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Utilization of Deformations in Molecular Quantum
Chemistry and Application to Density Functional Theory

Olivier BOKANOWSKI1,2 and Benoı̂t GREBERT31

Abstract. The aim of this paper is to present in a way accessible to most quantum
chemists a general mathematical method which consists in deforming wave-functions and
density functions (in the spirit of the Local Scaling Transformation). This deformation
method allows us to obtain several new results including a characterization of the set of
wave-functions that have the same given density function (which gives a new insight on a
result of G. Zumbach and K. Maschke) and an N -representability result where symmetry
is taken into account. We also propose new theoretical ways to generate approximations
of the exact density functional, and give a numerical example.

Keywords. Density functional theory, approximation of density functionals, deforma-
tions of wave functions, N-representability in a given symmetry class, Jacobian problem.

I Introduction

We are interested in the calculation of the ground-state energy E0 of an N -electron sys-
tem. In the molecular case, we have

E0 = inf{〈Ψ, HΨ〉,
∫

|Ψ|2 = 1}

where

H = −
N∑

i=1

∆i +

N∑

i=1

v(ri) +
∑

1≤i<j≤N

1

|ri − rj|

and

v(r) =
P∑

j=1

−Zj

|r− Rj|

((Rj)j=1,...,P are the P nuclei positions and Zj their charge). Following the point of view
of density functional theory, we try to obtain an approximation of E0 by minimization of
functionals that explicitly depend of the density function ρ, and eventually, other parame-
ters. In order to do this, we deform a given wave-function in such a way that we are able
to control the corresponding density function.

In their article [1], I. Petkov, M. Stoitsov and E.S. Kryachko developed the Local
Scaling Transformation Theory (see also [2] and [3]). They essentially consider radial
deformations in the atomic case. In this case, several numerical and theoretical results
have been obtained (see [4, 5, 6, 7, 8]).

1Laboratoire de Mathématiques pour l’Industrie et la Physique, UMR CNRS 5640. Université Paul
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We have generalized these transformations to the non-radial case and in a more sys-
tematical approach in a series of mathematically-oriented papers [9, 10, 11, 12]. Here we
present the main results with only formal proofs and discuss some possible applications
in quantum chemistry.

In Section 2, we develop our general deformation method. We will see that this
method uses the resolution of a classical mathematical problem, namely the Jacobian
problem.

Thus in section 3 (which summarizes [9]), we develop a first method in order to solve
this Jacobian problem, and we give a new insight on the decomposition result of G. Zum-
bach and K. Maschke [14].

Symmetry problems in DFT are important (see Görling [13]). In Section 4, in order to
deal with symmetry problems associated with the structure of the molecules, we develop
and adapt another method due to J. Moser [15] for solving the Jacobian problem. In
particular, we propose density functionals for the calculation of the minimal energy in a
given symmetry class. In this section, we also give a new N-representability result for
totally symmetric density functions (this part was not included in [10]).

Finally in section 5, we discuss the applied view point and give some numericals cal-
culus on the Helium atom that show how the deformation method can be used in order to
improve the energy (we use a Variational Monte Carlo Method to calculate the energies).

In general, the method we propose give a way to deform explicitely a wave function to
improve its density function. But we do not propose a method to calculate the associated
energy. In particular the difficulty of the calculation of the correlation energy is not solved.

II The general deformation method

Let f be a one-to-one and regular function from R
3 onto R

3. (In [9] we also consider
non-regular deformations.) Let Ψ(r1, σ1; . . . ; rN , σN) be an N -electron wave-function,
where ri ∈ R

3 are the space variables, and σi the spin variables. We assume that Ψ is
antisymmetric and square integrable. We define:

(TfΨ)(r1, σ1; . . . ; rN , σN) :=

(
N∏

i=1

Jf (ri)

)1/2

Ψ(f(r1), σ1; . . . ; f(rN), σN ).

where Jf = | det(∂fi/∂xj)| is the absolute value of the Jacobian determinant of f . Notice
that this transformation does not change the spin variables. Therefore, in order to simplify
the presentation, we shall drop the spin variables. Thus we shall consider Ψ as a func-
tion that depends only on space variables, Ψ(r1, . . . , rN). We assume that Ψ belongs to
L2

a(R
3N), the space of square-integrable functions on R

3N that are antisymmetric (other
symmetries could be considered) with respect to the variables (r1, . . . , rN ). In this case
our transformation becomes

(TfΨ)(r1, . . . , rN) :=

(
N∏

i=1

Jf (ri)

)1/2

Ψ(f(r1), . . . , f(rN)). (1)

Using the change of variable formula note that
∫
|TfΨ|2 =

∫
|Ψ|2, so Tf defines a unitary

operator from L2
a(R

3N ) onto L2
a(R

3N ).
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The wave-function TfΨ represents a deformation of the initial wave-function Ψ. The
function f will be called the deformation. For instance, if f(r) = λ r, then Jf(r) = λ3 and
Tf is the usual uniform scaling transformation.

