)

6 1.

Remark 3.7. If a ∈ C∞(M, Sym(ΛT ∗M)), the same theorem holds with the
operator (d+ δ + a)2 instead of the Hodge–deRham Laplacian (d+ δ)2. Moreover,
the first part of this result can be recovered in the same way as Theorem 0.3, by
a Callias-type index formula: we apply the Callias index formula of [2, 5, 17] for
the operator D + tω, where t is a real number not in the spectrum of the signature
operator D and ω is the skew-adjoint operator which is the Clifford multiplication
by e1 . . . e4n+1. Unfortunately the other part of the corollary cannot be recovered by
this method.
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