Estimates on periodic and Dirichlet eigenvalues for the Zakharov-Shabat system

B. Grébert ${ }^{1}$, T. Kappeler ${ }^{2}$

December 19, 2002

1. UMR 6629 CNRS, Universite de Nantes, 2 rue de la Houssière, BP 92208, 44322 Nantes cedex 3, France.
2. Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.

Abstract
Consider the 2×2 first order system due to Zakharov-Shabat,

$$
L Y:=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) Y^{\prime}+\left(\begin{array}{cc}
0 & \psi_{1} \\
\psi_{2} & 0
\end{array}\right) Y=\lambda Y
$$

with ψ_{1}, ψ_{2} being complex valued functions of period one in the weighted Sobolev space $H^{w} \equiv H_{\mathbb{C}}^{w}$. Denote by $\operatorname{spec}\left(\psi_{1}, \psi_{2}\right)$ the set of periodic eigenvalues of $L\left(\psi_{1}, \psi_{2}\right)$ with respect to the interval [0,2] and by $\operatorname{spec}_{\text {Dir }}\left(\psi_{1}, \psi_{2}\right)$ the set of Dirichlet eigenvalues of $L\left(\psi_{1}, \psi_{2}\right)$ when considered on the interval $[0,1]$. It is well known that $\operatorname{spec}\left(\psi_{1}, \psi_{2}\right)$ and $\operatorname{spec}_{\text {Dir }}\left(\psi_{1}, \psi_{2}\right)$ are discrete.

Theorem Assume that w is a weight such that, for some $\delta>0$, $w_{-\delta}(k)=(1+|k|)^{-\delta} w(k)$ is a weight as well. Then for any bounded subset \mathbb{B} of 1-periodic elements in $H^{w} \times H^{w}$ there exist $N \geq 1$ and $M \geq$ 1 so that for any $|k| \geq N$, and $\left(\psi_{1}, \psi_{2}\right) \in \mathbb{B}$, the set $\operatorname{spec}\left(\psi_{1}, \psi_{2}\right) \cap\{\lambda \in$
$\mathbb{C}||\lambda-k \pi|<\pi / 2\}$ contains exactly one isolated pair of eigenvalues $\left\{\lambda_{k}^{+}, \lambda_{k}^{-}\right\}$and $\operatorname{spec}_{D i r}\left(\psi_{1}, \psi_{2}\right) \cap\left\{\lambda \in \mathbb{C}| | \lambda-k \pi \left\lvert\,<\frac{\pi}{2}\right.\right\}$ contains a single Dirichlet eigenvalue μ_{k}. These eigenvalues satisfy the following estimates
(i) $\sum_{|k| \geq N} w(2 k)^{2}\left|\lambda_{k}^{+}-\lambda_{k}^{-}\right|^{2} \leq M$;
(ii) $\sum_{|k| \geq N} w(2 k)^{2}\left|\frac{\left(\lambda_{k}^{+}+\lambda_{k}^{-}\right)}{2}-\mu_{k}\right|^{2} \leq M$.

Furthermore $\operatorname{spec}\left(\psi_{1}, \psi_{2}\right) \backslash\left\{\lambda_{k}^{ \pm},|k| \geq N\right\}$ and $\operatorname{spec}_{D i r}\left(\psi_{1}, \psi_{2}\right) \backslash\left\{\mu_{k} \mid\right.$ $|k| \geq N\}$ are contained in $\{\lambda \in \mathbb{C}||\lambda|<N \pi-\pi / 2\}$ and its cardinality is $4 N-2$, respectively $2 N-1$.
When $\psi_{2}=\bar{\psi}_{1}$ (respectively $\left.\psi_{2}=-\bar{\psi}_{1}\right), L\left(\psi_{1}, \psi_{2}\right)$ is one of the operators in the Lax pair for the defocusing (resp. focusing) nonlinear Schrödinger equation.

Contents

1 Introduction 3
1.1 Results 3
1.2 Comments 5
1.3 Method of proof 7
1.4 Related work 8
2 Periodic eigenvalues 8
2.1 Lyapunov-Schmidt decomposition 8
$2.2 \quad P$-equation 11
2.3 Q-equation 17
2.4 Estimates for $\alpha(n, z)$ 19
2.5 Estimates for $\beta^{ \pm}(n, z)$ 20
$2.6 z$-equation 24
$2.7 \quad \zeta$-equation 25
2.8 Proof of Theorem 1.1 26
2.9 Improvement of Theorem 1.1 for L selfadjoint 30
3 Riesz spaces and normal form of L 32
3.1 Riesz spaces 32
3.2 Normal form of L 34
4 Dirichlet eigenvalues 36
4.1 Dirichlet boundary value problem 36
4.2 Decomposition 38
4.3 Proof of Theorem 1.2 40
A Appendix A: Spectral properties of $L\left(\psi_{1}, \psi_{2}\right)$ 41
B Appendix B: Proof of Lemma 2.8 44

1 Introduction

1.1 Results

Consider the Zakharov-Shabat operator (see [ZS])

$$
L\left(\psi_{1}, \psi_{2}\right):=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{d}{d x}+\left(\begin{array}{cc}
0 & \psi_{1} \\
\psi_{2} & 0
\end{array}\right)
$$

where ψ_{1}, ψ_{2} are 1-periodic elements in the weighted Sobolev space $H^{w} \equiv H_{\mathbb{C}}^{w}$ of 2-periodic functions

$$
H^{w}:=\left\{f(x)=\sum_{-\infty}^{\infty} \hat{f}(k) e^{i \pi k x} \mid\|f\|_{w}<\infty\right\}
$$

with

$$
\|f\|_{w}:=\left(2 \sum_{k \in \mathbb{Z}} w(k)^{2}|\hat{f}(k)|^{2}\right)^{1 / 2}
$$

and $w=(w(k))_{k \in \mathbb{Z}}$ a weight, i.e. a sequence of positive numbers with $w(k) \geq$ $1, w(-k)=w(k)(\forall k \in \mathbb{Z})$ and the following submultiplicative property

$$
w(k) \leq w(k-j) w(j) \quad \forall k, j \in \mathbb{Z}
$$

As an example of such a weight we mention the Sobolev weights $s_{N} \equiv$ $\left(s_{n}(k)\right)_{k \in \mathbb{Z}}, s_{N}(k):=\langle k\rangle^{N}$, where, for convenience,

$$
\langle k\rangle:=1+|k|,
$$

or more generally, the Abel-Sobolev weight $w_{a, b} \equiv\left(w_{a, b}(k)\right)_{k \in \mathbb{Z}}$

$$
w_{a, b}(k):=\langle k\rangle^{a} e^{b|k|} \quad(a \geq 0 ; b \geq 0) .
$$

An element $\psi \in H^{w_{a, b}}$ is a complex valued function $f(x)=\sum_{k \in \mathbb{Z}} \hat{f}(k) e^{i \pi k x}$, which admits an analytic extension $f(x+i y)$ to the strip $|y|<\frac{b}{\pi}$ such that $f\left(x+i \frac{b}{\pi}\right)$ and $f\left(x-i \frac{b}{\pi}\right)$ are both in the Sobolev space $H_{\mathbb{C}}^{a} \equiv H^{a}\left(\mathcal{S}^{1} ; \mathbb{C}\right)$. Denote by $\operatorname{spec}\left(\psi_{1}, \psi_{2}\right)$ the periodic spectrum of $L\left(\psi_{1}, \psi_{2}\right)$ when considered on the interval $[0,2]$ and by $\operatorname{spec}_{\text {Dir }}\left(\psi_{1}, \psi_{2}\right)$ the Dirichlet spectrum of $L\left(\psi_{1}, \psi_{2}\right)$ when considered on $[0,1]$. It is well known that $\operatorname{both}, \operatorname{spec}\left(\psi_{1}, \psi_{2}\right)$ and $\operatorname{spec}_{D i r}\left(\psi_{1}, \psi_{2}\right)$ are discrete.
The main purpose of this paper is to study the asymptotics of the large (in absolute value) eigenvalues in $\operatorname{spec}\left(\psi_{1}, \psi_{2}\right)$ and $\operatorname{spec}_{D i r}\left(\psi_{1}, \psi_{2}\right)$ for 1-periodic functions ψ_{1}, ψ_{2} in H^{w}. To formulate our first result we need to introduce some more notation: we say that w is a δ-weight for $\delta>0$ if

$$
w_{*}(k):=\langle k\rangle^{-\delta} w(k)
$$

is a weight as well. Notice that the Abel-Sobolev weight $w_{a, b}$ is a δ-weight iff $0<\delta \leq a$. Let

$$
\delta_{*}:=\delta \wedge \frac{1}{2}\left(=\inf \left(\delta, \frac{1}{2}\right)\right) .
$$

Further let

$$
\rho_{n}:=\left(\left(\hat{\psi}_{2}(2 n)+\beta_{0}^{+}(n)\right)\left(\hat{\psi}_{1}(-2 n)+\beta_{0}^{-}(n)\right)\right)^{1 / 2}
$$

with an arbitrary, but fixed choice of the square root and

$$
\begin{aligned}
& \beta_{0}^{+}(n):=\sum_{k, j \neq n} \frac{\hat{\psi}_{2}(k+n)}{(k-n) \pi} \frac{\hat{\psi}_{1}(-k-j)}{(j-n) \pi} \hat{\psi}_{2}(j+n) \\
& \beta_{0}^{-}(n):=\sum_{k, j \neq n} \frac{\hat{\psi}_{1}(-k-n)}{(k-n) \pi} \frac{\hat{\psi}_{2}(k+j)}{(j-n) \pi} \hat{\psi}_{1}(-j-n)
\end{aligned}
$$

The first result concerns the periodic eigenvalues (cf. section 2).

Theorem 1.1 Let $M \geq 1, \delta>0$ and w a δ-weight. Then there exist constants $1 \leq C<\infty$ and $1 \leq N<\infty$ so that the following statements hold:
For any $|n| \geq N$ and any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M$, the set $\operatorname{spec}\left(\psi_{1}, \psi_{2}\right) \cap\left\{\lambda \in \mathbb{C}\left||\lambda-n \pi|<\frac{\pi}{2}\right\}\right.$ contains exactly one isolated pair of eigenvalues $\left\{\lambda_{k}^{+}, \lambda_{k}^{-}\right\}$. These eigenvalues satisfy
(i) $\sum_{|n| \geq N} w(2 n)^{2}\left|\lambda_{n}^{+}-\lambda_{n}^{-}\right|^{2} \leq C$;
(ii) $\sum_{|n| \geq N}\langle n\rangle^{3 \delta_{*}} w(2 n)^{2} \min _{ \pm}\left|\left(\lambda_{n}^{+}-\lambda_{n}^{-}\right) \pm 2 \rho_{n}\right|^{2} \leq C$;
(iii) $\operatorname{spec}\left(\psi_{1}, \psi_{2}\right) \backslash\left\{\lambda_{n}^{ \pm}| | n \mid \geq N\right\}$ is contained in $\left\{\lambda \in \mathbb{C}\left||\lambda|<N \pi-\frac{\pi}{2}\right\}\right.$ and its cardinality is $4 N-2$.

Theorem 1.2 Let $M \geq 1, \delta>0$ and w be a δ-weight. Then there exist constants $1 \leq C<\infty$ and $N \leq N^{\prime}<\infty$ (with N given by Theorem 1.1) so that the following statements hold:
For any $|n| \geq N^{\prime}$ and any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq$ M, the set $\operatorname{spec}_{D i r}\left(\psi_{1}, \psi_{2}\right) \cap\left\{\lambda \in \mathbb{C}| | \lambda-n \pi \left\lvert\,<\frac{\pi}{2}\right.\right\}$ contains exactly one eigenvalue denoted by μ_{n}. These eigenvalues satisfy:
(i) $\sum_{|n| \geq N^{\prime}} w(2 n)^{2}\left|\mu_{n}-\lambda_{n}^{+}\right|^{2} \leq C$;
(ii) $\operatorname{spec}_{\text {Dir }}\left(\psi_{1}, \psi_{2}\right) \backslash\left\{\mu_{n}| | n \mid \geq N^{\prime}\right\}$ is contained in $\left\{\lambda \in \mathbb{C}\left||\lambda|<N^{\prime} \pi-\frac{\pi}{2}\right\}\right.$ and its cardinality is $2 N^{\prime}-1$.

Statement (iii) in Theorem 1.1 and (ii) in Theorem 1.2 are obtained in a standard way. For the convenience of the reader we prove it in Appendix A. In section 3, we consider the Riesz spaces E_{n}, i.e. the images of the Riesz projectors associated to $L\left(\psi_{1}, \psi_{2}\right)$ for a small circle around $n \pi$ with $|n|$ sufficiently large. We analyze the restriction of $L-\lambda_{n}^{+}$to E_{n} and study the asymptotic properties of eigenfunctions in E_{n} for $|n| \rightarrow \infty$.

1.2 Comments

Operator $L\left(\psi_{1}, \psi_{2}\right)$: The Zakharov-Shabat operator occurs in the Lax pair representation $\frac{d M_{ \pm}}{d t}=\left[M_{ \pm}, A_{ \pm}\right]$of the focusing ($N L S_{-}$) and defocusing $\left(N L S_{+}\right)$nonlinear Schrödinger equation

$$
i \partial_{t} \varphi=-\partial_{x}^{2} \pm 2|\varphi|^{2} \varphi
$$

$$
M_{+}:=L(\varphi, \bar{\varphi}) ; \quad M_{-}:=L(\varphi,-\bar{\varphi})
$$

(whereas the operators $A_{ \pm}$are rather complicated third order operators, given in [FT]). One can show that spec $L(\varphi, \bar{\varphi})$ respectively spec $L(\varphi,-\bar{\varphi})$ is a complete set of conserved quantities for $N L S_{+}$respectively $N L S_{-}$. We mention that $L\left(\psi_{1}, \psi_{2}\right)$ is unitarily equivalent to the $A K N S$ operator (see [AKNS], [MA])

$$
L_{A K N S}:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \frac{d}{d x}+\left(\begin{array}{cc}
-q & p \\
p & q
\end{array}\right)
$$

where

$$
\psi_{1}:=-q+i p ; \quad \psi_{2}=-q-i p .
$$

Hence the selfadjoint operator M_{+}corresponds to an operator $L_{A K N S}$ with the functions q, p being real valued.

Selfadjoint case: We emphasize that Theorem 1.1 and Theorem 1.2 do not require $L\left(\psi_{1}, \psi_{2}\right)$ be selfadjoint. However, in the selfadjoint case, the decay rate of the asymptotics in Theorem 1.1 (ii) can be improved from $3 \delta_{*}$ to $4 \delta_{*}$,

$$
\sum_{|n| \geq N}\langle n\rangle^{4 \delta_{*}} w(2 n)^{2} \min _{ \pm}\left|\left(\lambda_{n}^{+}-\lambda_{n}^{-}\right) \pm 2 \rho_{n}\right|^{2} \leq M
$$

(This is proved in section 2.9).
L^{2}-case: Theorem 1.1 (i) and Theorem 1.2 (i) no longer hold for $H^{w}=L^{2}$ (i.e. $w(k)=1 \forall k \in \mathbb{Z}$) as the number N in Theorem 1.1 cannot be chosen uniformly for 1-periodc functions $\psi_{1}, \psi_{2} \in L^{2}$ in a L^{2}-bounded set. This can be easily deduced from the examples considered by Li - McLaughlin [LM] : Assume that Theorem 1.1 (i) holds for L^{2}. Given $M>0$, choose N as in Theorem 1.1 and $\psi_{1}, \psi_{2} \in L^{2}$ with $\left\|\psi_{j}\right\| \equiv\left\|\psi_{j}\right\|_{L^{2}}=M$. Define $\left(\psi_{1, k}, \psi_{2, k}\right)=\left(e^{2 \pi i k x} \psi_{1}, e^{-2 \pi i k x} \psi_{2}\right)(k \in \mathbb{Z})$. Then $\left\|\psi_{j, k}\right\|_{L^{2}}=\left\|\psi_{j}\right\|_{L^{2}}(\forall k)$ and, for $n \geq N, k \geq 0$

$$
\lambda_{n+k}^{ \pm}\left(\psi_{1, k}, \psi_{2, k}\right)=\lambda_{n}^{ \pm}\left(\psi_{1}, \psi_{2}\right)+k \pi
$$

which leads for appropriate choices of ψ_{1}, ψ_{2} to a contradiction. For L selfadjoint, a local version of Theorem 1.1 and Theorem 1.2 have been established, using different methods, in [GG]. Most likely, the analysis presented in this paper can be used to obtain a local version of Theorem 1.1 (i) and Theorem 1.2 (i) for L arbitrary.

Submultiplicative property of weights: Notice that the requirement of a weight to be submultiplicative excludes weights of super-exponential growth $\exp \left(a|k|^{\alpha}\right)$ with $\alpha>1$. Most likely, the conclusions of Theorem 1.1 and Theorem 1.2 do not hold for such weights (cf. [KM] for the case of Schrödinger operators).

Boundary conditions: Similarly as in [KM] the method for proving Theorem 1.2 can be applied to a whole class of boundary conditions (cf. section 4 in $[\mathrm{KM}]$ where this class has been described for the Schrödinger operator $\left.-\frac{d^{2}}{d x^{2}}+V\right)$.
Smoothness vs. decay of gap length: For selfadjoint Zakharov-Shabat operators $L(\psi, \bar{\psi})$, Theorem 1.1 has a partial inverse. In this case, the eigenvalues $\left(\lambda_{n}^{ \pm}\right)_{n \in \mathbb{Z}}=\operatorname{spec} L(\psi, \bar{\psi})$ are real and can be ordered such that

$$
\ldots \leq \lambda_{n-1}^{+}<\lambda_{n}^{-} \leq \lambda_{n}^{+}<\lambda_{n+1}^{-} \leq \ldots ; \quad \lambda_{n}^{ \pm}=n \pi+o(1) .
$$

Given a weight w and $K \geq 0$, denote by w_{K} the weight $w_{K}(n):=\langle n\rangle^{K} w(n)$.

Proposition 1.3 Let w be a δ-weight for some $\delta>0, K \geq 0$ and $\varphi \in H^{w}$. Then $\varphi \in H^{w_{K}}$ iff

$$
\sum_{n \in \mathbb{Z}} w_{K}(2 n)^{2}\left|\lambda_{n}^{+}-\lambda_{n}^{-}\right|^{2}<\infty
$$

where $\lambda_{n}^{ \pm} \equiv \lambda_{n}^{ \pm}(\varphi, \bar{\varphi})$.