We have the following fundamental property. If we denote ρΨ the density function of
Ψ, that is:

ρΨ(r) := N

∫
|Ψ(r, r2, . . . , rN)|2 dr2 · · ·drN ,

then the following holds:

if Ψ2 = TfΨ1 then ρΨ2
(r) = Jf (r) ρΨ1

(f(r)). (2)

This a simple consequence of the use of the change of variable r → f(r) for the variables
r = r2 to r = rN .

Let us introduce the notation

Jf (r) ρ(f(r)) := (f ∗ ρ)(r). (3)

In (3), f ∗ ρ represents the deformed density function. So (2) means that the deformed
wave-function has the deformed density function.

Different authors have considered linear decomposition of wave-function in particular
basis orbitals, and then have used deformations in order to optimize the basis orbitals
[1, 3, 14, 16]. In our presentation, we deform directly the wave-function instead of the
orbitals. However, since the transformation Tf is linear, the two approaches become
equivalent when we use a representation of the wave-function in a given basis of orbitals
(and Slater determinants).

The aim of this deformation method is to generate explicit wave-functions Ψ of given
density ρ. In fact we are able to parameterize all the set of wave-functions which have
density ρ (see Section III).

More precisely, if Ψ0 is a wave-function of density ρ0, for any density function ρ, we
construct a deformed wave-function Ψ issued from Ψ0, as Ψ = TfΨ0 where we assume
that f deforms ρ0 into ρ (i.e., ρ = f ∗ ρ0). Then, we have by construction ρΨ = ρ. Thus
in order to generate explicit Ψ’s we have to obtain explicit solutions f of the equation
ρ = f ∗ ρ0. This equation is known as the Jacobian problem [15, 17].

The use of deformations allows to construct a new type of density functionals. Actu-
ally, the energy E[Ψ] := 〈Ψ, HΨ〉 of the above Ψ may be written as follows:

E[Ψ] = E[TfΨ0] = F [ρ, Ψ0]. (4)

In (4), one must understand that f is a function which depends only on ρ and ρ0. Note that
this formula shows explicitly the dependence of the energy of the wave-function Ψ with
respect to its associated density ρ. This can be compared with the work of J.E. Harriman
[16, 18] where the kinetic energy is decomposed in terms that depend or do not depend
on the density function.

Now, for a given normalized Ψ0, ρ → F [ρ, Ψ0] is a density functional and we have

E0 ≤ inf
ρ

F [ρ, Ψ0] ≤ E[Ψ0]. (5)

Thus, in particular, it satisfies the variational principle.
The philosophy behind the formula (5) is to improve an initial wave-function Ψ0 by

deformation.
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III First method for solving the Jacobian problem

In this section, in order to deform a density function ρ1 into another density function ρ2,
we use an auxiliary density function, with a constant value N on the unit cube (0, 1)3. In
fact for every ρ, following Zumbach and Maschke, we construct a deformation f from R

3

onto (0, 1)3 such that
ρ = f ∗ ρc

where ρc(r) = N , ∀r ∈ (0, 1)3. We keep the same notation ∗ as in (3) even if f is a
deformation from R

3 onto (0, 1)3 and not from R
3 onto R

3.
Now if f1 and f2 solve {

ρ1 = f1 ∗ ρc

ρ2 = f2 ∗ ρc

then ρc = f
−1
1 ∗ ρ1 and ρ2 = f2 ∗ (f−1

1 ∗ ρ1) = (f−1
1 o f2) ∗ ρ1. Thus f = f

−1
1 o f2 is a

deformation from R
3 onto R

3 which solves our problem (see fig.1).

