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Abstract: We deal with local density approximations for the kinetic and exchange energy term, Ekin(ρ)
and Eex(ρ), of a periodic Coulomb model. We study asymptotic approximations of the energy when the
number of particles goes to infinity and for densities close to the constant averaged density. For the kinetic
energy, we recover the usual combination of the von-Weizsäcker term and the Thomas-Fermi term. Further-
more, we justify the inclusion of the Dirac term for the exchange energy and the Slater term for the local
exchange potential.

1 Introduction

The aim of this work is to provide a justification of the Thomas-Fermi-von Weizsäcker and
Thomas-Fermi-von Weizsäcker-Dirac models ([L1], [CBL1]) in a crystal. We use the method
of deformations (local scaling transformations) [PSK], [BG1], [BG3] of wave functions of con-
stant electron density. To this end we consider a cubic crystal with N electrons and P nuclei in
the elementary cell Ω = [−L

2 ,
L
2 ]3.

We regard the periodic Hamiltonian:

Hper := −
N∑

i=1

∆i +
N∑

i=1

Vext(xi) +
∑

i<j

G(xi − xj) (1)

where the xi ∈ Ω denote the fermion positions, Vext(x) = −∑P
l=1 ZlG(x − Rl), Zl and Rl are

respectively the charges and the positions of the P nuclei. Notice that the 1/x function of the
Coulomb interaction has been replaced by the ”periodized version” G(x) of e.g. [LS1], which is
the periodic solution of the equation ∆G = −4π

(∑
k∈LZ3 δ(· − k) − 1/L3

)
, satisfying

∫
ΩG =

0.
The choice of the periodic Hamiltonian (1) allows for a setting where the rigorous derivation
can be done without heavy mathematical machinery. It is motivated by the results of [CBL1] ,
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[CBL2] where a periodic energy functional corresponding to our use of G in (1) is derived as a
thermodynamic limit.

As the Hamiltonian is periodic, the N -particle wave-functions are Bloch functions, i.e. a shift
for a lattice vector γ results in a mere phase factor : Ψ(x + γ) = eiΘ·γΨ(x) for all x ∈ R

3N

and γ ∈ (LZ
3)N and for some Θ = (θ1, . . . , θN ) fixed in ([0, 2π/L[3)N . On the other hand,

the N -particle wave-functions have to be antisymmetric by the Pauli principle1 which implies
θ1 = · · · = θN . These conditions lead us to consider the following space of wave functions

Λ :=
⊕

θ∈[0,2π/L[3

Λθ

where

Λθ :=
{
Ψ(x1, ..., xN ) = eiθ·(x1+···+xN )Φ(x1, ..., xN ), Φ ∈ H1

a((R
3/LZ

3)N )
}
.

(The index ”a” means that the functions Φ are antisymmetric.)
Note that for periodic Hamiltonians, the Bloch decomposition of L2 allows to reduce the spectral
problem from the whole space to a basic cell Ω (see e.g. [GMMP], where the generalization
beyond the usual scalar case of the one particle Schrödinger equation (e.g. [MMP]) is given.)
For technical reasons (cf. Lemma 3.2) we will also consider the space of continuous wave func-
tions in Λ, i.e.

Λc := Λ ∩ C0(R3N ) .

The fundamental energy per cell of this N fermion system is then given by

E0 := inf{〈HperΨ, Ψ〉 | Ψ ∈ Λ, ||Ψ||L2 = 1}
= inf{〈HperΨ, Ψ〉 | Ψ ∈ Λc, ||Ψ||L2 = 1} , (2)

where 〈, 〉 denotes the Hermitian scalar product in L2(ΩN ).

The aim of the density functional theory is to replace the minimization problem (2) by a mini-
mization problem with respect to the density (per cell) ρ associated to the wave function Ψ :

ρΨ(x) := N

∫

ΩN−1

|Ψ(x, x2, . . . , xN )|2dx2 . . . dxN . (3)

This procedure reduced the number of variables from 3N to 3.
Using (1), we can decompose the energy per cell of a wave function Ψ as follows:

E(Ψ) := 〈HperΨ, Ψ〉 = Ekin(Ψ) +

∫

Ω
Vext(x)ρΨ(x)dx+Eee(Ψ). (4)

In formula (4) Ekin denotes the kinetic energy,

Ekin(Ψ) :=

∫

ΩN

|∇Ψ(x)|2dx, (5)

1In order to simplify the presentation we do not explicitly consider the spin.
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while Eee denotes the inter-electron energy,

Eee(Ψ) :=

∫

Ω2

ρ2,Ψ(x, x′)G(x− x′)dxdx′, (6)

where

ρ2,Ψ(x, x′) :=
N(N − 1)

2

∫

ΩN−2

∣∣Ψ(x, x′, x3, . . . , xN )
∣∣2 dx3 · · · dxN . (7)

Following ([L2], Theorem 1.2), it can be shown that the map Ψ 7→ ρΨ maps Λc onto

D := {ρ ∈ C0(R3/LZ
3), ρ ≥ 0,

∫

Ω
ρ = N,

√
ρ ∈ H1

loc(R
3)}. (8)

Therefore we can define the density functionals corresponding to the kinetic and the global energy
term by

Ekin(ρ) := inf{Ekin(Ψ)|Ψ ∈ Λc and ρΨ = ρ} (9)

E(ρ) := inf{E(Ψ)|Ψ ∈ Λc and ρΨ = ρ},
and we have

E0 = inf{E(ρ) | ρ ∈ D}.

We shall use Schauder estimates in Hölder spaces, this leads us to consider the space of densities
Dα ⊂ D, with 0 < α < 1

Dα := {ρ ∈ C0,α(R3/LZ
3), ρ > 0,

∫

Ω
ρ = N,

√
ρ ∈ H1

loc(R
3)}

where C0,α(R3/LZ
3) denotes the space of Hölderian functions of degree α on the torus R

3/LZ
3

or equivalently the space of periodic function in the Hölder space C 0,α(R3).
We introduce the semi norm | · |

0,α defined by

|ε|
0,α := sup

x6=y∈R
3

|ε(y) − ε(x)|
|y − x|α . (10)

Our results are based on the crucial assumption that ρ is close to the averaged constant electron
density ρ0 given by

ρ0 :=
N

|Ω| =
N

L3
.

Precisely, we shall assume that Lα|ερ|0,α is small, where

ερ(x) :=
ρ(x) − ρ0

ρ0
.

Extending [BM], [BGM1] we demonstrate how the heuristic idea of the “free electron approxima-
tion” can be used in a mathematically rigorous way by using the method of deformations (local
scaling transformations) of plane waves [PSK], [KL], [BG2], [BG3].
In this article we essentially prove that (see section 2 for precise statements):

3



• The exact kinetic energy, as a functional of the density ρ, is equal to the Thomas-Fermi-von
Weizsäcker functional up to small remainder terms depending on Lαερ and N .

• The global energy, as a functional of the density ρ, is majorized by the Thomas-Fermi-von
Weizsäcker-Dirac functional up to small remainder terms depending on Lαερ and N .

The ”high density limit” ([LS1], [GS], [BM]) is obtained by letting N → ∞ for a given size of
the periodicity cell (i.e L = cst.). In this limit and for our choice of the periodic model (with
an equi-distribution of the external potential), the assumption ερ → 0, is physically reasonable.
Nevertheless this assumption is not yet mathematically proved in a general context (see [LS1] for
a proof in the Thomas-Fermi context).
The ”thermodynamic limit” is obtained by letting N → ∞ and L → ∞ in such way that ρ0 is
constant (see e.g. [LS1], [L1], [F] for a discussion on different types of limits). In this case, there
is no physical reason for the ground state density to be close to the constant density ρ0. Thus the
assumption Lαερ → 0 (i.e. Nα/3ερ → 0) does not seem so relevant in the thermodynamic limit.
That is why our results should be rather considered in the ”high density limit” context than in the
case where L→ ∞.

Remark on the choice of the density space: All our results are stated for density ρ in the Hölder
space C0,α(R3/LZ

3) and thus depend on the choice of α ∈ (0, 1) (α cannot be 0). However the
choice of the Hölder space is only determined by Lemma 3.1 (where we use Schauder estimates).
This deformation Lemma can be established in Sobolev spaces (essentially using reference [Y]
instead of [DM]). Then all the results stated in section 2 can be established for density ρ in
the Sobolev space H2(R3/LZ

3) (i.e. two derivatives in L2(R3/LZ
3)). In this case the basic

assumption would be ”‖ερ‖H2
small” instead of ”Lα|ερ|0,α small”. This point of view seems, a

priori, to be better when we consider the thermodynamic limit (since L → ∞). Nevertheless, the
‖.‖

H2
-norm is an integrated norm and thus when L grows the domain of integration also grows

and the condition ”‖ερ‖H2
small” becomes more restrictive.

