Spectral Theory and Geometry:

Ends and L^2 harmonic 1-forms

Gilles.Carron@univ-nantes.fr

• I. Ends and topology.

- I. Ends and topology.
- II. Ends and harmonic functions

- I. Ends and topology.
- II. Ends and harmonic functions
- III. Topology and harmonics forms.

- I. Ends and topology.
- II. Ends and harmonic functions
- III. Topology and harmonics forms.
- IV. Minimal hypersurfaces.

- I. Ends and topology.
- II. Ends and harmonic functions
- III. Topology and harmonics forms.
- IV. Minimal hypersurfaces.
- V. Hyperbolic manifolds.

I. Ends and topology.

Definition:

A manifold M is said to have only one end, if for any compact subset $K \subset M$, its exterior $M \setminus K$ has only one unbounded connected component.

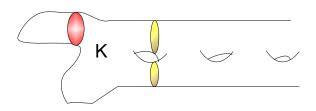
3 / 42

I. Ends and topology.

Definition:

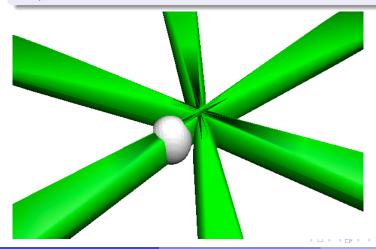
A manifold M is said to have only one end, if for any compact subset $K \subset M$, its exterior $M \setminus K$ has only one unbounded connected component. That is to say only one not relatively compact connected component.

For instance $\mathbb{R}^{n\geq 2}$ has only one end (i.e. only one way to go to infinity).



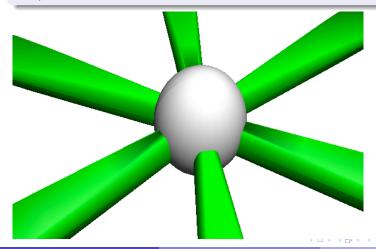
Definition:

A manifold M is said to have at least \mathbf{N} ends, if there is a compact subset $K \subset M$, such that its exterior $M \setminus K$ has at least \mathbf{N} unbounded connected components.



Definition:

A manifold M is said to have at least \mathbf{N} ends, if there is a compact subset $K \subset M$, such that its exterior $M \setminus K$ has at least \mathbf{N} unbounded connected components.



Proposition:

If a (connected) manifold M has at least 2 ends then

$$H_c^1(M)\neq\{0\}.$$

Recall that

$$H_c^1(M) = \frac{\{\alpha \in C_0^{\infty}(T^*M), d\alpha = 0\}}{dC_0^{\infty}(M)}.$$

$$H^1_c(M) = \frac{\{\alpha \in C_0^\infty(T^*M), d\alpha = 0\}}{dC_0^\infty(M)}.$$

Indead, in that case, there is a compact set

$$K \subset M$$
 such that

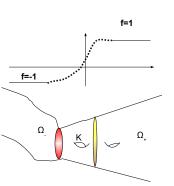
$$M \setminus K = \Omega_- \cup \Omega_+,$$

 $(\Omega_{\pm} \text{ unbounded})$. Choose $f \in C^{\infty}(M)$ such that

$$f=\pm 1, \text{ on } \Omega_{\pm}$$

Then $\alpha = df$ is closed with compact support in K and

$$\alpha \notin dC_0^{\infty}(M)$$



In particular, we have the implication

$$H^1_c(M) = \{0\} \Rightarrow M$$
 has only one end.

In particular, we have the implication

$$H^1_c(M) = \{0\} \Rightarrow M$$
 has only one end.

Moreover, the kernel of the natural map from cohomology with compact support to absolute cohomology is in degree 1 isomorphic to :

$$\ker (H^1_c(M) \to H^1(M)) \simeq \mathbb{R}^{\text{Number of ends}}/\mathbb{R}.$$

In fact, there is a kind of reciproque of this fact :

Proposition: (C-Pedon)

If M is a connected manifold such that M and all its two fold cover have only one end then

$$H^1_c(M,\mathbb{Z})=\{0\}.$$

In fact, there is a kind of reciproque of this fact :

Proposition: (C-Pedon)

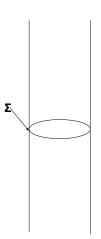
If M is a connected manifold such that M and all its two fold cover have only one end then

$$H_c^1(M,\mathbb{Z})=\{0\}.$$

It is relatively easy to explain the homological argument : Assume that $\Sigma \subset M$ is a compact hypersurface. We want to show that Σ bounded a compact domain in M.

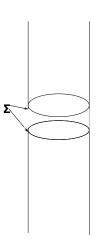
We have two cases: In the first one:

 $M \setminus \Sigma$ has two connected components



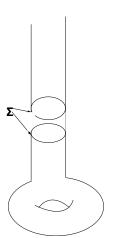
We have two cases: In the first one:

 $M \setminus \Sigma$ has two connected components

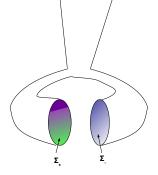


We have two cases: In the first one:

 $M \setminus \Sigma$ has two connected components, but M is assumed to have only one end one of this connected component is relatively compact : so Σ bounded a compact domain.