In the non selfadjoint case, the smoothness is not characterized by properties of the periodic spectrum alone (cf. [ST] for an analysis in the case of Schrödinger operators).

1.3 Method of proof

Typically, asymptotic estimates on the gap's lengths $\left(\lambda_{k}^{+}-\lambda_{k}^{-}\right)_{k \in \mathbb{Z}}$ of $\operatorname{spec}\left(L\left(\psi_{1}, \psi_{2}\right)\right)$ are obtained from asymptotic expansions of the eigenvalues $\lambda_{k}^{ \pm}=k \pi+\frac{c_{-1}}{k}+\ldots$ (cf. e.g. [Ma]). This approach, however does not allow to obtain the results of Theorem 1.1 and Theorem 1.2 for weights with exponential decay such as the Abel-Sobolev weight. The new feature in the proof of our results is to use as in $[\mathrm{KM}]$ a Lyapunov-Schmidt type decomposition described in detail in section 2.1.

1.4 Related work

Similar results as the ones presented here for the Zakharov-Shabat operator $L\left(\psi_{1}, \psi_{2}\right)$ have been obtained previously for the Schrödinger operator $-\frac{d^{2}}{d x^{2}}+V$ in $[\mathrm{KM}]$. In this paper we document that the same methods, with adjustments, can be applied to L. At first sight this is astonishing, as, unlike in the case of the Schrödinger operator, the distance between adjacent pairs of eigenvalues $\left(\lambda_{n}^{+}, \lambda_{n}^{-}\right)$and $\left(\lambda_{n+1}^{+}, \lambda_{n+1}^{-}\right)$does not get unbounded for $|n| \rightarrow \infty$, a fact which was used in an essential way in [KM]. We explain in section 2.1 how this problem for L can be overcome.
A weaker version of Theorem 1.1 has been reported in [GKM] (cf. also [GK]). For Sobolev weights, the asymptotics of the eigenvalues $\lambda_{n}^{ \pm}$and hence of the gap length $\gamma_{n}:=\lambda_{n}^{+}-\lambda_{n}^{-}$have been obtained in the selfadjoint case by Marchenko [Ma] (cf. also [GG], [Gre], [Mis], [LS]). In the non selfadjoint case only a few results have been known so far (see [LM], [Ta1], [Ta2]).

2 Periodic eigenvalues

2.1 Lyapunov-Schmidt decomposition

Consider the Zakharov-Shabat operator

$$
L\left(\psi_{1}, \psi_{2}\right):=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{d}{d x}+\left(\begin{array}{cc}
0 & \psi_{1} \\
\psi_{2} & 0
\end{array}\right)
$$

where ψ_{1} and ψ_{2} are in H^{w}. For $\psi_{1}=\psi_{2}=0$, the periodic eigenvalues are given by $\left\{\lambda_{k}^{+}, \lambda_{k}^{-} \mid k \in \mathbb{Z}\right\}$ with $\lambda_{k}^{+}=\lambda_{k}^{-}=k \pi$ and an orthonormal basis of corresponding eigenfunctions in $L^{2}[0,2] \times L^{2}[0,2]$ are given by

$$
\begin{equation*}
e_{k}^{+}(x)=\frac{1}{\sqrt{2}}\binom{0}{1} e^{i k \pi x}, e_{k}^{-}(x)=\frac{1}{\sqrt{2}}\binom{1}{0} e^{-i k \pi x} \tag{2.1}
\end{equation*}
$$

Considering the multiplication operator $\left(\begin{array}{cc}0 & \psi_{1} \\ \psi_{2} & 0\end{array}\right)$ as a perturbation of the
Dirac operator $i\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \frac{d}{d x}$ we will see that for k sufficiently large L has a
pair of eigenvalues near $k \pi$, isolated from the remaining part of the spectrum of L. Our aim is to obtain an estimate for the distance between the two eigenvalues and to compare the eigenvalues and corresponding eigenfunctions (or root vectors) with the corresponding ones for $\psi_{1}=\psi_{2}=0$.
We express the eigenvalue equation

$$
\begin{equation*}
L F=\lambda F \tag{2.2}
\end{equation*}
$$

in the basis $e_{k}^{+}, e_{k}^{-}(k \in \mathbb{Z})$ defined in (2.1): Given F in the Sobolev space H^{1}, write

$$
\begin{equation*}
F(x)=\sum_{k \in \mathbb{Z}} \hat{F}_{2}(k) e_{k}^{+}(x)+\hat{F}_{1}(-k) e_{k}^{-}(x) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{1}(x)=\sum_{k \in \mathbb{Z}} \hat{\psi}_{1}(k) e^{i k \pi x} ; \psi_{2}(x)=\sum_{k \in \mathbb{Z}} \hat{\psi}_{2}(k) e^{i k \pi x} \tag{2.4}
\end{equation*}
$$

Substituting (2.3) - (2.4) into (2.2) leads to

$$
\begin{align*}
L F(x) & =\sum_{k \in \mathbb{Z}} k \pi\left(\hat{F}_{2}(k) e_{k}^{+}(x)+\hat{F}_{1}(-k) e_{k}^{-}(x)\right) \\
& +\sum_{k, j \in \mathbb{Z}} \hat{\psi}_{1}(-k-j) \hat{F}_{2}(j) e_{k}^{-}(x)+\hat{\psi}_{2}(k+j) \hat{F}_{1}(-j) e_{k}^{+}(x) . \tag{2.5}
\end{align*}
$$

Hence λ is a periodic eigenvalue of $L\left(\psi_{1}, \psi_{2}\right)$, when considered on the interval $[0,2]$, iff there exists $\left(\hat{F}_{1}, \hat{F}_{2}\right) \in \ell^{2} \times \ell^{2}$ with $\left(\hat{F}_{1}, \hat{F}_{2}\right) \neq(0,0)$ such that, for all $k \in \mathbb{Z}$,

$$
\begin{align*}
& (k \pi-\lambda) \hat{F}_{2}(k)+\sum_{j \in \mathbb{Z}} \hat{\psi}_{2}(k+j) \hat{F}_{1}(-j)=0 \tag{2.6}\\
& (k \pi-\lambda) \hat{F}_{1}(-k)+\sum_{j \in \mathbb{Z}} \hat{\psi}_{1}(-k-j) \hat{F}_{2}(j)=0 \tag{2.7}
\end{align*}
$$

Here $\ell^{2} \equiv \ell^{2}(\mathbb{Z} ; \mathbb{C})$ denotes the Hilbert space of complex valued ℓ^{2}-sequences $(a(k))_{k \in \mathbb{Z}}$. In order to solve equations (2.6) - (2.7) we consider a LyapunovSchmidt type decomposition. For $n \in \mathbb{Z}$ fixed, we look for eigenvalues near $n \pi, \lambda=n \pi+z$, with $|z| \leq \frac{\pi}{2}$. The linear system (2.6) - (2.7) is then decomposed into a two dimensional system consisting of (2.6) - (2.7) with $k=n$, referred to as the \mathcal{Q}-equation, and an infinite dimensional system consisting of (2.6) - (2.7) with $k \in \mathbb{Z} \backslash\{n\}$, referred to as the \mathcal{P}-equation.

First we introduce some more notation. For $K \in \mathbb{Z}$ and a weight w denote by $\ell_{w}^{2}(K)$ the complex Hilbert space $\ell_{w}^{2}(K) \equiv \ell_{w}^{2}(K, \mathbb{C})$,

$$
\ell_{w}^{2}(K):=\left\{(a(k))_{k \in K} \mid\|a\|_{w}<\infty\right\}
$$

where $\|a\|_{w}=(a, a)_{w}^{1 / 2}$ and, for $a, b \in \ell_{w}^{2}$,

$$
(a, b)_{w}:=\sum_{k \in K} w(k)^{2} \overline{a(k)} b(k)
$$

Most frequently, we will use for K the set \mathbb{Z} or $\mathbb{Z} \backslash n \equiv \mathbb{Z} \backslash\{n\}$. If necessary for clarity, we write a_{K} for a sequence $(a(k))_{k \in K} \in \ell_{w}^{2}(K)$.
For a linear operator $A: \ell_{w_{1}}^{2}\left(K_{1}\right) \rightarrow \ell_{w_{2}}^{2}\left(K_{2}\right)$ we denote by $A(k, j)$ its matrix elements,

$$
(A a)(k):=\sum_{j \in K_{1}} A(k, j) a(j) \quad\left(k \in K_{2}\right) .
$$

Further we introduce the shift operator S and an involution operator \mathcal{J}

$$
\begin{aligned}
& S: \ell^{2}\left(\mathbb{Z} \rightarrow \ell^{2}(\mathbb{Z}), \quad(S a)(k):=a(k+1) \quad \forall k \in \mathbb{Z}\right. \\
& J: \ell^{2}\left(\mathbb{Z} \rightarrow \ell^{2}(\mathbb{Z}),(\mathcal{J} a)(k):=a(-k) \quad \forall k \in \mathbb{Z}\right.
\end{aligned}
$$

The restriction of S to $\ell_{w}^{2}(K)$ with values in $\ell_{S^{n} w}^{2}(K)$ is again denoted by S and $S^{n}:=S \circ \ldots \circ S$ denotes the n^{\prime} th iterate of S. Notice that

$$
\left\|S^{n} a\right\|_{\ell_{S^{n} w}^{2}(K)}^{2}=\sum_{k \in K} w(k+n)^{2}|a(k+n)|^{2} \leq\|a\|_{\ell_{w}^{2}(\mathbb{Z})}^{2}
$$

For $\left(\hat{F}_{2}, \hat{F}_{1}\right) \in \ell^{2} \times \ell^{2}$, write

$$
\begin{aligned}
& \hat{F}_{2}=\left(x^{F}, \breve{F}_{2}\right), x^{F}:=\hat{F}_{2}(n) ; \quad \breve{F}_{2}:=\left(\hat{F}_{2}(k)\right)_{k \in \mathbb{Z} \backslash n} \\
& \hat{F}_{1}=\left(y^{F}, J \breve{F}_{1}\right), y^{F}:=\hat{F}_{1}(-n) ; \quad \breve{F}_{1}:=\left(\hat{F}_{1}(k)\right)_{k \in \mathbb{Z} \backslash n} .
\end{aligned}
$$

Using the above introduced notation, the equations (2.6) - (2.7) read as follows:

$$
\begin{align*}
& -z x^{F}+\hat{\psi}_{2}(2 n) y^{F}+\left\langle S^{n} \hat{\psi}_{2}, J \breve{F}_{1}\right\rangle=0 \tag{2.8}\\
& \hat{\psi}_{1}(-2 n) x^{F}-z y^{F}+\left\langle S^{n} J \hat{\psi}_{1}, \breve{F}_{2}\right\rangle=0 \tag{2.9}
\end{align*}
$$

and

$$
\begin{equation*}
\binom{y^{F}\left(S^{n} \hat{\psi}_{2}\right)_{\mathbb{Z} \backslash n}}{x^{F}\left(S^{n} J \hat{\psi}_{1}\right)_{\mathbb{Z} \backslash n}}+\left(A_{n}-z\right)\binom{\breve{F}_{2}}{J \breve{F}_{1}}=0 \tag{2.10}
\end{equation*}
$$

The equations (2.8) - (2.9) together form the \mathcal{Q}-equation and (2.10) is the \mathcal{P}-equation. The operator A_{n} is given by

$$
A_{n}=\left(\begin{array}{ll}
\left((k-n) \pi \delta_{k j}\right)_{k, j \in \mathbb{Z} \backslash n} & \left(\hat{\psi}_{2}(k+j)\right)_{k, j \in \mathbb{Z} \backslash n} \\
\left(\left(J \hat{\psi}_{1}(k+j)\right)_{k, j \in \mathbb{Z} \backslash n}\right. & \left((k-n) \pi \delta_{k j}\right)_{k, j \in \mathbb{Z} \backslash n}
\end{array}\right)
$$

and $\langle\cdot, \cdot \cdot\rangle \equiv\langle\cdot, \cdot\rangle_{\mathbb{Z} \backslash n}$ is defined by (no complex conjugation)

$$
\left\langle\binom{ a_{n}}{b_{n}},\binom{c_{n}}{d_{n}}\right\rangle:=\sum_{k \in \mathbb{Z} \backslash n}\left(a_{n}(k) c_{n}(k)+b_{n}(k) d_{n}(k)\right) .
$$

For $\psi_{1}=\psi_{2}=0$ and $|z| \leq \frac{\pi}{2}$, the operator $\left(z-A_{n}\right)$ is invertible as $(k \pi-$ $(n \pi-z)) \neq 0$ for $k \neq n$. By a perturbation argument we will show that $\left(z-A_{n}\right)$ can be inverted for $|z| \leq \frac{\pi}{2}$ and $|n|$ sufficiently large which then allows to solve the \mathcal{P}-equation (2.10) for $\left(\breve{F}_{2}, J \breve{F}_{1}\right)$ for any $x^{F}, y^{F} \in \mathbb{C}$. This solution is substituted into (2.8) - (2.9) which leads to a homogeneous linear system of two equations for x^{F} and y^{F} with coefficients which depend on the parameter z. Hence $\lambda=n \pi+z$ is a periodic eigenvalue of $L\left(\psi_{1}, \psi_{2}\right)$ iff the corresponding determinant is equal to 0 . The nature of the latter equation allows to obtain asymptotics for the difference $\lambda_{n}^{+}-\lambda_{n}^{-}$without having to compute the asymptotics of λ_{n}^{+}and λ_{n}^{-}(cf. section 2.6-2.7).

2.2 P-equation

Let us first introduce some more notation. Denote by Δ_{n} the diagonal part of A_{n}

$$
\Delta_{n}:=\left(\begin{array}{cc}
D_{n} & 0 \\
0 & D_{n}
\end{array}\right) ; D_{n}:=\left((k-n) \pi \delta_{k j}\right)_{k, j \in \mathbb{Z} \backslash n}
$$

and set

$$
B_{n}:=A_{n}-\Delta_{n} .
$$

Notice that for $|z| \leq \frac{\pi}{2},\left(z-\Delta_{n}\right)^{-1}$ is invertible. Hence we may introduce

$$
T_{n} \equiv T_{n, z}:=B_{n}\left(z-\Delta_{n}\right)^{-1}=\left(\begin{array}{cc}
0 & R_{n}^{(2)} \tag{2.11}\\
R_{n}^{(1)} & 0
\end{array}\right)
$$

where $R_{n}^{(j)} \equiv R_{n, z}^{(j)}: \ell^{2}(\mathbb{Z} \backslash n) \rightarrow \ell^{2}(\mathbb{Z} \backslash n)$ are defined by

$$
\begin{equation*}
R_{n}^{(1)}(a):=J\left(\hat{\psi}_{1} *\left(z-D_{n}\right)^{-1}\right) a ; R_{n}^{(2)}(a):=\hat{\psi}_{2} * J\left(z-D_{n}\right)^{-1} a \tag{2.12}
\end{equation*}
$$

$R_{n}^{(1)}$ and $R_{n}^{(2)}$ have the following matrix representations

$$
\begin{equation*}
R_{n}^{(1)}(k, j):=\frac{\hat{\psi}_{1}(-k-j)}{z-(j-n) \pi} ; R_{n}^{(2)}(k, j):=\frac{\hat{\psi}_{2}(k+j)}{z-(j-n) \pi}(k, j \in \mathbb{Z} \backslash n) \tag{2.13}
\end{equation*}
$$

Formally, for any $x^{F}, y^{F} \in \mathbb{C}$, the \mathcal{P}-equation (2.10) can be solved

$$
\binom{\breve{F}_{2}}{J \breve{F}_{1}}=\left(z-A_{n}\right)^{-1}\binom{y^{F} S^{n} \hat{\psi}_{2}}{x^{F} S^{n} J \hat{\psi}_{1}}
$$

with

$$
\begin{equation*}
\left(z-A_{n}\right)^{-1}=\left(z-\Delta_{n}\right)^{-1}\left(I d-T_{n}\right)^{-1} \tag{2.14}
\end{equation*}
$$

To justify the formal considerations above it is to show that $\left(I d-T_{n}\right)$ is invertible. Unfortunately, the norm $\left\|T_{n}\right\|$ of T_{n} in $\mathcal{L}\left(\ell_{S^{n} w}^{2}\right)$ (with $\ell_{S^{n} w}^{2} \equiv$ $\left.\ell_{S^{n} w}^{2}\left(\mathbb{Z} \backslash n ; \mathbb{C}^{2}\right)\right)$ does not become small as $|n| \rightarrow \infty$. However, it turns out that, assuming an additional condition on the weight, the norm of T_{n}^{2} is small for $|n| \rightarrow \infty$. The invertibility of $\left(I d-T_{n}\right)$ then follows from the identity

$$
\begin{equation*}
I d=\left(I d-T_{n}\right) \circ\left(I d+T_{n}\right)\left(I d-T_{n}^{2}\right)^{-1} . \tag{2.15}
\end{equation*}
$$

Given $\varphi \in H^{w}$, denote by Φ_{n} the operator in $\mathcal{L}\left(\ell^{2}\right)\left(\right.$ with $\left.\ell^{2} \equiv \ell^{2}(\mathbb{Z} ; \mathbb{C})\right)$ defined by $\left(n \in \mathbb{Z} ; a \in \ell^{2}(\mathbb{Z} ; \mathbb{C})\right)$

$$
\left.\left(\Phi_{n} a\right) k\right):=\sum_{j \in \mathbb{Z}} \frac{\hat{\varphi}(k+j)}{\langle n-j\rangle} a(j) \quad(\forall k \in \mathbb{Z}),
$$

where $\langle k\rangle=1+|k|$.
Recall that a weight w is called a δ-weight $(\delta \geq 0)$ if $w_{-\delta}(k):=\langle k\rangle^{-\delta} w(k)$ is a weight. For convenience we denote the weight $w_{-\delta}$ by w_{*}. The two key lemmas for proving that $\lim _{n \rightarrow \infty}\left\|T_{n}^{2}\right\|=0$ are the following ones:

Lemma 2.1 Let w be a δ-weight with $0 \leq \delta<\frac{1}{2}$ and $n \in \mathbb{Z}$. Then there exists $C=C(\delta)$ such that

$$
\left.\left\|\Phi_{n}\right\|_{\mathcal{L}\left(\ell_{S-n_{w}}^{2} *\right.} ; \ell_{S}^{2}{ }^{n}\right) \leq C\|\varphi\|_{w}
$$

Proof For $a \in \ell_{S^{-n} w_{*}}^{2}$ and $b \in \ell_{S^{n} w}^{2}$,

$$
\begin{aligned}
& \left|\left(b, \Phi_{n} a\right)_{S^{n} w}\right| \leq \\
& \leq \sum_{j, k} w(k+n)|b(k)| w_{*}(j-n)|a(j)| w(k+j)|\hat{\varphi}(k+j)| \cdot \\
& \frac{w(k+n)}{w_{*}(j-n) w(k+j)} \frac{4}{\langle n-j\rangle} .
\end{aligned}
$$

Using that w is submultiplicative, one gets
$\frac{w(k+n)}{w_{*}(j-n) w(k+j)} \leq \frac{w(n-j)}{w_{*}(j-n)}=\langle j-n\rangle^{\delta} \leq\left(4\left|n-j+\frac{1}{2}\right|\right)^{\delta} \leq 2\left|n-j+\frac{1}{2}\right|^{\delta}$.
and hence, by the Cauchy-Schwartz inequality

$$
\begin{aligned}
& \left|\left(b, \Phi_{n} a\right)_{S^{n} w}\right| \leq \\
& \leq\|b\|_{S^{n} w}\|a\|_{S^{-n} w_{*}}\left(\sum_{k, j} \frac{4|\hat{\varphi}(k+j)|^{2} w(k+j)^{2}}{\langle n-j\rangle^{2(1-\delta)}}\right)^{1 / 2} \\
& \leq C\|b\|_{S^{n} w}\|a\|_{S^{-n} w_{*}}\|\varphi\|_{w}
\end{aligned}
$$

with $C \equiv C(\delta):=\left(\sum_{k} \frac{4}{\langle k\rangle^{2-2 \delta}}\right)^{1 / 2}<\infty$ as $\delta<\frac{1}{2}$.