The article is organized as follows:
In section 2 we precisely state our results.
In section 3 we describe the deformation method (as introduced in [PSK], [BG1] and [BG3]). We
prove a deformation Lemma, based on a fundamental result of B. Dacorogna and J. Moser [DM],
which is used, in section 4, to estimate the kinetic energy functional with respect to its values at
ρ = ρ0.
In section 4 we use precise estimates on the number of lattice points in a ball (given by number
theory) to obtain a refined estimate of Ekin(ρ0), the kinetic energy functional at ρ = ρ0. Then we
deduce Theorem 1 and Theorem 2.
In section 5 we justify the so called Xα method which allows us to approximate the exchange
energy at the Hartree Fock level and then to obtain an upper bound for the global energy functional.

Part of the results have been announced in [BGM1], [BGM2] and [BGM3].
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2 Results

Our first result states that the exact kinetic energy, as a functional of the density, is equal to
the Thomas-Fermi-von Weizsäcker functional [L1] up to small remainder terms depending on ερ
and N .

Theorem 1 Let 0 < α < 1. For densities ρ ∈ Dα, the functional Ekin(ρ) defined in (9) has the
following behaviour in a neighborhood of ρ = ρ0 and N = +∞ :

Ekin(ρ) =

∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3dx

{
1 +O(Lα|ερ|0,α) +O(

1

N1/2
)
}

(11)

where CF := 3
5(6π2)2/3 is the Fermi constant (in our context)2.

Furthermore there exists η(α) > 0 such that the error terms are uniform with respect to (N,L, ρ)
satisfying Lα|ερ|0,α < η(α).

Note that this Theorem remains true if we make another choice of a periodic Hamiltonian (and
thus of the periodic model). Actually Theorem 1 depends only on the choice of the space Λ of
wave functions. However, this result becomes physically relevant only if, for the chosen model,
we are able to prove that the density of the ground state is close to the constant density.

Remark 2.1 In the ”high density limit”, estimate (11) becomes

Ekin(ρ) =

∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3dx

{
1 +O(|ερ|0,α) +O(

1

N1/2
)
}

while in the thermodynamic limit, estimate (11) becomes

Ekin(ρ) =

∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3dx

{
1 +O(Nα/3|ερ|0,α) +O(

1

N1/2
)
}
.

Remark 2.2 The O(1/N 1/2) term in (11) can be slightly improved to O((logN)6/N5/9) (see
Remark 4.2). The same remark holds for the estimates in Theorem 2 and Theorem 4.

The estimate (11) is also valid locally: denoting

E lockin(Ψ)(x) := N

∫

ΩN−1

|∇xΨ(x, x2, . . . , xN )|2dx2 · · · dxN (12)

we have, for any wave function Ψ ∈ Λc minimizing Ekin(ρ),

Ekin(ρ) =

∫

Ω
E lockin(Ψ)(x) dx

and

E lockin(Ψ)(x) = |∇√
ρ(x)|2 + CFρ

5/3(x)
{
1 +O(Lα|ερ|0,α) +O(

1

N1/2
)
}
. (13)

2In general, CF := 3

5
( 6π2

s
)2/3, where s is the spin number. In our context, s = 1.
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Furthermore, if we consider only wave functions which are Slater determinants, i.e. Ψ(x1, ..., xN ) =
1√
N!

det(φj(xi)), with
∫
Ω φiφ̄j = δij , we obtain with the same assumption as in Theorem 1 an up-

per bound of order 2 in ερ:

Theorem 2 Let 0 < α < 1. For densities ρ ∈ Dα, we have:

Ekin(ρ) ≤
∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3dx

{
1 +O(L2α|ερ|20,α

) +O(
1

N1/2
)
}

(14)

where CF := 3
5(6π2)2/3 is the Fermi constant (in our context).

Furthermore there exists η(α) > 0 such that the error terms are uniform with respect to (N,L, ρ)
satisfying Lα|ερ|0,α < η(α).

Again, the upper bound (14) is valid locally, cf. Remark 4.3 for a precise statement.

On the other hand, the estimate (11) allows us to prove, in our specific context, a well known con-
jecture of March and Young (cf. [MY] and also [L1]). Namely we have the following Corollary:

Corollary 1 Let 0 < α < 1. There exists C(α) > 0 and η(α) > 0 such that for any ρ ∈ Dα and
for any N > 0, L ≥ 1 satisfying Lα|ερ|0,α < η(α) we have

Ekin(ρ) ≤
∫

Ω
|∇√

ρ|2dx+ C(α)

∫

Ω
ρ5/3dx.

Remark 2.3 An application of these techniques in the case of a system of N fermions in R
3 faces

the problem to find an equivalent of ρ0 in the non periodic case. Note that in [BG1] we have
proved the estimate

Ekin(ρ) ≤ CN 2/3

∫

R
3
|∇√

ρ|2dx

by deforming R
3 onto the unit cube.

Remark 2.4 We recently learned about a similar approach in [DR], based, however, on more
formal estimations.

Our second result concerns the local exchange potential occurring in the Xα method as an ap-
proximation of the exchange potential Vex for the Hartree-Fock model. We define the Hartree
Fock energy as follows:

EHF := inf {〈HperΨ, Ψ〉 | Ψ ∈ Λc, Ψ = [ψj ], 〈ψi, ψj〉 = δij} (15)

where for a given family ofN functions (orbitals) ψ1, . . . , ψN inL2(Ω), [ψj ] denotes the following
N -particle wave function called Slater determinant

[ψj ](x1, . . . , xN ) :=
1√
N !

det(ψj(xi))1≤i,j≤N . (16)
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Since the constraints 〈ψi, ψj〉 = δij , 1 ≤ i, j ≤ N implies that ||Ψ||L2 = 1, we have E0 ≤ EHF .
In this Hartree-Fock context of such Slater determinants the electron density writes ρΨ(x) :=∑N

j=1 |ψj(x)|2. The inter-electron energy (6) can be decomposed into two terms (see [PY]):

Eee(Ψ) = J(ρΨ) +Eex([ψj ]) (17)

with

J(ρ) :=
1

2

∫

Ω2

ρ(x)ρ(x′)G(x − x′)dxdx′, (18)

Eex([ψj ]) := −1

2

∫

Ω×Ω
|D(x, y, [ψj ])|2G(x− y) dx dy , (19)

and where

D(x, y, [ψj ]) :=

N∑

j=1

ψj(x)ψj(y) (20)

denotes the density matrix. Note that we stress explicitly the dependence on the orbitals entering
via a Slater determinant by the notation D(x, y, [ψj ]).
In (17), J corresponds to the usual electrostatic self-repulsion energy, and only depends on the
density ρ. The second term, the so-called exchange energy Eex, takes into account the Pauli
principle (a purely quantum effect) but a priori does not depend only on the density.

The existence of a minimum for (15), which is a difficult problem when posed on R
3 [LS2],

[PLL], can be more easily proved here since Ω is compact. This minimization gives (after a
unitary transformation on the orbitals) an equation of Hartree-Fock’s type

−∆ψi + Vext(x)ψi + (

∫

Ω
G(x− y)ρ(y)dy)ψi + (Vexψi)(x) = εiψi (21)

where (εi) are the eigenvalues and where Vex is a non-local operator, defined by:

(Vexψj)(x) := −
∫

Ω
D(x, y, [ψj ])G(x − y)ψj(y) dy. (22)

There is no exact local expression for the complicated exchange potential Vex. However, Vex
can be astonishingly well approximated by −CSρ1/3(x) (for some constant CS) as proposed by
Slater [Sl] and widely used under the name ”Xα method”. We refer to [PY] for a review of such
approximations. A first mathematical approach to this Slater approximation based on deformations
of plane waves has been given in [BM]. Following [Sl] we first approximate the exact exchange
potential Vex by the average exchange potential Vav:

Vav(x, [ψj ]) := −
∫

Ω

|D(x, y, [ψj ])|2
ρ(x)

G(x− y) dy. (23)
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This formula comes from the ”Slater averaging” of the HF exchange potential (Vexψi)(x) by

the weighted densities of the i-th wave function :
∑N

j=1(Vexψi)(x)
|ψi|2
ρ(x) . The advantage of Vav

is that it can be used as a ”local” approximation of (21) : (Vex.ψk)(x) ∼ Vav(x, [ψj ])ψk(x).
Furthermore, we can recover the exact exchange energy from Vav , even if Vav is an approximation,
since we have from (19), (23) :

Eex([ψj ]) =
1

2

∫

Ω
ρ(x)Vav(x, [ψj ]) dx . (24)

The following asymptotic results is proved in section 5:

Theorem 3 (Averaged exchange potential estimate) Let 0 < α < 1. For each ρ ∈ Dα suf-
ficiently close to ρ0, and for a particular choice 3 of orthonormals orbitals (ψj)j=1,...,N with
ρ =

∑N
j=1 |ψj |2, we have uniformly for x ∈ Ω,

Vav(x, [ψj ]) = −CS ρ(x)1/3
{

1 +O((Lα|ερ|0,α)β) +O(
1

N1/3
)

}
(25)

where β = min(2, 1
1−α) and CS = 3

2 ( 6
π )1/3 is the ”Slater constant” [Sl] (in our context).4

As a consequence of Theorem 3 and of (24), we obtain immediately:

Corollary 2 (Exchange energy estimate) Under the same assumptions as in Theorem 3:

Eex([ψj ]) = −CS
2

∫

Ω
ρ4/3(x) dx

{
1 +O((Lα|ερ|0,α)β) +O(

1

N1/3
)

}

Remark 2.5 Since 1/(1 − α) > 1 + α, Theorem 3 and Corollary 2 still hold with β = 1 + α.