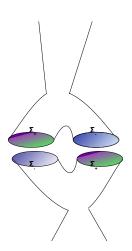


In the second case : $M \setminus \Sigma$ is connected :



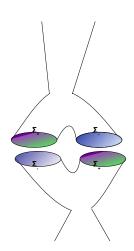
In the second case:

 $M \setminus \Sigma$ is connected :then we can cut Malong Σ and build a two fold cover of M with two ends:



In the second case:

 $M \setminus \Sigma$ is connected :then we can cut M along Σ and build a two fold cover of M with two ends: By hypothesis, this can not happen.



II. Ends and harmonic function

We assume now that (M,g) is a complete connected Riemannian manifold with at least two ends, hence there is a compact set set $K \subset M$ such that

$$M \setminus K = \Omega_- \cup \Omega_+,$$

with Ω_{\pm} unbounded. We want to build a **harmonic** function h on (M,g) such that

$$\lim_{x\to\infty_{\Omega_+}}h(x)=\pm 1$$

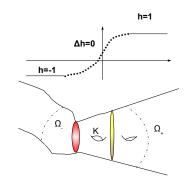
II. Ends and harmonic function: Construction

We could try to build this function by exhaustion : when $o \in M$ is a fixed point and R > 0 large enough (so that $K \subset B(o,R)$) then we can find a unique solution h_R to the Dirichlet problem

$$egin{cases} \Delta h_R = 0 & ext{on } B(o,R) \ h_R = \pm 1 & ext{on } \partial B(o,R) \cap \Omega_\pm \end{cases}$$

We extend h_R with

$$h_R = \pm 1 \text{ on } \Omega_{\pm} \setminus B(o,R)$$



II. Ends and harmonic function: Construction

Properties of h_R

By the maximum principle, we have

$$-1 \le h_R \le 1$$
.

Moreover h_R realizes

$$\inf \left\{ \int_{M} |df|_{g}^{2} d \mathrm{vol}_{g}, f \in W_{loc}^{1,2}, f = \pm 1 \text{ on } \Omega_{\pm} \setminus B(o, R) \right\}.$$

Hence $R \mapsto \int_{B(o,R)} |dh_R|_g^2 d \operatorname{vol}_g = \|dh_R\|_{L^2}^2$ is non increasing.

II. Ends and harmonic function: Construction

Properties of h_R

By the maximum principle, we have

$$-1 \leq h_R \leq 1$$
.

Moreover h_R realizes

$$\inf \left\{ \int_{M} |df|_{g}^{2} d\mathrm{vol}_{g}, f \in W_{loc}^{1,2}, f = \pm 1 \text{ on } \Omega_{\pm} \setminus B(o, R) \right\}.$$

Hence $R \mapsto \int_{B(o,R)} |dh_R|_g^2 d\mathrm{vol}_g = \|dh_R\|_{L^2}^2$ is non increasing. Hence we can find a sequence (h_{R_k}) which converge uniformly on compact set to a harmonic function h_∞ such that

$$-1 \le h_{\infty} \le 1.$$

$$\int_{M} |dh_{\infty}|_{g}^{2} d\text{vol}_{g} < \infty$$

II. Ends and harmonic function : First example : \mathbb{R}

In that cases , on [-R,R]

$$h_R(t)=\frac{t}{R}$$

II. Ends and harmonic function : First example : \mathbb{R}

In that cases , on $\left[-R,R\right]$

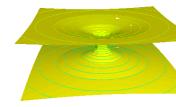
$$h_R(t) = \frac{t}{R}$$

and $h_{\infty}=0$

II. Ends and harmonic function : Second example : $\mathbb{R}^3 \# \mathbb{R}^3$

We consider two copies of the Euclidean space \mathbb{R}^3 glued together. This manifold is diffeomorphic to $\mathbb{R} \times \mathbb{S}^2$ and is endowed with the metric

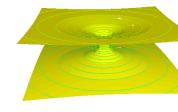
$$(dt)^2 + (1+t^2)(d\sigma)^2$$



II. Ends and harmonic function : Second example : $\mathbb{R}^3\#\mathbb{R}^3$

We consider two copies of the Euclidean space \mathbb{R}^3 glued together. This manifold is diffeomorphic to $\mathbb{R} \times \mathbb{S}^2$ and is endowed with the metric

$$(dt)^2 + (1+t^2)(d\sigma)^2$$

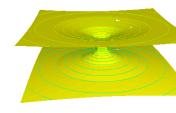


Then on $[-R, R] \times \mathbb{S}^2$, we have $h_R(t, \sigma) = \frac{\arctan(t)}{\arctan(R)}$.

II. Ends and harmonic function : Second example : $\mathbb{R}^3 \# \mathbb{R}^3$

We consider two copies of the Euclidean space \mathbb{R}^3 glued together. This manifold is diffeomorphic to $\mathbb{R} \times \mathbb{S}^2$ and is endowed with the metric

$$(dt)^2 + (1+t^2)(d\sigma)^2$$



Then on
$$[-R,R] \times \mathbb{S}^2$$
, we have $h_R(t,\sigma) = \frac{\operatorname{arctan}(t)}{\operatorname{arctan}(R)}$. Hence

$$h_{\infty}(t,\sigma) = rac{2 \arctan(t)}{\pi}.$$

< ロ ト ← 個 ト ← 差 ト ← 差 ト 一 差 ・ 夕 Q (^)

II. Ends and harmonic function :Third example : $\mathbb{R} \times \mathbb{S}^1$

We consider $\mathbb{R}\times\mathbb{S}^1$ and with the metric

$$(dt)^2 + e^{2t}(d\sigma)^2$$

Then on
$$[-R,R] \times \mathbb{S}^1$$
, we have $h_R(t,\sigma) = \frac{\cosh(R) - e^{-t}}{\sinh(R)}$.