Lemma 2.2 Let $\delta \geq 0$, we a δ-weight and $n \in \mathbb{Z}$. Then there exists $C>0$, independent of δ, such that

$$
\left\|\Phi_{n}\right\|_{\mathcal{L}\left(\ell_{S n_{w}}^{2} ; \ell_{S-n_{w_{*}}}^{2}\right)} \leq C \frac{\|\varphi\|_{w_{*}}}{\langle n\rangle^{\delta \wedge 1}}
$$

where as usual $\delta \wedge 1=\min (1, \delta)$.
Proof For $a \in \ell_{S^{n} w}^{2}$ and $b \in \ell_{S^{-n} w_{*}}^{2}$,

$$
\begin{aligned}
& \left|\left(b, \Phi_{n} a\right)_{S^{-n} w_{*}}\right| \leq \\
& \leq \sum_{k, j} w_{*}(k-n)|b(k)| w(j+n)|a(j)| w_{*}(k+j)|\hat{\varphi}(k+j)| \\
& \frac{w_{*}(k-n)}{w(j+n) w_{*}(k+j)} \frac{4}{\langle n-j\rangle} .
\end{aligned}
$$

As w_{*} submultiplicative and symmetric,

$$
w_{*}(k-n) \leq w_{*}(k+j) w_{*}(j+n)
$$

which leads to (use definition of w_{*})

$$
\left|\left(b, \Phi_{n} a\right)_{S^{-n} w_{*}}\right| \leq\|b\|_{S^{-n} w_{*}}\|a\|_{S^{n} w}\|\hat{\varphi}\|_{w_{*}}\left(\sum_{j} \frac{4}{\langle j+n\rangle^{2 \delta}} \frac{4}{\langle j-n\rangle^{2}}\right)^{1 / 2}
$$

The claimed estimate then follows from the following elementary estimate

$$
\left(\sum_{j} \frac{1}{\langle j+n\rangle^{2 \delta}} \frac{1}{\langle j-n\rangle^{2}}\right)^{1 / 2} \leq C \frac{1}{\langle n\rangle^{\delta \wedge 1}}
$$

for some C, independent of δ.
As an application of Lemma 2.1 and 2.2 we obtain estimates for the norms of $R_{n}^{(j)}, T_{n}$ and T_{n}^{2}. By definition

$$
T_{n}^{2}=\left(\begin{array}{cc}
0 & R_{n}^{(2)} \tag{2.16}\\
R_{n}^{(1)} & 0
\end{array}\right)^{2}=\left(\begin{array}{cc}
R_{n}^{(2)} R_{n}^{(1)} & 0 \\
0 & R_{n}^{(1)} R_{n}^{(2)}
\end{array}\right)
$$

and it is useful to introduce the operators

$$
\begin{equation*}
P_{n}:=R_{n}^{(2)} R_{n}^{(1)} ; \quad Q_{n}:=R_{n}^{(1)} R_{n}^{(2)} \tag{2.17}
\end{equation*}
$$

To make notation easier we write $\ell_{S^{ \pm n} w}^{2}$ for both, $\ell_{S^{ \pm n} w}^{2}(\mathbb{Z} \backslash n ; \mathbb{C})$ and $\ell_{S^{ \pm n} w}^{2}$ $\left(\mathbb{Z} \backslash n ; \mathbb{C}^{2}\right)$.

Corollary 2.3 Let $\delta \geq 0, M \geq 1$ and w be a δ-weight. Then, for any 1periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M \quad(j=1,2)$, the following statements hold:
(i) If $0 \leq \delta<\frac{1}{2}$, there exists $C \equiv C(\delta)>0$ so that for $1 \leq j \leq 2, n \in \mathbb{Z}$, and $|z| \leq \frac{\pi}{2}$,

$$
\begin{aligned}
& \left\|R_{n}^{(j)}\right\|_{\mathcal{L}\left(\ell_{S-n_{*}}^{2} ; \ell_{S n_{w}}^{2}\right)} \leq C M \\
& \left\|T_{n}\right\|_{\mathcal{L}\left(\ell_{S-n_{w_{*}}}^{2} ; \ell_{S^{n} w}^{2}\right)} \leq C M
\end{aligned}
$$

(ii) If $\delta \geq 0$, there exists $C>0$ such that for $1 \leq j \leq 2, n \in \mathbb{Z}$, and $|z| \leq \frac{\pi}{2}$,

$$
\begin{aligned}
& \left\|R_{n}^{(j)}\right\|_{\mathcal{L}\left(\ell_{S n_{w}}^{2}, \ell_{S^{-n} w_{*}}^{2}\right)} \leq \frac{C M}{\langle n\rangle^{\delta \wedge 1}} \\
& \left\|T_{n}\right\|_{\mathcal{L}\left(\ell_{S^{n} w}^{2}, \ell_{S^{-n_{w}}}^{2}\right)} \leq \frac{C M}{\langle n\rangle^{\delta \wedge 1}} .
\end{aligned}
$$

(iii) If $0 \leq \delta<\frac{1}{2}$, then there exists $C \equiv C(\delta)$ so that for $n \in \mathbb{Z}$ and $|z| \leq \frac{\pi}{2}$,

$$
\begin{aligned}
& \left\|P_{n}\right\|_{\mathcal{L}\left(\ell_{S^{n} w}^{2}\right)} \leq \frac{C M^{2}}{\langle n\rangle^{\delta}} ; \quad\left\|Q_{n}\right\|_{\mathcal{L}\left(\ell_{S n_{w}}^{2}\right)} \leq \frac{C M^{2}}{\langle n\rangle^{\delta}} \\
& \left.\left\|P_{n}\right\|_{\mathcal{L}\left(\ell_{S-n_{w_{*}}}^{2}\right)} \leq \frac{C M^{2}}{\langle n\rangle^{\delta}} ; \quad\left\|Q_{n}\right\|_{\mathcal{L}\left(\ell_{S-n_{w_{*}}}^{2}\right.}\right) \leq \frac{C M^{2}}{\langle n\rangle^{\delta}} .
\end{aligned}
$$

Proof The claimed estimates for $R_{n}^{(j)}(j=1,2)$ follow from Lemma 2.1 and Lemma 2.2. As $T_{n}=\left(\begin{array}{cc}0 & R_{n}^{(2)} \\ R_{n}^{(1)} & 0\end{array}\right)$, these estimates then imply the ones for T_{n}. The estimates in (iii) are obtained by combining the estimates in (i) and (ii) for $R_{n}^{(j)}$.

Under the assumptions of Corollary 2.3 define, for $0<\delta<\frac{1}{2}$ and $M \geq 1$,

$$
\begin{equation*}
N_{0} \equiv N_{0}(\delta, M, w):=\max \left(1,\left(2 C M^{2}\right)^{1 / \delta}\right) \tag{2.18}
\end{equation*}
$$

with C given as in Corollary 2.3 (iii).

Proposition 2.4 Let $0<\delta<\frac{1}{2}, M \geq 1$ and w be a δ-weight. Then, for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M,|n| \geq N_{0}$ and $|z| \leq \pi / 2$,
(i)

$$
\left\|P_{n}\right\|_{\mathcal{L}\left(\ell_{S n_{w}}^{2}\right)} \leq \frac{1}{2} ;\left\|Q_{n}\right\|_{\mathcal{L}\left(\ell_{S n_{w}}^{2}\right)} \leq \frac{1}{2}
$$

(ii) $\left(I d-P_{n}\right)$ and $\left(I d-Q_{n}\right)$ are invertible and

$$
\left\|\left(I d-P_{n}\right)^{-1}\right\|_{\mathcal{L}\left(\ell_{S} n_{w}\right)} \leq 2 ; \quad\left\|\left(I d-Q_{n}\right)^{-1}\right\|_{\mathcal{L}\left(\ell_{S} n_{w}\right)} \leq 2
$$

(iii) $I d-T_{n}^{2}$ is invertible and

$$
\left\|T_{n}^{2}\right\|_{\mathcal{L}\left(\ell_{S^{n} w}^{2}\right)} \leq \frac{1}{2} ; \quad\left\|\left(I d-T_{n}^{2}\right)^{-1}\right\|_{\mathcal{L}\left(\ell_{S^{n} w}^{2}\right)} \leq 2
$$

(iv) Statements (i) - (iii) remain true if one replaces the weight $S^{n} w$ by $S^{-n} w_{*}$.

Proof (i) By Corollary 2.3 (iii) P_{n} satisfies the estimate (as $0<\delta<\frac{1}{2}$)

$$
\left\|P_{n}\right\|_{\mathcal{L}\left(\ell_{S^{n} w}^{2}\right)} \leq \frac{C M^{2}}{\langle n\rangle^{\delta}}
$$

Hence for $|n| \geq N_{0}$

$$
\left\|P_{n}\right\|_{\mathcal{L}\left(\ell_{S}^{2} n_{w}\right)} \leq \frac{C M^{2}}{\left\langle N_{0}\right\rangle^{\delta}} \leq \frac{1}{2}
$$

Similarly, one obtains $\left\|Q_{n}\right\|_{\mathcal{L}\left(\ell_{S n_{w}}^{2}\right)} \leq \frac{1}{2}$.
(ii) follows immediately from (i) and (iii) follows from (i) - (ii) and the identity $T_{n}^{2}=\left(\begin{array}{cc}P_{n} & 0 \\ 0 & Q_{n}\end{array}\right)$. Finally, statements (i) - (iii) for the weight $S^{-n} w_{*}$ are proved in a similar way as for $S^{n} w$.

Summarizing the results obtained in this section, we obtain, with $\|\cdot\| \equiv$ $\|\cdot\|_{\mathcal{L}\left(\ell_{S^{n}}^{2}\left(\mathbb{Z} \backslash n ; \mathbb{C}^{2}\right)\right)}:$

Corollary 2.5 Let $0<\delta<\frac{1}{2}, M \geq 1$ and w be a δ-weight. Then there exists $C>0$ such that, for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M$ $(j=1,2),|n| \geq N_{0}$ and $|z| \leq \pi / 2$
(i) $\left\|T_{n}\right\| \leq C$;
(ii) $\left(I d-T_{n}\right)$ is invertible in $\mathcal{L}\left(\ell_{S^{n} w}^{2}\left(\mathbb{Z} \backslash n ; \mathbb{C}^{2}\right)\right)$ and $\left\|\left(I d-T_{n}\right)^{-1}\right\| \leq C$;
(iii) $\left(z-A_{n}\right)$ is invertible in $\mathcal{L}\left(\ell_{S^{n} w}^{2}\left(\mathbb{Z} \backslash n ; \mathbb{C}^{2}\right)\right)$ and $\left\|\left(z-A_{n}\right)^{-1}\right\| \leq C$.

Proof (i) Recall that $T=\left(\begin{array}{cc}0 & R_{n}^{(2)} \\ R_{n}^{(1)} & 0\end{array}\right)$. By standard convolution estimates, there exists an absolute constant $C>0$ so that for $n \in \mathbb{Z}$ and $|z| \leq \pi / 2,\left\|\psi_{j}\right\|_{w} \leq M$

$$
\left\|T_{n}\right\| \leq C M
$$

Therefore (ii) and (iii) follow immediately from (2.14) - (2.15) and Proposition 2.4.

2.3 Q-equation

Using the notations introduced in section 2.2, we have for $|n| \geq N_{0}$ and $|z| \leq \pi / 2$

$$
\left(z-A_{n}\right)^{-1}=\left(\begin{array}{cc}
\left(z-D_{n}\right)^{-1}\left(I d-P_{n}\right)^{-1} & \left(z-D_{n}\right)^{-1} R_{n}^{(2)}\left(I d-Q_{n}\right)^{-1} \\
\left(z-D_{n}\right)^{-1} R_{n}^{(1)}\left(I d-P_{n}\right)^{-1} & \left(z-D_{n}\right)^{-1}\left(I d-Q_{n}\right)^{-1}
\end{array}\right)
$$

Hence the P-equation (2.10) leads to the following formulas

$$
\begin{align*}
\breve{F}_{2} & =y^{F}\left(z-D_{n}\right)^{-1}\left(I d-P_{n}\right)^{-1} S^{n} \hat{\psi}_{2} \tag{2.19}\\
& +x^{F}\left(z-D_{n}\right)^{-1} R_{n}^{(2)}\left(I d-Q_{n}\right)^{-1} S^{n} J \hat{\psi}_{1} \\
J \breve{F}_{1} & =y^{F}\left(z-D_{n}\right)^{-1} R_{n}^{(1)}\left(I d-P_{n}\right)^{-1} S^{n} \hat{\psi}_{2} \tag{2.20}\\
& +x^{F}\left(z-D_{n}\right)^{-1}\left(I d-Q_{n}\right)^{-1} S^{n} J \hat{\psi}_{1} .
\end{align*}
$$

These solutions are substituted into the Q-equation (2.8) - (2.9) to obtain for $|z| \leq \frac{\pi}{2},|n| \geq n_{0}$ the following homogeneous system

$$
\begin{gather*}
\quad\left(-z+\alpha^{+}(n, z)\right) x^{F}+\left(\hat{\psi}_{2}(2 n)+\beta^{+}(n, z)\right) y^{F}=0 \tag{2.21}\\
\left(\hat{\psi}_{1}(-2 n)+\beta^{-}(n, z)\right) x^{F}+\left(-z+\alpha^{-}(n, z)\right) y^{F}=0 \tag{2.22}
\end{gather*}
$$

where

$$
\begin{align*}
\alpha^{+}(n, z) & :=\left\langle S^{n} \hat{\psi}_{2},\left(z-D_{n}\right)^{-1}\left(I d-Q_{n}\right)^{-1} S^{n} J \hat{\psi}_{1}\right\rangle \tag{2.23}\\
\beta^{+}(n, z): & =\left\langle S^{n} \hat{\psi}_{2},\left(z-D_{n}\right)^{-1} R_{n}^{(1)}\left(I d-P_{n}\right)^{-1} S^{n} \hat{\psi}_{2}\right\rangle \tag{2.24}\\
\alpha^{-}(n, z) & :=\left\langle S^{n} J \hat{\psi}_{1},\left(z-D_{n}\right)^{-1}\left(I d-P_{n}\right)^{-1} S^{n} \hat{\psi}_{2}\right\rangle \tag{2.25}\\
\beta^{-}(n, z): & =\left\langle S^{n} J \hat{\psi}_{1},\left(z-D_{n}\right)^{-1} R_{n}^{(2)}\left(I d-Q_{n}\right)^{-1} S^{n} J \hat{\psi}_{1}\right\rangle . \tag{2.26}
\end{align*}
$$

Notice that $\alpha^{ \pm}(n, z)$ and $\beta^{ \pm}(n, z)$ are analytic for $|z|<\frac{\pi}{2}$ as $R_{n}^{(j)}, P_{n}$ and Q_{n} are analytic for $|z|<\frac{\pi}{2}$. An important simplification of the equations (2.21) - (2.22) results from the following observation

Lemma 2.6 For $|z| \leq \frac{\pi}{2}$ and $|n| \geq N_{0}$,

$$
\alpha^{+}(n, z)=\alpha^{-}(n, z)
$$

Proof In view of (2.23) and (2.25) it is to show that

$$
\begin{equation*}
\left(z-D_{n}\right)^{-1}\left(I d-Q_{n}\right)^{-1}=\left(\left(I d-P_{n}\right)^{-1}\right)^{t}\left(z-D_{n}\right)^{-1} \tag{2.27}
\end{equation*}
$$

where A^{t} denotes the transpose of A,

$$
\left(A^{t}\right)(k, j):=A(j, k) \quad \text { (no complex conjugation). }
$$

The equation (2.27) can be reformulated,

$$
\left(\left(I d-Q_{n}\right)\left(z-D_{n}\right)\right)^{-1}=\left(\left(z-D_{n}\right)\left(I d-P_{n}^{t}\right)\right)^{-1}
$$

which holds iff

$$
\begin{equation*}
Q_{n}\left(z-D_{n}\right)=\left(P_{n}\left(z-D_{n}\right)\right)^{t} \tag{2.28}
\end{equation*}
$$

The identity (2.28) follows easily from

$$
\begin{aligned}
\left(Q_{n}\left(z-D_{n}\right)\right)(j, k) & =\left(R_{n}^{(1)} R_{n}^{(2)}\right)(j, k)(z-(k-n) \pi) \\
& =\sum_{\ell} \frac{\hat{\psi}_{1}(-j-\ell)}{z-(\ell-n) \pi} \cdot \hat{\psi}_{2}(\ell+k)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(P_{n}\left(z-D_{n}\right)\right)^{t}(j, k) & =\left(P_{n}\left(z-D_{n}\right)\right)(k, j) \\
& =\left(R_{n}^{(2)} R_{n}^{(1)}\right)(k, j)(z-(j-n) \pi) \\
& =\sum_{\ell} \frac{\hat{\psi}_{2}(k+\ell)}{z-(\ell-n) \pi} \hat{\psi}_{1}(-\ell-j) .
\end{aligned}
$$

In view of Lemma 2.6 we write

$$
\begin{equation*}
\alpha(n, z):=\alpha^{+}(n, z) \quad\left(=\alpha^{-}(n, z)\right) . \tag{2.29}
\end{equation*}
$$

In subsequent sections we estimate the coefficients $\alpha(n, z), \beta^{+}(n, z)$ and $\beta^{-}(n, z)$.