This is a refined version of a result in [BM]. We use the work of Friesecke [F] in order to deal with
planes waves whose wave numbers are in the Fermi sphere (instead of the cube used for simplicity
in [MY], [BM]).
Note also that Corollary 2 gives a justification of the Dirac approximation

∫
Ω ρ

4/3dx (see [D]) of
the exchange energy. In an other context, justification of the Dirac term (and also the Thomas-
Fermi term) have also been obtained, see V. Bach [B], C. Fefferman and L.A. Seco [FS], G.M. Graf
and J.P. Solovej [GS]. In [B] and [FS] the authors consider a model in R

3 and the Thomas-Fermi
density ρTF plays the role of ρ0.

Finally our method of deformation gives an approximation of the energy E(ρ). Nevertheless, we
have to restrict ourself to wave functions of Slater determinant type which are deformation of
plane waves . This is why we only obtain an upper bound for the global energy. Combining the
kinetic energy and exchange potential estimations, we obtain in section 5:

3This choice is explicit, cf. Section 5.1.
4In general, CS := 3

2
( 6

sπ
)1/3, where s is the spin number (for s = 1 or s = 2); in our context, s = 1.
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Theorem 4 Let 0 < α < 1. For densities ρ ∈ Dα, the functional E(ρ) admits the following upper
bound in a neighborhood of ρ = ρ0 and N = +∞:

E(ρ) ≤
∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3(x)dx

{
1 +O(L2α|ερ|20,α

) +O(
1

N1/2
)

}
(26)

+

∫

Ω
Vext(x)ρ(x)dx + J(ρ) − CS

2

∫

Ω
ρ4/3(x)dx

{
1 +O((Lα|ερ|0,α)β) +O(

1

N1/3
)

}

where J(ρ) = 1
2

∫
Ω2 ρ(x)ρ(y)G(x − y) dxdy is the Coulomb energy, CF := 3

5 (6π2)2/3 is the
Fermi constant and CS := 3

2 ( 6
π )1/3 is the ”Slater” constant (in our context).

Furthermore there exists η(α) > 0 such that the error terms are uniforms with respect to (L,N, ρ)
satisfying Lα|ερ|0,αερ < η(α) and L ≥ 1.

Remark 2.6 In the ”high density limit” (L fixed), estimate (26) becomes (cf. Section 5.2):

E(ρ) ≤
∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3(x)dx

{
1 +O(|ερ|20,α

) +O(
1

N1/2
)

}

+

∫

Ω
Vext(x)ρ(x)dx + J(ρ) − CS

2

∫

Ω
ρ4/3(x)dx

while in the thermodynamic limit (ρ0 fixed), estimate (26) becomes

E(ρ) ≤
∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3(x)dx+

∫

Ω
Vext(x)ρ(x)dx

+J(ρ) − CS
2

∫

Ω
ρ4/3(x)dx

{
1 +O((Nα/3|ερ|0,α)β) +O(

1

N1/3
)

}

Remark 2.7 The error terms in Theorem 4 can also be bounded as follows:
∫

Ω
ρ5/3

{
O(L2α|ερ|20,α

) +O(
1

N1/2
)

}
≤ cst.

N5/3

L2

{
L2α|ερ|20,α

+
1

N1/2

}

When compared with our result announced in [BGM1], the leading error term in the TFvW ap-
proximation of the kinetic energy is improved (we obtainO( 1

N1/2 ) instead ofO( 1
N1/3 ) in [BGM1]).

This is technically more complicated but essential for combining it with the Dirac term,
∫
ρ4/3 ∼

cst. N
4/3

L which is now asymptotically larger than the improved error term, O(N
5/3

L2
1

N1/2 ) =

O(N
7/6

L2 ) (independently of L ≥ 1).

3 Deformations

Our crucial assumption is that ρ is close to the averaged constant electron density ρ0.
Indeed, we shall start from wave functions of constant density ρ0, and then use a deformation of
the space close to identity in order to obtain wave functions of density ρ (close to ρ0).
This idea has already been used in Density Functional Theory, see [PSK, KL] or [BG3, BG1,
BG2], or [DR].
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Definition 3.1 We say that f is a periodic deformation on the cube Ω with sidelenght L if f is a
C1 diffeomorphism on R

3 satisfying f(x + Lm) = f(x) + Lm for any m ∈ Z
3 and x ∈ R

3.
This means that f is a C1 diffeomorphism of the torus R

3/LZ
3.

Further we denote Jf (x) := det(Df(x)) the Jacobian of f .

We use the following Hölder semi norm on C0,α(R3)

|a|
0,α := sup{ |a(x) − a(y)|

|x− y|α | x 6= y ∈ R
3}

Based on a fundamental result of B. Dacorogna and J. Moser [DM] we prove

Lemma 3.1 Let 0 < α < 1 and L ≥ 1. There exist η(α) > 0 and K(α) > 0 such that, for any
ρ ∈ Dα satisfying Lα|ερ|0,α < η(α), there exists a periodic deformation of the cube [−L/2, L/2]3 ,

f , solution of the Jacobian equation Jf (x) = ρ(x)
ρ0

.

Furthermore f ∈ C1,α(R3) and f satisfies

|D(f − Id)|
0,α ≤ K(α) |ερ|0,α , (27)

‖D(f − Id)‖∞ ≤ (
√

3L)αK(α) |ερ|0,α . (28)

Remark 3.1 At this point we need to assume that ρ is Hölder continuous since we want to use
Schauder estimates (see below).

Remark 3.2 Following [DM], we can prove the existence (but not estimate (27)) of the periodic
deformation in Lemma 3.1 without assuming |ερ|0,α small.

Before proving Lemma 3.1 we explain how we use it in order to deform a wave function of density
ρ0 into a wave function of density ρ ∈ Dα.
Let ρ be a density in Dα, f be the periodic deformation associated to ρ given by Lemma 3.1 and
Ψ be a (N -particle) wave function in Λc. Then (Jf )

1/2 and Ψ(f(x1), . . . , f(xN )) are both in
H1 ∩ C0 and we define the deformed wave function Tf (Ψ) by

TfΨ(x1, . . . , xN ) :=

N∏

j=1

(Jf (xj))
1/2Ψ(f(x1), . . . , f(xN )), (29)

which is again in Λc. By a straightforward change of variables one gets

ρTf Ψ
(x) =

ρ(x)

ρ0
ρΨ(f(x)).

As in [BG1], one easily deduces

Lemma 3.2 For ρ ∈ Dα, the operator Tf induces an isometry (for the L2 norm) from
{Ψ ∈ Λc | ρΨ = ρ0} onto {Ψ ∈ Λc | ρΨ = ρ}.
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Proof of Lemma 3.1. We follow closely the lines of the proof of [DM] Lemma 4.
Let TL be the torus TL := R

3/LZ
3. We define

X := {b ∈ C0,α(TL,R) |
∫

Ω
b = 0}

and

Y := {v ∈ C1,α(TL,R
3) |

∫

Ω
v = 0}.

Note that a function in X has to vanish somewhere in Ω and therefore the | · |
0,α semi norm is a

norm on X . In the same way, if v ∈ Y then v and any of its partial derivatives have to vanish
somewhere in Ω (use the periodicity). Thus the semi norm |Dv|

0,α is a norm on Y that we will
denote ‖v‖Y :

‖v‖Y := |Dv|
0,α .

We note for the sequel that if u ∈ C0,α with
∫
Ω u = 0, then

‖u‖∞ ≤ (
√

3L)α|u|
0,α (30)

and in particular if v ∈ Y

‖Dv‖∞ ≤ (
√

3L)α‖v‖Y (31)

For b ∈ X , let a ∈ C2,α(T) be the unique solution of the Laplace equation

∆a = b

satisfying
∫
Ω a = 0. By Schauder estimates (see for instance [LU]), there exists a constant C =

C(α,L) such that
|D2a|

0,α ≤ C (|b|
0,α + ‖b‖∞ + ‖a‖∞) .

Considering the Fourier series representation of a and b ( a(x) =
∑

k∈ 2π
L
Z3 â(k)eikx and b(x) =

∑
k∈ 2π

L
Z3 b̂(k)eikx ) the relation ∆a = b with

∫
Ω a = 0 writes

â(k) =
1

k2
b̂(k) for k 6= 0 and â(0) = 0 .