II. Ends and harmonic function :Third example : $\mathbb{R} \times \mathbb{S}^1$

We consider $\mathbb{R} \times \mathbb{S}^1$ and with the metric

$$(dt)^2 + e^{2t}(d\sigma)^2$$

Then on
$$[-R,R] imes \mathbb{S}^1$$
, we have $h_R(t,\sigma) = \frac{\cosh(R) - e^{-t}}{\sinh(R)}$. Hence $h_{\infty}(t,\sigma) = 1$.

16 / 42

II. Ends and harmonic function: the spectral gap condition

If we assume that the Laplace operator on (M,g) has a spectral gap : the best constant λ_0 in the inequality

$$\lambda_0 \int_M f^2 \le \int_M |df|^2, \ \forall f \in C_0^\infty(M)$$

is positive : $\lambda_0 > 0$.

II. Ends and harmonic function: the spectral gap condition

If we assume that the Laplace operator on (M,g) has a spectral gap : the best constant λ_0 in the inequality

$$\lambda_0 \int_M f^2 \le \int_M |df|^2, \ \forall f \in C_0^\infty(M)$$

is positive : $\lambda_0 > 0$. Then we get : for $R > R_0$

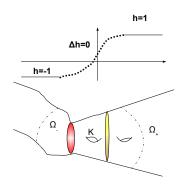
$$\lambda_{0} \int_{M} |h_{R} - h_{R_{0}}|^{2} \leq \int_{M} |d(h_{R} - h_{R_{0}})|^{2}$$

$$\leq 2 \int_{M} |dh_{R}|^{2} + 2 \int_{M} |dh_{R_{0}}|^{2}$$

$$\leq 4 \int_{M} |dh_{R_{0}}|^{2}$$

II. Ends and harmonic function: the spectral gap condition

Letting R tends to ∞ , we get that $h_{\infty} - h_{R_0} \in L^2$. Now because $h_{R_0} = \pm 1$ on $\Omega_{\pm} \setminus B(o, R_0)$. We can say that if both Ω_{+} and Ω_{-} have infinite volume then h_{∞} is non trivial.



II. Ends and harmonic function: the spectral gap condition

• The first example \mathbb{R} , we have no spectral gap $\lambda_0 = 0$.

II. Ends and harmonic function: the spectral gap condition

- The first example \mathbb{R} , we have no spectral gap $\lambda_0 = 0$.
- In the third one :

$$(\mathbb{R} \times \mathbb{S}^1, (dt)^2 + e^{2t}(d\sigma)^2)$$

we have a spectral gap but the end $(-\infty,0) imes \mathbb{S}^1$ has finite volume

If we replace the spectral gap inequality:

$$\lambda_0 \int_M f^2 \le \int_M |df|^2, \ \forall f \in C_0^\infty(M)$$

If we replace the spectral gap inequality:

$$\lambda_0 \int_M f^2 \le \int_M |df|^2, \ \forall f \in C_0^\infty(M)$$

by a Sobolev inequality

$$\mu\left(\int_{M}f^{2\tau}\right)^{\frac{1}{\tau}}\leq\int_{M}|df|^{2},\ \forall f\in C_{0}^{\infty}(M).$$

where $\tau \geq 1$. Then the same argument leads to the existence of a harmonic function associated to a pair of ends with infinite volume.

The Sobolev inequality

$$\mu\left(\int_{M}f^{2\tau}\right)^{\frac{1}{\tau}}\leq\int_{M}|df|^{2},\ \forall f\in C_{0}^{\infty}(M)$$

is true on

- $\mathbb{R}^{n>2}$ with $\tau = \frac{n}{n-2}$.
- our second example $\mathbb{R}^3\#\mathbb{R}^3$ satisfies the Sobolev inequality with $\tau=3$.

But with the Sobolev inequality : $\mu\left(\int_{M}f^{2\tau}\right)^{\frac{1}{\tau}} \leq \int_{M}|df|^{2}, \ \forall f\in C_{0}^{\infty}(M),$ ends have infinite volume:

De Giogi-Nash-Moser iteration scheme:

If u is an harmonic function on a ball B(x,r) , $p\geq 2$ and $m:=rac{2 au}{(au-1)}$ then

$$|u(x)| \leq \frac{C(\tau, p, \mu)}{r^{\frac{m}{p}}} ||u||_{L^p(B(x,r))},$$

In particular with the function u = 1, we get

$$\operatorname{vol} B(x,r) \geq C(\tau,\mu)r^m$$
.

.

De Giogi-Nash-Moser iteration scheme:

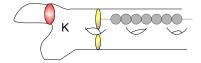
If u is an harmonic function on a ball B(x,r) , $p\geq 2$ and $m:=rac{2 au}{(au-1)}$ then

$$|u(x)| \leq \frac{C(\tau, p, \mu)}{r^{\frac{m}{p}}} ||u||_{L^p(B(x,r))},$$

In particular with the function u = 1, we get

$$\operatorname{vol} B(x,r) \geq C(\tau,\mu)r^m$$
.