Figure 1:

f 1  2f

R
3

R
3

ρ1 ρ2

ρc ≡ N

f = f
−1
1 o f2

III.1 The Zumbach and Maschke decomposition revisited

Let ρ be a positive function on R
3 such that

∫
ρ = N . We can obtain a solution of

ρ = fρ ∗ ρc (i.e., ρ(r) = Jfρ(r) N ) using the following definition of fρ due to Zumbach
and Maschke [14]:

f1(x, y, z) =

∫ x
−∞

dx ′ ρ(x ′, y, z)
∫ +∞

−∞
dx ′ ρ(x ′, y, z)

f2(x, y, z) =

∫ +∞

−∞

∫ y
−∞

dx ′ dy ′ ρ(x ′, y ′, z)
∫ +∞

−∞

∫ +∞

−∞
dx ′ dy ′ ρ(x ′, y ′, z)

(6)

f3(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞

∫ z
−∞

dx ′ dy ′ dz ′ ρ(x ′, y ′, z ′)
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dx ′ dy ′ dz ′ ρ(x ′, y ′, z ′)

where (f1, f2, f3) are the three components of fρ.
We can also use this deformation fρ in order to deform the set of auxiliary wave-

functions of constant density N on the unit cube into the set of wave-functions of given
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density ρ. This will allow us to obtain a parameterization of the set of wave-functions of
a given density function.

Let Tρ be the following operator from L2
a((0, 1)3N) into L2

a(R
3N ):

(TρΦ)(r1, . . . , rN) =

(
N∏

i=1

ρ(ri)

N

)1/2

Φ(fρ(r1), . . . , fρ(rN)) (7)

where L2
a((0, 1)3N) is the space of square-integrable functions on (0, 1)3N that are anti-

symmetric. Note that the above formula is formally the same as (1) since Jfρ = ρ/N .
In [9] we have proved the following result:

Theorem. III.1 Let ρ > 0, with
∫

ρ = N , and Ψ ∈ L2
a(R

3N ). Then
(i) Tρ is a unitary operator from L2

a((0, 1)3N) onto L2
a(R

3N).

(ii) ρΨ = ρ if and only if there exists Φ ∈ L2
a((0, 1)3N) such that

{
Ψ = TρΦ
ρΦ = N

Furthermore Φ is then uniquely defined.

Actually in [9] we have proved that if ρ ≥ 0, (ii) still holds but of course the inverse
of Tρ is no more defined on L2

a(R
3N) and this rather complicates the proof.

Theorem III.1 gives a complete parameterization of the set of wave-functions of given
density function ρ, where Φ ∈ L2

a((0, 1)3N) is the parameter. Formally the proof of this
theorem is simple. If we suppose that ρ is strictly positive and regular, then fρ is a regular
and invertible change of variables. So, for a given Ψ in L2

a(R
3N), there exists a Φ in

L2
a((0, 1)3N) such that Ψ = TρΦ (take Φ = T

f
−1
ρ

Ψ). In particular, ρΨ = Jfρ ρΦ(fρ) =
ρ
N

ρΦ(fρ). Then, ρΨ = ρ if and only if ρΦ = N , which concludes the proof.
Now if we decompose Φ in Fourier series we then obtain the Zumbach and Maschke

characterization [14], as explained in [9] (see also [19]).

III.2 The atomic case

In the atomic case, in order to respect the natural symmetry of the system, we consider the
spherical coordinates (r, θ, φ). Let ρ be a density function. Notice that the Jacobian prob-
lem J

f̃
(x, y, z) = ρ(x,y,z)

N
in Cartesian coordinates becomes Jf (r, θ, φ) = ρ(r,θ,φ) r2 sin(θ)

N

under the change of variables f(r, θ, φ) = f̃(x, y, z). A solution fρ of Jf = ρ r2 sin(θ)
N

can
be obtained as follows (in the same way as in [20]):

fφ(r, θ, φ) =

∫ φ
0

dφ ′ µ(r, θ, φ ′)
∫ 2π

0
dφ ′ µ(r, θ, φ ′)

fθ(r, θ, φ) =

∫ θ
0

∫ 2π

0
dθ ′ dφ ′ µ(r, θ ′, φ ′)

∫ π

0

∫ 2π

0
dθ ′ dφ ′ µ(r, θ ′, φ ′)

(8)

fr(r, θ, φ) =

∫ r
0

∫ π

0

∫ 2π

0
dr ′ dθ ′ dφ ′ µ(r ′, θ ′, φ ′)

∫ +∞

0

∫ π

0

∫ 2π

0
dr ′ dθ ′ dφ ′ µ(r ′, θ ′, φ ′)

where
µ(r, θ, φ) = ρ(r, θ, φ) r2 sin(θ).
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Furthermore, if we suppose that ρ is radial, then

fφ(r, θ, φ) =
φ

2π

fθ(r, θ, φ) =
1 − cos(θ)

2

fr(r, θ, φ) =

∫ r
0

ρ(r ′) r ′2 dr ′

N/4π
.