Therefore, with C ′ = C ′(L) =
(∑

k∈ 2π
L
Z3

1
k4

)1/2

‖a‖∞ ≤
∑

k∈ 2π
L
Z3

|b̂(k)|
k2

≤ C ′




∑

k∈ 2π
L
Z3

|b̂(k)|2



1/2

= C ′L−3/2‖b‖
L2

≤ C ′‖b‖∞ .

Thus using (30) one concludes that there exists a constant K = K(α,L) such that

|D2a|
0,α ≤ K |b|

0,α . (32)
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Note that K does in fact not depend on L as can be verified by a scaling argument:
Let ã(x) :=

(
1
L

)2
a

(
1
Lx

)
and b̃(x) := b

(
1
Lx

)
. Then ∆ã = b̃ on Ω1 = [−1/2, 1/2]3 and

∫
Ω1
ã =

0. Thus |D2ã|
0,α ≤ K(α, 1) |b̃|

0,α and as |D2a|
0,α =

(
1
L

)α |D2ã|
0,α and |b|

0,α =
(

1
L

)α |b̃|
0,α , one

obtains (32) with K(α) = K(α, 1).

Note that v = ∇a is in Y and satisfies div v = b. We can then define a bounded linear operator
L : X → Y which associates to every element b in X an element v = L(b) in Y satisfying

div v = b

and

‖L(b)‖Y = |Dv|
0,α ≤ K(α) |b|

0,α . (33)

In order to solve Jf = ρ/ρ0 = 1 + ερ, we look for f(x) in the form

f(x) = x+ v(x) .

Hence the Jacobian equation on f is equivalent to the problem of finding a vector field v(x) such
that

div(v) +Q(Dv) = ερ

where for any 3 × 3 matrix A,

Q(A) := det(Id+A) − 1 − tr(A). (34)

Now we define

N (v) := ερ −Q(Dv) (35)

and we remark that a solution of the Jacobian problem, div(v) = N (v), is obtained from the
following fixed-point equation

v = LN (v). (36)

Note that denoting v = (v1, v2, v3),

Q(Dv) = det(Dv) +
∑

1≤i<j≤3

det

(
∂ivi ∂jvi
∂ivj ∂jvj

)
. (37)

By integration by part (assuming v has C2 regularity) and using the periodicity of v we have

∫

Ω
det

(
∂ivi ∂jvi
∂ivj ∂jvj

)
= −

∫

Ω
det

(
vi ∂i∂jvi
vj ∂i∂jvj

)
=

∫

Ω
det

(
∂jvi ∂ivi
∂jvj ∂ivj

)
.

12



Thus ∫

Ω
det

(
∂ivi ∂jvi
∂ivj ∂jvj

)
= 0

and similarly, ∫

Ω
det(Dv) = 0 .

Hence by density of C2-functions in Y , we get
∫

Ω
Q(Dv) = 0 , for any v ∈ Y.

Since
∫
Ω ερ = 0, one deduces that N maps Y into X and thus LN maps Y into Y .

Now we want to solve Equation (36) by the contraction principle. Let

B :=
{
u ∈ Y

∣∣ |Du|
0,α ≤ 2K |ερ|0,α

}
,

and let C be a positive constant independent of L and α such that for any w1 and w2 in C0,α with
‖w1‖∞ , ‖w2‖∞ ≤ 1,

|Q(w1) −Q(w2)|0,α ≤ C(‖w1‖∞ + ‖w2‖∞)|w1 − w2|0,α (38)

(C exists since Q(w) is a sum of terms which are quadratic and cubic with respect to the compo-
nents of w).

We claim that for

Lα|ερ|0,α < ηα := min{ 1

2(
√

3)αK(α)
,

1

4(
√

3)αCK(α)
,

1

4(
√

3)αCK(α)2
},

LN is a contraction mapping on B with respect to the norm ‖.‖Y .
Indeed, if v ∈ B then using (33),

‖LNv‖Y = |D(LNv)|
0,α ≤ K|Nv|

0,α

≤ K(|ερ|0,α + |Q(Dv)|
0,α).

As Lα|ερ|0,α < ηα and in view of (31) one has for v ∈ B,

‖Dv‖∞ ≤ 2(
√

3L)αK|ερ|0,α < 1.

Thus, using (38) with w1 = v and w2 = 0,

‖LNv‖Y ≤ K(|ερ|0,α + C‖Dv‖∞ |Dv|
0,α)

≤ K(1 + 4(
√

3L)αKC|ερ|0,α)|ερ|0,α

≤ 2K|ερ|0,α

13



where we used in the last inequality that Lα|ερ|0,α ≤ ηα ≤ 1
4(
√

3)αCK
.

Analogously, if u and v are in B, we have similarly

‖LNv −LNu‖Y ≤ K|Nv −Nu|
0,α

≤ K|Q(Dv) −Q(Du)|
0,α

≤ KC(‖Dv‖∞ + ‖Du‖∞)‖v − u‖Y

≤ 2(
√

3L)αK2C|ερ|0,α‖v − u‖Y

≤ 1

2
‖v − u‖Y

where we used Lα|ερ|0,α ≤ ηα ≤ 1
4(
√

3)αCK2
.

Therefore by the contraction principle, equation (36) has a unique solution v in Y . Hence f :=

Id+ v is a C1,α function which solves the Jacobian equation Jf (x) = ρ(x)
ρ0

and satisfies

|D(f − Id)|
0,α ≤ 2K|ερ|0,α .

Furthermore as v is periodic, f(x) = x+v(x) satisfies f(x+Lm) = f(x)+Lm for anym ∈ Z
3

and x ∈ R
3.

That f is a diffeomorphism is a consequence of ‖D(f − I)‖∞ < 1.
Finally, in view of (31), we deduce (27) from (28).

We will need later the following technical estimate.

Corollary 3.1 Let ρ and f be as in Lemma 3.1. Then

div(f − Id) = ερ +O(L2α|ερ|20,α
) .

Proof. We use div(f − Id) = ερ + Q(Dv), the fact that Q has quadratic and cubic terms (see
formula (37)), and the estimates (31), (27).

Notice that, with our definition, the image of the basic cell Ω by a periodic deformation is not
necessarily equal to Ω. However, a periodic deformation is a diffeomorphism of the torus TL,
hence f(TL) = TL and we have

Lemma 3.3 Let f be a periodic deformation of the cube Ω and g be an integrable periodic func-
tion. Then ∫

f(Ω)
g(x)dx =

∫

Ω
g(x)dx.

4 Kinetic energy estimates

4.1 Rewriting the kinetic energy using deformations

Using the deformation f of Lemma 3.1, we replace the minimization problem (9), for a given
density ρ by the same minimization problem for the constant density ρ0 and we control the error.
Let 0 < α < 1 and η(α) as in Lemma 3.1.
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Lemma 4.1 For any ρ ∈ Dα, one has uniformly for Lα|ερ|0,α < η(α):

Ekin(ρ) =

∫

Ω
|∇√

ρ|2dx + Ekin(ρ0)(1 +O(Lα|ερ|0,α)). (39)

Proof. Let ρ be a density in Dα such that |ερ|0,α < η(α). By Lemma 3.1 there exists a periodic
deformation, f , satisfying Jf = ρ

ρ0
. Using Lemma 3.2 and (5),

Ekin(ρ) = inf

{∫

ΩN

|∇(TfΨ)(x)|2dx, | Ψ ∈ Λc and ρΨ(x) = ρ0

}
. (40)

It remains to compute the kinetic energy of the deformed wave function given by (29):
∫

ΩN

|∇(TfΨ)(x)|2dx = N

∫

ΩN

|∇1(TfΨ)(x)|2dx

= N

∫

ΩN

∣∣∇(Jf (x1))
1/2

N∏

j=2

(Jf (xj))
1/2Ψ(f(x1), . . . , f(xN ))

+

N∏

j=1

(Jf (xj))
1/2[Df(x1)]

T∇1Ψ(f(x1), . . . , f(xN ))
∣∣2dx

where ∇1 denotes the gradient with respect to the first variable. By the change of variable yj =
f(xj) for j = 2, . . . , N , we get using Lemma 3.3,

∫

ΩN

|∇(TfΨ)(x)|2dx = A+B + C (41)

where, denoting y′ = (y2, . . . , yN ),

A := N

∫

ΩN

∣∣∇(Jf (x1))
1/2Ψ(f(x1), y

′)
∣∣2dx1dy

′, (42)

B := N

∫

ΩN

∣∣(Jf (x1))
1/2[Df(x1)]

T∇1Ψ(f(x1), y
′)
∣∣2dx1dy

′ (43)

and

C := N

∫

ΩN

(Jf (x1))
1/2∇(Jf (x1))

1/2 · ∇1|Ψ(f(x1), y
′)|2dx1dy

′. (44)