This implies that ends have infinite volume:

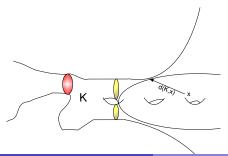


Recall that when u is an harmonic function on a ball B(x,r) and $p \ge 2$ then

$$|u(x)| \leq \frac{C(\tau, p\mu)}{r^{\frac{m}{p}}} ||u||_{L^p(B(x,r))}, m := \frac{2\tau}{(\tau - 1)}$$

Then because the function $h_{\infty}-(\pm 1)$ is harmonic and $h_{\infty}-(\pm 1)\in L^{2\tau}(\Omega_{\pm})$ we get

$$1-(\pm h_{\infty}(x)) \leq rac{C}{d(o,x)^{rac{m-2}{2}}} ext{ on } \Omega_{\pm}$$



◆ロト ◆御 ▶ ◆ 恵 ▶ ◆ 恵 ▶ ○ 夏 ※ 夕 Q ○

II. Ends and harmonic function: Conclusion

Theorem

Assume that (M,g) is a complete Riemannian manifold which satisfies

• for a $\mu > 0$ and $\tau \geq 1$,

$$\mu\left(\int_{M}f^{2\tau}\right)^{\frac{1}{\tau}}\leq\int_{M}|df|^{2},\ \forall f\in C_{0}^{\infty}(M).$$

• There is a compact set $K \subset M$ such $M \setminus K = \Omega_- \cup \Omega_+$ with both Ω_\pm unbounded; when $\tau = 1$ assume moreover that $\operatorname{vol}\Omega_\pm = \infty$.

Then there is a non trivial harmonic function h_∞ such that $dh_\infty \in L^2$ and when $\tau > 1$

$$\lim_{x\to\infty_{\Omega_+}}h_\infty(x)=\pm 1$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

III. Topology and harmonics forms

Definition

When (M,g) is a complete Riemannian manifold, a metric analogue of $H^1_c(M)$ is the degree 1 space of (reduced) L^2 -cohomology :

$$\mathbb{H}^{1}(M) = \frac{\{\alpha \in L^{2}(T^{*}M), d\alpha = 0\}}{\overline{dC_{0}^{\infty}(M)}},$$

where the closure is for the L^2 topology.

III. Topology and harmonics forms

Definition

When (M,g) is a complete Riemannian manifold, a metric analogue of $H^1_c(M)$ is the degree 1 space of (reduced) L^2 -cohomology :

$$\mathbb{H}^{1}(M) = \frac{\{\alpha \in L^{2}(T^{*}M), d\alpha = 0\}}{\overline{dC_{0}^{\infty}(M)}},$$

where the closure is for the L^2 topology.

This space has a interpretation in term of harmonic (i.e. closed and coclosed) forms

$$\mathbb{H}^1(M) \simeq \mathcal{H}^1(M) = \{ \alpha \in L^2(T^*M), d\alpha = 0, d^*\alpha = 0 \}.$$

Locally a harmonic 1—form is the differential of a harmonic function.

$$\Delta h = 0$$
 and $dh \in L^2 \Rightarrow dh \in \mathcal{H}^1(M)$.

III. Topology and harmonics forms

There is a natural map :

$$H^1_c(M) \to \mathbb{H}^1(M)$$

Sending a closed smooth form with compact support to its orthogonal projection onto the space of harmonic forms. The injectivity of this map will imply the existence of harmonic function with L^2 gradient associated to pair of ends.

III. Topology and harmonics forms : $H_c^1(M)$ versus L^2 harmonic 1-forms

Proposition, C. and C.-Pedon, 2003

Assume that (M, g) is a complete Riemannian manifold which satisfies

• for a $\mu > 0$ and $\tau > 1$,

$$\mu\left(\int_{M}f^{2\tau}\right)^{\frac{1}{\tau}}\leq\int_{M}|df|^{2},\ \forall f\in C_{0}^{\infty}(M).$$

• when $\tau = 1$ assume moreover that all ends of (M, g) has infinite volume.

Then the natural map:

$$H^1_c(M) \to \mathbb{H}^1(M)$$

is injective.

If $\alpha \in C_0^\infty(T^*M)$ satisfies $d\alpha = 0$ is mapped to zero in $\mathbb{H}^1(M) = \frac{\{\alpha \in L^2(T^*M), d\alpha = 0\}}{\overline{dC_0^\infty(M)}}$. Then by definition $\alpha \in \overline{dC_0^\infty(M)}$:

If $\alpha \in C_0^\infty(T^*M)$ satisfies $\mathrm{d}\alpha = 0$ is mapped to zero in $\mathbb{H}^1(M) = \frac{\{\alpha \in L^2(T^*M), d\alpha = 0\}}{dC_0^\infty(M)}$. Then by definition $\alpha \in \overline{dC_0^\infty(M)}$: there is a sequence (f_k) in $C_0^\infty(M)$ such that

$$\alpha = L^2 - \lim_{k \to \infty} df_k.$$

If $\alpha \in C_0^\infty(T^*M)$ satisfies $\mathrm{d}\alpha = 0$ is mapped to zero in $\mathbb{H}^1(M) = \frac{\{\alpha \in L^2(T^*M), d\alpha = 0\}}{\overline{dC_0^\infty(M)}}$. Then by definition $\alpha \in \overline{dC_0^\infty(M)}$: there is a sequence (f_k) in $C_0^\infty(M)$ such that

$$\alpha = L^2 - \lim_{k \to \infty} df_k.$$

Our hypothesis is the Sobolev 's inequality :

$$\mu\left(\int_{M}f^{2\tau}\right)^{\frac{1}{\tau}}\leq\int_{M}|df|^{2},\,\,\forall f\in C_{0}^{\infty}(M).$$

