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Abstract: We deal with local density approximations for the kinetic and exchange energy term, Exin (p)
and E..(p), of a periodic Coulomb model. We study asymptotic approximations of the energy when the
number of particles goes to infinity and for densities close to the constant averaged density. For the kinetic
energy, we recover the usual combination of the von-Weizsdcker term and the Thomas-Fermi term. Further-
more, we justify the inclusion of the Dirac term for the exchange energy and the Slater term for the local
exchange potential.

1 Introduction

The aim of this work is to provide a justification of the Thomas-Fermi-von Weizsacker and
Thomas-Fermi-von Weizsédcker-Dirac models ([L1], [CBL1]) in a crystal. We use the method
of deformations (local scaling transformations) [PSK], [BG1], [BG3] of wave functions of con-
stant electron density. To this end we consider a cubic crystal with NV electrons and P nuclei in

the elementary cell Q@ = %, £]3.
We regard the periodic Hamiltonian:
N N
Hper = —ZAZ +2Vm(xi) +ZG($Z —xj) (1)
=1 =1 1<j

where the z; € €2 denote the fermion positions, V,.(z) = — ElP:l Z1G(x — Ry), Z; and Ry are
respectively the charges and the positions of the P nuclei. Notice that the 1/x function of the
Coulomb interaction has been replaced by the "periodized version” G(x) of e.g. [LS1], which is
the periodic solution of the equation AG = —4r (3, o4 6(- — k) — 1/L?), satisfying [, G =
0.

The choice of the periodic Hamiltonian (1) allows for a setting where the rigorous derivation
can be done without heavy mathematical machinery. It is motivated by the results of [CBL1] ,
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[CBL2] where a periodic energy functional corresponding to our use of GG in (1) is derived as a
thermodynamic limit.

As the Hamiltonian is periodic, the N-particle wave-functions are Bloch functions, i.e. a shift
for a lattice vector ~ results in a mere phase factor : W(z + ) = €’©7¥(x) for all z € R3Y
and v € (LZ3)"™ and for some © = (64,...,0y) fixed in ([0,27/L[*)"Y. On the other hand,
the N-particle wave-functions have to be antisymmetric by the Pauli principle! which implies

f, = --- = On. These conditions lead us to consider the following space of wave functions
A= @ Ag
0e[0,27/L[3
where

Ag = {T(xy,..,ay) = 0@ HND (2 ay), © € Hy (RY/LZ*)N)} .

(The index ”a” means that the functions ® are antisymmetric.)

Note that for periodic Hamiltonians, the Bloch decomposition of Z? allows to reduce the spectral
problem from the whole space to a basic cell 2 (see e.g. [GMMP], where the generalization
beyond the usual scalar case of the one particle Schrddinger equation (e.g. [MMP]) is given.)

For technical reasons (cf. Lemma 3.2) we will also consider the space of continuous wave func-
tions in A, i.e.

A=A N COUR3YN) .
The fundamental energy per cell of this IV fermion system is then given by

By = inf{(Hpy U, U) | U e A, ||| =1} 2
= inf{(Hpey @, U) | U € A, [|W[;2 =1},

where (, ) denotes the Hermitian scalar product in L2(QV).

The aim of the density functional theory is to replace the minimization problem (2) by a mini-
mization problem with respect to the density (per cell) p associated to the wave function ¥ :

pu(z) =N |U(x, x9,...,2x5)dzs . .. dzy. (3)

QN-1

This procedure reduced the number of variables from 3N to 3.
Using (1), we can decompose the energy per cell of a wave function ¥ as follows:

E(W) = (HyorW, W) = Epon(¥) + /Q Vit (2)pu(2)dz + Euo(). @)

In formula (4) E};,, denotes the kinetic energy,

Fran() = /Q V() P, (5)

LIn order to simplify the presentation we do not explicitly consider the spin.



while E.. denotes the inter-electron energy,

Be®) = | paale.a!)Glo = o')dads (6)
QQ
where
N(N -1
p2,u(x, @) = %/ “I’(l‘,x/,x:’n---,e’m\/)‘z drs---dzy . )
QN-2

Following ([L2], Theorem 1.2), it can be shown that the map ¥ — pg maps A€ onto

D= {pe CORY/LZ?), p >0, / p=N, Jpe HL R}, ®)
Q

Therefore we can define the density functionals corresponding to the kinetic and the global energy
term by

Erin(p) = If{Emn (V)W € A®and py = p} ©)
E(p) = mf{EW)|¥ e A°and py = p},

and we have
Eo =inf{&(p) | p € D}.

We shall use Schauder estimates in Holder spaces, this leads us to consider the space of densities
D,CDwithd<a<1

Dy = {p € C*%(R*/LZ%), p > 0, / p=N, Vp € Hy.(R)}
Q

where C%*(R3/LZ?) denotes the space of Hélderian functions of degree o on the torus R3/LZ?
or equivalently the space of periodic function in the Holder space C'%%(R?).
We introduce the semi norm | - |, , defined by

ey) —e(a)] -

|€|O,a = Sup |y _ m|0{

x#yERS

Our results are based on the crucial assumption that p is close to the averaged constant electron
density pg given by
N N
Pl T

Precisely, we shall assume that L<|e,|, , is small, where

_ pl) — po
€p(z) : P .
Extending [BM], [BGM1] we demonstrate how the heuristic idea of the “free electron approxima-
tion” can be used in a mathematically rigorous way by using the method of deformations (local
scaling transformations) of plane waves [PSK], [KL], [BG2], [BG3].
In this article we essentially prove that (see section 2 for precise statements):



e The exact kinetic energy, as a functional of the density p, is equal to the Thomas-Fermi-von
Weizsacker functional up to small remainder terms depending on L%¢, and V.

e The global energy, as a functional of the density p, is majorized by the Thomas-Fermi-von
Weizsacker-Dirac functional up to small remainder terms depending on L%¢, and V.

The "high density limit” ([LS1], [GS], [BM]) is obtained by letting N — oo for a given size of
the periodicity cell (i.e L = cst.). In this limit and for our choice of the periodic model (with
an equi-distribution of the external potential), the assumption ¢, — 0, is physically reasonable.
Nevertheless this assumption is not yet mathematically proved in a general context (see [LS1] for
a proof in the Thomas-Fermi context).

The "thermodynamic limit” is obtained by letting N — oo and L — oo in such way that pq is
constant (see e.g. [LS1], [L1], [F] for a discussion on different types of limits). In this case, there
is no physical reason for the ground state density to be close to the constant density py. Thus the
assumption L%, — 0 (i.e. Na/?’ep — 0) does not seem so relevant in the thermodynamic limit.
That is why our results should be rather considered in the "high density limit” context than in the
case where L — oo.