2.4 Estimates for $\alpha(n, z)$

Lemma 2.7 Let $0<\delta \leq \frac{1}{2}, M \geq 1$ and w be a δ-weight. Then, for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M,|n| \geq N_{0}\left(N_{0} \equiv N_{0}(\delta, M)\right.$ given by (2.18)) and $|z| \leq \frac{\pi}{2}$

$$
|\alpha(n, z)| \leq \frac{4 M^{2}}{\langle n\rangle^{2 \delta}}
$$

Proof Write $\alpha(n, z)=\left\langle S^{n} \hat{\psi}_{2},\left(z-D_{n}\right)^{-1} a\right\rangle$ with $a:=\left(I d-Q_{n}\right)^{-1} S^{n} J \hat{\psi}_{1} \in$ $\ell_{S^{n} w}^{2}$. By Proposition 2.4,

$$
\|a\|_{S^{n} w} \leq 2\left\|\hat{\psi}_{1}\right\|_{w} \leq 2 M
$$

Hence

$$
\begin{aligned}
\langle n\rangle^{2 \delta}|\alpha(n, z)| & \leq \sum_{k \neq n} \frac{\langle n\rangle^{2 \delta}}{\langle n-k\rangle}\left|\hat{\psi}_{2}(k+n)\right||a(k)| \\
& \leq \sum_{|k+n|<|n|} \frac{\langle n\rangle^{2 \delta}}{\langle n\rangle}\left|\hat{\psi}_{2}(k+n)\right||a(k)| \\
& +\sum_{|k+n| \geq|n|} \frac{\langle n\rangle^{2 \delta}}{w(k+n)^{2}} w(k+n)\left|\hat{\psi}_{2}(k+n)\right| w(k+n)|a(k)| \\
& \leq 2\left\|\hat{\psi}_{2}\right\|_{w}\|a\|_{S^{n} w}
\end{aligned}
$$

where we used that $2 \delta \leq 1$ and $w(k+n)=w_{*}(k+n)\langle k+n\rangle^{\delta} \geq\langle n\rangle^{\delta}$ for $|k+n| \geq|n|$.

2.5 Estimates for $\beta^{ \pm}(n, z)$

In this section we provide estimates for $\beta^{ \pm}(n, z)$. The $\beta^{ \pm}(n, z)$ - they turn out to be quite small - determine the asymptotics of the sequence of gap lengths given in Theorem 1.1. As $\beta^{+}(n, z)(c f(2.24))$ and $\beta^{-}(n, z)(c f . ~(2.26))$ are analyzed in a similar fashion we focus on the estimate for $\beta^{+}(n, z)$. Writing $\left(I d-P_{n}\right)^{-1}=\sum_{k=0}^{\infty} P_{n}^{k}$ we obtain for $\beta^{+}(n, z)$ the following convergent series

$$
\begin{equation*}
\beta^{+}(n, z)=\sum_{k=0}^{\infty} \beta_{k}(n, z) \tag{2.30}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{k}(n, z):=\left\langle S^{n} \hat{\psi}_{2},\left(z-D_{n}\right)^{-1} R_{n}^{(1)} P_{n}^{k} S^{n} \hat{\psi}_{2}\right\rangle \tag{2.31}
\end{equation*}
$$

The convergence of series (2.30) follows from $\left\|P_{n}\right\|_{\mathcal{L}\left(\ell_{S \pm_{n}}^{2}\right)} \leq \frac{1}{2}\left(|n| \geq N_{0}\right.$, Proposition 2.4). We begin by analyzing $\beta_{k}(n, z)$.
With $R_{n}^{(1)}$ defined by (cf (2.12))

$$
\left(R_{n}^{(1)} a\right)(j)=J\left(\hat{\psi}_{1} *\left(z-D_{n}\right)^{-1} a\right)(j)=\sum_{\ell \neq n} \frac{\left(J \hat{\psi}_{1}\right)(j+\ell) a(\ell)}{z-(\ell-n) \pi}
$$

and $\inf _{|z| \leq \frac{\pi}{2}}|z-(\ell-n) \pi| \geq \frac{1}{2}\langle\ell-n\rangle$ (for any $\left.\ell \neq n\right)$ we get

$$
\left|\left(R_{n}^{(1)} a\right)(j)\right| \leq 2 \sum_{\ell} \frac{\left|J \hat{\psi}_{1}(j+\ell)\right|}{\langle\ell-n\rangle}|a(\ell)|
$$

which leads to

$$
\begin{equation*}
\left|\beta_{k}(n, z)\right| \leq 4 \sum_{j} \frac{\left|\hat{\psi}_{2}(n+j)\right|}{\langle j-n\rangle} \sum_{\ell} \frac{\left|J \hat{\psi}_{1}(j+\ell)\right|}{\langle\ell-n\rangle}\left|\left(S^{-n} P_{n}^{k} S^{n} \hat{\psi}_{2}\right)(\ell+n)\right| \tag{2.32}
\end{equation*}
$$

Given three nonnegative sequences (i.e. sequences of nonnegative numbers), a, b, d in $\ell^{2}(\mathbb{Z})$ we define, for any $n \in \mathbb{Z}$, the sequence $\Psi_{n} \equiv \Psi_{n}(a, b, d)$ by

$$
\Psi_{n}(k+n):=\sum_{j} \frac{a(k+j)}{\langle j-n\rangle} \sum_{\ell} \frac{b(j+\ell)}{\langle\ell-n\rangle} d(\ell+n)
$$

Then Ψ_{n} is a nonnegative sequence in $\ell^{2}(\mathbb{Z})$ and can be used to rewrite (2.32): Introduce, for $|n| \geq N_{0}$ and $|z| \leq \frac{\pi}{2}$,

$$
\begin{equation*}
\eta_{n, 0}:=4 \Psi_{n}\left(\left|\hat{\psi}_{2}\right|,\left|J \hat{\psi}_{1}\right|,\left|\hat{\psi}_{2}\right|\right) \tag{2.33}
\end{equation*}
$$

and, for $k \geq 0$,

$$
\begin{equation*}
\eta_{n, k+1}:=4 \Psi_{n}\left(\left|\hat{\psi}_{2}\right|,\left|J \hat{\psi}_{1}\right|, \eta_{n, k}\right) \tag{2.34}
\end{equation*}
$$

where, for any $a=(a(j))_{j \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$, we denote by $|a|$ the sequence $(|a(j)|)_{j \in \mathbb{Z}}$.

As for any $|z| \leq \frac{\pi}{2}$,

$$
\begin{aligned}
\left|\left(S^{-n} P_{n} S^{n} a\right)(k+n)\right| & =\left|\left(P_{n} S^{n} a\right)(k)\right| \\
& =\left|\left(R_{n}^{(2)} R_{n}^{(1)} S^{n} a\right)(k)\right| \\
& =\left|\left(\hat{\psi}_{2} *\left(J\left(z-D_{n}\right)^{-1}\left(R_{n}^{(1)} S^{-n} a\right)\right)\right)(k)\right| \\
& \leq 4 \sum_{j}\left|\hat{\psi}_{2}(k+j)\right| \frac{1}{\langle j-n\rangle} \sum_{\ell} \frac{\left|J \hat{\psi}_{1}(j+\ell)\right|}{\langle\ell-n\rangle}|a(\ell+n)| \\
& =4 \Psi_{n}\left(\left|\hat{\psi}_{2}\right|,\left|J \hat{\psi}_{1}\right|,|a|\right)
\end{aligned}
$$

it follows, by an induction argument, from (2.32) and

$$
S^{-n} P_{n}^{k} S^{n} \hat{\psi}_{2}=\left(S^{-n} P_{n} S^{n}\right)\left(S^{-n} P_{n}^{k-1} S^{n} \psi_{2}\right)
$$

that, for any $k \geq 0$,

$$
\begin{equation*}
\sup _{|z| \leq \frac{\pi}{2}}\left|\beta_{k}(n, z)\right| \leq \eta_{n, k}(2 n) . \tag{2.35}
\end{equation*}
$$

To estimate $\eta_{n, k}(2 n)$, we need the following auxilary lemma concerning the operator Ψ_{n}. For $\delta>0$ and w be a δ-weight, define

$$
\delta_{*}=\delta \wedge 1 / 2
$$

Lemma 2.8 Let w a δ-weight, and, for any $n \in \mathbb{Z}, d_{n}$ a positive sequence in ℓ_{w}^{2} so that

$$
\langle n\rangle^{\alpha} d_{n}(j) \leq d(j) \quad \forall n, j \in \mathbb{Z}
$$

for some $\alpha \geq 0$ and some positive sequence d in ℓ_{w}^{2}. Then there exist $C \equiv C_{\delta_{*}}$, only depending on δ_{*}, and $e \in \ell_{w}^{2}$ so that for any positive sequences $a, b \in \ell_{w}^{2}$,
(i)

$$
\begin{gathered}
\sum_{n \in \mathbb{Z}}\langle n\rangle^{2\left(2 \delta_{*}+\alpha\right)} w(2 n)^{2}\left(4 \Psi_{n}\left(a, b, d_{n}\right)(2 n)\right)^{2} \\
\leq C\|a\|_{w}\|b\|_{w}\|d\|_{w} ;
\end{gathered}
$$

(ii) for any $n, j \in \mathbb{Z}$,

$$
\begin{array}{r}
\langle n\rangle^{\alpha+\delta_{*}} 4 \Psi_{n}\left(a, b, d_{n}\right)(j) \leq e(j) ; \\
\|e\|_{w} \leq C\|a\|_{w}\|b\|_{w}\|d\|_{w}
\end{array}
$$

Proof Cf. Appendix B.
From Lemma 2.8 we obtain, in view of the definition (2.33) - (2.34) and the estimate (2.35) the following

Corollary 2.9 Let $M \geq 1$ and w be a δ-weight. Then for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M(j=1,2)$
(i) for $k \geq 0$

$$
\sum_{|n| \geq N_{0}}\langle n\rangle^{2(2+k) \delta_{*}} w(2 n)^{2} \sup _{|z| \leq \frac{\pi}{2}}\left|\beta_{k}(n, z)\right|^{2} \leq C^{k+1} M^{2 k+3}
$$

where $1 \leq C \equiv C_{\delta}<\infty$ is given by Lemma 2.8
(ii)

$$
\sum_{|n| \geq N_{0}}\langle n\rangle^{6 \delta_{*}} w(2 n)^{2} \sup _{|z| \leq \frac{\pi}{2}}|\tilde{\beta}(n, z)|^{2} \leq C^{\prime}
$$

where $\tilde{\beta}(n, z):=\sum_{k \geq 1} \beta_{k}(n, z)$ and $1 \leq C^{\prime}<\infty$ is a constant depending only on M and δ.

Proof We apply Lemma 2.8 to each of the β_{k} 's in an inductive fashion to obtain (i). Statement (ii) then follows from (i) by the Cauchy-Schwartz inequality.

To simplify further the asymptotics of β write $\beta_{0}(n, z) \equiv \beta_{0}^{+}(n, z)=\beta_{0}^{+}(n)+$ $z \beta_{\#}^{+}(n, z)$ where

$$
\beta_{0}^{ \pm}(n):=\beta_{0}^{ \pm}(n, 0) ; \beta_{\#}^{ \pm}(n, z):=\int_{0}^{1} \partial_{z} \beta_{0}^{ \pm}(n, t z) d t
$$

As $z \mapsto \beta_{\#}^{ \pm}(n, z)$ are analytic functions in $\{|z|<\pi / 2\}$, one deduces by Cauchy's formula

$$
\begin{equation*}
\sup _{|z| \leq \pi / 4}\left|\beta_{\#}^{ \pm}(n, z)\right| \leq \frac{4}{\pi} \sup _{|z| \leq \pi / 2}\left|\beta_{0}^{ \pm}(n, z)\right| . \tag{2.36}
\end{equation*}
$$

Summarizing our results of this section gives the following

Proposition 2.10 Let $\delta>0, M \geq 1,1 \leq A<\infty$ and w be a δ-weight. Then there exists $C>0$ so that for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M(j=1,2)$,

$$
\begin{equation*}
\sum_{|n| \geq N_{0}}\langle n\rangle^{4 \delta_{*}} w(2 n)^{2} \sup _{|z| \leq \pi / 4}\left|\beta^{ \pm}(n, z)\right|^{2} \leq C \tag{i}
\end{equation*}
$$

(ii)

$$
\sum_{|n| \geq N_{0}}\langle n\rangle^{6 \delta_{*}} w(2 n)^{2} \sup _{|z| \leq A /\langle n\rangle_{*}}\left|\beta^{ \pm}(n, z)-\beta_{0}^{ \pm}(n)\right|^{2} \leq C .
$$

Proof Notice that $\beta^{ \pm}(n, z)=\beta_{0}^{ \pm}(n)+z \beta_{\#}^{ \pm}(n, z)+\tilde{\beta}^{ \pm}(n, z)$ and hence (i) is a consequence of Corollary 2.9 and formula (2.36). Statement (ii) is proved in the same fashion. As the supremum of $\left|\beta^{ \pm}(n, z)-\beta_{0}^{ \pm}(n)\right|$ is only taken over $|z| \leq \frac{A}{\langle n\rangle^{\delta_{*}}}$, the asymptotics of $z \beta_{\#}^{ \pm}(n, z)$ can be improved by δ_{*} to obtain from formula (2.36)

$$
\sum_{|n| \geq N_{0}}\langle n\rangle^{6 \delta_{*}} w(2 n)^{2} \sup _{|z| \leq A /\langle n\rangle^{\delta_{*}}}\left|z \beta_{\#}^{ \pm}(n, z)\right|^{2} \leq C
$$

2.6 z-equation

In view of (2.21) - (2.22), and (2.29), the Q-equation leads to the following 2×2 system

$$
\left(\begin{array}{cc}
-z+\alpha(n, z) & \hat{\psi}_{2}(2 n)+\beta^{+}(n, z) \tag{2.37}\\
\hat{\psi}_{1}(-2 n)+\beta^{-}(n, z) & -z+\alpha(n, z)
\end{array}\right)\binom{x^{F}}{y^{F}}=\binom{0}{0}
$$

Given $|n| \geq N$ and $|z| \leq \frac{\pi}{2}$, the number $\lambda=n \pi+z$ is a periodic eigenvalue of L iff there exists a nontrivial solution of $(2.37)\left(x^{F}, y^{F}\right) \in \mathbb{C}^{2} \backslash(0,0)$, or, equivalently, iff the determinant of the 2×2 matrix in (2.37) vanishes,

$$
\begin{equation*}
(z-\alpha(n, z))^{2}-\left(\hat{\psi}_{2}(2 n)+\beta^{+}(n, z)\right)\left(\hat{\psi}_{1}(-2 n)+\beta^{-}(n, z)\right)=0 . \tag{2.38}
\end{equation*}
$$

Proceeding similarly as in [KM], equation (2.38) is solved in two steps: For ζ with $|\zeta| \leq \frac{\pi}{8}$ given, consider

$$
\begin{equation*}
z_{n}=\alpha\left(n, z_{n}\right)+\zeta \tag{2.39}
\end{equation*}
$$

Substituting a solution $z(\zeta) \equiv z_{n}(\zeta)$ of (2.39) into (2.38) leads to an equation for $\zeta \equiv \zeta_{n}$,

$$
\begin{equation*}
\zeta^{2}-\left(\hat{\psi}_{2}(2 n)+\beta^{+}(n, z(\zeta))\left(\hat{\psi}_{1}(-2 n)+\beta^{-}(n, z(\zeta))\right)=0\right. \tag{2.40}
\end{equation*}
$$

Equation (2.39) is referred to as the z-equation and equation (2.40) as the ζ-equation .

In this section we deal with the z-equation (2.39). To solve it we use the contractive mapping principle. According to Lemma 2.7 we can choose $N_{1} \geq$ N_{0} (with N_{0} given by (2.18)) so that for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M$ and $|n| \geq N_{1}$

$$
\begin{equation*}
\sup _{|z| \leq \frac{\pi}{2}}|\alpha(n, z)|<\pi / 8 \tag{2.41}
\end{equation*}
$$

The following result can be proved by the same line of arguments used in the proof of [KM, Proposition 1.6].

Proposition 2.11 Let $M \geq 1,0<\delta \leq 1 / 2$ and w be a δ-weight. Then, there exists $N_{1} \geq N_{0}$ so that for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M,|\zeta| \leq \frac{\pi}{8}$ and $|n| \geq N_{1}$, equation (2.39) has a unique solution $z_{n}=z_{n}(\zeta)$ satisfying $\left|z_{n}\right|<\pi / 4$. The solution depends analytically on ζ.

$2.7 \quad \zeta$-equation

In this section, we improve the existence of solutions of the ζ-equation (2.40)

$$
\zeta^{2}-\left(\hat{\psi}_{2}(2 n)+\beta^{+}(n, z(\zeta))\left(\hat{\psi}_{1}(-2 n)+\beta^{-}(n, z(\zeta))\right)=0\right.
$$

using Rouché's Theorem. Introduce

$$
\begin{equation*}
r_{n}:=\left(\left|\hat{\psi}_{2}(2 n)\right|+\sup _{|z| \leq \frac{\pi}{2}}\left|\beta^{+}(n, z)\right|\right) \vee\left(\left|\hat{\psi}_{1}(-2 n)\right|+\sup _{|z| \leq \frac{\pi}{2}}\left|\beta^{-}(n, z)\right|\right) . \tag{2.42}
\end{equation*}
$$

Using the same line of arguments used in the proof of [KM, Proposition 1.15] one obtains the following

Proposition 2.12 Let $M \geq 1,0<\delta \leq \frac{1}{2}$ and w be a δ-weight. Then there exists $N_{2} \geq N_{1}$ so that, for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M$ and $|n| \geq N_{2}$, equation (2.40) has exactly two (counted with multiplicity) solutions ζ_{n}^{+}, ζ_{n}^{-}in $\overline{\mathcal{D}}_{r_{n}}$.