By the change of variable y1 = f(x1) in (43) we obtain denoting y = (y1, . . . , yN )

B = N

∫

ΩN

∣∣[Df(f−1(y1))]
T∇1Ψ(y1, y

′)
∣∣2dy. (45)

Integrating with respect to y′ and using ρΨ = ρ0, (42) leads to

A =

∫

Ω

∣∣∇(Jf (x1))
1/2

∣∣2ρ0(f(x1))dx1 =

∫

Ω
|∇

√
ρ(x1)|2dx1 (46)
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while (44) leads to

C =

∫

Ω
(Jf (x1))

1/2∇(Jf (x1))
1/2 · ∇ρ0(f(x1))dx1 = 0 (47)

since ρ0 is a constant function. Thus combining (41), (45), (46) and (47) we conclude
∫

ΩN

|∇(TfΨ)(x)|2dx =

∫

Ω
|∇√

ρ|2dx + S(f,Ψ), (48)

where

S(f,Ψ) := N

∫

ΩN

∣∣[Df(f−1(x1))]
T∇1Ψ(x)

∣∣2dx. (49)

Finally using estimate (28) of Lemma 3.1 we deduce

S(f,Ψ) = N
∫
ΩN |∇1Ψ(x)|2dx (1 +O(Lα|ερ|0,α))

=
∫
ΩN |∇Ψ(x)|2dx (1 +O(Lα|ερ|0,α)).

(50)

Combining (40), (48) and (50), Lemma 4.1 is proved.

Remark 4.1 In the same way it can be proved that for any Ψ minimizing Ekin(ρ)

E lockin(Ψ)(x) = |∇√
ρ(x)|2 +

1

L3
Ekin(Ψ) (1 +O(Lα|ερ|0,α)) .

This estimate leads to the local estimate (13).

When restricting our analysis to wave functions that are deformations of plane waves we can
improve the error term in Lemma 4.1 This will be used to prove Theorem 2.
LetK := {k1, . . . , kN} be a subset of Z3, and let ψj(x) be the ”free electron plane waves” defined
by

ψj(x) :=
1√
L3

exp(
2iπ

L
kj · x) , j = 1, . . . , N. (51)

For this set of orbitals the following Slater determinant (cf (16))

ΨK := [ψj ] (52)

is a plane wave of density ρ0. The corresponding deformed orbitals are

ψfj (x) := (Jf (x))
1/2ψj(f(x)). (53)

The corresponding deformed N-wave-function is given by

Ψf
K := TfΨK = [ψfj ] (54)

and has density ρ in the case where f is solution of the Jacobian equation Jf = ρ/ρ0.
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Definition 4.1 We say that a set K ⊂ Z
3 is symmetric if there exists r ∈ R such that K is equal

to the intersection of Z
3 with the ball in R

3 of center 0 and radius r.

For symmetric K we have:

• For any k = (k1, k2, k3) ∈ K and for any ε1 = ±1, ε2 = ±1 and ε3 = ±1 we have that
(ε1k

1, ε2k
2, ε3k

3) is again in K .

• For any k = (k1, k2, k3) ∈ K and for any permutation σ we have that
(kσ(1), kσ(2), kσ(3)) is again in K .

The following Lemma gives a second order (in ερ) approximation ofEkin(Ψ
f
K) in term ofEkin(ΨK)

and
∫
Ω |∇√

ρ|2dx when K is symmetric:

Lemma 4.2 Let K be a symmetric subset of Z
3 whose cardinality is N . Let 0 < α < 1 and for

any ρ ∈ Dα let f be the deformation defined in Lemma 3.1. Then we have for the kinetic energy
of the deformed plane waves :

Ekin(Ψ
f
K) =

∫

Ω
|∇√

ρ|2dx + Ekin(ΨK)(1 +O(L2α|ερ|20,α
)).

Proof. As (ψfj )j=1,...,N is a set of orthonormal functions in L2(Ω), we have

Ekin(Ψ
f
K) =

∫

ΩN

|∇Ψf
K |2 =

N∑

j=1

∫

Ω
|∇ψfj |2.

Using (48) for N = 1 we obtain for each j = 1, . . . , N :
∫

Ω
|∇ψfj |2 =

1

N

∫

Ω
|∇√

ρ|2 +

∫

Ω

∣∣[Df(f−1(x))]T∇ψj(x)
∣∣2dx.

Therefore we obtain
∫

ΩN

|∇(TΨf
K)(x)|2dx =

∫

Ω
|∇√

ρ|2dx + S(f,ΨK) (55)

and

S(f,ΨK) =
1

L3

N∑

j=1

∫

Ω
|Df(f−1(x))T

2π

L
kj |2dx

=
1

L3

∫

Ω
Jf (x)

∑

k∈K
|Df(x)T

2π

L
k|2dx. (56)
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Let M(x) := Df(x) Df(x)T = (Mα,β)α,β=1,2,3 and k = (k1, k2, k3). Using the symmetries of
K we obtain

∑

k∈K
|Df(x)T · k|2 =

3∑

α,β=1

Mα,β

( ∑

k∈K
kαkβ

)

=

3∑

α,β=1

Mα,βδα,β
( ∑

k∈K
(kα)2

)

=
1

3

3∑

α=1

Mα,α

( ∑

k∈K
|k|2

)
. (57)

Therefore, using (56), (57), and

Ekin(ΨK) =
∑

k∈K
|2π
L
k|2,

we obtain

S(f,ΨK) =
1

3 |Ω|Ekin(ΨK)

∫

Ω
Jf (x) Tr(Df(x)Df(x)T ) dx . (58)

Denoting f = Id+ v we get
∫

Ω
Jf (x) Tr(Df(x)Df(x)T ) dx =

∫

Ω
(1 + ερ(x))(3 + 2div(v)(x) + Tr(Dv(x) Dv(x)T )) dx .

By Corollary 3.1, we have div(v) = ερ + O(L2α|ερ|20,α
). Furthermore by Lemma 3.1, we have

‖Dv‖∞ = O(Lα|ερ|0,α) and thus ‖Tr(Dv DvT )‖∞ = O(L2α|ερ|20,α
). Hence we get

∫

Ω
Jf (x) Tr(Df(x)Df(x)T ) dx =

∫

Ω
(1 + ερ(x))(3 + 2ερ(x) +O(L2α|ερ|20,α

) dx

=

∫

Ω
3

(
1 +

5

3
ερ(x) +O(L2α|ερ|20,α

)

)
dx (59)

= 3L3(1 +O(L2α|ερ|20,α
))

where we used in the last equality,
∫
Ω ερ(x)dx = 0.

Thus Lemma 4.2 follows by combining (55), (58) and (59).

4.2 Proof of Theorem 1

In view of Lemma 4.1, to obtain Theorem 1 it suffices to prove the following statement:

Proposition 4.3

Ekin(ρ0) = CF (1 +O(
1

N1/2
))

∫

Ω
ρ0

5/3dx .
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Notice that e0 := inf{Ekin(Ψ),Ψ ∈ Λ, ‖Ψ‖
L2

= 1} is reached by plane waves and that the
density of a plane wave (c.f (52)) of L2-norm 1 is equal to ρ0. Hence e0 = Ekin(ρ0) and the
minimum Ekin(ρ0) is also reached by plane waves.
Therefore, we have

Ekin(ρ0) =
(2π

L

)2
T (N), (60)

where

T (N) := min{
∑

k∈K
|k + θ|2 | θ ∈ R

3 and K ⊂ Z
3, #K = N}. (61)

Note also that ∑

k∈K
|k + θ|2 =

∑

k∈K
|k|2 + 2(

∑

k∈K
k, θ) +N |θ|2.

Thus for each K , the optimal choice for θ is given by θK := − 1
N (

∑
k∈K k) and the corresponding

energy is

∑

k∈K
|k + θK |2 =

∑

k∈K
|k|2 − 1

N
(
∑

k∈K
k)2. (62)

By a translation argument onK and θ, we can restrict the minimization (61) over sets K for which
θK ∈ [−1

2 ,
1
2)3. Therefore |∑k∈K k| ≤

√
3

2 N and (62) leads to

∑

k∈K
|k + θK |2 ≥

∑

k∈K
|k|2 − 3

4
N .

Hence we have proved

T (N) = T0(N) +O(N) (63)

where

T0(N) := min{
∑

k∈K
|k|2 | K ⊂ Z

3,#K = N} . (64)

Since
∫
Ω ρ

5/3
0 = N5/3/L2, Proposition 4.3 is then a consequence of (60), (63) and of the following

Lemma:

Lemma 4.4 For any N ∈ N,

T0(N) =
1

(2π)2
CF N

5/3
(
1 +O

( 1

N1/2

))
.

where CF is the Fermi constant (i.e 1
(2π)2CF = 3

5

(
3
4π

)2/3
).
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Note that Lemma 4.4 is an improvement of the more classical estimate (see for instance [FS])

T0(N) =
1

(2π)2
CF N

5/3
(
1 +O

( 1

N1/3

))
.