If $\alpha \in C_0^\infty(T^*M)$ satisfies $\mathrm{d}\alpha = 0$ is mapped to zero in $\mathbb{H}^1(M) = \frac{\{\alpha \in L^2(T^*M), d\alpha = 0\}}{dC_0^\infty(M)}$. Then by definition $\alpha \in \overline{dC_0^\infty(M)}$: there is a sequence (f_k) in $C_0^\infty(M)$ such that

$$\alpha = L^2 - \lim_{k \to \infty} df_k.$$

Our hypothesis is the Sobolev 's inequality :

$$\mu\left(\int_{M}f^{2\tau}\right)^{\frac{1}{\tau}}\leq\int_{M}|df|^{2},\ \forall f\in C_{0}^{\infty}(M).$$

Hence, there is $f_{\infty} \in L^{2\tau}$ such that

$$L^{2\tau} - \lim_{k \to \infty} f_k = f_{\infty} \text{ so } \alpha = df_{\infty}.$$

Moreover, f_{∞} is locally constant outside the support of α , our hypothesis implies that f_{∞} has compact support.

Hence a vanishing result for the space of these harmonic functions or for the space of L^2 harmonic 1-forms implies that such a manifold has only one end.

Hence a vanishing result for the space of these harmonic functions or for the space of L^2 harmonic 1-forms implies that such a manifold has only one end.

A classical way to obtain such a vanishing result is from the Bochner formula : If h satisfies

$$\Delta h = 0$$
 and $dh \in L^2$

then $\alpha = dh$ satisfies

$$\int_{M} \langle \nabla^* \nabla \alpha + \operatorname{Ricci} \alpha, \alpha \rangle d \operatorname{vol}_{g} = \int_{M} |\nabla \alpha|^{2} + \operatorname{Ricci} (\alpha, \alpha) d \operatorname{vol}_{g} = 0$$

Hence a vanishing result for the space of these harmonic functions or for the space of L^2 harmonic 1-forms implies that such a manifold has only one end.

A classical way to obtain such a vanishing result is from the Bochner formula : If h satisfies

$$\Delta h = 0$$
 and $dh \in L^2$

then $\alpha = dh$ satisfies

$$\int_{M} \langle \nabla^* \nabla \alpha + \operatorname{Ricci} \alpha, \alpha \rangle d \operatorname{vol}_{g} = \int_{M} |\nabla \alpha|^{2} + \operatorname{Ricci} (\alpha, \alpha) d \operatorname{vol}_{g} = 0$$

Moreover, the Kato inequality implies that for $f := |\alpha|$ and with $\mathrm{Ricci}_{-}(x) :=$ the lowest eigenvalue of the Ricci tensor at x :

Hence a vanishing result for the space of these harmonic functions or for the space of L^2 harmonic 1-forms implies that such a manifold has only one end.

A classical way to obtain such a vanishing result is from the Bochner formula : If h satisfies

$$\Delta h = 0$$
 and $dh \in L^2$

then $\alpha = dh$ satisfies

$$\int_{M} \langle \nabla^* \nabla \alpha + \operatorname{Ricci} \alpha, \alpha \rangle d \operatorname{vol}_{g} = \int_{M} |\nabla \alpha|^{2} + \operatorname{Ricci} (\alpha, \alpha) d \operatorname{vol}_{g} = 0$$

Moreover, the Kato inequality implies that for $f := |\alpha|$ and with $\mathrm{Ricci}_{-}(x) :=$ the lowest eigenvalue of the Ricci tensor at x :

$$\int_{M} \left[f \Delta f + \operatorname{Ricci}_{-} f^{2} \right] d \operatorname{vol}_{g} \leq \int_{M} |\nabla \alpha|^{2} + \operatorname{Ricci}(\alpha, \alpha) d \operatorname{vol}_{g} = 0.$$

Hence if the operator $\Delta + \mathrm{Ricci}_{-}$ is non negative with no L^2 -kernel, we have such a vanishing result.

When $M^{n>2} \subset \mathbb{R}^{n+1}$ is a minimal hypersurface, then according to J.Michael & L.Simon the Sobolev inequality holds on M (with the induced metric).

When $M^{n>2} \subset \mathbb{R}^{n+1}$ is a minimal hypersurface, then according to J.Michael & L.Simon the Sobolev inequality holds on M (with the induced metric). Let |A| be the lenght of the second fundamental form of $M^{n>2} \subset \mathbb{R}^{n+1}$.

The Egregium theorem implies that we have the inequality

$$Ricci \ge -|A|^2 + \frac{1}{n}|A|^2.$$

When $M^{n>2} \subset \mathbb{R}^{n+1}$ is a minimal hypersurface, then according to J.Michael & L.Simon the Sobolev inequality holds on M (with the induced metric). Let |A| be the lenght of the second fundamental form of $M^{n>2} \subset \mathbb{R}^{n+1}$.

The Egregium theorem implies that we have the inequality

$$Ricci \ge -|A|^2 + \frac{1}{n}|A|^2.$$

Recall that the Bochner formula implies that any L^2 harmonic 1-form α satisfies :

$$\int_{M}(\Delta|\alpha|-|A|^{2}|\alpha|)|\alpha|d\mathrm{vol}_{g}\leq\int_{M}|d|\alpha||^{2}-|A|^{2}|\alpha|^{2}+\frac{1}{n}|A|^{2}|\alpha|^{2}d\mathrm{vol}_{g}\leq0$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

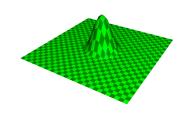
The operator $\Delta - |A|^2$ is know to be associated to the second variation of the volume functional.