So for two radial densities ρ1 and ρ2, we have a simple manner to compute the de-
formation f which satisfies ρ2 = f ∗ ρ1. In fact, as seen in the beginning of Section III,
f = f

−1
ρ1

o fρ2
, which gives in spherical coordinates

f(r, θ, φ) =




f(r)
θ
φ


 (9)

where f(r) is defined by

∫ f(r)

0

t2ρ1(t) dt =

∫ r

0

t2ρ2(t) dt. (10)

This is exactly the local scaling transformation as it was first defined by E.S. Kryachko
and E. V. Ludeña in [3], except that sometimes the integral equation (10) is presented as
a differential equation for f(r):

r2ρ2(r) = f(r)2ρ1(f(r))
df

dr
(r). (11)

Remark that this deformation f (solution of (10)) lets the origin invariant and also
keeps the symmetry in the sense that Tf transforms a wave-function in a given symmetry
class into a wave-function in the same symmetry class (in the atomic case).

III.3 General case

In the linear case, it is possible to generalize formula (8) using cylindrical coordinates
(r, φ, z). For instance, when ρi = ρi(r, z), we can solve Jfi

= r ρi(r,z)
N

as follows:





fi,r(r, z) = 2πN−1
∫ r
0

∫∞

−∞
r ′ρi(r

′, z ′) dr ′ dz ′

fi,φ(φ) = (2π)−1 φ

fi,z(z) =
∫ z
−∞

ρi(r, z
′) dz ′ ×

(∫∞

−∞
ρi(r, z

′) dz ′
)−1

However the deformation f
−1
ρ1

o fρ2
does not a priori conserves the nuclei positions. In

fact, if we want to consider non atomic cases (and non radial deformations), and if we use
the solution described in this section, we face various problems, which are:

• It is physically important to keep invariant the nuclei positions. With the above
method, we are only able to have one invariant point (using spherical coordinates)
or two invariant points (using elliptical coordinates [12, 4]).
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• In many cases we know, a priori, the symmetry class of the ground state. Thus we
want that the deformation lets invariant the symmetry classes. In general this will
not be the case with the above deformations, except in the atomic case (with radial
deformations) or the diatomic case (see [12], annexe 3).

• In order that E[Ψ] be well defined, we must have
∫
|∇Ψ|2 < ∞, which implies

a regularity condition on the deformed wave-functions. In general, since we use
deformations from R

3 into the unit cube, we may create singularities. (Note that
in the radial case, we can obtain regular deformations, but in the diatomic case, the
use of elliptical coordinates creates singularities, see [12], annexe 3).

For all these reasons, we propose another method in order to solve the Jacobian prob-
lem.

IV Moser’s Procedure

IV.1 Linearization of the Jacobian problem

In this section, we recall the Moser linearization method in order to solve the Jacobian
problem.

Let ρ2 and ρ1 be two density functions. We introduce a continuum set of intermediary
density functions (ρt), for t ∈ [0, 1], as follows:

ρt := (1 − t)ρ2 + tρ1.

We are going to deform continuously ρ1 into ρ2 solving the following Jacobian problems:
for every t ∈ [0, 1], find ft : R

3 → R
3 such that,

ρ2 = ft ∗ ρt. (12)

Let us recall a classical calculation of differential geometry:

∂(ft ∗ ρt)

∂t
= ft ∗ (

∂ρt

∂t
+ div(ρtXt)), (13)

where Xt : R
3 → R

3 is the vector field associated to ft by:

∂

∂t
ft = Xt(ft) (14)

and where div denotes the divergence operator (see fig.2).
For t = 0, we have ρ0 = ρ2 and we can choose f0(x) = x for the initial solution of

(12). Now, if we are able to solve the following conservation equation:

∂ρt

∂t
+ div(ρtXt) = 0,

then by (13), we obtain that ft ∗ ρt is constant, so equals ρ2, and we are done.
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Figure 2:

R
3

R
3

R
3

ρ1 ρ2ρt

Xt ft

f1 = f f0 =Id

Note that the non-linear equation for ft has been transformed in a linear equation for
the associated vector field Xt. This will allow us to deal more easily with the problems
related to the invariant points and the symmetries.