This improvement is essential for our purpose as explained in Remark 2.7.

Proof of Lemma 4.4 For r > 0 we define N (r) as the number of discrete points in a ball as follows

N (r) = #
[
Z

3 ∩B(0, r)
]

where B(0, r) denotes the Euclidean ball with center 0 and radius r. The function r → N (r) is
increasing with values in N. Let (Nj)j∈N be the increasing sequence of values of N (r) and rj
(j ∈ N) be the minimal value of r such that N (r) = Nj.
From [Sk], we learn the following two non-trivial estimates (cf. [Hl] and [He] for the first esti-
mate):

Nj =
4

3
πr3j +O(r

3/2
j ) (65)

and

Nj+1 −Nj = O(r
3/2
j ) . (66)

(Note that Nj+1 −Nj is equal to the number of points of Z
3 on the sphere S(0, rj+1).)

Let N ∈ N given. There exists j ∈ N such that Nj ≤ N < Nj+1 and thus by (65) and (66),

Nj = N +O(
√
N) . (67)

Using (66) and (64) we have,

T0(Nj+1) − T0(Nj) ≤ r2
j+1O(r

3/2
j ) .

Thus, as T0(Nj) ≤ T0(N) ≤ T0(Nj+1), we conclude

T0(N) = T0(Nj) +O(r
7/2
j ) . (68)

It remains to calculate T0(Nj). We define

KNj := B(0, rj) ∩ Z
3 . (69)

Denote Q := [−1/2, 1/2]3 , Qk = Q+k (k ∈ Z
3) and Dj := ∪k∈KNj

Qk. By a direct calculation
we have,

T0(Nj) =
∑

k∈KNj

|k|2 =
∑

k∈KNj

(

∫

Qk

|u|2du− 1

4
)

=

∫

Dj

|u|2du− 1

4
Nj . (70)
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On the other hand denoting by Br the ball in R
3 of center 0 and radius r, we have

Brj−
√

3/2 ⊂ Dj ⊂ Brj+
√

3/2 .

Therefore
∣∣∣∣
∫

Dj

|u|2du−
∫

Brj

|u|2du
∣∣∣∣ =

∣∣∣∣
∫

Dj\Brj−
√

3/2

|u|2du−
∫

Brj \Brj−
√

3/2

|u|2du
∣∣∣∣

≤ max
±

∣∣∣∣(rj ±
√

3/2)2Vol(Dj\Brj−√
3/2) − (rj ∓

√
3/2)2Vol(Brj\Brj−√

3/2)

∣∣∣∣

≤ r2j

∣∣∣Vol(Dj\Brj−√
3/2) − Vol(Brj\Brj−√

3/2)
∣∣∣

+ O(rj)
(
Vol(Dj\Brj−√

3/2) + Vol(Brj\Brj−√
3/2)

)

≤ r2j
∣∣Vol(Dj) − Vol(Brj )

∣∣ +O(r3
j ) .

As Vol(Dj) = Nj , we conclude, using (65), that

∣∣
∫

Dj

|u|2du−
∫

Brj

|u|2du
∣∣ = O(r

7/2
j ) . (71)

Furthermore, a simple calculation gives,
∫

B(o,rj)
|u|2du =

4π

5
r5j . (72)

Combining (70), (71) and (72), we obtain,

T0(Nj) =
4π

5
r5j +O(r

7/2
j ) . (73)

Then using successively (68), (73), (65) and (67) we get,

T0(N) = T0(Nj) +O(r
7/2
j )

=
4π

5
r5j +O(r

7/2
j )

=
4π

5
(

3

4π
)5/3N

5/3
j +O(N

7/6
j )

=
3

5
(

3

4π
)2/3N5/3 +O(N7/6) .

Remark 4.2 Using [V], the error term O(r3/2) in (65) can be improved to O(r4/3(log r)6). Also
using [Sk], the error term O(r3/2) in (66) can be improved to O(r1+η) (for any given η > 0).
These improvements lead to the following estimate for T0(N):

T0(N) =
1

(2π)2
CF N

5/3
(
1 +O

((logN)6

N5/9

))
.
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4.3 Proof of Theorem 2

To prove Theorem 2 we would like to use Lemma 4.2 and thus we first need to ”symmetrize” K .
Notice that by definition, for each Nj the set KNj is symmetric (cf. Definition 4.1). In particular,
we can summarize formulas (63), (67) and (68) as follows:

Lemma 4.5 For anyN ∈ N
∗ there exists n ∈ N

∗ and a symmetric subset of Z
3,Kn, of cardinal n,

such that

T (N) = (1 +O(
1√
N

))
∑

k∈Kn

|k|2

and
n ≤ N ≤ n+O(

√
N) .

Proof. It suffices to use n = Nj where Nj is defined by as in the proof of Lemma 4.4 (i.e. such
that Nj ≤ N < Nj+1) and Kn = KNj as defined in (69).

This Lemma allows us to prove Theorem 2.

Proof of Theorem 2. Let ρ ∈ Dα be the density of an N -wave function with N ∈ N fixed.
Let K ⊂ Z

3 be a minimizer for T0(N). Let Kn ⊂ Z
3 as in Lemma 4.5. In particular Kn ⊂ K

and Card(K\Kn) = O(
√
N). Let f be the periodic deformation constructed in Lemma 3.1. As

Ψf
K has density ρ, we have

Ekin(ρ) ≤ Ekin(Ψ
f
K).

In the case K = Kn (i.e. if K is symmetric), we obtain, using Lemma 4.2, that

Ekin(Ψ
f
K) =

∫

Ω
|∇√

ρ|2dx+Ekin(ΨK)(1 +O(L2α|ερ|20,α
)) .

Then using Proposition 4.3 we conclude (with CF := 3
5(6π2)2/3),

Ekin(Ψ
f
K) =

∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ
5/3
0 (1 +O(

1√
N

) +O(L2α|ερ|20,α
))

=

∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3 (1 +O(

1√
N

) +O(L2α|ερ|20,α
))

where we used that
∫
Ω ερ = 0 which implies

∫

Ω
ρ5/3 =

∫

Ω
ρ
5/3
0 (1 +O(L2α|ερ|20,α

)) . (74)

Hence inequality (14) follows.

In the general case K 6= Kn, we cannot use Lemma 4.2 but we still have,

Ekin(ρ) ≤ Ekin(Ψ
f
K) =

∫

Ω
|∇√

ρ|2dx + S(f,ΨK) (75)
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where following (56),

S(f,ΨK) =

∫

Ω
Jf (x)

∑

k∈K
|Df(x)T

2π

L
k|2 dx .

We can decompose S(f,ΨK) as follows:

S(f,ΨK) = S1(f,ΨK) + S2(f,ΨK) (76)

with

S1(f,ΨK) :=
1

|Ω|

∫

Ω
Jf (x)

∑

k∈Kn

|Df(x)T
2π

L
k|2 dx .

and

S2(f,ΨK) :=
1

|Ω|

∫

Ω
Jf (x)

∑

k∈K\Kn

|Df(x)T
2π

L
k|2 dx .

Notice that S1(f,ΨK) = S(f,ΨKn). Therefore, as Kn is symmetric, using Lemma 4.2,

S1(f,ΨK) = Ekin(ΨKn)(1 +O(L2α|ερ|20,α
)).

Using Ekin(ΨKn) = (2π
L )2

∑
Kn

|k|2 and Lemma 4.5, we have:

S1(f,ΨK) = (
2π

L
)2 T (N)

(
1 +O(

1√
N

) +O(L2α|ερ|20,α
)

)
.

Using (60) and Proposition 4.3, we obtain

S1(f,ΨK) = CF

∫

Ω
ρ5/3

(
1 +O(

1√
N

) +O(L2α|ερ|20,α
)

)
(77)

where we have used again (74).
On the other hand, there exists a constant C independent of N such that,

|S2(f,ΨK)| ≤ C
∑

k∈K\Kn

|k|2.

Using the fact that #K\Kn = O(
√
N) and Kn = Z

3 ∩B(0, r) with r = O(N 1/3) we get,

S2(f,ΨK) = O(N7/6) = O(
1

N1/2
)

∫

Ω
ρ5/3 . (78)

Finally, combining (75), (76), (77) and (78) we obtain

Ekin(Ψ
f
K) =

∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ(x)5/3 dx

(
1 +O(

1√
N

) +O(L2α|ερ|20,α
)

)
(79)

which in particular, gives (14).
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Remark 4.3 As in Remark 4.1, using ρ5/3 = ρ
5/3
0

(
1 + 5

3ερ +O(|ερ|20,α
)
)

instead of (74), we can

prove the following local estimate (where K and f are defined as above):

E lockin(Ψf
K)(x) =

N∑

j=1

|∇ψfj (x)|2

= |∇√
ρ(x)|2 + CFρ

5/3(x)
{
1 +O(L2α|ερ|20,α

) +O(
1

N1/2
)
}
.