Remark on the choice of the density space: All our results are stated for density p in the Holder
space C**(R3/LZ?) and thus depend on the choice of a € (0, 1) (« cannot be 0). However the
choice of the Holder space is only determined by Lemma 3.1 (where we use Schauder estimates).
This deformation Lemma can be established in Sobolev spaces (essentially using reference [Y]
instead of [DM]). Then all the results stated in section 2 can be established for density p in
the Sobolev space H?(R3/LZ?) (i.e. two derivatives in L?(R3/LZ3)). In this case the basic
assumption would be ”|le,|| ., small” instead of "L%[e,|, , small”. This point of view seems, a
priori, to be better when we consider the thermodynamic limit (since L — oo). Nevertheless, the
[[-]I,- -norm is an integrated norm and thus when L grows the domain of integration also grows
and the condition "|[e, ||, small” becomes more restrictive.

The article is organized as follows:

In section 2 we precisely state our results.

In section 3 we describe the deformation method (as introduced in [PSK], [BG1] and [BG3]). We
prove a deformation Lemma, based on a fundamental result of B. Dacorogna and J. Moser [DM],
which is used, in section 4, to estimate the kinetic energy functional with respect to its values at
p = po-

In section 4 we use precise estimates on the number of lattice points in a ball (given by number
theory) to obtain a refined estimate of &, (po), the kinetic energy functional at p = po. Then we
deduce Theorem 1 and Theorem 2.

In section 5 we justify the so called X, method which allows us to approximate the exchange
energy at the Hartree Fock level and then to obtain an upper bound for the global energy functional.

Part of the results have been announced in [BGM1], [BGMZ2] and [BGM3].



2 Results

Our first result states that the exact kinetic energy, as a functional of the density, is equal to
the Thomas-Fermi-von Weizsécker functional [L1] up to small remainder terms depending on ¢,
and N.

Theorem 1 Let 0 < o < 1. For densities p € D,, the functional &;,(p) defined in (9) has the
following behaviour in a neighborhood of p = pp and N = 400 :

1
N1/2

Euinlp) = [ IVVBRdr+Cr [ p00{1+ 0 eplo) +O(5)) (@)
where Cp := 2(672)%/3 is the Fermi constant (in our context)?.
Furthermore there exists n(«) > 0 such that the error terms are uniform with respect to (N, L, p)

satisfying L%|e,l, ., < n(a).
Note that this Theorem remains true if we make another choice of a periodic Hamiltonian (and
thus of the periodic model). Actually Theorem 1 depends only on the choice of the space A of

wave functions. However, this result becomes physically relevant only if, for the chosen model,
we are able to prove that the density of the ground state is close to the constant density.

Remark 2.1 In the "’high density limit”, estimate (11) becomes

1
Ein(p /|V\f| d:c+CF/ p*Bdz{1 4 O(leply..) + O —)}
Q NV

while in the thermodynamic limit, estimate (11) becomes
Erinlp /|V\f| d:c+CF/Q p*Bda{1 4 O( Na/3|ep|0(¥)+O(N1/2)}

Remark 2.2 The O(1/N'/2) term in (11) can be slightly improved to O((logN)®/N°/?) (see
Remark 4.2). The same remark holds for the estimates in Theorem 2 and Theorem 4.

The estimate (11) is also valid locally: denoting
Elc (W) (x) == N VoW (z,z, ..., x5)dey - - day (12)

QN-1

we have, for any wave function ¥ € A¢ minimizing Exin(p),

l
5km / 5153

E(W)(@) = |Vyp@) + Cpp™ (@) {1+ O(LO6ply.) + O

and

Nl/z)} . 3)

2 < - .
2In general, Cr := %(%)2/3, where s is the spin number. In our context, s = 1.



Furthermore, if we consider only wave functions which are Slater determinants, i.e. ¥(z1,...,an) =
A det(¢;(x4)), With Jq ®id; = ij, we obtain with the same assumption as in Theorem 1 an up-
per bound of order 2 in ¢,

Theorem 2 Let 0 < o < 1. For densities p € D, we have:

1

) @@

unlp) < [ IVVpPdo -+ Cr [ g7 da{1+O(E=eyl2,) + O
Q Q '

where Cp := 2(67%)%/3 is the Fermi constant (in our context).
Furthermore there exists n(«) > 0 such that the error terms are uniform with respect to (V, L, p)
satisfying L%|e,|, . < n(c).

Again, the upper bound (14) is valid locally, cf. Remark 4.3 for a precise statement.
On the other hand, the estimate (11) allows us to prove, in our specific context, a well known con-

jecture of March and Young (cf. [MY] and also [L1]). Namely we have the following Corollary:

Corollary 1 Let0 < a < 1. There exists C'(«) > 0 and n(«) > 0 such that for any p € D,, and
forany N > 0, L > 1 satisfying L%|e,|,, < n(a) we have

bian(p) < [ 19ypPde +Cla) [ g%
Q@ 0

Remark 2.3 An application of these techniques in the case of a system of N fermions in R? faces
the problem to find an equivalent of pq in the non periodic case. Note that in [BG1] we have
proved the estimate

Epin(p) < CN?/? /R RAAVARE
by deforming R? onto the unit cube.

Remark 2.4 We recently learned about a similar approach in [DR], based, however, on more
formal estimations.

Our second result concerns the local exchange potential occurring in the X« method as an ap-
proximation of the exchange potential V., for the Hartree-Fock model. We define the Hartree
Fock energy as follows:

BT = inf {(Hper U, ¥) | W € A, W =[], (¥1,9) = 65} (15)
where for a given family of N functions (orbitals) 1, . .., 1y in L%(2), [¢;] denotes the following
N-particle wave function called Slater determinant

1
[Wil(x1,. .. zN) = mdet(wj(xi))lgi,jgN- (16)



Since the constraints (v;,¥;) = 8;;, 1 < 4,j < N implies that || ¥|| ;> = 1, we have F, < EHE.
In this Hartree-Fock context of such Slater determinants the electron density writes pg(z) =
Zj\f:l | (z)|2. The inter-electron energy (6) can be decomposed into two terms (see [PY]):

EB@(\II) = J(p\I/) + Eex([wj]) (17)
with
T =5 | plalpla)Gla —o')dade’ (18)
1 2
D=5 [ D ) PGl ) ddy. (19)
and where
D(z,y, [5]) Zw] (20)

denotes the density matrix. Note that we stress explicitly the dependence on the orbitals entering
via a Slater determinant by the notation D(x, y, [¢;]).

In (17), J corresponds to the usual electrostatic self-repulsion energy, and only depends on the
density p. The second term, the so-called exchange energy E.,, takes into account the Pauli
principle (a purely quantum effect) but a priori does not depend only on the density.