Finally, with our choice for ρt we proceed formally as follows. First we construct a

field V : R
3 → R

3 such that div(V) = ρ2 − ρ1. Then we define Xt =
V

ρt
. Finally, we

integrate the evolution equation (14) from t = 0 to t = 1.

IV.2 Construction of deformations in the case of admissible densities

In this section we show how to deform a density function into another one, using a defor-
mation f , in such a way that Tf preserves some physical invariant of the system, which
are:

• Invariance of the nuclei: if R1, . . . ,RP are the nuclei positions, we want that
f(Ri) = Ri (since we want to preserve the singularity positions of the wave-
function).

• Conservation of symmetries (see [21] for general considerations on symmetry). Let
G be the point group of the molecule, i.e., the group of affine transformations on
R

3 that preserve the molecule. If Ψ is in Γ, where Γ is a symmetry class associated
to the group G, then we want that TfΨ be also in Γ. For this, it suffices (see [10])
that f commutes with all the elements of G (i.e., for all Q ∈ G, fo Q = Qo f

where o denotes the composition product). In fact, this condition is in some sense
a necessary one [11]. (For instance, for atoms, this condition implies that f be a
radial deformation as in (9)).

• Regularity conditions: if E[Ψ] is well defined, we want that E[TfΨ] be also well
defined. This implies some regularity conditions and also a particular behavior at
infinity on f . We do not discuss this point here and refer the reader to [10].
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Such a deformation will be called an admissible deformation.

Nevertheless we were not able to solve the Jacobian problem ρ2 = f ∗ ρ1 for any type
of density functions (ρi) if we want that f be admissible. So we define also a class of
admissible density functions as follows.

Definition. We say that a density function ρ is admissible if ρ is a continuous and strictly
positive function on R

3, everywhere regular on R
3\{R1, . . . ,RP}, such that (∇ρ)/ρ be

bounded, and
∫

R3 ρ = N . Furthermore we impose that:
(i) ρ is totally symmetric, i.e., ∀Q ∈ G, and r ∈ R

3, ρ(Qr) = ρ(r);
(ii) ρ has a cusp behavior around each nuclei positions Ri:

ρ(r, w) = a + b(w) r + o(r), (15)

where (r, w) denotes the spherical coordinates around Ri , a > 0 and b is continuous on
the sphere S2;
(iii) ρ has an exponential fall-off at infinity:

ρ(r, w) = C(w) rβ e−α r + o(rβ e−α r), r → ∞ (16)

where α > 0, β ∈ R, and C is continuous on the sphere.
We think that all the above requirements are physically relevant, except for the totally

symmetric condition. We shall come back later on this point (see Section IV.3). In fact,
the theorem we state below still holds without the symmetry conditions on ρ, but clearly
we then obtain a deformation that may not respect the symmetry requirement (see [10]).

Remark. IV.1 In the above definition, condition (ii), although physically reasonable, is
not satisfied when Gaussian basis sets are used. However other asymptotic behavior type
at infinity can be considered in the same way without modifying Theorem IV.1 below.
But in this Theorem we cannot change the asymptotic behavior type at infinity by using
admissible deformations.

Theorem. IV.1 If ρ1 and ρ2 are two admissible density functions, then there exists an
admissible deformation f such that

ρ2 = f ∗ ρ1.

Let us sketch the proof of this theorem (see [10] for a complete proof). First we
construct f1, a composition of local radial deformations around each nuclei in order that
ρ̃1 = f1 ∗ ρ1 be equal to ρ2 in a little neighborhood of each nuclei, and ρ̃1 = ρ1 outside
an other little neighborhood of the nuclei. Then we construct f2 which only deforms a
neighborhood of the infinity, and such that ˜̃ρ1 = f2 ∗ ρ̃1 be equal to ρ2 in a neighborhood
of the infinity, and ˜̃ρ1 = ρ̃1 outside a neighborhood of the infinity.