The operator $\Delta - |A|^2$ is know to be associated to the second variation of the volume functional.

Recall that a minimal hypersurface is a critical point for the volume functional

$$\varphi \in C_0^\infty(M) \mapsto V(\varphi),$$

where $V(\varphi)$ is the volume of the normal graph of φ over M.



We have

$$V''(0)(\varphi,\varphi) = \int_{M} \left[|d\varphi|^2 - |A|^2 \varphi^2 \right] d\mathrm{vol}_{g}.$$

- 4 ロ ト 4 昼 ト 4 種 ト 4 種 ト ■ 9 Q (C)

From these ideas, we can obtain the following result

Theorem

• If the minimal hypersurface $M^n \subset \mathbb{R}^{n+1}$ is stable $(\Delta - |A|^2 \ge 0)$, then M^n has only one ends (H.Cao &Y.Shen & S.Zhu, 1997) and $H^1_c(M) = \{0\}$.

From these ideas, we can obtain the following result

Theorem

- If the minimal hypersurface $M^n \subset \mathbb{R}^{n+1}$ is stable $(\Delta |A|^2 \ge 0)$, then M^n has only one ends (H.Cao &Y.Shen & S.Zhu, 1997) and $H^1_c(M) = \{0\}$.
- If the minimal hypersurface $M^n \subset \mathbb{R}^{n+1}$ has finite index (the operator $\Delta |A|^2$ has a finite number of negative eigenvalues), then M^n has a finite number of ends (P. Li & J. Wang, 2002) and dim $H^1_c(M) < \infty$ (with the above argument and a result of S.Pigola & M.Rigoli & A.Setti, 2008).

On a minimal hypersurface with finite total scalar curvature :

$$\int_{M} |A|^{n} d\mathrm{vol}_{g} < \infty$$

the operator $\Delta - |A|^2$ has a finite number of negative eigenvalues (G. Besson & P. Bérard 1990).

On a minimal hypersurface with finite total scalar curvature :

$$\int_{M} |A|^{n} d\mathrm{vol}_{g} < \infty$$

the operator $\Delta - |A|^2$ has a finite number of negative eigenvalues (G. Besson & P. Bérard 1990).

 There are many of such minimal hypersurfaces (S. Fakhi & F. Pacard, 2000)

On a minimal hypersurface with finite total scalar curvature :

$$\int_{M} |A|^{n} d\mathrm{vol}_{g} < \infty$$

the operator $\Delta - |A|^2$ has a finite number of negative eigenvalues (G. Besson & P. Bérard 1990).

- There are many of such minimal hypersurfaces (S. Fakhi & F. Pacard, 2000)
- But stable minimal hypersurface with finite total scalar curvature are hyperplane (M. do Carmo & C-K. Peng (1980), P. Bérard ($n \le 5$, 1991) and Y-B. Shen & X-H. Zhu (1997))

When $\Gamma \backslash \mathbb{H}^n$ is a hyperbolic manifold (with $\Gamma \subset SO(n,1)$ discrete, torsion free subgroup), the bottom of the spectrum of $\Gamma \backslash \mathbb{H}^n$ is related to a dynamical invariant of Γ : the critical exponent:

$$\delta(\Gamma) = \limsup_{R \to \infty} \frac{\mathrm{Card} \ (\Gamma.o \cap B(o,R))}{R}$$

We have always:

•
$$\delta(\Gamma) \in [0, n-1]$$
,

When $\Gamma \backslash \mathbb{H}^n$ is a hyperbolic manifold (with $\Gamma \subset SO(n,1)$ discrete, torsion free subgroup), the bottom of the spectrum of $\Gamma \backslash \mathbb{H}^n$ is related to a dynamical invariant of Γ : the critical exponent:

$$\delta(\Gamma) = \limsup_{R \to \infty} \frac{\operatorname{Card} \ (\Gamma.o \cap B(o,R))}{R}$$

We have always:

- $\delta(\Gamma) \in [0, n-1]$,
- ullet when $\Gamma ackslash \mathbb{H}^n$ is compact or have finite volume then $\delta(\Gamma) = n-1$.

The discrete Γ is called convex-cocompact when :

The discrete Γ is called convex-cocompact when : If we introduce the limit set of Γ to

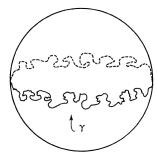
be the set

$$\Lambda(\Gamma)=\overline{\Gamma.o}\cap\mathbb{S}^{\infty},$$

then the quotient

$$\Gamma \setminus (\mathbb{H}^n \cup (\mathbb{S}^\infty \setminus \Lambda(\Gamma)))$$

is a manifold with boundary.



The discrete Γ is called convex-cocompact when :

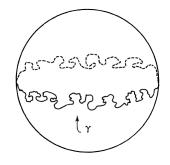
If we introduce the limit set of Γ to be the set

$$\Lambda(\Gamma)=\overline{\Gamma.o}\cap\mathbb{S}^\infty,$$

then the quotient

$$\Gamma \setminus (\mathbb{H}^n \cup (\mathbb{S}^\infty \setminus \Lambda(\Gamma)))$$

is a manifold with boundary.