The existence of a minimum for (15), which is a difficult problem when posed on R? [LS2],
[PLL], can be more easily proved here since €2 is compact. This minimization gives (after a
unitary transformation on the orbitals) an equation of Hartree-Fock’s type

A+ Vit (@) + ( /Q G(a — y)p(y)dy) b + (Veathi) (@) = ety (21)

where (¢;) are the eigenvalues and where V., is a non-local operator, defined by:

(Vi) (x / D(z,y, [0;])C (@ — y);(y) dy. (22)

There is no exact local expression for the complicated exchange potential V,,. However, V.,
can be astonishingly well approximated by —C'sp'/3(z) (for some constant C's) as proposed by
Slater [SI] and widely used under the name ” X o method”. We refer to [PY] for a review of such
approximations. A first mathematical approach to this Slater approximation based on deformations
of plane waves has been given in [BM]. Following [SI] we first approximate the exact exchange
potential V., by the average exchange potential V,:

x N2
Vao(, [¢5]) == — /Q WCJ@ — 1) dy. (23)



This formula comes from the "Slater averaging” of the HF exchange potential (V.,v;)(x) by

the weighted densities of the i-th wave function : Z;V:l(vexwi)(m)%. The advantage of V,,
is that it can be used as a ”local” approximation of (21) : (Ver.¢k)(z) ~ Vau(x, [th5])¢0k(2).
Furthermore, we can recover the exact exchange energy from V., even if V,, is an approximation,

since we have from (19), (23) :

Bl l6) = 5 [ plo)Varl, 1)) o 9

The following asymptotic results is proved in section 5:

Theorem 3 (Averaged exchange potential estimate) Let 0 < o < 1. For each p € D, suf-
ficiently close to py, and for a particular choice 2 of orthonormals orbitals (¢)j=1,...n With
p= Z;V:l 1512, we have uniformly for z € Q,

Vol 03] = ~Cs @) {14 (L2100 + O} @)

where 8 = min(2, 2-) and Cs = 3(£)1/3 is the “"Slater constant™ [SI] (in our context).*

' l—«

As a consequence of Theorem 3 and of (24), we obtain immediately:
Corollary 2 (Exchange energy estimate) Under the same assumptions as in Theorem 3:

Bl == [ 920 as {14 0216511 + Ol |

Remark 2.5 Since 1/(1 — «) > 1 + «, Theorem 3 and Corollary 2 still hold with 8 = 1 + «.

This is a refined version of a result in [BM]. We use the work of Friesecke [F] in order to deal with
planes waves whose wave numbers are in the Fermi sphere (instead of the cube used for simplicity
in [MY], [BM]).

Note also that Corollary 2 gives a justification of the Dirac approximation fQ p/3da (see [D]) of
the exchange energy. In an other context, justification of the Dirac term (and also the Thomas-
Fermi term) have also been obtained, see V. Bach [B], C. Fefferman and L.A. Seco [FS], G.M. Graf
and J.P. Solovej [GS]. In [B] and [FS] the authors consider a model in R? and the Thomas-Fermi
density prp plays the role of pg.

Finally our method of deformation gives an approximation of the energy £(p). Nevertheless, we
have to restrict ourself to wave functions of Slater determinant type which are deformation of
plane waves . This is why we only obtain an upper bound for the global energy. Combining the
kinetic energy and exchange potential estimations, we obtain in section 5:

3This choice is explicit, cf. Section 5.1.
*In general, C's := 3(Z)'/3, where s is the spin number (for s = 1 or s = 2); in our context, s = 1.



Theorem 4 Let0 < « < 1. For densities p € D,, the functional £(p) admits the following upper
bound in a neighborhood of p = pg and N = +oc:

£lp) < /Q|V\/ﬁ|2dx+CF/Qp5/3($)d:U{l+O(L2a|ep|§ya)—1—0(#)} (26)

C o
—|—/QVem(x)p(:B)da?+J(p)—75/Q p*3(x )d${1+0((L l€nlo.a) )+O(N1/3)}

where J(p) = 3 [ p(z)p(y)G(z — y) dzdy is the Coulomb energy, Cp := 2(672)%/3 is the
Fermi constant and C's := 3(£)%/3 is the Slater”” constant (in our context).

Furthermore there exists n(«) > 0 such that the error terms are uniforms with respectto (L, N, p)
satisfying L“|e,|, .€, < n(a) and L > 1.

3
2
o

Remark 2.6 In the "’high density limit” (L fixed), estimate (26) becomes (cf. Section 5.2):
£(p) /yv\deHcF/ 73z )dm{1+0(|6p]2 )+ O(—ns )}
Q N1/2
+ [ Velowptardo + 36) = 5 [ p(@)da
Q

while in the thermodynamic limit (pq fixed), estimate (26) becomes

Elp) < /Q \V/p|*dz + Cp /Q p°3 (x)dz + /Q Veat(2)p(x)dz
+J(,o)_%/Qp4/3(x)dac{1+O((Na/3‘6p\oya) )+O(N1/3)}

Remark 2.7 The error terms in Theorem 4 can also be bounded as follows:

5/3 20 < N5/3 2a 1
Qp O(L |€p|0(‘)+O(N1/2) < cst. i L |P|0a N1z

When compared with our result announced in [BGM1], the Ieading error term in the TFVW ap-
proximation of the kinetic energy is improved (we obtain O( N7 ) instead of O (= ~i73 ) in [BGML1]).

This is technlcally more complicated but essential for combining it with the Dirac term, fp4/3 ~
cst. N > which is now asymptotically larger than the improved error term, O(Ns/'3 L) =

L2 N1/2
O(—LT) (independently of L > 1).

3 Deformations

Our crucial assumption is that p is close to the averaged constant electron density pg.

Indeed, we shall start from wave functions of constant density pg, and then use a deformation of
the space close to identity in order to obtain wave functions of density p (close to pg).

This idea has already been used in Density Functional Theory, see [PSK, KL] or [BG3, BG1,
BG2], or [DR].



Definition 3.1 We say that f is a periodic deformation on the cube §2 with sidelenght L if f is a
C" diffeomorphism on R? satisfying f(x 4+ Lm) = f(x) + Lm for any m € Z* and z € R®.
This means that f is a C'* diffeomorphism of the torus R?/LZ3.

Further we denote J(x) := det(D f(x)) the Jacobian of f.

We use the following Hélder semi norm on C%¢(RR?)

— supy [9®) —aly)] 5
laly,, = sup{ P | x #y e R’}

Based on a fundamental result of B. Dacorogna and J. Moser [DM] we prove

Lemma3.1 Let0 < a < 1 and L > 1. There exist n(«) > 0 and K («) > 0 such that, for any
p € Dy satisfying L|e,|, . < n(c), there exists a periodic deformation of the cube [—L/2, L/2]3,
f, solution of the Jacobian equation J;(x) = %.

Furthermore f € Ch*(R3) and f satisfies

ID(f = 1d)|o0 < K(@) |€plyas (27)

ID(f = Id)||, < (VBL)*K(a) leply.q (28)

Remark 3.1 At this point we need to assume that p is Holder continuous since we want to use
Schauder estimates (see below).

Remark 3.2 Following [DM], we can prove the existence (but not estimate (27)) of the periodic
deformation in Lemma 3.1 without assuming [e,|, , small.

Before proving Lemma 3.1 we explain how we use it in order to deform a wave function of density
po into a wave function of density p € D,.

Let p be a density in D,,, f be the periodic deformation associated to p given by Lemma 3.1 and
¥ be a (N-particle) wave function in A¢. Then (J;)'/2 and ¥(f(x1),..., f(zn)) are both in
H' N C? and we define the deformed wave function 7'+(¥) by

N
Ty (a1, .., oN H NYRU(f (1), f2n)), (29)
which is again in A¢. By a straightforward change of variables one gets

)}

As in [BG1], one easily deduces

Lemma3.2 For p € D,, the operator T induces an isometry (for the L, norm) from
{U e A | py =po}onto{¥ € A° | py = p}.