2.8 Proof of Theorem 1.1

In this section, Theorem 1.1 is proved.
Proof of Theorem 1.1 (i) Let $z_{n}^{ \pm}:=z\left(\zeta_{n}^{ \pm}\right)=\zeta_{n}^{ \pm}+\alpha\left(n, z_{n}^{ \pm}\right)$where $\zeta_{n}^{ \pm}$are the two solutions of the ζ-equation provided by Proposition $2.12\left(|n| \geq N_{2}\right)$. Then, for $|n| \geq N_{2}$

$$
\begin{equation*}
\left|z_{n}^{+}-z_{n}^{-}\right| \leq\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right|+\sup _{|z| \leq \frac{\pi}{4}}\left|\frac{d}{d z} \alpha(n, z)\right|\left|z_{n}^{+}-z_{n}^{-}\right| . \tag{2.43}
\end{equation*}
$$

As $N_{2} \geq N_{1}$ and $|n| \geq N_{2}$ one has by the analyticity of $z \mapsto \alpha(n, z)$ and (2.41)

$$
\sup _{|z| \leq \frac{\pi}{4}}\left|\frac{d}{d z} \alpha(n, z)\right| \leq \frac{1}{2} .
$$

Together with $\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right| \leq\left|\zeta_{n}^{+}\right|+\left|\zeta_{n}^{-}\right| \leq 2 r_{n}$ equation (2.43) then leads to

$$
\left|z_{n}^{+}-z_{n}^{-}\right| \leq 4 r_{n}
$$

By the definition (2.42) of r_{n}, the estimates of $\beta_{n}^{ \pm}$in Proposition 2.10 (i) and the identity $\lambda_{n}^{+}-\lambda_{n}^{-}=z_{n}^{+}-z_{n}^{-}$, the latter equation implies that there exists $C \geq 1$ such that, for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w},\left\|\psi_{j}\right\|_{w} \leq M$,

$$
\sum_{|n| \geq N_{2}} w(2 n)^{2}\left|\lambda_{n}^{+}-\lambda_{n}^{-}\right|^{2} \leq C
$$

Towards the proof of Theorem 1.1 (ii), rewrite equation (2.40),

$$
\begin{equation*}
\left(\zeta_{n}^{ \pm}\right)^{2}-\rho_{n}^{2}=\eta\left(n, z\left(\zeta_{n}^{ \pm}\right)\right) \tag{2.44}
\end{equation*}
$$

where

$$
\rho_{n}=\left(\left(\hat{\psi}_{2}(2 n)+\beta_{0}^{+}(n)\right)\left(\hat{\psi}_{1}(-2 n)+\beta_{0}^{-}(n)\right)\right)^{1 / 2}
$$

with an arbitrary but fixed choice of the square root and

$$
\begin{align*}
\eta(n, z) & =\hat{\psi}_{2}(2 n)\left(\beta^{-}(n, z)-\beta_{0}^{-}(n)\right) \\
& +\hat{\psi}_{1}(-2 n)\left(\beta^{+}(n, z)-\beta_{0}^{+}(n)\right) \tag{2.45}\\
& +\left(\beta^{-}(n, z)-\beta_{0}^{-}(n)\right)\left(\beta^{+}(n, z)-\beta_{0}^{+}(n)\right) .
\end{align*}
$$

In view of the definition (2.42) and as w is assumed to be a δ-weight, we have for some constant $C_{1} \geq 1$ depending on δ and M

$$
\begin{equation*}
r_{n} \leq \frac{C_{1}}{\langle n\rangle^{\delta_{*}}} \quad\left(\forall|n| \geq N_{0}\right) \tag{2.46}
\end{equation*}
$$

By Lemma 2.7 there exists $C_{2} \geq 1$ depending on δ and M such that for $|n| \geq N_{0}$ and $|z| \leq \pi / 2$

$$
\begin{equation*}
|\alpha(n, z)| \leq \frac{C_{2}}{\langle n\rangle^{\delta_{*}}} . \tag{2.47}
\end{equation*}
$$

Let $A=C_{1}+C_{2}$ and define

$$
\begin{equation*}
s_{n}:=\sup _{|z| \leq 2 A /\langle n\rangle_{*}}|\eta(n, z)| . \tag{2.48}
\end{equation*}
$$

Notice that by Proposition 2.10 (ii), there exists $C>0$ so that

$$
\begin{equation*}
\sum_{|n| \geq N_{2}}\langle n\rangle^{3 \delta_{*}} w(2 n)^{2} s_{n} \leq C \tag{2.49}
\end{equation*}
$$

Choose $N_{3} \geq N_{2}$, depending on δ and M, so that

$$
\begin{equation*}
\frac{\langle n\rangle^{\delta_{*}}}{A} \sqrt{s_{n}}<\frac{1}{2}, \quad \forall|n| \geq N_{3} . \tag{2.50}
\end{equation*}
$$

Lemma 2.13 Let $M \geq 1,0<\delta$ and w be a δ-weight. For 1-periodic functions ψ_{1}, ψ_{2} in H^{w} with $\left\|\psi_{j}\right\|_{w} \leq M(j=1,2)$ and $|n| \geq N_{3}$,

$$
\left|\zeta_{n}^{+}-\rho_{n}\right|+\left|\zeta_{n}^{-}+\rho_{n}\right| \leq 6 \sqrt{s_{n}}
$$

or

$$
\left|\zeta_{n}^{+}-\rho_{n}\right|+\left|\zeta_{n}^{-}-\rho_{n}\right| \leq 6 \sqrt{s_{n}} .
$$

Proof W.l.o.g. assume that $\delta \leq 1 / 2$ and hence $\delta=\delta_{*}$. By (2.44) we have for $|n| \geq N_{3}$

$$
\begin{equation*}
\left(\zeta_{n}^{ \pm}-\rho_{n}\right)\left(\zeta_{n}^{ \pm}+\rho_{n}\right)=\eta\left(n, z\left(\zeta_{n}^{ \pm}\right)\right) \tag{2.51}
\end{equation*}
$$

By definition, $z\left(\zeta_{n}^{ \pm}\right)=\zeta_{n}^{ \pm}+\alpha\left(n, z\left(\zeta_{n}^{ \pm}\right)\right)$and therefore from (2.46), (2.47) and Proposition 2.12, we conclude for $|n| \geq N_{3}$,

$$
\begin{equation*}
\left|z\left(\zeta_{n}^{ \pm}\right)\right| \leq \frac{A}{\langle n\rangle^{\delta}} \tag{2.52}
\end{equation*}
$$

From the definition of s_{n} (see (2.48)) and (2.51) we deduce

$$
\begin{equation*}
\left|\zeta_{n}^{ \pm}-\rho_{n}\right|\left|\zeta_{n}^{ \pm}+\rho_{n}\right| \leq s_{n} \tag{2.53}
\end{equation*}
$$

Thus $\min _{ \pm}\left|\zeta_{n}^{+} \pm \rho_{n}\right| \leq \sqrt{s_{n}}$ and $\min _{ \pm}\left|\zeta_{n}^{-} \pm \rho_{n}\right| \leq s_{n}^{1 / 2}$. We distinguish two cases:
case $1\left|\rho_{n}\right| \leq 2 \sqrt{s_{n}}$. In this case $\left|\zeta_{n}^{ \pm}-\rho_{n}\right| \leq \sqrt{s_{n}}$ implies

$$
\left|\zeta_{n}^{ \pm}+\rho_{n}\right| \leq\left|\zeta_{n}^{ \pm}-\rho_{n}\right|+2\left|\rho_{n}\right| \leq 5 \sqrt{s_{n}}
$$

and, similarly, $\left|\zeta_{n}^{ \pm}+\rho_{n}\right| \leq \sqrt{s_{n}}$ implies $\left|\zeta_{n}^{ \pm}-\rho_{n}\right| \leq 5 \sqrt{s_{n}}$, thus Lemma 2.13 is proves in case 1 .
case $2\left|\rho_{n}\right|>2 \sqrt{s_{n}}$. It suffices to show that it is impossible to have $\max _{ \pm}\left|\zeta_{n}^{ \pm}-\rho_{n}\right| \leq \sqrt{s_{n}}$, or $\max _{ \pm}\left|\zeta_{n}^{ \pm}+\rho_{n}\right| \leq \sqrt{s_{n}}$. To the contrary, assume that

$$
\begin{equation*}
\max _{ \pm}\left|\zeta_{n}^{ \pm}-\rho_{n}\right| \leq \sqrt{s_{n}} \tag{2.54}
\end{equation*}
$$

(The other case is treated in the same way.) By (2.54), $\left|\zeta_{n}^{ \pm}+\rho_{n}\right| \geq 2\left|\rho_{n}\right|-$ $\sqrt{s_{n}}>\frac{3}{2}\left|\rho_{n}\right|$, hence

$$
\begin{equation*}
\left|\zeta_{n}^{+}+\zeta_{n}^{-}\right| \geq\left|\zeta_{n}^{+}+\rho_{n}\right|-\left|\zeta_{n}^{-}-\rho_{n}\right|>\left|\rho_{n}\right| \tag{2.55}
\end{equation*}
$$

Divide

$$
\left(\zeta_{n}^{+}\right)^{2}-\left(\zeta_{n}^{-}\right)^{2}=\eta\left(n, z\left(\zeta_{n}^{+}\right)\right)-\eta\left(n, z\left(\zeta_{n}^{-}\right)\right)
$$

by $\zeta_{n}^{+}+\zeta_{n}^{-}$and use (2.55) and (2.52) to deduce

$$
\begin{equation*}
\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right| \leq \frac{1}{\left|\rho_{n}\right|} \sup _{|z| \leq A /\langle n\rangle^{\delta}}\left|\frac{d \eta}{d z}(n, z)\right|\left|z\left(\zeta_{n}^{+}\right)-z\left(\zeta_{n}^{-}\right)\right| . \tag{2.56}
\end{equation*}
$$

To arrive at a contradiction we first show that $\zeta_{n}^{+}-\zeta_{n}^{-}=0$. As $\mid z\left(\zeta_{n}^{+}\right)-$ $z\left(\zeta_{n}^{-}\right)\left|\leq\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right|+\sup _{|z| \leq \pi / 2}\right| \frac{d}{d z} \alpha(n, z)\left|\left|z\left(\zeta_{n}^{+}\right)-z\left(\zeta_{n}^{-}\right)\right|\right.$, (2.41) leads to $\left(|n| \geq N_{2}\right)$

$$
\begin{equation*}
\left|z\left(\zeta_{n}^{+}\right)-z\left(\zeta_{n}^{-}\right)\right| \leq 2\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right| \tag{2.57}
\end{equation*}
$$

On the other hand, as $z \mapsto \eta(n, z)$ is analytic in $\{z,|z|<\pi / 2\}$, we have by Cauchy's inequality,

$$
\begin{align*}
\sup _{|z| \leq \frac{A}{\langle n\rangle^{\delta}}}\left|\frac{d}{d z} \eta(n, z)\right| & \leq \frac{\langle n\rangle^{\delta}}{A} \sup _{|z| \leq \frac{2 A}{\langle n\rangle^{\delta}}}|\eta(n, z)| \tag{2.58}\\
& \leq \frac{\langle n\rangle^{\delta}}{A} s_{n}
\end{align*}
$$

Combining (2.56) - (2.57) with (2.50) we obtain,

$$
\begin{aligned}
\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right| & \leq \frac{2}{\left|\rho_{n}\right|} \frac{\langle n\rangle^{\delta}}{A} s_{n}\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right| \\
& \leq \frac{\langle n\rangle^{\delta}}{A} \sqrt{s_{n}}\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right| \leq \frac{1}{2}\left|\zeta_{n}^{+}-\zeta_{n}^{-}\right|
\end{aligned}
$$

and we conclude that $\zeta_{n}^{+}=\zeta_{n}^{-} \equiv \zeta_{n}$. This contradicts the assumption $\left|\rho_{n}\right|>2 \sqrt{s_{n}}$ as one can see in the following way: By the equation (2.44), $2 \zeta_{n}=\frac{d}{d \zeta} \eta\left(n, z\left(\zeta_{n}\right)\right)=\frac{d}{d z} \eta\left(n, z\left(\zeta_{n}\right)\right) \cdot \frac{d}{d \zeta} z\left(\zeta_{n}\right)$. By (2.58), $\left|\frac{d}{d z} \eta\left(n, z\left(\zeta_{n}\right)\right)\right| \leq$ $\frac{\langle n\rangle^{\delta}}{A} s_{n}$ and by $(2.41),\left|\frac{d}{d \zeta} z(\zeta)\right|=\left|\frac{d}{d \zeta}(\zeta+\alpha(n, z(\zeta)))\right| \leq 1+\frac{1}{2} \leq 2$, hence

$$
\begin{equation*}
\left|\zeta_{n}\right| \leq \frac{\langle n\rangle^{\delta}}{A} s_{n} \tag{2.59}
\end{equation*}
$$

and, by (2.55),

$$
\left|\rho_{n}\right|<2\left|\zeta_{n}\right| \leq 2 \frac{\langle n\rangle^{\delta}}{A} s_{n}<\sqrt{s_{n}} .
$$

where for the last inequality we used (2.50).
Proof of Theorem 1.1 (ii): Let N_{3} be given by (2.50). Recall that

$$
\lambda_{n}^{+}-\lambda_{n}^{-}=z_{n}^{+}-z_{n}^{-}=\zeta_{n}^{+}-\zeta_{n}^{-}+\alpha\left(n, z\left(\zeta_{n}^{+}\right)\right)-\alpha\left(n, z\left(\zeta_{n}^{-}\right)\right) .
$$

By Lemma 2.13, for $|n| \geq N_{3}$,

$$
\min _{ \pm}\left|\left(\zeta_{n}^{+}-\zeta_{n}^{-}\right) \pm 2 \rho_{n}\right| \leq 6 \sqrt{s_{n}}
$$

By the analyticity of $\alpha(n, z)$ and Lemma 2.7, for $|n| \geq N_{0}$,

$$
\sup _{|z| \leq \pi / 4}\left|\frac{d}{d z} \alpha(n, z)\right| \leq \frac{C}{\langle n\rangle^{2 \delta}}
$$

Combining these two estimates, we get for $|n| \geq N_{3}$,

$$
\begin{aligned}
\min _{ \pm} \mid\left(\lambda_{n}^{+}-\lambda_{n}^{-}\right) & \pm 2 \rho_{n}\left|\leq \min _{ \pm}\right|\left(\zeta_{n}^{+}-\zeta_{n}^{-}\right) \pm 2 \rho_{n} \mid \\
& +\left(\sup _{|z| \leq \pi / 2}\left|\frac{d}{d z} \alpha(n, z)\right|\right)\left|\lambda_{n}^{+}-\lambda_{n}^{-}\right| \\
& \leq 6 \sqrt{s_{n}}+C \frac{\left|\lambda_{n}^{+}-\lambda_{n}^{-}\right|}{\langle n\rangle^{2 \delta}}
\end{aligned}
$$

Hence, by (2.49) and Theorem 1.1 (i),

$$
\sum_{|n| \geq N_{3}}\langle n\rangle^{3 \delta} w(2 n)^{2} \min _{ \pm}\left|\left(\lambda_{n}^{+}-\lambda_{n}^{-}\right) \pm 2 \rho_{n}\right|^{2} \leq C
$$

2.9 Improvement of Theorem 1.1 for L selfadjoint

For ψ a 1-periodic functions in H^{w}, the operator $L(\psi, \bar{\psi})$ is selfadjoint. In this section we show that in this case the decay rate of the asymptotics in Theorem 1.1 (ii) can be improved as follows :

Theorem 2.14 Let $M \geq 1, \delta>0$ and w be a δ-weight. Then there exist constants $1 \leq C<\infty$ and $1 \leq N<\infty$ so that for any $|n| \geq N$ and any 1-periodic function $\psi \in H^{w}$ with $\|\psi\|_{w} \leq M$,

$$
\sum_{|n| \geq N}\langle n\rangle^{4 \delta_{*}} w(2 n)^{2} \min _{ \pm}\left|\left(\lambda_{n}^{+}-\lambda_{n}^{-}\right) \pm 2 \rho_{n}\right|^{2} \leq C
$$

Proof Using the definition (2.13) with $\psi_{1}=\psi$ and $\psi_{2}=\bar{\psi}$ we get $\overline{R_{n}^{(1)}(k, j)}(\bar{z})=$ $R_{n}^{(2)}(k, j)(z)$ and thus $\overline{\beta^{-}(n, z)}=\beta^{+}(n, \bar{z})$. As the eigenvalues $\lambda_{n}^{ \pm}=n \pi+$
$z\left(\zeta_{n}^{ \pm}\right)$of $L(\psi, \bar{\psi})$ are real, equation (2.40) then reads (with $|n| \geq N_{2}$ and N_{2} as in Proposition 2.12)

$$
\begin{align*}
\left(\zeta_{n}^{ \pm}\right)^{2} & =\left|\hat{\psi}(2 n)+\beta^{+}\left(n, z\left(\zeta_{n}^{ \pm}\right)\right)\right|^{2} \tag{2.60}\\
& =\left|\hat{\psi}(2 n)+\beta_{0}^{+}(n)+\tilde{\beta}^{+}\left(n, z\left(\zeta_{n}^{ \pm}\right)\right)\right|^{2}
\end{align*}
$$

and ρ_{n} is given by (with an appropriate choice of the square root)

$$
\rho_{n}=\left|\hat{\psi}(2 n)+\beta_{0}^{+}(n)\right| .
$$

Let $t_{n}:=\sup _{|z| \leq A /\langle n\rangle_{*}{ }^{\delta_{2}}}\left|\tilde{\beta}^{+}(n, z)\right|$, where $A:=C_{1}+C_{2}$ and C_{1} are C_{2} are defined by (2.46), (2.47). By Proposition 2.10 (ii),

$$
\begin{equation*}
\sum_{|n| \geq N_{0}}\langle n\rangle^{6 \delta_{*}} w(2 n)^{2} t_{n}^{2} \leq C \tag{2.61}
\end{equation*}
$$

From (2.60) we deduce $\min _{ \pm}\left|\zeta_{n}^{+} \pm \rho_{n}\right| \leq t_{n}$ and $\min _{ \pm}\left|\zeta_{n}^{-} \pm \rho_{n}\right| \leq t_{n}$. Substituting Lemma 2.15 below for Lemma 2.13, Theorem 2.14 follows in the same way as Theorem 1.1 (ii).

Define $N_{4} \geq N_{2}$ such that

$$
12\langle n\rangle^{\delta} t_{n}<A \quad \forall|n| \geq N_{4}
$$

Lemma 2.15 Let $M \geq 1, \delta>0$ and w be a δ-weight. For any 1-periodic function ψ in H^{w} with $\|\psi\|_{w} \leq M$ and $|n| \geq N_{4}$,

$$
\left|\zeta_{n}^{+}-\rho_{n}\right|+\left|\zeta_{n}^{-}+\rho_{n}\right| \leq 6 t_{n}
$$

or

$$
\left|\zeta_{n}^{+}+\rho_{n}\right|+\left|\zeta_{n}^{-}-\rho_{n}\right| \leq 6 t_{n}
$$

Proof The proof is similar to the one of Lemma 2.13.