5 Justification of the TFvWD model and of the Xα method

In this section we prove Theorem 3 and Theorem 4.

5.1 Proof of Theorem 3

Let K = KN be a set of N wave vectors kj ∈ Z
3 minimizing T0(N) (see (64)) and ΨK := [ψj ]

be the associated Slater determinant (see (52)). Let ρ be in Dα with Lα|ερ|0,α < ηα and f be the

deformation defined in Lemma 3.1. Let Ψf
K = [ψfj ] be the Slater determinant associated to the

deformed plane waves (cf (51) - (54)).
We now prove that

Vav(x, [ψ
f
j ]) = −CS ρ(x)1/3

{
1 +O((Lα|ερ|0,α)β) +O(

1

N1/3
)

}
. (80)

Recall that (cf. (23))

Vav(x0, [ψ
f
j ]) = −

∫

Ω

|D(x0, x, [ψ
f
j ])|2

ρ(x0)
G(x0 − x) dx

where in view of (54) and (20),

D(x, y, [ψfj ]) = Jf (x)
1/2 Jf (y)

1/2 DK(f(x) − f(y))

with the notation

DK(h) :=
1

|Ω|
∑

k∈K
ei

2π
L
k·h .

Thus by the change of variables y = f(x) one obtains with y0 = f(x0):

Vav(x0, [ψ
f
j ]) = −ρ−1

0

∫

Ω
|DK(y0 − y)|2G(f−1(y0) − f−1(y)) dy

where we have used that f satisfies the Jacobian equation Jf (x) = ρ(x)/ρ0. Finally denoting
y = y0 + h, and using the periodicity of G and DK , one has

Vav(x0, [ψ
f
j ]) = −ρ−1

0

∫

Ω
|DK(h)|2Af (x0;h) dh
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where
Af (x0;h) := G(f−1(y0) − f−1(y0 + h)).

In order to prove (80), it remains to find an asymptotic for Af (h) (this is done in Lemma 5.1) and
to find an approximation for DK (this is done in Lemma 5.2).

Let X denote the vector field in Y such that (cf. proof of Lemma 3.1)

f(x) = x+X(x).

Lemma 5.1 Uniformly with respect to h ∈ Ω and x ∈ Ω we have:

Af (x;h) =
1

|h|

{
1 +

〈h, DX(x)h〉
|h|2 +O((Lα|ερ|0,α)β) +O(

|h|
L

)

}
.

where β = min(2, 1
1−α).

Proof of Lemma 5.1. From [LS1] we learn that G(x) − 1
|x| is Lipschitz on Ω and thus G(x) =

1
|x| + O( 1

L) uniformly on Ω (the O( 1
L) factor can be obtained by a scaling argument, as in the

proof of Lemma 3.1). Therefore we have, with g := f−1 and y = f(x)

Af (x;h) = |g(y + h) − g(y)|−1 +O(
1

L
). (81)

Recall that by Lemma 3.1 and (31)

‖DX‖∞ ≤ (
√

3L)α|DX|
0,α = O(Lα|ερ|0,α) . (82)

Let Y be a vector field such that g(y) = y + Y (y).
We differentiate g(f(x)) = x and obtain, with y = f(x),

DY (y) +DX(x) +DY (y)DX(x) = 0.

This leads to the following estimate, for the L∞-norm,

Dg(y) = I −DX(x) +O(L2α|ερ|20,α
). (83)

We claim that, uniformly in h, y ∈ Ω,

g(y + h) − g(y) = (I −DX(x))h + |h|
{
O(L2α|ερ|20,α

) +O(|ερ|0,α |h|α)
}
. (84)

Indeed, let yt = y + th, and let xt be such that yt = f(xt). We have |xt − x| ≤ ‖Dg‖∞ |yt −
y| ≤ C|h|, and thus |DX(xt) − DX(x)| ≤ |DX|

0,α |xt − x|α ≤ O(|ερ|0,α |h|α). In partic-
ular, DX(xt) = DX(x) + O(|ερ|0,α |h|α). Then, using (83), we have g(y + h) − g(y) =∫ 1
0 Dg(yt).hdt = (I −DX(x)).h +O(L2α|ερ|20,α

|h|) +O(|ερ|0,α |h|1+α), which proves (84).
Using (84) and (82) we obtain

g(y + h) − g(y) = h−DX(x).h+ |h|.
{
O(L2α|ερ|20,α

) +O(|ερ|0,α |h|α)
}
.
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Since DX(x) = O(Lα|ερ|0,α), we have (with | · | denoting the Euclidean norm in R
3)

|g(y + h) − g(y)|2 = |h|2
{

1 − 2
〈h, DX(x).h〉

〈h, h〉 +O(L2α|ερ|20,α
) +O(|ερ|0,α |h|α)

}
.

Then from (81) we conclude

Af (x;h) =
1

|h|

{
1 +

〈h, DX(x).h〉
〈h, h〉 +O(L2α|ερ|20,α

) +O(|ερ|0,α |h|α)

}
+O(

1

L
).

By Young’s inequality |ερ|0,α |h|α = (Lα|ερ|0,α)(
|h|
L

)α ≤ (1−α) (Lα|ερ|0,α)1/(1−α) +α
|h|
L

and

thus the estimate of Lemma 5.1 is proved.

It remains to estimate DK(h) for which we do not have a simple formula. Recall the following
approximation which can be found in Friesecke [F]: there exists a constant c0 > 0 such that, for
any r > 0 and for any x ∈ R

3 with ‖x‖∞ ≤ π,
∣∣∣∣∣∣

∑

k∈Z3∩Br

ei k.x −
∫

Br

ei k.x dk

∣∣∣∣∣∣
≤ c0 (1 + r3/2). (85)

To make use of (85), we define RN > 0 such that the volume of the Euclidean ball of center 0 and
radius RN equals N :

N =
4

3
πR3

N (86)

and we define a continuous analogue of DK , for R > 0,

D̃R(h) :=
1

|Ω|

∫

BR

ei
2π
L
k·hd3k

= 4π(
R

L
)3

sin(t) − t cos(t)

t3
, t =

2π

L
R|h| .

Lemma 5.2 Let K = KN and RN as above. When N → ∞, we have
∫

Ω

|DKN
(h)|2

ρ0

dh

|h| =

∫

Ω

|D̃RN
(h)|2
ρ0

dh

|h| +O
( 1

L

)
(87)

Proof of Lemma 5.2 in the symmetric case.
For the moment, we assume that K = KN is symmetric, (i.e. a closed-shell situation (cf e.g. [F]).
We define the ”Fermi radius” kF by:

kF = kF (K) := max{|k|, k ∈ K} (88)

Since K is symmetric, we have K = Z
3 ∩BkF

.
Note that, with the notations of section 4, there exists j ≥ 1 such that N = Nj and kF = rj . In
particular (65) leads to

kF = RN (1 +O(
1

R
3/2
N

)) . (89)
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By (85) (with x = 2π
L h) we deduce that uniformly with respect to h ∈ Ω = [−L

2 ,
L
2 ]3 and for N

large

|DKN
(h) − D̃kF

(h)| ≤ C L−3kF
3/2 (90)

where C is a constant.
Note also that

|D̃kF
(h) − D̃RN

(h)| ≤ L−3Vol (BRN
OBkF

)

≤ 4

3
L−3 max(kF , RN )2|kF −RN |

(where BRN
OBkF

denotes the symmetric difference BRN
\BkF

∪ BkF
\BRN

). Using (89), we

deduce |D̃RN
(h) − D̃kF

(h)| ≤ C L−3R
3/2
N , and together with (90) we conclude

|DKN
(h) − D̃RN

(h)| ≤ C L−3RN
3/2 . (91)

Therefore, |DKN
(h)|2 = |D̃RN

(h)|2 +O(L−3R
3/2
N )|D̃RN

(h)| +O(L−6R3
N ), and we have

∫

Ω

∣∣∣|DKN
(h)|2 − |D̃RN

(h)|2
∣∣∣

ρ0

dh

|h| ≤ O(L−3R
3/2
N )IN,L +O(L−6R3

N )JN,L (92)

where IN,L :=
∫
Ω

|D̃RN
(h)|

ρ0
dh
|h| and JN,L :=

∫
Ω

1
ρ0

dh
|h| . We easily obtain IN,L = O(L2R−2

N log(RN ))

and JN,L = O(L5R−3
N ) (using the analytical expression of D̃RN

in (87), and a change of variables
t = 2π

L RN h). Thus the right side of inequality (92) is O(L−1), as desired.