10



Proof of Lemma 3.1. We follow closely the lines of the proof of [DM] Lemma 4.
Let T, be the torus T, := R®/LZ3. We define

X = {be C"TL,R) | / b=0}
Q
and
Y= {veCh(T,R?) | / v =0}
Q

Note that a function in X" has to vanish somewhere in €2 and therefore the | - |, semi norm is a
norm on X. In the same way, if v € ) then v and any of its partial derivatives have to vanish
somewhere in 2 (use the periodicity). Thus the semi norm |Dv|, , is a norm on ) that we will
denote ||v|],,:

”UHy = ‘Dv|o,a .

We note for the sequel that if u € C% with [, u = 0, then
lull o < (VBL)*[ul,q (30)
and in particular if v €
1Dl < (V3L)*|lvll,, (31)
Forb € X, let a € C>%(T) be the unique solution of the Laplace equation
Aa=1b

satisfying fQ a = 0. By Schauder estimates (see for instance [LU]), there exists a constant C' =
C(a, L) such that
|D%al,,, < C (|bly,. +IIbll +llall.) -

Considering the Fourier series representation of « and b (a(x) = Zke%”ZS a(k)e™ and b(x) =

Y ezzzn b(k)e'™™ ) the relation Aa = b with [, a = 0 writes

~

a(k) = %b(kz) for k # 0and a(0) = 0.

. , , 1 1/2
Therefore, with C' = C'(L) = (§ ke2z73 F)
1/2

b(k . _
lalo < S PWl oo [0S pp | =), < o

2 2
keF73 ke 73

Thus using (30) one concludes that there exists a constant K = K («, L) such that

|D?al,,, < K |b],., - (32)

11



Note that K does in fact not depend on L as can be verified by a scaling argument:

Leta(z) := (%)2(1 (1) and b(z) :=b (1z). Then Ag = bonQy =[-1/2,1/2]° and le a=
0. Thus |D%a|, . < K(a,1) |b,, andas [D2%al,, = (1) |D%al,, and |b],, = ()" |b],.. one
obtains (32) with K (a) = K(«, 1).

Note that v = Va is in Y and satisfies dive = b. We can then define a bounded linear operator
L : X — Y which associates to every element b in X’ an element v = £(b) in ) satisfying

divv=1"»
and

Hﬁ(b) = ’DU’(),Q < K(a) |b|o,a . (33)

Iy

In order to solve J¢ = p/po = 1 + €, we look for f(z) in the form

fl@) =+ o).

Hence the Jacobian equation on f is equivalent to the problem of finding a vector field v(z) such
that

div(v) + Q(Dv) = ¢,
where for any 3 x 3 matrix A,
Q(A) := det(Id + A) — 1 — tr(A). (34)
Now we define
N(v) = ¢, — Q(Dv) (35)

and we remark that a solution of the Jacobian problem, div(v) = N (v), is obtained from the
following fixed-point equation

v=LN(v). (36)
Note that denoting v = (vy, va, v3),
aﬂ)z‘ 8]-1),-
Q(Dv) =det(Dv) + ) det| ot ). (37)
1<i<j<3 v

By integration by part (assuming v has C* regularity) and using the periodicity of v we have
O;v;  0;v; v;  0;0;v; o;v; O,

o (2 0% ) [ (80 Y [ (D O ),
/Q <3in djv; Q vj  0;0jv; Q djvj  Oivj

12



Thus
oyv;  0;v;
/Q (32‘%‘ 9;v;
/det(Dv)zO.
Q

Hence by density of C'2-functions in ), we get

and similarly,

/ Q(Dv) =0, foranyv € ).
Q

Since |, €, = 0, one deduces that V" maps ) into X’ and thus LA maps ) into ).
Now we want to solve Equation (36) by the contraction principle. Let

B:={ueY||Dul,, <2Kel,,.}.

and let C be a positive constant independent of L and « such that for any w1 and w, in C%* with
[willor lJwelle <1,

Q(w1) — Q(wa)],, < Cllwnll + [Jwallo)|wr —wal,,, (38)

(C exists since Q(w) is a sum of terms which are quadratic and cubic with respect to the compo-
nents of w).
We claim that for

1 1 1
(V3)2K(a) 4(V3)*CK(a)" 4(V3)*CK(a)?

LN is a contraction mapping on B with respect to the norm ||.||,,.
Indeed, if v € B then using (33),

2

LJegly. < o i= min

LNl [D(LN W)y, < KNV,

K(l€plo,a + QD)o 0)-

As Le,ly.. < 1ma and in view of (31) one has for v € B,

IN

1D, < 2(V3L)*Kleply < 1.
Thus, using (38) with w; = v and we = 0,

LNl K(leplo,o + CllDv| | DVl )
K(l + 4(\/§L)QKC’6/)‘O,O¢)‘6P’O,Q

2K’6p‘0,a

IN N IA

13



: ; ; 1
where we used in the last inequality that L%|e,|, , < 7q < 1V3)"CK"
Analogously, if v and v are in 3, we have similarly

|LNv — LN ul],, K|\Nv—Nul,,

K|Q(Dv) = Q(Du)l, ,
KC(| Dol + [|1Dull )llo = wully,

2VBL)*K2Cle,, . [lv — ull,

VAN VAN VAR VAN

IN

Sl = ull,

where we used L%|e, |, ., < 1o < W.
Therefore by the contraction principle, equation (36) has a unique solution v in ). Hence f :=

Id + v is a C1 function which solves the Jacobian equation J(z) = % and satisfies

|D(f - Id)|0,a é 2K|€p|0,a'

Furthermore as v is periodic, f(x) = x+v(x) satisfies f(x+Lm) = f(x)+ Lm forany m € Z3
and = € R3.

That f is a diffeomorphism is a consequence of ||D(f — I)
Finally, in view of (31), we deduce (27) from (28). m

<1

[

We will need later the following technical estimate.
Corollary 3.1 Let p and f be as in Lemma 3.1. Then
div(f — Id) = e, + O(L**|¢,|2 ) -

Proof. We use div(f — Id) = €, + Q(Dwv), the fact that ¢ has quadratic and cubic terms (see
formula (37)), and the estimates (31), (27). m

Notice that, with our definition, the image of the basic cell 2 by a periodic deformation is not
necessarily equal to 2. However, a periodic deformation is a diffeomorphism of the torus T,
hence f(Tz) = T and we have

Lemma 3.3 Let f be a periodic deformation of the cube €2 and ¢ be an integrable periodic func-

tion. Then
/ g(l‘)dl‘:/g(l')dl'.
f(©) Q

4 Kinetic energy estimates

4.1 Rewriting the kinetic energy using deformations

Using the deformation f of Lemma 3.1, we replace the minimization problem (9), for a given
density p by the same minimization problem for the constant density po and we control the error.
Let0 < a < 1 and n(«) asin Lemma 3.1.