3 Riesz spaces and normal form of L

3.1 Riesz spaces

Let $M \geq 1, \delta>0$ and w be a δ-weight. By Theorem 1.1, there exists $1 \leq$ $N<\infty$ so that for any 1-periodic functions ψ_{1}, ψ_{2} in H^{w} with $\left\|\psi_{j}\right\|_{w} \leq M$, the operator $L=L\left(\psi_{1}, \psi_{2}\right)$ has two (counted with multiplicity) periodic eigenvalues $\lambda_{n}^{+}, \lambda_{n}^{-}$near $n \pi$.
In Appendix A we introduce the periodic and antiperiodic boundary conditions $b c \mathrm{Per}^{+}$and $b c \mathrm{Per}^{-}$. We point out that

$$
\operatorname{spec} L=\operatorname{spec} L_{P e r}+\cup \operatorname{spec} L_{P e r^{-}}
$$

and introduce the Riesz projectors $\Pi_{2 n}: L^{2}\left([0,1] ; \mathbb{C}^{2}\right) \rightarrow L^{2}\left([0,1] ; \mathbb{C}^{2}\right)$, corresponding to $b c$ Per $^{+}$and $\Pi_{2 n-1}: L^{2}\left([0,1] ; \mathbb{C}^{2}\right) \rightarrow L^{2}\left([0,1] ; \mathbb{C}^{2}\right)$, corresponding to $b c P e r^{-}(n \in \mathbb{Z})$. Further denote by E_{n} the \mathbb{C}-vector spaces

$$
E_{n}:=\Pi_{n}\left(L^{2}\left([0,1] ; \mathbb{C}^{2}\right)\right) \quad(|n| \geq N)
$$

Notice that $\operatorname{dim}_{\mathbb{C}} E_{n}=\operatorname{tr} \Pi_{n}=2 \forall|n| \geq N$. If $\lambda_{n}^{+} \neq \lambda_{n}^{-}$or $\lambda_{n}^{+}=\lambda_{n}^{-}$is of geometric multiplicity two, there exists a basis of E_{n} consisting of eigenfunctions F^{+}and F^{-}corresponding to the eigenvalues $\lambda_{n}^{ \pm}$. If $\lambda_{n}^{+}=\lambda_{n}^{-}$is of geometric multiplicity $1, E_{n}$ is the root space of λ_{n}^{+}. Denote by F a L^{2}-normalized eigenfunction of L corresponding to the eigenvalue $\lambda=n \pi+z$,

$$
(L-\lambda) F=0, \quad\|F\|=1
$$

where $\|\cdot\|$ denotes the L^{2}-norm in $L^{2}\left([0,1] ; \mathbb{C}^{2}\right)$. Then

$$
F(x)=x^{F} e_{n}^{+}(x)+y^{F} e_{n}^{-}(x)+\sum_{k \neq n}\left(\breve{F}_{2}(k) e_{k}^{+}(x)+\breve{F}_{1}(-k) e_{k}^{-}(x)\right)
$$

where

$$
\binom{\breve{F}_{2}}{J \breve{F}_{1}}=\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right)\binom{y^{F}}{x^{F}}
$$

with

$$
\begin{aligned}
& V_{11}=\left(z-D_{n}\right)^{-1}\left(I d-P_{n}\right)^{-1} S^{n} \hat{\psi}_{2} \\
& V_{12}=\left(z-D_{n}\right)^{-1} R_{n}^{(2)}\left(I d-Q_{n}\right)^{-1} S^{n} J \hat{\psi}_{1} \\
& V_{21}=\left(z-D_{n}\right)^{-1} R_{n}^{(1)}\left(I d-P_{n}\right)^{-1} S^{n} \hat{\psi}_{2} \\
& V_{22}=\left(z-D_{n}\right)^{-1}\left(I d-Q_{n}\right)^{-1} S^{n} J \hat{\psi}_{1} .
\end{aligned}
$$

Proposition 3.1 Let $0<\delta \leq 1, M \geq 1$ and w be a δ-weight. Then there exist $C \equiv C(\delta, M) \geq 1$ and $N \equiv N(M, \delta) \geq 1$ such that for 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M$ and $|n| \geq N$
(i) $\frac{1}{2} \leq\left|x^{F}\right|^{2}+\left|y^{F}\right|^{2} \leq 1$
(ii) $\left\|\breve{F}_{2}\right\| \leq 2 \frac{C}{\langle n\rangle^{\delta}} ; \quad\left\|J \breve{F}_{1}\right\| \leq 2 \frac{C}{\langle n\rangle^{\delta}}$
where $\|\cdot\|$ stands for the ℓ^{2}-norm.
Proof As $\|F\|=1$, we have

$$
\|F\|^{2}=\left|x^{F}\right|^{2}+\left|y^{F}\right|^{2}+\left\|\breve{F}_{2}\right\|^{2}+\left\|J \breve{F}_{1}\right\|^{2}=1 .
$$

Hence

$$
\left|x^{F}\right|^{2}+\left|y^{F}\right|^{2} \leq 1
$$

Further, by Proposition 2.4, for $|n| \geq N_{0}$

$$
\left\|\left(I d-P_{n}\right)^{-1}\right\|_{\mathcal{L}\left(\ell_{S n_{w}}^{2}\right)} \leq 2 ;\left\|\left(I d-Q_{n}\right)^{-1}\right\|_{\mathcal{L}\left(\ell_{S}^{n_{w}}\right)}^{2} \leq 2 .
$$

By Corollary 2.3, there exists $C>1$ such that

$$
\left\|R_{n}^{(j)}\right\|_{\mathcal{L}\left(\ell_{S^{n}}^{2}, \ell^{2}\right)} \leq \frac{C}{\langle n\rangle^{\delta \wedge 1}}
$$

and by the definition of D_{n}, for some $1 \leq C<\infty$,

$$
\begin{aligned}
& \left\|\left(z-D_{n}\right)^{-1}\right\|_{\mathcal{L}\left(\ell_{S}^{2} n_{w}, \ell^{2}\right)} \leq \frac{C}{\langle n\rangle^{1 \wedge \delta}} \\
& \left\|\left(z-D_{n}\right)^{-1}\right\|_{\mathcal{L}\left(\ell^{2}, \ell^{2}\right)} \leq 1
\end{aligned}
$$

Hence for $|n| \geq N_{0}$

$$
\begin{aligned}
\left\|V_{11}\right\|+\left\|V_{22}\right\| & \leq \frac{C}{\langle n\rangle^{\delta \wedge 1}} \\
\left\|V_{12}\right\|+\left\|V_{21}\right\| & \leq \frac{C}{\langle n\rangle^{\delta \wedge 1}}
\end{aligned}
$$

for some $1<C<\infty$ and one concludes that

$$
\begin{aligned}
& \left\|\breve{F}_{2}\right\| \leq \frac{C}{\langle n\rangle^{\delta \wedge 1}}\left(\left|x^{F}\right|+\left|y^{F}\right|\right) \leq 2 \frac{C}{\langle n\rangle^{\delta \wedge 1}} \\
& \left\|J \breve{F}_{1}\right\| \leq \frac{C}{\langle n\rangle^{\delta \wedge 1}}\left(\left|x^{F}\right|+\left|y^{F}\right|\right) \leq 2 \frac{C}{\langle n\rangle^{\delta \wedge 1}} .
\end{aligned}
$$

By choosing $N \geq N_{0}$ sufficiently large we have, for $|n| \geq N$,

$$
\left\|\breve{F}_{2}\right\|^{2}+\left\|J \breve{F}_{1}\right\|^{2} \leq \frac{1}{2}
$$

and hence $\frac{1}{2} \leq\left|x^{F}\right|^{2}+\left|y^{F}\right|^{2}$.

3.2 Normal form of L

In this section we want to derive a normal form of the restriction of L to the Riesz spaces E_{n}. For this purpose introduce an orthonormal basis of E_{n} as follows: Choose $F \equiv F^{+}$to be an L_{2}-normalized eigenfunction of L corresponding to the eigenvalue $\lambda^{+} \equiv \lambda_{n}^{+}$and $\Phi \in E_{n}$ with

$$
(\Phi, F)=0 ;\|\Phi\|=1
$$

where, as usual, $(\Phi, F)=\int_{0}^{1} \overline{\Phi(x)} F(x) d x$. In case λ^{+}is a double eigenvalue,

$$
\binom{L \Phi}{L F}=\left(\begin{array}{cc}
\lambda^{+} & \xi \tag{3.1}\\
0 & \lambda^{+}
\end{array}\right)\binom{\Phi}{F}
$$

where $\xi \equiv \xi_{n}$ vanishes iff λ^{+}is of geometric multiplicity two.
In case $\lambda_{n}^{-} \neq \lambda_{n}^{+}$, choose an L_{2}-normalized eigenfunction F^{-}of $\lambda^{-} \equiv \lambda_{n}^{-}$. Then

$$
F^{-}=a F+b \Phi ;|a|^{2}+|b|^{2}=1 ; b \neq 0
$$

With $\Phi=\frac{1}{b} F^{-}-\frac{a}{b} F$,

$$
\begin{aligned}
L \Phi & =\lambda^{-} \frac{1}{b} F^{-}+\lambda^{+} \frac{a}{b} F \\
& =\lambda^{-}\left(\frac{1}{b} F^{-}-\frac{a}{b} F\right)-\gamma \frac{a}{b} F
\end{aligned}
$$

where $\gamma \equiv \gamma_{n}:=\lambda^{+}-\lambda^{-}$. Hence

$$
\binom{L \Phi}{L F}=\left(\begin{array}{cc}
\lambda^{-} & \xi \tag{3.2}\\
0 & \lambda^{+}
\end{array}\right)\binom{\Phi}{F}
$$

with $\xi \equiv \xi_{n}:=-\gamma \frac{a}{b}$. Notice that (3.1) and (3.2) have the same form. We refer to this form as the normal form of the restriction of L to the Riesz space E_{n}.

In the remaining part of this section we want to estimate the size of $\left(\xi_{n}\right)_{|n| \geq N}$. To this end, we write the equation $\left(L-\lambda^{-}\right) \Phi=\xi F$ in the basis $e_{k}^{+}, e_{k}^{-}(k \in \mathbb{Z})$. With $\Phi=x^{\Phi} e_{n}^{+}+y^{\Phi} e_{n}^{-}+\sum_{k \neq n} \breve{\Phi}_{2}(k) e_{k}^{+}+\breve{\Phi}_{1}(-k) e_{k}^{-}$and $F=x^{F} e_{n}^{+}+y^{F} e_{n}^{-}+$ $\sum_{k \neq n} \breve{F}_{2}(k) e_{k}^{+}+\breve{F}_{1}(-k) e_{k}^{-}$, we then obtain the following inhomogeneous system (cf. (2.8) - (2.10))

$$
\begin{align*}
& -z^{-} x^{\Phi}+\hat{\psi}_{2}(2 n) y^{\Phi}+\left\langle S^{n} \hat{\psi}_{2}, J \breve{\Phi}_{1}\right\rangle=\xi x^{F} \tag{3.3}\\
& \hat{\psi}_{1}(-2 n) x^{\Phi}-z^{-} y^{\Phi}+\left\langle S^{n} J \hat{\psi}_{1}, \breve{\Phi}_{2}\right\rangle=\xi y^{F} \tag{3.4}\\
& \binom{y^{\Phi}\left(S^{n} \hat{\psi}_{2}\right)_{\mathbb{Z} \backslash n}}{x^{\Phi}\left(S^{n} J \hat{\psi}_{1}\right)_{\mathbb{Z} \backslash n}}+\left(A_{n}-z^{-}\right)\binom{\breve{\Phi}_{2}}{J \breve{\Phi}_{1}}=\xi\binom{\breve{F}_{2}}{J \breve{F}_{1}} \tag{3.5}
\end{align*}
$$

where, as usual, $\lambda_{n}^{-} \equiv \lambda^{-}=n \pi+z^{-}$. We use the above system to obtain an estimate for $\xi \equiv \xi_{n}$.
Write $\breve{\Phi}=\left(\breve{\Phi}_{2}, J \breve{\Phi}_{1}\right)$ and $\breve{F}=\left(\breve{F}_{2}, J \breve{F}_{1}\right)$. Recall that w is assumed to be a δ-weight and hence by Corollary 2.5, equation (3.5) (with $|n| \geq N_{0}$) can be solved for $\breve{\Phi}$,

$$
\breve{\Phi}=\left(z^{-}-A_{n}\right)^{-1}\binom{y^{\Phi}\left(S^{n} \hat{\psi}_{2}\right)_{\mathbb{Z} \backslash n}}{x^{\Phi}\left(S^{n} J \hat{\psi}_{1}\right)_{\mathbb{Z} \backslash n}}-\xi\left(z^{-}-A_{n}\right)^{-1} \breve{F}
$$

In this form, $\breve{\Phi}$ is substituted into (3.3) - (3.4) to obtain (cf. Corollary 2.5)

$$
\begin{align*}
& \left(\begin{array}{cc}
-z^{-}+\alpha\left(n, z^{-}\right) & \hat{\psi}_{2}(2 n)+\beta^{+}\left(n, z^{-}\right) \\
\hat{\psi}_{1}(-2 n)+\beta^{-}\left(n, z^{-}\right) & -z^{-}+\alpha\left(n, z^{-}\right)
\end{array}\right)\binom{x^{\Phi}}{y^{\Phi}} \tag{3.6}\\
& =\xi\binom{x^{F}}{y^{F}}+\xi\left\langle\binom{ S^{n} \hat{\psi}_{2}}{S^{n} J \hat{\psi}_{1}},\left(z^{-}-A_{n}\right)^{-1} \breve{F}\right\rangle .
\end{align*}
$$

Denote the right side of (3.6) by $R S$. By Corollary $2.5\left(z^{-}-A_{n}\right)^{-1}$ is uniformly bounded for $|n|$ sufficiently large and by Proposition 3.1, for $|n| \geq$ N,

$$
\frac{1}{2} \leq\left|x^{F}\right|^{2}+\left|y^{F}\right|^{2} ;\|\breve{F}\| \leq \frac{C}{\langle n\rangle^{\delta}}
$$

Hence $R S$ can be estimated from below: There exists $1 \leq C \equiv C_{\delta, M}<\infty$ so that for $|n| \geq N(N$ as in Proposition 3.1)

$$
R S \geq|\xi|\left(\frac{1}{\sqrt{2}}-\frac{C}{\langle n\rangle^{\delta}}\right)
$$

By choosing N larger if necessary, we can assume that

$$
\begin{equation*}
\frac{1}{\sqrt{2}}-\frac{C}{\langle n\rangle^{\delta}} \geq \frac{1}{2} \quad \forall|n| \geq N \tag{3.7}
\end{equation*}
$$

and (3.6) leads to

$$
\begin{equation*}
\left|\xi_{n}\right| \leq 4\left(\left|\zeta_{n}^{-}\right|+\left|\hat{\psi}_{1}(-2 n)\right|+\left|\hat{\psi}_{2}(2 n)\right|+\left|\beta^{+}\left(n, z^{-}\right)\right|+\left|\beta^{-}\left(n, z^{-}\right)\right|\right) \tag{3.8}
\end{equation*}
$$

where we used that $\left|x^{\Phi}\right|^{2}+\left|y^{\Phi}\right|^{2} \leq 1$ and $\zeta_{n}^{-}=z^{-}-\alpha\left(n, z^{-}\right)$with $z^{-} \equiv z\left(\zeta_{n}^{-}\right)$.
In view of Proposition 2.10 and Lemma 2.13, one then concludes from (3.8) the following

Proposition 3.2 Let $M \geq 1,0<\delta$, and w be a δ-weight. Then there exist $1 \leq N<\infty, 1 \leq C=C_{\delta}<\infty$ such that for any 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w} \leq M$

$$
\sum_{|n| \geq N} w(2 n)^{2}\left|\xi_{n}\right|^{2} \leq C
$$

4 Dirichlet eigenvalues

4.1 Dirichlet boundary value problem

Consider the Zakharov-Shabat operator $L \equiv L\left(\psi_{1}, \psi_{2}\right)$ on the interval $[0,1]$.
Definition 4.1 $F=\left(F_{1}, F_{2}\right) \in H^{1}\left([0,1] ; \mathbb{C}^{2}\right)$ satisfies Dirichlet boundary conditions if

$$
\begin{equation*}
F_{1}(0)-F_{2}(0)=0 ; F_{1}(1)-F_{2}(1)=0 \tag{4.1}
\end{equation*}
$$

We mention that the Dirichlet boundary conditions take a more familiar form when the operator L is written as an $A K N S$ operator $L_{A K N S}$

$$
L_{A K N S}=\left(\begin{array}{cc}
0 & -1 \tag{4.2}\\
1 & 0
\end{array}\right) \frac{d}{d x}+\left(\begin{array}{cc}
-q & p \\
p & q
\end{array}\right)
$$

where $\left(\psi_{1}, \psi_{2}\right)$ and (p, q) are related by

$$
\psi_{1}=-q+i p ; \psi_{2}=-q-i p
$$

If $F=\left(F_{1}, F_{2}\right) \in H^{1}\left([0,1] ; \mathbb{C}^{2}\right)$ satisfies $L F=\lambda F$, then $L \tilde{F}=\lambda \tilde{F}$ where $\tilde{F}=\left(\tilde{F}_{1}, \tilde{F}_{2}\right)$ is given by

$$
\tilde{F}_{1}=\frac{1}{\sqrt{2} i}\left(F_{1}+F_{2}\right) ; \quad \tilde{F}_{2}=\frac{1}{\sqrt{2}}\left(F_{2}-F_{1}\right) .
$$

The Dirichlet boundary conditions (4.1) then take the familiar form

$$
\tilde{F}_{2}(0)=0 ; \quad \tilde{F}_{2}(1)=0
$$

For the remaining part of section 4 , let $M \geq 1, \delta>0$, and a δ-weight w be given as well as arbitrary 1-periodic functions $\psi_{1}, \psi_{2} \in H^{w}$ with $\left\|\psi_{j}\right\|_{w}<M$. In Appendix A we have introduced, for $|n| \geq N$ with N given by Theorem 1.1, the Riesz projectors $\Pi_{2 n}, \Pi_{2 n-1}$ corresponding to periodic resp. antiperiodic boundary value problem on $[0,1]$ for L and the two dimensional subspaces $E_{n}=\operatorname{Range}\left(\Pi_{n}\right)$.
The following proposition assures that there exists a 1-dimensional subspace of E_{n} which satisfies Dirichlet boundary conditions. Let (F, Φ) denote the orthonormal basis of $E_{n} \subseteq L^{2}\left([0,1] ; \mathbb{C}^{2}\right)$, introduced in section 3.2.