Now we define δρ = ρ2 − ˜̃ρ1 and note that δρ is regular,
∫

R3 δρ = 0, and δρ has a
compact support (for instance included in [−R, R]3). We then apply the Moser procedure
in order to deform ˜̃ρ1 into ρ2.
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First we obtain a solution V of div(V) = δρ, as follows:

V1(x, y, z) =

∫ x

−∞

δρ(x ′, y, z) dx ′ − g(x)

∫ +∞

−∞

δρ(x ′, y, z) dx ′

V2(x, y, z) = g ′(x)

∫ +∞

−∞

∫ y

−∞

δρ(x ′, y ′, z) dx ′ dy ′

−g ′(x)g(y)

∫ +∞

−∞

∫ +∞

−∞

δρ(x ′, y ′, z) dx ′ dy ′

V3(x, y, z) = g ′(x)g ′(y)

∫ +∞

−∞

∫ +∞

−∞

∫ z

−∞

δρ(x ′, y ′, z ′) dx ′ dy ′ dz ′,

where g is a regular function from R into R such that g(x) = 0 for x ≤ −R and g(x) = 1
for x ≥ R. Remark that the set of r ∈ R

3 such that V(x) 6= 0 is included in [−R, R]3,
and that V is regular.

Then, in order to obtain a deformation which preserves the nuclei positions and the
symmetry, it suffices to construct a Ṽ such that div(Ṽ) = div(V) = δρ, Ṽ(Ri) = 0, and
Qo Ṽ = Ṽo Q for any Q ∈ G.

For that, we first construct a regular vector field W on R
3, which does not vanish only

on a neighborhood of Ri, and such that W(Ri) = V(Ri) and div(W) = 0 (a simple
construction is done in [10]). Then we take

Ṽ(x) :=
1

Card(G)

∑

Q∈G

(V − W)(Qx) (17)

Formula (17) has a natural extension in the case of continuous point groups [11].
Finally we define Xt = Ṽ/ρt in (14). This vector field is regular and has compact

support, and we can easily integrate (14) in order to obtain f3 such that ρ2 = f3 ∗ ˜̃ρ1. Then
f = f1o f2o f3 solves ρ2 = f ∗ ρ1.

Remark. IV.2 We must confess that in the above construction, we have omitted a prob-
lem concerning the matching of the deformations when we construct ρ̃ and ˜̃ρ (see for
instance Lemma III.1 in [10]). So, excepted for the Moser procedure, the above construc-
tion is mainly of mathematical interest. A more applied viewpoint is given in Section V.

Remark. IV.3 In this section, we have only considered strictly positive density functions.
In the case the density functions vanish, more assumptions are needed in order to find a
regular deformation (see for instance [12], annexe 2).

IV.3 N-representability result and application to density functional
theory

The role of symmetry and in particular of symmetry averaging has been extensively dis-
cussed in the literature (see e.g. [21], [22]). It is well-known that the energy depends
only on the symmetric components of the density matrices (since the Hamiltonian H is
invariant under all the transformations of G). As in Görling [13], we construct at the end
of this section, a functional FΓ which contains all the symmetry information. That is, if
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Γ is the symmetry class of the ground-state, the minimization of FΓ over all the totally
symmetric densities gives E0,Γ, which denotes the ground-state energy in Γ, i.e.,

E0,Γ := inf{E[Ψ], Ψ ∈ Γ ∩ L2
a(R

3N ),

∫
|∇Ψ|2 < ∞, and

∫
|Ψ|2 = 1}. (18)

First, we state an N -representability result which justifies our interest in totally sym-
metric density functions (see definition of admissible densities).

It is well-known that for any density function ρ such that ρ ≥ 0,
∫

ρ < ∞ and∫
|∇√

ρ|2 < ∞, there exists a wave-function Ψ in L2
a(R

3N) with
∫
|∇Ψ|2 < ∞, and such

that ρΨ = ρ (see [2], [23]; see also [24]).
However, in general, it is not possible to impose that Ψ be in Γ, a given symmetry

class.
Let us define ρ̃ as the totally symmetrized density function associated to ρ, i.e.,

ρ̃(r) :=
1

Card(G)

∑

Q∈G

ρ(Qr)

(when the cardinal of G is infinite, see [11]). Then we have the following result (proved
in [11]) which answers to an underlying N -representability problem stated in [13].

Theorem. IV.2 Let N ≥ 2 and ρ be an admissible density function. Let Γ be a symmetry
class such that Γ ∩ L2

a(R
3N ) 6= {0}. Then there exists Ψ ∈ Γ, with Ψ ∈ L2

a(R
3N) and∫

|∇Ψ|2 < ∞, such that ρ̃Ψ = ρ.