14



Lemma 4.1 Forany p € D,, one has uniformly for L|e,|, . < n(a):

Erinp) = /Q VB2 + Ehn(p0)(1+ O(LOe,,.)). (39)

Proof. Let p be a density in D,, such that |e,|, . < n(a). By Lemma 3.1 there exists a periodic
deformation, f, satisfying J; = %. Using Lemma 3.2 and (5),

Ekin(p) = inf {/QN \V(Ty0)(z)|?dz,| ¥ € Aand py(z) = po} . (40)

It remains to compute the kinetic energy of the deformed wave function given by (29):

| V@m@res = N [ 9i@me) P
QN QN

= N [ VUsa) 0 LT 20, Fan)
=2

H DY2Df ()] TV (f (@), .. flan))[ da

where V; denotes the gradient with respect to the first variable. By the change of variable y; =
f(z;) forj =2,..., N, wegetusing Lemma 3.3,

/ V(T 0)(z)2dz = A+ B+ C (1)
QN

where, denoting v’ = (y2,...,Yn),

A= N | VU @) P ),y dandy (42)
B ::N/QN (T (1)) 2D f (x0)] T V1O (f (2 | dxidy' (43)

and
Ci=N | (Jp@))*V(Js @) Vi¥(f(@).y)Pdmdy (44)

By the change of variable y; = f(x1) in (43) we obtain denoting y = (y1,...,yn)
B=N | D70 @) Viv sy (45)

Integrating with respect to v’ and using py = po, (42) leads to
A= [ 190 Pl = [ 193/ ()

15



while (44) leads to

C = /Q (5(0) 2V (5 (1)) 2 -V po( (1)) = 0

since py is a constant function. Thus combining (41), (45), (46) and (47) we conclude

| V@@t = [ 1vypds + s,
QN Q
where

S(f, V) =N . IDf(f (2))T V10 (2) | da.

Finally using estimate (28) of Lemma 3.1 we deduce

S(£,9) = N [on [V1¥(2)Pdz (1 + O(Lep), )
= Jon [VE(2)2dz (1 + O(L€ply 0 ))-

Combining (40), (48) and (50), Lemma 4.1 is proved. m

Remark 4.1 In the same way it can be proved that for any ¥ minimizing €, (p)

12 (0)(x) = [V V/7() + 75 Buin (W) (1+ O(Leyl,.)

This estimate leads to the local estimate (13).

(47)

(48)

(49)

(50)

When restricting our analysis to wave functions that are deformations of plane waves we can

improve the error term in Lemma 4.1 This will be used to prove Theorem 2.

Let K := {k1,...,kn} be asubset of Z3, and let 1 (z) be the "free electron plane waves” defined
by
1 2im .
j(x) ::ﬁexp(fkj'w) ,j=1,...,N. (51)
For this set of orbitals the following Slater determinant (cf (16))
Vg = (1] (52)

is a plane wave of density pg. The corresponding deformed orbitals are
Wl (@) == (Jp(@) 25 (f ().
The corresponding deformed N-wave-function is given by
Wi o= Tp = [¥]]

and has density p in the case where f is solution of the Jacobian equation J; = p/po.

16
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Definition 4.1 We say that a set K C Z3 is symmetric if there exists » € R such that K is equal
to the intersection of Z? with the ball in R? of center 0 and radius r.

For symmetric K we have:

e Forany k = (k',k?,k3) € K and for any ¢; = +1, e = +1 and e3 = +1 we have that
(e1k!, eak?, e3k?) is again in K.

e For any k = (kK% k}) € K and for any permutation o we have that
(ke ko) k7G)) s again in K.

The following Lemma gives a second order (in €,,) approximation of Ekm(lllf() interm of Fy;, (V)
and [, |[V,/p|*dz when K is symmetric:

Lemma 4.2 Let K be a symmetric subset of Z3 whose cardinality is V. Let 0 < a < 1 and for
any p € D, let f be the deformation defined in Lemma 3.1. Then we have for the kinetic energy
of the deformed plane waves :

Egin(V) = /Q VP de + Bin(Wr)(1+ O(L* 6,7 ).

Proof. As (wf)j:17,,,,N is a set of orthonormal functions in L2(Q2), we have

N
Buan(¥f) = [ IVUhE =" [ [vufp
K ON K ]Z::l Q J
Using (48) for N = 1 we obtain foreach j =1,..., N:

VUi = | IVVAE+ [ DS @) Vu( z)da.
Q

Therefore we obtain
[ vavl@id = [ 19yt + st (55)

and

S 0) = L?,Z/ DI @) 2k da

2T
_ Lg/Jf S 1DF@)T Tk (56)
keK

17



Let M(z) := Df(z) Df ()T = (Mag)ap=123and k = (k', k2, k3). Using the symmetries of
K we obtain

3
SNIDF@)T B = > Map( > kkY)

keK ozﬁ 1 keK

= Z Maﬁéaﬁ Z(ka)2)

keK

3
> Moo [K?) (57)

a=1 keK

“Q

wl

Therefore, using (56), (57), and

Ek‘ZTL \I’K Z ’_k’2
keK

we obtain
(. ¥x) = 377 Pen(¥) | Jy(a) Tr(DS (@) D)) o 8)

Denoting f = Id + v we get
/Q Ji(x) Tr(Df(x) Df(z)T) dx = /Q(l +e€,(2))(3 + 2div(v)(z) + Tr(Du(z) Du(z)T)) dx .

By Corollary 3.1, we have div(v) = €, + O(L**|¢,| ). Furthermore by Lemma 3.1, we have
D], = O(L®e,,,,) and thus [|Tr(Dv Do), = O(L**|e,|2 ). Hence we get

||oo -

/QJf(ZU) Tr(Df(z) Df(x)") dz = /Q(l +€p(2)) (3 + 26, () + O(L*[e, 2 ) da
- /Q 3 (1 + gep(m) + O(Lzalepli,a)> da (59)
= 3L°(1+0(L*|e,|2,))

where we used in the last equality, [, €,(2)dz = 0.
Thus Lemma 4.2 follows by combining (55) (58) and (59). m

4.2 Proof of Theorem 1

In view of Lemma 4.1, to obtain Theorem 1 it suffices to prove the following statement:

Proposition 4.3
5/3
Ekin(po) = CF(l-i—O(Nl/z))/on Bdz .

18



Notice that eg := inf{FEj;,(V),¥ € A,||V[ , = 1} is reached by plane waves and that the
density of a plane wave (c.f (52)) of L2-norm 1 is equal to pg. Hence eq = Erin(po) and the
minimum &g, (po) is also reached by plane waves.

Therefore, we have

2T
Exinpo) = (T)" T(N), (60)
where
T(N):=min{» |k+0°| 6 € R®and K C Z°, #K = N}. (61)
keK
Note also that
ST+ =Y |EP+20> Kk 0)+NJo.
keK keK keK
Thus for each K, the optimal choice for 8 is given by 05 := —%(Z%K k) and the corresponding

energy is
1
2 _ 2 2
E |k +0k|” = E || _N(E k)~ (62)
keK keK keK

By a translation argument on K and @, we can restrict the minimization (61) over sets K for which
Ok € [—%,3)3. Therefore | >, o k| < @N and (62) leads to

272
> k40 =D yk\2—§N.
= 4
keK keK

Hence we have proved

T(N)=To(N)+ O(N) (63)
where
To(N) :=min{> |k’ | K CZ* #K = N} . (64)
keK

Since |, p3/3 = N°/3/L2, Proposition 4.3 is then a consequence of (60), (63) and of the following
Lemma:

Lemma 4.4 Forany N € N,

1
(27)?