Proposition 4.2 For any $|n| \geq N$, there exists $G=\left(G_{1}, G_{2}\right) \in E_{n}$

$$
G=\alpha F+\beta \Phi ;|\alpha|^{2}+|\beta|^{2}=1
$$

which satisfies Dirichlet boundary conditions

$$
G_{1}(0)-G_{2}(0)=0 ; \quad G_{1}(1)-G_{2}(1)=0
$$

Proof First consider the case where F satisfies $F_{1}(0)-F_{2}(0)=0$. As F is either periodic or antiperiodic we conclude that $F_{1}(1)-F_{2}(1)=0$ as well and thus $G:=F$ has the required properties. If $F_{1}(0)-F_{2}(0) \neq 0$, notice that

$$
\tilde{G}(x):=\left(F_{1}(0)-F_{2}(0)\right) \Phi(x)-\left(\Phi_{1}(0)-\Phi_{2}(0)\right) F(x)
$$

satisfies Dirichlet boundary conditions. As $\tilde{G} \not \equiv 0$, we may define

$$
G:=\frac{\tilde{G}}{\|\tilde{G}\|}
$$

By (3.1) - (3.2), $L \Phi=\lambda^{-} \Phi+\xi F$ and $L F=\lambda^{+} F$, hence, with $\gamma \equiv \gamma_{n}=$ $\lambda^{+}-\lambda^{-}$and $\lambda \equiv \lambda^{+}$

$$
\begin{align*}
L G & =\alpha \lambda F+\beta L \Phi \\
& =\lambda G-\beta \gamma \Phi+\beta \xi F . \tag{4.3}
\end{align*}
$$

For $|n| \geq N$ sufficiently large, $\xi \equiv \xi_{n}$ and $\gamma \equiv \gamma_{n}$ are small and G is almost a Dirichlet eigenfunction. In the next sections we prove that $\lambda \equiv \lambda_{n}^{+}$and G are good approximations of the Dirichlet eigenvalue $\mu \equiv \mu_{n}$ respectively Dirichlet eigenfunction H.

4.2 Decomposition

Let $L_{D i r}$ denote the closed operator $L_{D i r}=L\left(\psi_{1}, \psi_{2}\right)$ with domain

$$
\operatorname{dom} L_{\text {Dir }}:=\left\{F \in H^{1}[0,1] \mid F_{1}(0)-F_{2}(0)=0 ; F_{1}(1)-F_{2}(1)=0\right\} .
$$

Let us fix n with $|n| \geq N$ (N as in Theorem 1.1). $\Pi_{D i r} \equiv \Pi_{n, D i r}$ denotes the Riesz projector

$$
\Pi_{D i r}:=\frac{1}{2 \pi i} \int_{|z-n \pi|=\frac{\pi}{2}}\left(z-L_{D i r}\right)^{-1} d z
$$

acting on $L^{2}\left([0,1] ; \mathbb{C}^{2}\right)$ (cf. Appendix A). Let $\Omega_{D i r}:=I d-\Pi_{D i r}$.
Notice that

$$
\text { Range } \Pi_{\text {Dir }}=\{a H \mid a \in \mathbb{C}\}
$$

where $H \in \operatorname{dom} L_{D i r}$ is an $L^{2}[0,1]$-normalized eigenfunction for the Dirichlet eigenvalue $\mu \equiv \mu_{n}$,

$$
L_{D i r} H=\mu H ;\|H\|=1
$$

Let $\chi \in \mathbb{C}$ with $|\chi| \leq 1$ defined by $\Pi_{D i r} G=\chi H$ where G is given by Proposition 4.2. We have

$$
G=\chi H+\Omega_{D i r} G
$$

As G and H are in $d o m L_{D i r}, \Omega_{D i r} G \in d o m L_{D i r}$ and

$$
\begin{equation*}
L_{D i r} G=\chi \mu H+L_{D i r} \Omega_{D i r} G=\chi \mu H+\Omega_{D i r} L_{D i r} \Omega_{D i r} G . \tag{4.4}
\end{equation*}
$$

Where for the last equality we have used, $\Pi_{D i r} L_{D i r} \Omega_{D i r} G=0$, as $L_{D i r}$ and $\Pi_{D i r}$ commute on $d o m L_{D i r}$ and $\Pi_{D i r} \Omega_{D i r}=0$.
On the other hand by (4.3),

$$
L G=\lambda G+R ; \quad R=-\beta \gamma \Phi+\beta \xi F
$$

and thus, with $G=\chi H+\Omega_{D i r} G$,

$$
\begin{equation*}
L_{D i r} G=\lambda \chi H+\lambda \Omega_{D i r} G+\left(\Pi_{D i r}+\Omega_{D i r}\right) R \tag{4.5}
\end{equation*}
$$

Comparing the decompositions of the right sides of (4.4) and (4.5) leads to the following

Lemma 4.3

$$
\begin{align*}
\chi(\mu-\lambda) H & =\Pi_{D i r} R ; \tag{4.6}\\
\left(L_{D i r}-\lambda\right)\left(\Omega_{D i r} G\right) & =\Omega_{D i r} R \tag{4.7}
\end{align*}
$$

where R is given by

$$
\begin{equation*}
R=-\beta \gamma \Phi+\beta \xi F \tag{4.8}
\end{equation*}
$$

4.3 Proof of Theorem 1.2

The equations (4.6) - (4.8) are now used to obtain estimates for $\mid \mu_{n}-$ $\lambda_{n}^{+} \mid(|n| \geq N)$. For this we need to establish that $|\chi| \leq 1$ is bounded away from 0 and that $\left\|\Pi_{D i r} R\right\|$ is small. The latter is easily seen as $\|R\| \leq|\gamma|+|\xi|$. To verify that $|\chi|$ is bounded away from 0 we show that $\Omega_{D i r} G=G-\chi G$ is small. This is proved by using equation (4.7).

Lemma 4.4 There exists $N \geq 1$ so that

$$
\left|\chi_{n}\right| \geq \frac{1}{2} \quad \forall|n| \geq N
$$

Proof As $G=\chi H+\Omega_{D i r} G$,

$$
|\chi|\|H\|=\|G\|-\left\|\Omega_{D i r} G\right\|=1-\left\|\Omega_{D i r} G\right\| .
$$

By Lemma 4.3 and Lemma A. 2 (for (4.9)), Proposition 3.2 (for (4.10)), and Theorem 1.1 (i) (for (4.11)) there exist $1 \leq N<\infty$ and $1 \leq C<\infty$ so that for $|n| \geq N$

$$
\begin{gather*}
\left\|\Omega_{D i r} G\right\|=\left\|\left(L_{D i r}-\lambda\right)^{-1}\left(\Omega_{D i r} R\right)\right\| \leq C\|R\| \leq C\left(\left|\xi_{n}\right|+\left|\gamma_{n}\right|\right) \tag{4.9}\\
\left|\xi_{n}\right| \leq \frac{C}{\langle n\rangle^{\delta}} \tag{4.10}\\
\left|\gamma_{n}\right| \leq \frac{C}{\langle n\rangle^{\delta}}, \tag{4.11}
\end{gather*}
$$

(where for the last two inequalities we used that w is a δ-weight). Combining the above inequalities shows that for $|n|$ large enough

$$
\left|\chi_{n}\right| \geq \frac{1}{2}
$$

Proof of Theorem 1.2 By (4.6),

$$
\left|\chi\|\mu-\lambda \mid\| H\|=\| \Pi_{D i r} R \| .\right.
$$

By Lemma 4.4 there exists $N \geq 1$ so that for $|n| \geq N$

$$
\left|\mu_{n}-\lambda_{n}^{+}\right| \leq 2 C\left(\left|\xi_{n}\right|+\left|\gamma_{n}\right|\right)
$$

where we have used that $\left\|\Pi_{D i r}\right\| \leq C$ (cf. Lemma A.2). The claimed estimate then follows from the estimates of ξ_{n} (Proposition 3.2) and of γ_{n} (Theorem 1.1 (i)).

A Appendix A: Spectral properties of $L\left(\psi_{1}, \psi_{2}\right)$

In this appendix we consider the operator $L\left(\psi_{1}, \psi_{2}\right)\left(\psi_{1}, \psi_{2} 1\right.$-periodic functions in $\left.L^{2}\left([0,2], \mathbb{C}^{2}\right)\right)$ with various boundary conditions. For $b c \in\left\{\right.$ Dir, Per $\left.{ }^{ \pm}, \operatorname{Per}\right\}$
denote by $L_{b c}$ the Zakharov-Shabat operator $L_{b c}=L\left(\psi_{1}, \psi_{2}\right)$ with the following domains:

$$
\begin{aligned}
\operatorname{dom} L_{\text {Dir }} & :=\left\{F \in H^{1}[0,1] \mid F_{1}(0)-F_{2}(0)=0 ; F_{1}(1)-F_{2}(1)=0\right\} ; \\
\operatorname{dom} L_{\text {Per}}+ & :=\left\{F \in H^{1}[0,1] \mid F(0)=F(1)\right\} ; \\
\operatorname{dom} L_{P e r^{-}} & :=\left\{F \in H^{1}[0,1] \mid F(0)=-F(1)\right\} .
\end{aligned}
$$

The operator $L \equiv L_{P e r}$ is defined on the interval $[0,2]$ and has the following domain,

$$
\operatorname{dom} L_{P e r}:=\left\{F \in H^{1}[0,2] \mid F(0)=F(2)\right\} .
$$

Let $\operatorname{spec}_{b c} \equiv \operatorname{spec}\left(L_{b c}\right)$ be the spectrum of $L_{b c}$. For potentials $\psi_{1}=\psi_{2} \equiv 0$, i.e. $L_{0}:=L(0,0)=i\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \frac{d}{d x}, \operatorname{spec}_{b c}\left(L_{0}\right)$ can be given explicitely:

$$
\begin{align*}
\operatorname{spec}_{\text {Dir }}\left(L_{0}\right) & =\{k \pi \mid k \in \mathbb{Z}\} ; \tag{A.1}\\
\operatorname{spec}_{\text {Per }}\left(L_{0}\right) & =\{2 k \pi \mid k \in \mathbb{Z}\} ; \tag{A.2}\\
\operatorname{spec}_{\text {Per }}\left(L_{0}\right) & =\{2(k+1) \pi \mid k \in \mathbb{Z}\} ; \tag{A.3}\\
\operatorname{spec}_{\text {Per }}\left(L_{0}\right) & =\{k \pi \mid k \in \mathbb{Z}\} . \tag{A.4}
\end{align*}
$$

Proposition A. 1 Let $\delta>0, M \geq 1$ and w be a δ-weight. There exists an even integer N such that for any 1-periodic functions ψ_{1} and ψ_{2} in $H^{w},\left\|\psi_{j}\right\|_{w} \leq M$, the following statements hold:
(i) for $b c \in\left\{D i r, P e r r^{ \pm}, P e r\right\}$,
$\operatorname{spec}_{b c} \subset\{\lambda \in \mathbb{C}| | \lambda \mid<N \pi-\pi / 2\} \cup\left(\bigcup_{|k| \geq N}\{\lambda \in \mathbb{C}| | \lambda-k \pi \mid<\pi / 2\}\right) ;$
(ii) for $|k| \geq N$, $\operatorname{spec}_{P e r} \cap\{\lambda \in \mathbb{C}| | \lambda-k \pi \mid<\pi / 2\}$ contains exactly one isolated pair of eigenvalues;
(iii) for $|k| \geq N$ and bc $:=\operatorname{Per}^{+}(k$ even $)$ and bc $:=\operatorname{Per}^{-}$(k odd), spec $_{b c} \cap\{\lambda \in \mathbb{C}| | \lambda-k \pi \mid<\pi / 2\}$ contains exactly one isolated pair of eigenvalues;
(iv) for $|k| \geq N$, spec $_{\text {Dir }} \cap\{\lambda \in \mathbb{C}| | \lambda-k \pi \mid<\pi / 2\}$ contains exactly one eigenvalue;
(v) the cardinality $N_{b c}$ of spec $_{b c} \cap\{\lambda \in \mathbb{C}| | \lambda \mid<N \pi-\pi / 2\}$ is equal to $4 N-2$ for $b c=\operatorname{Per}, 2 N-1$ for $b c=\operatorname{Dir}, 2 N-2$ for $b c=P e r^{+}$and $2 N$ for $b c=$ Per $^{-}$.

As $\operatorname{spec}_{P e r^{+}} \cup \operatorname{spec}_{P e r^{-}} \subseteq \operatorname{spec}_{P e r}$, Proposition A. 1 implies

$$
\operatorname{spec}_{P e r}=\operatorname{spec}_{P e r^{+}} \cup \operatorname{spec}_{P e r^{-}} .
$$

Proof Define for $n \geq 1$, the union of contours,

$$
\mathcal{R}_{n}=\{\lambda \in \mathbb{C}| | \lambda \mid=n \pi-\pi / 2\} \cup\left(\bigcup_{|k|>n}\{\lambda \in \mathbb{C}| | \lambda-k \pi \mid=\pi / 2\}\right)
$$

By (A.1) - (A.4), $\left(L_{0}-\lambda\right): \operatorname{dom}\left(L_{b c}\right) \rightarrow L^{2}$ is invertible for any $\lambda \in \mathcal{R}_{n}$, hence

$$
\begin{equation*}
(L-\lambda)=\left(L_{0}-\lambda\right)\left(I d+Q_{\lambda}\right) \tag{A.5}
\end{equation*}
$$

where

$$
Q_{\lambda}=\left(L_{0}-\lambda\right)^{-1}\left(\begin{array}{cc}
0 & \psi_{1} \\
\psi_{2} & 0
\end{array}\right)
$$

Using the orthogonal decomposition of L^{2} by the eigenfunctions of $\left(L_{0}\right)_{b c}$ and the assumption that w is a δ-weight, one gets (with $\mathcal{L} \equiv \mathcal{L}\left(L^{2}\right)$)

$$
\begin{equation*}
\left\|Q_{\lambda}\right\|_{\mathcal{L}} \leq M\left(\sum_{k \in \mathbb{Z}} \frac{1}{|k|^{2 \delta}|k \pi-\lambda|^{2}}\right)^{1 / 2} \tag{A.6}
\end{equation*}
$$

As $\max _{k \in \mathbb{Z}}\left(\frac{1}{|k|^{2 \delta}\langle k-n\rangle^{1 / 2}}\right)^{1 / 2} \leq \frac{1}{\langle n\rangle^{\delta \Lambda 1 / 4}}$, one deduces from (A.6) that, for $\lambda \in$ \mathcal{R}_{n},

$$
\begin{equation*}
\left\|Q_{\lambda}\right\|_{\mathcal{L}} \leq \frac{M}{\langle n\rangle^{\delta \wedge 1 / 4}}\left(\sum_{k \in \mathbb{Z}} \frac{1}{\langle k\rangle^{3 / 2}}\right)^{1 / 2} \tag{A.7}
\end{equation*}
$$

Let N be an even integer such that

$$
\frac{M}{\langle n\rangle^{\delta \wedge 1 / 4}}\left(\sum_{k \in \mathbb{Z}} \frac{1}{\langle k\rangle^{3 / 2}}\right)^{1 / 2} \leq 1 / 2
$$

Then, for $\lambda \in \mathcal{R}_{n}$ with $n \geq N$

$$
\begin{equation*}
\left\|Q_{\lambda}\right\|_{\mathcal{L}} \leq 1 / 2 \tag{A.8}
\end{equation*}
$$

Combining (A.5) and (A.8), one deduces that $(L-\lambda): \operatorname{dom}\left(L_{b c}\right) \rightarrow L^{2}$ is invertible for any $\lambda \in \mathcal{R}_{n}(n \geq N)$ and any 1-periodic functions ψ_{1}, ψ_{2} in H^{w} with $\left\|\psi_{j}\right\|_{w} \leq M$. In particular, $\mathcal{R}_{n}(n \geq N)$ is contained in the resolvent set of $L_{b c}\left(t \psi_{1}, t \psi_{2}\right)$ for any $0 \leq t \leq 1$. Hence the number of eigenvalues of $L_{b c}\left(t \psi_{1}, t \psi_{2}\right)$ in each connected component of the interior of \mathcal{R}_{n} stays the same for any $0 \leq t \leq 1$. To see that all eigenvalues are inside \mathcal{R}_{n} one chooses n bigger and bigger.