Proof of Lemma 5.2 in the general case.
Recall that KN is a minimizer for T0(N) (note that now KN is not unique in general).
We consider as in the proof of Lemma 4.4 an index j ∈ N such that Nj ≤ N < Nj+1 where
the integers Nj and Nj+1 correspond to symmetric sets KNj and KNj+1

(that are minimizers for
T0(Nj) and T0(Nj+1) respectively).
As in the symmetric case, we define RNk

by Nk = 4
3πR

3
Nk

for k = j and k = j + 1. By (65) and

(66) we deduce Nj+1 −Nj = O(
√
Nj), RNj

N→∞∼ RN , and

Nj+1 −Nj = O
(
R

3/2
N

)
. (93)

We thus have

DKN
(h) −DKNj

(h) =
1

|Ω|
∑

k∈KN\KNj

ei
2π
L
k.h

= L−3O
(
#(KN\KNj )

)

= L−3O(N −Nj)

= O(L−3R
3/2
N )
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(for the fourth equality we use (93) andN−Nj ≤ Nj+1−Nj). Using the fact that in the symmetric

case we have, as in (91), the estimate DKNj
(h) = D̃RNj

(h) +O(L−3R
3/2
Nj

), we deduce

DKN
(h) = D̃RNj

(h) +O(L−3R
3/2
N ).

Similarly, we can prove that

D̃RNj
(h) = D̃RN

(h) +O(L−3R
3/2
N )

(using Vol(BRN
\BRNj

) = N −Nj = O(R
3/2
N )), and we obtain

DKN
(h) = D̃RN

(h) +O(L−3R
3/2
N ).

Proceeding as in the proof of Lemma 5.2 in the symmetric case, we obtain finally the estimate (87)
in all cases.

We can now end the proof of Theorem 3.

Proof of Theorem 3.
Using successively Lemma 5.1 and then Lemma 5.2 we obtain the estimate

Vav(x0, [ψ
f
j ]) = −

∫

Ω

|DK(h)|2
ρ0

1

|h|

{
1 +

〈h, DX(x0)h〉
|h|2 +O((Lα|ερ|0,α)β) +O(

|h|
L

)

}
dh

= −
∫

Ω

|D̃RN
(h)|2
ρ0

1

|h|

{
1 +

〈h, DX(x0)h〉
|h|2 +O((Lα|ερ|0,α)β) +O(

|h|
L

)

}
dh

+O
( 1

L

)
. (94)

Let us show that the zero-order term,

Vav,0 := −
∫

Ω

|D̃RN
(h)|2
ρ0

1

|h|dh

and the first order term,

Vav,1 := −
∫

Ω

|D̃RN
(h)|2
ρ0

1

|h|
〈h, DX(x0)h〉

|h|2 dh

satisfy the following asymptotics:

Vav,0 = −CS ρ1/3
0 +O(

1

R2
N

), (95)

Vav,1 = −CS ρ1/3
0

(
1

3
ερ(x0) +O(L2α|ερ|20,α

)

)
+ o(

1

R2
N

) (96)
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where CS is the Slater constant (cf (25)).
To prove (95) we replace D̃RN

(h) by its analytical expression (87). Using a change of variables
t = 2π

L RNh and the identity ρ0 = N/L3 = 4π
3 (RN/L)3, we obtain

Vav,0 = −
∫

2π
L
RNΩ

(
4π(RN/L)3 q(t)

)2

4π
3 (RN/L)3

1

(2π
L RN )2

d3t

|t|

= − 3

π

RN
L

∫

2π
L
RN Ω

q(t)2

|t| d3t,

where we have denoted q(t) :=
sin(|t|) − |t| cos(|t|)

|t|3 and 2π
L RNΩ = [−πRN , πRN ]3. A direct

calculation gives

∫

R
3

q(t)2

|t| d3t = π (97)

(see for instance Parr and Yang [PY], Sec. 6.1, p. 108). Furthermore, we have
∫
R

3\( 2π
L
RN Ω)

q(t)2

|t| d
3t =

O( 1
R2

N
). Hence Vav,0 = −3 RN

L +O( 1
R2

N
) = −CSρ1/3

0 +O( 1
R2

N
).

To prove (96), we proceed in the same way and obtain Vav,1 = IN,L + O(
Lα|ερ|0,α

R2
N

) = IN,L +

o( 1
R2

N
), where

IN,L := −3
RN
L

[
1

π

∫

R
3

q(t)2

|t|
〈t,DX(x0)t〉

〈t, t〉 d3t

]
.

Then, we remark the following identity when we integrate on the unit sphere S 2 (dw denotes the
measure on the sphere):

∫

S2

〈t,DX(x0)t〉
〈t, t〉 dw(t) =

1

3
div(X)(x0)

∫

S2

dw(t). (98)

To see this, we develop 〈t,DX t〉 =
∑

i,j titj
∂iX
∂xj

. We note that for i 6= j the integral
∫
S2

titj
|t|2 dw(t)

vanishes by symmetry and for 1 ≤ i ≤ 3, the integrals Ji =
∫
S2

t2i
|t|2dw(t) are equal to the same

value J ; in particular J = 1
3 (J1 + J2 + J3) = 1

3

∫
S2 dw(t). Then, using that q is radial, and

formula (98), we obtain

IN,L = −3
RN
L

[
Tr(DX(x0))

3

1

π

∫

R
3

q(t)2

|t| d3t

]

= −3
RN
L

div(X)(x0)

3

= −CSρ1/3
0

div(X)(x0)

3
(99)
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where we have used again (97) for the second equality. Recall also that div(X)(x0) = ερ(x0) +
O(L2α|ερ|20,α

) by Corollary 3.1; combined with (99) and the previous bounds, we obtain finally
(96).

Now we insert the estimates (95) and (96) in (94), and since ρ1/3
0 = (4

3π)1/3 RN/L, we obtain

Vav(x0, [ψ
f
j ]) = −CSρ1/3

0

(
1 +

1

3
ερ(x0) +O(L2α|ερ|20,α

),+O(
1

RN
)

)
+O(δN ),

where δN := δ1,N + (Lα|ερ|0,α)βδ2,N and

δ1,N := L−1

∫

Ω

|D̃RN
(h)|2
ρ0

dh, δ2,N :=

∫

Ω

|DR(h)|2
ρ0

dh

|h| .

As shown above, we have the bounds δ1,N = O(L−1) = O(ρ
1/3
0 /RN ), and δ2,N = O(RN/L) =

O(ρ
1/3
0 ). Hence

Vav(x0, [ψ
f
j ]) = −CS ρ1/3

0

(
1 +

1

3
ερ(x0) +O((Lα|ερ|0,α)β) +O(

1

RN
)

)
(100)

Finally, we note that ρ(x)1/3 = (1 + ερ(x))
1/3 ρ

1/3
0 = (1 + 1

3ερ(x) + O(L2α|ερ|20,α
)) ρ

1/3
0 and

thus

ρ
1/3
0 (1 +

1

3
ερ(x)) = ρ(x)1/3(1 +O(L2α|ερ|20,α

)). (101)

Also, the errors terms in (100) satisfy:

ρ
1/3
0 (O((Lα|ερ|0,α)β) +O(

1

RN
)) = O

(
ρ(x)1/3((Lα|ερ|0,α)β +

1

RN
)

)
. (102)

Combining (101) and (102) we obtain

Vav(x0) = −CS ρ(x0)
1/3

(
1 +O((Lα|ερ|0,α)β) +O(

1

RN
)

)
.

Since RN = ( 3
4π )1/3N1/3 this concludes the proof of Theorem 3.

5.2 Proof of Theorem 4

We deduce Theorem 4 from Corollary 2 and Theorem 2 as follows:
We use that E(ρ) ≤ E([ψfj ]) where Ψ = [ψfj ] are the deformed plane waves (54). The deformation
f is chosen as in Lemma 3.1, and K = (k1, . . . , kN ) := KN is chosen as in Lemma 4.5 (i.e., it is
a minimizer of T0(N)). In order to bound the kinetic energy, we recall the bound (79) used in the
proof of Theorem 2:

Ekin([ψ
f
j ]) =

∫

Ω
|∇√

ρ|2dx+ CF

∫

Ω
ρ5/3

{
1 +O(L2α|ερ|20,α

) +O(
1

N1/2
)

}
. (103)
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Thus in view of (4), (17) and Corollary 2, Theorem 4 is proved.

It remains to justify Remark 2.6. The upper bound for the thermodynamic limit is a direct conse-
quence of Theorem 4 (since ρ0 is constant). For the ”high density” limit we have to prove that the
error terms in Eex([ψj ]) can be absorbed by the error terms of the kinetic energy bound (103). So,
as ρ = O(L−3N) and β = 1/(1 − α) > 1, it is enough to prove that

N4/3

{
|ερ|0,α +

1

N1/3

}
= O(N5/3)

{
|ερ|20,α

+
1

N1/2

}
.

This relation holds since, using that ab ≤ a2 + b2, we have

N4/3|ερ|0,α = N4/3 N1/6|ερ|0,α

1

N1/6

≤ N4/3

{
N1/3|ερ|20,α

+
1

N1/3

}

≤ N5/3

{
|ερ|20,α

+
1

N2/3

}
.

and Remark 2.6 follows.
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