To(N) = Cr N°3(1+0(

i)

where C is the Fermi constant (i.e ;72 Cr = 3(2)%),

19



Note that Lemma 4.4 is an improvement of the more classical estimate (see for instance [FS])

1
2r)?

1

TO(N): Nl/g))

Cr N*B(1+0(

This improvement is essential for our purpose as explained in Remark 2.7.

Proof of Lemma 4.4 For r > 0 we define A/ (r) as the number of discrete points in a ball as follows
N(r) = #[Z° N B(0,r)]

where B(0,r) denotes the Euclidean ball with center 0 and radius r. The function » — N/(r) is
increasing with values in N. Let (IV;) . be the increasing sequence of values of A/(r) and r;
(j € N) be the minimal value of r such that N'(r) = N;.

From [SK], we learn the following two non-trivial estimates (cf. [HI] and [He] for the first esti-
mate):

4
N; = 5777‘5»’ + O(r§/2) (65)
and

Njq —N; =003, (66)

(Note that V;; — N, is equal to the number of points of Z2 on the sphere S(0,7,41).)
Let N € Ngiven. There exists j € N such that N; < N < N, and thus by (65) and (66),

N;j =N +O(VN). (67)
Using (66) and (64) we have,
To(Nj+1) = To(Ny) < 754, O(5).
Thus, as To(NN;) < To(N) < To(Nj4+1), we conclude

Ty(N) = To(N;) + O(r}?). (68)

It remains to calculate 7;(V;). We define
Ky, = B(0,r;) N Z*. (69)

Denote Q := [—1/2,1/2]3, Q. = Q +k (k € Z3) and D; := Ukeky, @r- By adirect calculation
we have,

L) = 3 k= 3 ([ fuPdu- )

k‘EKNj kJEKNj Qk

1
= / lu?du — =N . (70)
D, 4

J
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On the other hand denoting by B, the ball in R? of center 0 and radius r, we have

‘/ |u|2du—/ lu|?du
Br\B,

—V3/2
(r; £ V/3/2)°Vol(DA\B, _ /3 — (r; F V/3/2)Vol(Br,\B, _ /55)

Therefore

/ |u|2du—/ lu|?du
D; By,

J

—V3/2

< max
+

< 12 [VOl(DAB,, _yg)) = Vol(Br\B,, 3.,
+0(rj) (VoUD,\B,, _5.5) + Vol(B,,\B, _5,5))
< 7“]2- |Vol(D;) — Vol(B,,)| + O(r?)
As Vol(D;) = N;, we conclude, using (65), that

! / lul?du — / [ul du| 7/2) . (71)
D, .
Furthermore, a simple calculation gives,
/ lu2du = 4—7Tr]5 . (72)
B(o,rj) 5
Combining (70), (71) and (72), we obtain,
47‘(‘
To(N;) = =17+ 0(}%). (73)

Then using successively (68), (73), (65) and (67) we get,

To(N) = To(Nyj) +0(r}?)

47 7/2
= i+ 00 /2
477(3
5 “4m
3,3
=

)2/3N5/3 + O(N7/6)
|

Remark 4.2 Using [V], the error term O(r-3/2) in (65) can be improved to O (*/3(log 7)%). Also
using [Sk], the error term O(r%/2) in (66) can be improved to O(r'+") (for any given n > 0).
These improvements lead to the following estimate for 7 (V):

log N)6
e ).

To(N) =

(1+0(
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4.3 Proof of Theorem 2

To prove Theorem 2 we would like to use Lemma 4.2 and thus we first need to ”symmetrize” K.
Notice that by definition, for each N; the set K, is symmetric (cf. Definition 4.1). In particular,
we can summarize formulas (63), (67) and (68) as follows:

Lemma 4.5 Forany N € N* there exists n € N* and a symmetric subset of Z3, K,,, of cardinal n
such that

T(N) = (1+0 ) Y kP
ke Ky,

and
n<N<n+O(N).

Proof. It suffices to use n = N; where IN; is defined by as in the proof of Lemma 4.4 (i.e. such
that N; < N < Nj41) and K, = Ky as defined in (69). m

This Lemma allows us to prove Theorem 2.

Proof of Theorem 2. Let p € D, be the density of an V-wave function with N € N fixed.

Let K C Z? be a minimizer for To(N). Let K,, C Z? as in Lemma 4.5. In particular K,, C K
and Card(K\K,) = O(v/N). Let f be the periodic deformation constructed in Lemma 3.1. As
\If{{ has density p, we have

In the case K = K, (i.e. if K is symmetric), we obtain, using Lemma 4.2, that
Epn(Wh) = /Q IV /A2 + Biin(¥ ) (1 + O(L®]ey|2.))

Then using Proposition 4.3 we conclude (with Cp := £(672)%/3),

Bjin(T}) /Q\V\/ﬁlzdx + CF/pr;/?’ 1+ O(

= /\v\/ﬁy2dx+cF/p5/3 (1+0(
Q Q

)+ OL*|e,l5,))

23~

) +O(L*|ey3 )

where we used that [, e, = 0 which implies

Lo = [ v o). 7

Hence inequality (14) follows.

In the general case K # K,,, we cannot use Lemma 4.2 but we still have,
Eiin(p) < Epn(Wh) = / IV plds + S(f, V) (75)
Q
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where following (56),

S(f, k) = / ) IDF @) 2Tk do

keK

We can decompose S(f, ¥ k) as follows:

S(f, V)= 51(f,¥k) + Sa2(f, V) (76)
with 5
S1(0:95) = gy [ 1 ) 2 I
and o
Sa(f. %) = 7 [ Jsta ) 2 DS

Notice that S;(f, V) = S(f, Uk, ). Therefore, as K, is symmetric, using Lemma 4.2,
S1(f,UK) = Bin(Vk,)(1+ O(L**[e,|2 ).
Using Ejin(Vk,) = (3)? >k, [k|* and Lemma 4.5, we have:

2m 4

S1(f, V) = (L

1
)2 T(N) <1 + O(\/—N) + O(L2a|ep|g’a)> .
Using (60) and Proposition 4.3, we obtain
1
5i7.00) = Cr [ 5 (1402 + O, ) 77)

where we have used again (74).
On the other hand, there exists a constant C' independent of NV such that,

S(e <o S kP

kERK\Ky
Using the fact that # K\ K,, = O(v/N) and K,, = Z* N B(0,r) with = O(N'/3) we get,
Sa(f. k) = ON'/%) = O(iy) [ 477 @
Finally, combining (75), (76), (77) and (78) we obtain
Ein (U / |V /p|2dx + Cp/ p(z)°3 dx (1 + 0(\/%) + O(L2a|ep|§,a)> (79)

which in particular, gives (14). m
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Remark 4.3 AsinRemark 4.1, using p°/3 = p8/3 (1 + 2e,+ O(|ep|§a)) instead of (74), we can

prove the following local estimate (where K and f are defined as above):

N
Em(T)(@) = Y IVY (@)
j=1

= VYRR + Crp @) {1+ 06 2,) + O}

5 Justifi cation of the TFVYWD model and of the X, method

In this section we prove Theorem 3 and Theorem 4.