It follows from Proposition A. 1 that the Riesz projectors Π_{n} and $\Pi_{n, \text { Dir }}$ are well defined (for any $|n| \geq N$ and 1-periodic functions ψ_{1}, ψ_{2} with $\left\|\psi_{j}\right\|_{w} \leq$ M)

$$
\begin{aligned}
& \Pi_{n}:=\frac{1}{2 \pi i} \int_{|\lambda-n \pi|=\pi / 2}\left(z-L_{P e r^{+}}\right)^{-1} d z \quad(n \text { even },|n| \geq N) \\
& \Pi_{n}:=\frac{1}{2 \pi i} \int_{|\lambda-n \pi|=\pi / 2}\left(z-L_{P e r^{-}}\right)^{-1} d z \quad(n \text { odd },|n| \geq N)
\end{aligned}
$$

and

$$
\Pi_{n, \text { Dir }}:=\frac{1}{2 \pi i} \int_{|\lambda-n \pi|=\pi / 2}\left(z-L_{D i r}\right)^{-1} d z(|n| \geq N),
$$

where the contours $\{\lambda||\lambda-n \pi|=\pi / 2\}$ in the integrals above are counterclockwise oriented. Furthermore, using (A.5) and (A.8), one deduces

Lemma A. 2 Assume that the assumptions of Proposition A. 1 hold. Then there exists a constant $1 \leq C \leq \infty$ such that for any $|n| \geq N$ (with N as in Proposition A.1)

$$
\left\|\Pi_{n}\right\|_{\mathcal{L}\left(L^{2}[0,1]\right)} \leq C
$$

and

$$
\left\|\Pi_{n, D i r}\right\|_{\mathcal{L}\left(L^{2}[0,1]\right)} \leq C
$$

B Appendix B: Proof of Lemma 2.8

W.l.o.g. we may assume that $\delta_{*}=\delta$.
(i) As w_{*} is submultiplicative, one has

$$
\begin{equation*}
w(2 n)=\langle 2 n\rangle^{\delta} w_{*}(2 n) \leq 2^{\delta}\langle n\rangle^{\delta} w_{*}(n+k) w_{*}(k+j) w_{*}(j+n) \tag{B.1}
\end{equation*}
$$

and, by assumption, $\langle n\rangle^{\alpha} d_{n}(k) \leq d(k)(\forall k)$. This leads to

$$
\begin{align*}
& \langle n\rangle^{2 \delta+\alpha} w(2 n) \Psi_{n}\left(a, b, d_{n}\right)(2 n) \\
& \quad \leq\langle n\rangle^{2 \delta} w(2 n) \sum_{k} \frac{a(k+n)}{\langle k-n\rangle} \sum_{j} \frac{b(k+j)}{\langle j-n\rangle} d(j+n) \tag{B.2}\\
& \quad \leq \sum_{k, j} K_{n}(k, j) \tilde{a}(k+n) \tilde{b}(k, j) \tilde{d}(j+n)
\end{align*}
$$

where for any $u \in \ell_{w}^{2}$ we denote by \tilde{u} the ℓ^{2}-sequence $\tilde{u}(j):=w(j) u(j)$ and $K_{n}(k, j)$ is given by

$$
K_{n}(k, j):=\frac{2^{\delta}\langle n\rangle^{3 \delta}}{\langle k-n\rangle\langle j-n\rangle\langle k+n\rangle^{\delta}\langle k+j\rangle^{\delta}\langle j+n\rangle^{\delta}} .
$$

Notice that $K_{n}(k, j)$ is symmetric in k and j. To estimate $K_{n}(k, j)$ we need to consider four different regions:
Estimate of $K_{n}(k, j)$ in $|k-n|<\frac{|n|}{2},|j-n|<\frac{|n|}{2}$: In this case

$$
|k+n| \geq|n| ;|j+n| \geq|n| ;|k+j| \geq 2|n|-|k-n|-|j-n| \geq|n|
$$

hence

$$
K_{n}(k, j) \leq \frac{2^{\delta}}{\langle k-n\rangle\langle j-n\rangle} \leq \frac{1}{\langle k-n\rangle^{2}}+\frac{1}{\langle j-n\rangle^{2}}
$$

Estimate of $K_{n}(k, j)$ in $|k-n| \geq \frac{|n|}{2},|j-n|<\frac{|n|}{2}$: In this case

$$
|k-n| \geq \frac{|n|}{2} ;|j+n|>|n|
$$

hence

$$
K_{n}(k, j) \leq \frac{2^{\delta}}{\langle j-n\rangle\langle k+j\rangle^{\delta}}
$$

Estimate of $K_{n}(k, j)$ in $|k-n|<\frac{|n|}{2},|j-n| \geq \frac{|n|}{2}$: Using the symmetry of $K_{n}(k, j)$ in k and j, the latter estimate leads to

$$
K_{n}(k, j) \leq \frac{2^{\delta}}{\langle k-n\rangle\langle k+j\rangle^{\delta}}
$$

Estimate of $K_{n}(k, j)$ in $|k-n| \geq \frac{|n|}{2},|j-n| \geq \frac{|n|}{2}$: We get

$$
K_{n}(k, j) \leq \frac{16^{\delta}}{\langle k-n\rangle^{1-\delta}\langle k+j\rangle^{\delta}\langle j+n\rangle^{\delta}} .
$$

Combining the above estimates one obtains for $k, j, n \in \mathbb{Z}$,
$K_{n}(k, j) \leq \frac{1}{\langle k-n\rangle^{2}}+\frac{1}{\langle j-n\rangle^{2}}+\frac{2}{\langle k+j\rangle^{\delta}} \frac{1}{\langle k-n\rangle}+\frac{4}{\langle k-n\rangle^{1-\delta}\langle k+j\rangle^{\delta}\langle j+n\rangle^{\delta}}$.
Therefore

$$
\begin{align*}
& \sum_{k, j} K_{n}(k, j) \tilde{a}(k+n) \tilde{b}(k+j) \tilde{d}(j+n) \\
& \leq\left(\tilde{a} * \frac{1}{\langle k\rangle^{2}}(J \tilde{b} * \tilde{d})\right)(2 n)+\left(\tilde{d} * \frac{1}{\langle k\rangle^{2}}(J \tilde{b} * \tilde{a})\right)(2 n)+ \tag{B.3}\\
& +2\left(\tilde{a} * \frac{1}{\langle k\rangle}\left(\frac{J \tilde{b}}{\langle k\rangle^{\delta}} * \tilde{d}\right)\right)(2 n)+4\left(\tilde{a} * \frac{1}{\langle k\rangle^{1-\delta}}\left(\frac{J \tilde{b}}{\langle k\rangle^{\delta}} * \frac{\tilde{d}}{\langle k\rangle^{\delta}}\right)\right)
\end{align*}
$$

where for $u \in \ell^{2}(\mathbb{Z})$ and $\eta \geq 0, \frac{u}{\langle k\rangle^{\eta}}$ denotes the sequence given by $\left(\frac{u}{\langle k\rangle^{\eta}}\right)(j):=$ $\frac{u(j)}{\langle j\rangle^{\eta}}(\forall j)$. Using the standard convolution estimates $\|u * v\|_{\ell^{2}} \leq\|u\|_{\ell^{1}}\|v\|_{\ell^{2}}$ and $\|u * v\|_{\ell^{\infty}} \leq\|u\|_{\ell^{2}}\|v\|_{\ell^{2}}$ for the first two terms on the right side of (B.3), Corollary B. 2 (i) for the third term and Corollary B. 2 (ii) for the last term on the right side of (B.3), one obtains from (B.2)

$$
\sum_{n}\left(\langle n\rangle^{2 \delta+\alpha} w(2 n) \Psi_{n}\left(a, b, d_{n}\right)(2 n)\right)^{2} \leq C\|a\|_{w}\|b\|_{w}\|d\|_{w}
$$

for a constant $1 \leq C \leq C_{\delta}<\infty$ only depending on δ.
(ii) Using (B.1) and the assumption $\langle n\rangle^{\alpha} d_{n}(k) \leq d(k)(\forall k)$ we get

$$
\begin{aligned}
& \langle n\rangle^{\delta+\alpha} w(n+\ell) \Psi_{n}\left(a, b, d_{n}\right)(\ell+n) \leq \\
& \quad \leq\langle n\rangle^{\delta} w(n+\ell) \sum_{k, j} \frac{a(k+\ell)}{\langle k-n\rangle} \frac{b(k+j)}{\langle k-j\rangle} d(j+n) \\
& \quad \leq \sum_{k, j} H_{n}(\ell, k, j) \tilde{a}(k+\ell) \tilde{b}(k+j) \tilde{d}(j+n)
\end{aligned}
$$

where $H_{n}(\ell, k, j)$ is given by

$$
H_{n}(\ell, k, j):=\frac{\langle n\rangle^{\delta}\langle\ell+n\rangle^{\delta}}{\langle k-n\rangle\langle j-n\rangle\langle k+\ell\rangle^{\delta}\langle k+j\rangle^{\delta}\langle j+n\rangle^{\delta}} .
$$

To estimate $H_{n}(\ell, k, j)$ we need to consider two different regions:
Estimate of $H_{n}(\ell, k, j)$ in $|j-n|<\frac{|n|}{2}$: In this case

$$
|j+n|>|n| ;\langle\ell+n\rangle^{\delta} \leq\langle\ell+k\rangle^{\delta}\langle-k+n\rangle^{\delta},
$$

hence

$$
\begin{aligned}
H_{n}(\ell, k, j) & \leq \frac{1}{\langle k-n\rangle^{1-\delta}\langle j-n\rangle\langle k+j\rangle^{\delta}\langle j+n\rangle^{\delta}} \\
& \leq \frac{1}{\langle k-n\rangle^{1-\delta}\langle k+j\rangle^{\delta}\langle j+n\rangle^{\delta}} .
\end{aligned}
$$

Estimate of $H_{n}(\ell, k, j)$ in $|j-n|>\frac{|n|}{2}$: In this case

$$
2|j-n|>|n| ;\langle\ell+n\rangle^{\delta} \leq\langle\ell+k\rangle^{\delta}\langle-k+n\rangle^{\delta},
$$

hence

$$
\begin{aligned}
H_{n}(\ell, k, j) & \leq \frac{2^{\delta}}{\langle k-n\rangle^{1-\delta}\langle j-n\rangle^{1-\delta}\langle k+j\rangle^{\delta}\langle j+n\rangle^{\delta}} \\
& \leq \frac{2^{\delta}}{\langle k-n\rangle^{1-\delta}\langle k+j\rangle^{\delta}\langle j+n\rangle^{\delta}} .
\end{aligned}
$$

Hence in both cases we obtain the same estimate. Define $\tilde{e}(\ell+n) \equiv w(\ell+$ $n) e(\ell+n)$ by

$$
\tilde{e}(\ell+n):=\sum_{k, j}\left(\frac{1}{\langle k-n\rangle\langle j+n\rangle^{\delta}\langle k+j\rangle^{\delta}}\right) \tilde{a}(k+\ell) \tilde{b}(\ell+j) \tilde{d}(j+n) .
$$

Then we have

$$
\langle n\rangle^{\delta+\alpha} w(n+\ell) \Psi_{n}\left(a, b, d_{n}\right)(\ell+n) \leq w(\ell+n) e(\ell+n)
$$

and

$$
\tilde{e}(\ell)=\left(\tilde{a} * \frac{1}{\langle k\rangle^{1-\delta}}\left(\frac{J \tilde{b}}{\langle k\rangle^{\delta}} * \frac{\tilde{d}}{\langle k\rangle^{\delta}}\right)\right)(\ell) .
$$

By Corollary B. 2 (ii),

$$
\|\tilde{e}\|_{\ell^{2}} \leq C\|a\|_{w}\|b\|_{w}\|d\|_{w}
$$

for some constant $1 \leq C \equiv C_{\delta}<\infty$.
It remains to establish the auxilary results used in the proof of Lemma 2.8. First we need the following

Lemma B. 1 Let $0<\eta \leq 1$. Then
(i) $\left\|\frac{a}{\langle k\rangle^{\eta}}\right\|_{\ell^{p}} \leq C_{p, \eta}\|a\|_{\ell^{2}} \quad \forall a \in \ell^{2}$ and $p>\frac{2}{2 \eta+1}$
(ii) $\left\|\frac{a}{\langle k\rangle^{\eta}}\right\|_{\ell^{1}} \leq C_{q, \eta}\|a\|_{\ell^{q}} \quad \forall a \in \ell^{q}$ with $1 \leq q<\frac{1}{1-\eta}$.

Proof (i) follows from Hölder's inequality with $\alpha=\frac{2}{p}$ and $\beta=\frac{2}{2-p}$,

$$
\begin{aligned}
\left(\sum_{k}\left(\frac{a(k)}{\langle k\rangle^{\eta}}\right)^{p}\right)^{1 / p} & =\left(\sum_{k} a(k)^{p} \frac{1}{\langle k\rangle^{\eta p}}\right)^{1 / p} \\
& \leq\left(\sum_{\left.|a(k)|^{2}\right)^{1 / 2}\left(\sum_{k} \frac{1}{\langle k\rangle^{\eta p \beta}}\right)^{1 / \beta p}}\right.
\end{aligned}
$$

where $\eta p \beta=\eta p \frac{2}{2-p}>1$ or $2 \eta p>2-p$ as $(2 \eta+1) p>2$ by assumption.
(ii) follows from Hölder's inequality with $\alpha=q$ and $\frac{1}{\beta}=1-\frac{1}{q}=\frac{q-1}{q}$

$$
\sum_{k} \frac{|a(k)|}{\langle k\rangle^{\eta}} \leq\left(\sum_{k} a(k)^{q}\right)^{1 / q}\left(\sum_{k}\left(\frac{1}{\langle k\rangle^{\eta}}\right)^{\frac{q}{q-1}}\right)^{\frac{q-1}{q}}
$$

where $\eta \frac{q}{q-1}>1$ or $\eta q>q-1$ as $1>(1-\eta) q$ by assumption.

Recall Young's inequality

$$
\|u * v\|_{q} \leq C_{r, p, q}\|u\|_{p}\|v\|_{r}
$$

where $r, p, q \geq 1$ with $\frac{1}{p}+\frac{1}{r}=1+\frac{1}{q}$.
Corollary B. 2 Let $0<\delta \leq \frac{1}{2}$
(i) $\left\|\frac{1}{\langle k\rangle}\left(\frac{a}{\langle k\rangle^{\delta}} * b\right)\right\|_{\ell^{1}} \leq C_{\delta}\|a\|_{\ell^{2}}\|b\|_{\ell^{2}} \quad \forall a, b \in \ell^{2}$
(ii) $\left\|\frac{1}{\langle k\rangle^{1-\delta}}\left(\frac{a}{\langle k\rangle^{\delta}} * \frac{b}{\langle k\rangle^{\delta}}\right)\right\|_{\ell^{1}} \leq C_{\delta}\|a\|_{\ell^{2}}\|b\|_{\ell^{2}} \quad \forall a, b \in \ell^{2}$

Proof (i) Let $\frac{1}{p}:=\frac{1}{2}+\frac{\delta}{2}$ and $\frac{1}{q}:=\frac{\delta}{2}$. Then $\frac{1}{p}+\frac{1}{2}=1+\frac{\delta}{2}=1+\frac{1}{q}$ and hence by Young's inequality

$$
\left\|\frac{a}{\langle k\rangle^{\delta}} * b\right\|_{\ell^{q}} \leq C\left\|\frac{a}{\langle k\rangle^{\delta}}\right\|_{\ell^{p}}\|b\|_{\ell^{2}} .
$$

As $p=\frac{2}{1+\delta}>\frac{2}{1+2 \delta}$, Lemma B. 1 (i) can be applied,

$$
\left\|\frac{a}{\langle k\rangle^{\delta}}\right\|_{\ell^{p}} \leq C\|a\|_{\ell^{2}},
$$

and as $q=\frac{2}{\delta}<\infty$, Lemma B. 1 (ii) gives

$$
\left\|\frac{1}{\langle k\rangle}\left(\frac{a}{\langle k\rangle^{\delta}} * b\right)\right\|_{\ell^{1}} \leq C\|a\|_{\ell^{2}}\|b\|_{\ell^{2}}
$$

as claimed.
(ii) By Lemma B.1, for $\frac{1}{p}:=\frac{1}{2}+\frac{2 \delta}{3}\left(<\frac{1}{2}+\delta\right)$

$$
\left\|\frac{a}{\langle k\rangle^{\delta}}\right\|_{\ell^{p}} \leq C\|a\|_{\ell^{2}} .
$$

By Young's inequality with $2 \cdot \frac{1}{p}=1+\frac{1}{q}$ or $\frac{1}{q}=\frac{4 \delta}{3}<1$ (as $0<\delta \leq \frac{1}{2}$)

$$
\left\|\frac{a}{\langle k\rangle^{\delta}} * \frac{b}{\langle k\rangle^{\delta}}\right\|_{\ell a} \leq C\|a\|_{\ell^{2}}\|b\|_{\ell^{2}}
$$

By Lemma B. 1 (ii) with $\eta=1-\delta$ (hence $1 \leq q=\frac{3}{4 \delta}<\frac{1}{\delta}=\frac{1}{1-\eta}$)

$$
\left\|\frac{1}{\langle k\rangle^{1-\delta}}\left(\frac{a}{\langle k\rangle^{\delta}} * \frac{b}{\langle k\rangle^{\delta}}\right)\right\|_{\ell^{1}} \leq C\|a\|_{\ell^{2}}\|b\|_{\ell^{2}}
$$

where $1 \leq C \equiv C_{\delta}<\infty$ depends only on δ.

References

[AKNS] M.I. Ablowitz, D.I. Kaup, A.C. Newell, H.Segur: The inverse scattering transform - Fourier analysis for nonlinear problems. Stud. Appl. Math. 54 (1974), p. 249-315.
[FT] L.D. Faddeev, L.A. Takhtajan: Hamiltonian Methods in the Theory of solitons. Springer Verlag (1987).
[GG] B. Grébert, J.C. Guillot: Gaps of one dimensional periodic AKNS systems. Forum Math. 5 (1993), p. 459-504.
[Gre] B. Grébert: Problèmes spectraux inverses pour les systèmes AKNS sur la droite réelle. Thèse de l'Université de Paris-Nord, 1990.
[GK] B. Grébert, T. Kappeler: Gap estimates of the spectrum of the Zakhavov-Shabat system. Preprint (1997).
[GKM] B. Grébert, T. Kappeler, B. Mityagin: Gap estimates of the spectrum of the Zakhavov-Shabat system. Appl. Math. Lett. 11 (1998), p. 95-97.
[KM] T. Kappeler, B. Mityagin: Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator. Preprint.
[LS] B.M. Levitan, I.S. Sargsjan: Operators of Sturm-Liouville and Dirac. Nauka, Moscow, 1988.
[LM] Y. Li, D.W. McLaughlin: Morse and Melnikov functions for NLS PDE's. Com. Math. Phys. 162 (1994), p. 175-214.
[MA] Y.C. Ma, M.I. Ablowitz: The periodic cubic Schrödinger equation. Stud. Appl. Math. 65 (1981), p. 113-158.
[Ma] V.A. Marchenko: Sturm-Liouville operators and applications. Operator theory: Advances and Applications 22, Birkhäuser, 1986.
[Mis] T.V. Misyura: Properties of the spectra of periodic and antiperiodic boundary value problems generated by Dirac operators I, II. (In Russian), Teor. Funktsii Funktsii Anal. i. Prilozhen 30 (1978), p. $90-$ 101; 31 (1979), p. 102 - 109; and Finite-zone Dirac operators. (In Russian), Teor. Funktsii Funktsional Anal. i. Prilozhen 33 (1980), p. 107-111.
[ST] J.J. Sansuc, V. Tkachenko: Spectral properties of non-selfadjoint Hill's operators with smooth potentials. In A. Boutet de Monvel and V. Marčenko (eds.), Algebraic and geometric methods in mathematical physics, p. 371-385, Kluwer, 1996.
[Ta1] V. Tkachenko: Non-selfadjoint periodic Dirac operators. Preprint.
[Ta2] V. Tkachenko: Non-selfadjoint periodic Dirac operatos with finite band spectrum. Preprint.
[ZS] V. Zakharov, A. Shabat: A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering problem. Functional Anal. Appl. 8 (1974), p. 226-235.