The idea of the proof is first to find a Ψ0 in Γ, such that ρ̃Ψ0
be an admissible density

function (see [11] for this fact). Then, for a given admissible density function ρ, using the
previous theorem we can construct an admissible deformation f such that ρ = f ∗ ρ̃Ψ0

.
Now let Ψ = TfΨ0. Note that Ψ is in Γ by definition of an admissible deformation, and
also ρΨ = f ∗ ρΨ0

. Hence ρ̃Ψ = f ∗ ρ̃Ψ0
= ρ.

As a consequence we can define a density functional associated with the symmetry
class Γ, by:

FΓ[ρ] := inf{E[Ψ], Ψ ∈ Γ ∩ L2
a(R

3N),

∫
|∇Ψ|2 < ∞, and ρ̃Ψ = ρ},

for ρ admissible. We then obtain, for N ≥ 2, and for a given symmetry class Γ :

E0,Γ = inf

{
FΓ[ρ], ρ admissible,

∫
ρ = N

}
, (19)

where E0,Γ is defined in (18). We emphasize that in formula (19), we obtain E0,Γ minimiz-
ing only with respect to totally symmetric density functions, the symmetry information
(the choice of Γ) is contained in FΓ.

The deformations generated in section IV.2 allow us to generate functionals of the
totally symmetric densities which are approximations of the exact functional FΓ[ρ]. Let
Ψ0 ∈ Γ normalized such that E[Ψ0] be an approximation of E0,Γ. Let ρ0 = ρ̃Ψ0

. Then we
can define the density functional F [ρ, Ψ0] as follows: for ρ an admissible density function,
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we construct f the admissible deformation such that ρ = f ∗ ρ0 (using theorem IV.1) and
we take

F [ρ, Ψ0] := E[TfΨ0]. (20)

Thus in this formula we are computing the energy of the wave-function Ψ = TfΨ0 which
satisfies ρ̃Ψ = ρ, and in some sense, F [ρ, Ψ0] is now an approximation of FΓ[ρ]:

E0,Γ ≤ inf {F [ρ, Ψ0], ρ admissible} ≤ E[Ψ0].

This can be used for the calculation of certain excited states. Indeed, if we consider
a molecule for which we already have an approximation of the first exited states, we are
able to improve by deformation all energy values which correspond to different symmetry
classes (using (20)).

V Applied view point

It is clear that the above construction of the functionals F [ρ, Ψ0] is not very numerically
efficient (essentially because of the treatment of the cusps, see remark IV.1). In this
section, in order to obtain simpler algorithms, we only deal with the deformations and
we do not care about the generated density functions. So rigorously we are no longer
considering the density functional theory view point, but because of the previous results,
we know that if we generate a sufficiently large set of deformations, we shall also generate
a large class of density functions.

V.1 A numerical example in the atomic case

The Local Scaling Transformation method has been numerically tested in several atomic
cases [7, 6, 8]. However, the wave-functions considered in these papers are Slater deter-
minants or linear combinations of Slater determinants and thus it is difficult to improve
the correlation. In fact, it is not possible to create a dynamic correlation by this type of
deformations if there is no dynamic correlation in the initial wave-function.

We have made various numerical tests in atomic and diatomic cases (up to N = 4,
see [12]). Here we give one of these example, on the Helium atom. Our aim is not to
obtain better energies that known results but rather to show how the deformation method
can improve the correlation energy.

We choose an initial wave-function, Ψ1, which contains a Jastrow factor, namely:

Ψ1 = φ(r1) φ(r2) J(r12) | ↑, ↓ |

where φ(r) = exp(−a r), and with a Jastrow factor J(r) = exp( α r
1+β r

).
Starting from the above wave-function Ψ1, we study the deformed wave-function

Ψ2 = TfΨ1 where the deformation f(r) = f(r)ur has the following form:

f(r) = c0 r +

p∑

i=1

ci r
ni exp(−γi r),



V APPLIED VIEW POINT 13

where ni ∈ N
∗ and γi > 0 are fixed. Then we minimize the energy E[TfΨ1] by improv-

ing the parameters of Ψ1 (a, α, β, called the ”p1” parameters) and the parameters of the
deformation ((ci), called the ”p2” parameters). Notice that we are interested by deforma-
tions which are close to the identity (because Ψ1 is not so bad), and thus c0 will be close
to 1 and ci (i ≥ 1) are close to zero.

The results are given in Table. 1. We have denoted EHF the optimal Hartree-Fock
energy, and Ec = E0 − EHF the correlation energy. The notation ”p1 free, kp2” means
that we have minimized the energy with respect to a, α, β and k parameters of type p2.