Theorem, (Sullivan)

When Γ is convex-cocompact, then

$$\delta(\Gamma) = \dim_{\text{Hausdorff}} \Lambda(\Gamma).$$

Theorem (Sullivan)

If $\delta(\Gamma) < n-1$ then on $\Gamma \backslash \mathbb{H}^n$, we have the spectral gap estimate

$$\lambda_0 \int f^2 \leq \int |df|^2, \ \forall f \in C_0^\infty(\Gamma \backslash \mathbb{H}^n)$$

where

$$\lambda_0 = \begin{cases} \left(\frac{n-1}{2}\right)^2 & \text{if } \delta(\Gamma) \le \frac{n-1}{2} \\ \left(n-1-\delta(\Gamma)\right)\delta(\Gamma) & \text{if } \delta(\Gamma) \ge \frac{n-1}{2} \end{cases}$$

According to our discussion, when $\delta(\Gamma) < n-1$ and $\Gamma \backslash \mathbb{H}^n$ has two ends of infinite volume then we can find a non trivial harmonic function with L^2 gradient associate to this pair of ends.

According to our discussion, when $\delta(\Gamma) < n-1$ and $\Gamma \backslash \mathbb{H}^n$ has two ends of infinite volume then we can find a non trivial harmonic function with L^2 gradient associate to this pair of ends. We remark that when the injectivity radius of $\Gamma \backslash \mathbb{H}^n$ is positive :

According to our discussion, when $\delta(\Gamma) < n-1$ and $\Gamma \backslash \mathbb{H}^n$ has two ends of infinite volume then we can find a non trivial harmonic function with L^2 gradient associate to this pair of ends. We remark that when the injectivity radius of $\Gamma \backslash \mathbb{H}^n$ is positive :

$$\inf_{x\in\mathbb{H}^n,\gamma\in\Gamma}d(x,\gamma.x)>0,$$

According to our discussion, when $\delta(\Gamma) < n-1$ and $\Gamma \backslash \mathbb{H}^n$ has two ends of infinite volume then we can find a non trivial harmonic function with L^2 gradient associate to this pair of ends. We remark that when the injectivity radius of $\Gamma \backslash \mathbb{H}^n$ is positive :

$$\inf_{x\in\mathbb{H}^n,\gamma\in\Gamma}d(x,\gamma.x)>0,$$

then all ends have infinite volume.

Theorem (P. Li & J. Wang, 2001)

If $(M^{n>2},g)$ is a complete Riemannian manifold with $\mathrm{Ricci} \geq -(n-1)g$ and $\lambda_0 \geq (n-2)$, then either M has only one end with infinite volume or (M^n,g) is isometric to the warped product

$$(\mathbb{R}\times N, (dt)^2 + \cosh^2(t)h)$$

with (N, h) compact and $\mathrm{Ricci} \geq -(n-2)g$.

Theorem (P. Li & J. Wang, 2001)

If $(M^{n>2},g)$ is a complete Riemannian manifold with $\mathrm{Ricci} \geq -(n-1)g$ and $\lambda_0 \geq (n-2)$, then either M has only one end with infinite volume or (M^n,g) is isometric to the warped product

$$(\mathbb{R} \times N, (dt)^2 + \cosh^2(t)h)$$

with (N,h) compact and $\mathrm{Ricci} \geq -(n-2)g$.

Ideas of the proof when $n \ge 4$:

• if such a $(M^{n>2}, g)$ has two infinite volume ends then we can find a good harmonic function h.

Theorem (P. Li & J. Wang, 2001)

If $(M^{n>2},g)$ is a complete Riemannian manifold with $\mathrm{Ricci} \geq -(n-1)g$ and $\lambda_0 \geq (n-2)$, then either M has only one end with infinite volume or (M^n,g) is isometric to the warped product

$$(\mathbb{R} \times N, (dt)^2 + \cosh^2(t)h)$$

with (N,h) compact and $\mathrm{Ricci} \geq -(n-2)g$.

Ideas of the proof when $n \ge 4$:

- if such a $(M^{n>2}, g)$ has two infinite volume ends then we can find a good harmonic function h.
- $g := |dh|^{\frac{n-2}{n-1}}$ satisfies $\Delta g \le (n-2)g$

Theorem (P. Li & J. Wang, 2001)

If $(M^{n>2},g)$ is a complete Riemannian manifold with $\mathrm{Ricci} \geq -(n-1)g$ and $\lambda_0 \geq (n-2)$, then either M has only one end with infinite volume or (M^n,g) is isometric to the warped product

$$(\mathbb{R} \times N, (dt)^2 + \cosh^2(t)h)$$

with (N, h) compact and $\mathrm{Ricci} \geq -(n-2)g$.

Ideas of the proof when $n \ge 4$:

- if such a $(M^{n>2}, g)$ has two infinite volume ends then we can find a good harmonic function h.
- $ullet g:=|dh|^{rac{n-2}{n-1}}$ satisfies $\Delta g\leq (n-2)g$
- Then $g \in L^2$, hence $\Delta g = (n-2)g$.

Theorem (P. Li & J. Wang, 2001)

If $(M^{n>2},g)$ is a complete Riemannian manifold with $\mathrm{Ricci} \geq -(n-1)g$ and $\lambda_0 \geq (n-2)$, then either M has only one end with infinite volume or (M^n,g) is isometric to the warped product

$$(\mathbb{R} \times N, (dt)^2 + \cosh^2(t)h)$$

with (N,h) compact and $\mathrm{Ricci} \geq -(n-2)g$.