5.1 Proof of Theorem 3

Let K = Ky be a set of N wave vectors k; € Z* minimizing 7o(N) (see (64)) and ¥ ¢ := [1);]
be the associated Slater determinant (see (52)). Let p be in D, with L%e,|, , < 1o and f be the

deformation defined in Lemma 3.1. Let W/ = [¢)/] be the Slater determinant associated to the
deformed plane waves (cf (51) - (54)).
We now prove that

Vasta [6]]) = ~Cs pla) {14 0Ll + Ol ) - (80

Recall that (cf. (23))

z !
Vav(wOa wf /‘D 0 {L'Q[)w ])’ G((E()—I’)dx

where in view of (54) and (20),

D(z,y,[¥]]) = J;(2)"/? Tp(y)"* Dxc(f(2) — f(y))

with the notation

Zeﬂ—”kh
19

keK
Thus by the change of variables y = f(z) one obtains with yo = f(xo):

Vao (o, [¥]]) = —pg ! /Q |Dre(yo — ) *G(f " (yo) — f () dy

where we have used that f satisfies the Jacobian equation J¢(x) = p(x)/po. Finally denoting
y = yo + h, and using the periodicity of G and D, one has

Vaolo, [0]]) = —p; " /Q IDic(h)2Ap(wo: h) dh
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where
Ap(zoih) == G(f (yo) — f (o + h)).

In order to prove (80), it remains to find an asymptotic for A (h) (this is done in Lemma 5.1) and
to find an approximation for D (this is done in Lemma 5.2).

Let X denote the vector field in ) such that (cf. proof of Lemma 3.1)
flz) =2+ X(x).

Lemma 5.1 Uniformly with respect to » € 2 and = € (2 we have:

A¢(x;h) = i {1 + W +0((La‘6p’0’a)ﬁ) + O(%)} '

where 3 = min(2, 1).

Proof of Lemma 5.1. From [LS1] we learn that G(z) — ﬁ is Lipschitz on €2 and thus G(z) =
|71| + O(7) uniformly on © (the O(7) factor can be obtained by a scaling argument, as in the
proof of Lemma 3.1). Therefore we have, with g := f~!and y = f(x)

Ag(ash) = lg(y +h) — g(y)| ™ +0(%)- (81)
Recall that by Lemma 3.1 and (31)
IDX|.. < (V3L)*|DX|,, = OLepl..) - (82)
Let Y be a vector field such that g(y) = y + Y (y).
We differentiate g(f(x)) = « and obtain, with y = f(x),
DY (y) + DX (z) + DY (y)DX (z) = 0.
This leads to the following estimate, for the L°°-norm,
Dg(y) =1 - DX () + O(L*|e,l; ). (83)
We claim that, uniformly in h,y € €2,
gy +h) = gy) = (I = DX(@) h+ B {06 2,) + Olleplo, 11D} (89)

Indeed, let y; = y + th, and let x; be such that v, = f(z;). We have |z; — z| < ||Dg|| |yt —
y| < C|h|, and thus [DX (z¢) — DX (z)| < |[DX|, |zt — 2|* < O(leploo |R|Y). In partic-
ular, DX (z;) = DX(x) + O(leyy. |h|*). Then, using (83), we have g(y + h) — g(y) =
Jo Dg(ye)-hdt = (I — DX (x)).h+ O(L>*|e, |2 |h]) + O(le,|,.|hI*+), which proves (84).
Using (84) and (82) we obtain

9y +h) = g(y) = h— DX (@).h+ k. {06, 2,) + Olleglo,, 1) } -

0,
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Since DX (z) = O(L®e,|,...), we have (with | - | denoting the Euclidean norm in R?)

oty + ) - g = 12 {1~ 282D 02 ) + Ol )}

Then from (81) we conclude
1 <h7 DX($)h> 2 2 « 1
Af(x;h) = ] {1 + o + O(L™epl5 ) + Oleploa [RI%) p + O(f)-

e i P « « h
By Young's nequaity e ,., " = (L”lc,l,..)(

thus the estimate of Lemma 5.1 is proved. m

" < (1-0) (L7eply, )0~ 40 2 ang

It remains to estimate Dy (h) for which we do not have a simple formula. Recall the following
approximation which can be found in Friesecke [F]: there exists a constant ¢q > 0 such that, for
any » > 0 and for any 2 € R3 with ||z||_ <7

> e““—/ e dk| < o (14 r32). (85)

keZ3NB;, "

To make use of (85), we define R > 0 such that the volume of the Euclidean ball of center 0 and
radius Ry equals NV :

4
N = gwRi’V (86)
and we define a continuous analogue of D, for R > 0,
=~ 1 . 2T
Dp(h) = — [ &Trh@)
€ JBg
B R 4 sin(t) — tcos(t) 27
Lemmab5.2 Let K = K and Ry as above. When N — oo, we have
[Dicy (h)[? dh / [Dry (W) dh 1
+0(= 87
/ po  |h po  |n ( ) (87

Proof of Lemma 5.2 in the symmetric case.
For the moment, we assume that K = K is symmetric, (i.e. a closed-shell situation (cf e.g. [F]).
We define the ”Fermi radius” kr by:

kp = kp(K) == max{|k|, k € K} (88)

Since K is symmetric, we have K = Z3 N By,
Note that, with the notations of section 4, there exists j > 1 such that N = N; and krp = r;. In
particular (65) leads to

1

N
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By (85) (with = = 2T h) we deduce that uniformly with respect to » € Q@ = [—£, £]? and for N
large

|Dicy (h) — Dy (h)| < C L™3kp%/? (90)

where C' is a constant.
Note also that

IN

| Dipe(B) = Dry (1) L™*Vol (BRy V By,
4
< EL_?’ max(kp, RN)2|k7F — Ry

(where Bg, V By, denotes the symmetric difference Bg, \Bj, U By, \Br,). Using (89), we
deduce | D), (h) — Dy, (h)| < C L=3R3/?, and together with (90) we conclude

D (h) — D, (h)| < C L3Ry (91)
N N

Therefore, | D, (h)|? = [Dgy (B)|? + O(L73RY?)|Dg, (h)| + O(L~SR3,), and we have

[Drcy (h |—|DRN W an
/ ‘ ‘ O(LRY))In, +O(L SRY) TN (92)

[n] =

where Iy 1, := |, |DR;;(’)( ) ﬁf" and Jyz := [, pl fl}i“ We easily obtain Iy, = O(L?Ry*log(Ry))

and Jy 1, = O(L5R;,3) (using the analytical expression of DRN in (87), and a change of variables
t= %’TRN k). Thus the right side of inequality (92) is O(L~1), as desired. m

Proof of Lemma 5.2 in the general case.