The energy computation and improvement of the parameters were done using a Vari-
ational Monte Carlo method (see [25]) and σ denotes the variance of the energy of the
tested wave-function (the wave-function TfΨ1 is normalized in the calculation). Also,
the digit in parenthesis denotes the error on the last digit of the energy value.

We see that without deformations, we obtain 64% of the correlation energy Ec, while
using deformations, we are able to obtain 89% of Ec.

In the above example, we have just studied how the energy can be improved by de-
formation, without working directly on the density functions. In fact in the radial case,
it is equivalent to work on the density function or on the deformation, because there is a
one-to-one correspondence between ρ(r) and f(r) in (10).

The same method (using Monte Carlo) can be applied for problems with more than
two electrons. We know that a Jastrow factor deteriorates the quality of the electron
density of Ψ. So deformations can be used to improve the quality of this density function.

V.2 Local deformations in the general case

In the molecular case, it is not easy to generate relevant deformations. It seems simpler to
consider local deformations (that we can choose of radial type) in order to improve some
local behavior of the wave-function.

Our strategy would be the following. We can consider a family of deformations around
the cusps which deform a given cusp behavior into another one, and then minimize the
energy of TfΨ0 with respect to f in this family of deformations. This would allow an
optimization of the cusp behavior without moving the form of the wave-function outside
of a neighborhood of the cusps. For instance, for a given cusp in Ri, a family of defor-
mations can be given by f(r) = f(ri, wi)uri

where (ri, wi) are the spherical coordinates
around Ri (with ri = |r− Ri| and uri

= r−Ri

|r−Ri|
is the radial unit vector), and

f(r, w) = ((λ0 − 1) r + λ1(w) r2)χ(r) + r. (21)

In (21), we have denoted λ0 a non-negative constant, λ1(w) a continuous function from
the sphere into R, and χ(r) a regular function such that χ(r) = 1 for r ∈ [0, ε] and
χ(r) = 0 for r ≥ r0 (where 0 < ε < r0 are sufficiently small). Note that in particular
f(r) = r for |r− Ri| ≥ r0.

Actually, we have obtained in [10] that if ρ has the following cusp behavior in r = 0:

ρ(r, w) = a1 + b1(w) r + o(r)

and if we let λ0 = (a2

a1

)1/3 and 4 λ1(w) = b2(w)
a2

λ0 − b1(w)
a1

λ2
0, then f ∗ ρ will have the

following cusp behavior:

(f ∗ ρ)(r, w) = a2 + b2(w) r + o(r).
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Thus, with the family of local deformations defined by (21), we can obtain any cusp
behavior.

Clearly we can adopt the same strategy in order to improve the exponential fall-off
behavior, or any other local behavior.

Remark. V.1 If we want to stay in the same symmetry class, we recall that we need that
fo Q = Qo f for all Q ∈ G (see [11]). This requirement is satisfied if for instance we
define f as follows:

f(r) = r +
1

Card(G)

∑

Q∈G

QVQ−1(r)

where V(r) = ((λ0−1) ri +λ1(w) r2
i )χ(ri)uri

around each nucleus Ri (in fact it suffices
to define such a V for only one nucleus in each independent cycle {QRi, Q ∈ G}).
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(1990).

[18] J.E. Harriman, J. Chem. Phys. 83, 6283 (1985).

[19] E.V. Ludeña and A. Sierraalta, Phys. Rev. A 32, 19 (1985).

[20] S.K. Gosh and R. G. Parr, J. Chem. Phys. 82, 3307 (1985).

[21] I.G. Kaplan ”Symmetry of many-electron systems” Vol. 34 of Physical Chemistry
(Academic Press, 1975).

[22] W.A. Bingel and W. Kutzelnigg Adv. Quantum Chem., Vol. 5, 1970.

[23] E.H. Lieb, in Physics as Natural Philosophy: Essays in Honor of Laszlo Tisza on
his 75th Birthday (H. Feshback and A. Shimony eds., MIT Press, Cambridge, MA,
1982), p. 111. See also Int. J. Quantum Chem. 24, 243 (1983), and also in Density
Functional Methods in Physics (R. M. Dreizler and J. da Providencia eds., Plenum,
New York, 1985) p. 31.

[24] J.E. Harriman, Phys. Rev. A34, 29 (1986).

[25] C. J. Umrigar, K. G. Wilson and J. W. Wilkins, Phys. Rev. Lett. 60, p. 1719 (1988).