Ideas of the proof when $n \ge 4$:

- if such a $(M^{n>2}, g)$ has two infinite volume ends then we can find a good harmonic function h.
- $ullet g:=|dh|^{rac{n-2}{n-1}}$ satisfies $\Delta g\leq (n-2)g$
- Then $g \in L^2$, hence $\Delta g = (n-2)g$.
- Analyse the equality case in $\Delta g \leq (n-2)g$ and deduce the geometry of M (in fact $g = \frac{C}{\cosh^{n-2}(t)}$).

A corollary for hyperbolic manifold :

Corollary

If $\Gamma \subset SO(n,1)$ discrete, torsion free subgroup, then

- If $\delta(\Gamma) < n-2$ then $\Gamma \backslash \mathbb{H}^n$ has only one end with infinite volume.
- If $\delta(\Gamma) = n-2$ and $\Gamma \backslash \mathbb{H}^n$ has at least two ends with infinite volume, then there is a totally geodesic hypersurface in \mathbb{H}^n , that is a copy of $\mathbb{H}^{n-1} \subset \mathbb{H}^n$ stable by Γ such that $\Gamma \backslash \mathbb{H}^{n-1}$ is compact.

This nice result has a certain familiarity with other results.

• (R. Bowen,1979) Assume that $\Gamma_0 \subset SO(2,1)$ is a cocompact group and that that $\Gamma \subset SO(3,1)$ is convex cocompact and isomorphic to Γ_0 , then

$$\delta(\Gamma) \geq 1 = 3 - 2$$

.

• (R. Bowen,1979) Assume that $\Gamma_0 \subset SO(2,1)$ is a cocompact group and that that $\Gamma \subset SO(3,1)$ is convex cocompact and isomorphic to Γ_0 , then

$$\delta(\Gamma) \ge 1 = 3 - 2$$

.

• (P.Pansu, M.Bourdon, C-B.Yue, H.Izeki, G.Besson & G.Courtois & S.Gallot [1996-1998]) Assume that $\Gamma_0 \subset SO(n-1,1)$ is a cocompact group and that that $\Gamma \subset SO(n,1)$ is convex cocompact and isomorphic to Γ_0 , then

$$\delta(\Gamma) \ge n-2$$

with egality if and only if there is a totally geodesic hypersurface in \mathbb{H}^n , that is a copy of $\mathbb{H}^{n-1} \subset \mathbb{H}^n$ stable by Γ such that $\Gamma \backslash \mathbb{H}^{n-1} \simeq \Gamma_0 \backslash \mathbb{H}^{n-1}$.

The above rigidity result is more general:

• If $\Gamma_0 \subset SO(n-k,1)$ is a cocompact group isomorphic to a convex cocompact group $\Gamma \subset SO(n,1)$, then

$$\delta(\Gamma) \geq n - k - 1$$

with egality if and only if there is a totally geodesic $\mathbb{H}^{n-k} \subset \mathbb{H}^n$ stable by Γ such that $\Gamma \backslash \mathbb{H}^{n-k} \simeq \Gamma_0 \backslash \mathbb{H}^{n-k}$.

The above rigidity result is more general:

• If $\Gamma_0 \subset SO(n-k,1)$ is a cocompact group isomorphic to a convex cocompact group $\Gamma \subset SO(n,1)$, then

$$\delta(\Gamma) \geq n - k - 1$$

with egality if and only if there is a totally geodesic $\mathbb{H}^{n-k} \subset \mathbb{H}^n$ stable by Γ such that $\Gamma \backslash \mathbb{H}^{n-k} \simeq \Gamma_0 \backslash \mathbb{H}^{n-k}$.

• (H. Izeki 1995, C. & E.Pedon, 2003) If $\Gamma \subset SO(n,1)$ satisfies $\delta(\Gamma) < n-1-k$, then

$$\operatorname{Im} \ \left(H_c^k(\Gamma \backslash \mathbb{H}^n) \to H^k(\Gamma \backslash \mathbb{H}^n) \right) = \{0\}.$$

The above rigidity result is more general:

• If $\Gamma_0 \subset SO(n-k,1)$ is a cocompact group isomorphic to a convex cocompact group $\Gamma \subset SO(n,1)$, then

$$\delta(\Gamma) \geq n - k - 1$$

with egality if and only if there is a totally geodesic $\mathbb{H}^{n-k} \subset \mathbb{H}^n$ stable by Γ such that $\Gamma \backslash \mathbb{H}^{n-k} \simeq \Gamma_0 \backslash \mathbb{H}^{n-k}$.

• (H. Izeki 1995, C. & E.Pedon, 2003) If $\Gamma \subset SO(n,1)$ satisfies $\delta(\Gamma) < n-1-k$, then

$$\operatorname{Im} \left(H_c^k(\Gamma \backslash \mathbb{H}^n) \to H^k(\Gamma \backslash \mathbb{H}^n) \right) = \{0\}.$$

• (X. Wang, 2002) If $\Gamma \subset SO(n,1)$ is convex-cocompact and satisfies $\frac{n-1}{2} < \delta(\Gamma) \le n-1-k$ and

$$\operatorname{Im} \ \left(H_c^k(\Gamma \backslash \mathbb{H}^n) \to H^k(\Gamma \backslash \mathbb{H}^n) \right) \neq \{0\},$$

Then there is a totally geodesic copy of $\mathbb{H}^{n-k} \subset \mathbb{H}^n$ stable by Γ such that $\Gamma \backslash \mathbb{H}^{n-k}$ is compact.