Recall that K is a minimizer for T, (N) (note that now Ky is not unique in general).

We consider as in the proof of Lemma 4.4 an index j € N such that N; < N < N, where
the integers N; and N;; correspond to symmetric sets K, and Ky, , (that are minimizers for
To(N;) and To(Nj41) respectively).

As in the symmetric case, we define Ry, by N;, = 47rR3 for k= jand k = j + 1. By (65) and

(66) we deduce N; 1 — N; = O(y/N;), Ry, N_’OO RN,and

Njs1 = N; =0 (R?). (93)
We thus have
1 27
DKN(h’)_DKNj(h’) = @ Z el kh
kEKN\KNJ.
= L7%0 (#(KEN\KN,))
= L30(N - N;)

= O(L*R¥?)

27



(for the fourth equality we use (93) and N —N; < N, 1—N;). Using the fact that in the symmetric
case we have, as in (91), the estimate D (h) = ﬁRNj (h) + O(L‘3R%j2), we deduce

Dicy (h) = Dy, (h) + O(LRY/?).
Similarly, we can prove that

~ ~ —353/2

Dy, (h) = Dry(h) + O(L*RY*)
(using Vol(BRN\BRNj) =N-N;=0(R 3/2)) and we obtain

Dy (h) = Dry (h) + O(L™3RY?).
Proceeding as in the proof of Lemma 5.2 in the symmetric case, we obtain finally the estimate (87)
in all cases. m
We can now end the proof of Theorem 3.

Proof of Theorem 3.
Using successively Lemma 5.1 and then Lemma 5.2 we obtain the estimate

Dk (h)? h, DX (z0)h N h
Vatao [0f) = = [ PERE L fyy BB ozl + OCE  an
D 21 h, DX (x0)h h
- /‘ el {1 BB (26,07 + O T | d
Po ’h\ |h ’
(L) (94)
Let us show that the zero-order term,
|DRN |2
Vaw, —dh
a po Il

and the first order term,

dh

avl

/ ’DRN ‘2 1 (h DX(.CU())h>
po  |hl |h]?

satisfy the following asymptotics:

Vav,O = _CS 1/3+O( )7 (95)

R2

1 1
Vo = /" (Jeston) + 06 2,)) + o

96
) (96)
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where Cg is the Slater constant (cf (25)).
To prove (95) we replace D, (h) by its analytical expression (87). Using a change of variables
t = ZZ Ry h and the identity pg = N/L? = 2X(Ry/L)?, we obtain

o / (4r(Rn/L) q())* 1 o
e g (Ry/L)P (3ERy)?
2
™ L Jaupeo |t

where we have denoted ¢(t) := sin([¢l) — It] cos([t])

and 2ZZRNQ = [~7Ry, mRy]®. A direct

[t
calculation gives
2
/. 90 3¢ — 97)
R® [t
: q(t)? 3, _
(see for instance Parr and Yang [PY], Sec. 6.1, p. 108). Furthermore, we have fRS\(QT”RNQ) o d’t =
1 _ R 1y 1/3 1
O(EQI;). Hence Vypo = —3 =& + O(Eg) =—Cgpy” + O(ﬁ%).
To prove (96), we proceed in the same way and obtain Vi, 1 = Zn1 + O(L—;”#) =1In+
N

o(R—l?V), where

_ RN (L[ a®? (DX (o))
e A e R

Then, we remark the following identity when we integrate on the unit sphere S? (dw denotes the
measure on the sphere):

(t,DX(a?O)t) _ 1 i . "
/5,2 wa(t) = 3d (X)(zo) L2d (t). (98)

To see this, we develop (¢, DX t) = 3, titj%—;;. We note that for i # j the integral [, %dw(t)

vanishes by symmetry and for 1 < ¢ < 3, the integrals 7; = f52 %dw(t) are equal to the same

value 7; in particular 7 = (71 + J2 + J3) = 3 [q2 dw(t). Then, using that ¢ is radial, and
formula (98), we obtain

B Ry [Tr(DX(zg)) 1 q(t)?
e = g [FEE [
_ g By div(X)(z0)
B L 3
_ _gpt? div(X)(zo) (99)
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where we have used again (97) for the second equality. Recall also that div(X)(zo) = €,(x0) +
O(L**e,|2 ) by Corollary 3.1; combined with (99) and the previous bounds, we obtain finally
(96).

Now we insert the estimates (95) and (96) in (94), and since pé/g = (%w)l/?’ Ry /L, we obtain

Vao(zo, [0]]) = —Cspy/® <1+éep(mo)+0(L2a\6p\§,a)7+O(R—1N)>+0(5N),

where dy = 61,N + (La|€p|0,a)6527N and

n 2 2
Syvi= L7 [ Prs®IE g, 5, 5 - Dr(R))” dh
o PO a p A

As shown above, we have the bounds 6; y = O(L™!) = O(,oé/g/RN), and 62, y = O(Rn/L) =
O(p(l]/?’). Hence

Vo ) = =Cs ol (14 geplan) + 0L o)) + 05 ) @00

Finally, we note that p(z)1/3 = (1 + ¢,(2))/3 py/® = (1 + Lep(x) + O(L*e,|2 ) po 13 and
thus

1
o (Lt ge(@) = p(@) (1 + 012 ). (101)
Also, the errors terms in (100) satisfy:

a 1 o 1
oo (O((L?eplo.0)%) + O(52)) = O (o) (Leplo )" + 5-) ) (102)
RN RN
Combining (101) and (102) we obtain
1
Vao(a0) = ~Cs ) (14 (L)) + O()) -
Since Ry = (:)'/3N'/3 this concludes the proof of Theorem 3. m

5.2 Proof of Theorem 4

We deduce Theorem 4 from Corollary 2 and Theorem 2 as follows:

We use that £(p) < E([q/;f |) where & = [1/)]’.[ | are the deformed plane waves (54). The deformation
fischosen asin Lemma 3.1, and K = (kq,...,ky) := Ky is chosen as in Lemma 4.5 (i.e., it is
a minimizer of To(V)). In order to bound the kinetic energy, we recall the bound (79) used in the
proof of Theorem 2:

B lwf) = [ [9vaPde+cr [ o {10l ot | o
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Thus in view of (4), (17) and Corollary 2, Theorem 4 is proved. m

It remains to justify Remark 2.6. The upper bound for the thermodynamic limit is a direct conse-
quence of Theorem 4 (since pg is constant). For the "high density” limit we have to prove that the
error terms in E.([¢;]) can be absorbed by the error terms of the kinetic energy bound (103). So,
asp=O(L3N)and 8 =1/(1 — ) > 1, itis enough to prove that

1 1
3 ol + i =0 {lel, + 3 |

This relation holds since, using that ab < a2 + b2, we have

1
N1/6

1
N4/3{N1/3,e,,]§’a + i }

1
N5/3{|Ep|§ya n _N2/3}.

N4/3|6P|O,a = N4/3 N1/6|6p|0,a

IN

IN

and Remark 2.6 follows.
]
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