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A Note on Gaps of Hill's Equation

BENOIT GREBERT, THOMAS KAPPELER'& JURGEN POSCHEL

1 Results
We consider the differential operator
(12

L= ——
dx2

+q9, gqel?=L%SsLR)
on the interval0, 1] endowed with periodic or anti-periodic boundary conditions:

yO =y@, yO=y@

or
y0) =-y@), Yy ©=-y®.

The corresponding differential equation
-y +ay=2ay
is also known aslill's equation with potential g

It is well known that the spectrum df is pure point and consists of an un-
bounded sequence périodic eigenvalues

2o(@) < 21(Q) = A2(q) < A3(Q) =24(Q) < ... .
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2 Section 1: Results

Equality or inequality may occur in every place with4a'*sign, and one speaks of
thegaps(ion—1(Q), A2n(q)) of the potentialy and itsgap lengths

yn(@) = A2n(Q) — A2n-1(Q), n>1

If some gap length is zero, one speaks obHapsed gapotherwise of arpen gap

The purpose of this note is to give new, short proofs of two facts relating these
gap lengths to the regularity of the potentipl To formulate these results, denote
by H™ = H™M(S!) the Sobolev space aoh times weakly differentiable functions of
period 1. That s,

H™ = {ue L%S,R): ully < oo},

where|lu ||r2n = |0(0)|2+Zn#0 n2m |G(n) |2 is defined in terms of the discrete Fourier
transforma of u.

The following result was first proven by Manko & OstrowsKi[12], using in-
verse spectral theory. Their approach was later simplified by Garnett & Trubowitz [3]
and generalized in [7]. For a more elementary proof see also [4, 5].

Theorem 1.1 The gap lengths satisfy

Z nzmynz < 00

n>1
locally uniformly on H" for any m> 0.

In fact, Macenko & OstrowskKi[12] also prove the converse statement: if the
gaps of a given potential irl® are as above, then this potential isHi". For further
results in this directon see also [3, 7, 8].

The second result concerns the density of finite gap potentials, which are po-
tentials with only a finite number of open gaps.

Theorem 1.2 Finite gap potentials are dense in"Hfor any m> 0.

This result was conjectured by Novikov [14] (see also Lax [9]) and first proven
by Martenko & Ostrovskii [12]. See also [3, 7, 10, 11] and others, for example [13].
While these approaches use inverse spectral theory, our proof uses only asymptotic
properties of some spectral data. In this respect, the first proof sans inverse spectral
theory appeared in [1] for the case= 0.

We point out that Theorems 1.1 and 1.2 are used in the proof of the normal
form theorem for KdV in [6], asserting that KdV admits Birkhoff coordinates in any
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Sobolev spaceH™, m > 0. The casen = 0 of these two theorems is treated in
detail in [6], while the casen > 1 is quoted from other sources. With this note we
supply a proof for the case > 1 along the same lines as for = 0 — as it should
have appearedin [6] ...

The rest of this note is devoted to new proofs of these two results. Indeed, we
also show that Theorem 1.1 holds in some complex neighbourhobd"aofior each
m > 0, and that there is a similar result for quantities involving Dirichlet eigenvalues.

2 Some Background

Denote byy;, y» the fundamental solution ofy” + qy = Ay satisfying

yiO, 4, =1,  y200,2,9) =0,
Y104, @) =0,  y,(0. 2. q =1

The spectrum of the operator
d2

L=——
dx?

+q9, Qgel?

endowed with Dirichlet boundary conditions is called Diichlet spectrum of g
and coincides with the zero set of the entire functyeri, -, q). It is an unbounded
sequence dbirichlet eigenvalues

pa(@) < p2(q) < u3(@ < ... ,

which are all simple. With each eigenvalue one can associate a ubDigichlet
eigenfunction

¥
T R

Besides the.,, we also need to consider the quantities

kn(@) = log(=D)"y5(1, un(@), @), n=>1,

which measure the terminal velocities of the eigenfunctions.
The following facts are proven in [15]. We writ&, (n) for then-th term of a
generic sequence = (Xn)n>1 With

2" xnl? < oo,

n>1
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and£2(n) for Zg(n). Further,[q] = folq(x) dx denotes the mean value gf

Proposition 2.1 For each n> 1, uy and «, are real analytic functions on
L2 with L2-gradients

dun=0  Okn =an— [an]g3,
where @ = Y1Y2l,,- Moreover,

pn = n?7? 4+ [q] + £2(n), Kkn = £3(n),

and
1 in 27 1
dpn =1—cos2rtnx+ O — |, 8/{n:M+O =,
n 27N n2
1
(un) = 2xnsin 2rnx 4+ O(1), (dkn)’ = cos 2Tnx + O(n ,

locally uniformly on 12.

A similar result holds for the periodic eigenvalugs, and Ao,_1, when they
aresimple Only then they are analytic functions gfand admit unique normalized
eigenfunctionsfz, and fon_1. Let Dp = {Q: Aon—1(Q) = A2n(Q) }.

Proposition 2.2 For each n> 1, Ao, and Apn—1 are real analytic functions
on L2~ Dy with L2-gradients

dlop = f22n’ 0Aon_1 = f22n—l'

Moreover,
Aon, Aon_1 = N?m? + [q] + £2(n)

and

1
dAon = Sin2rn(X — Xn) + O(n)’
(dA2n) = 27N COS 2tN(X — Xn) + O(),

with some0 < xn < 2 locally uniformly on 12 < Dy,. The same holds witBn — 1
in place of2n.
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This result can be deduced from the preceding proposition by noting that

Aon(q) = pn(G)
for a properly shifted potentiady = q(- + t), wheret depends om. Then also

fon(-, @) = On(-, ).
In contrast to the eigenvalues themselves, the quantities

2 _ B 2 1
Yn = (Aon — A2n—1)%, Tn = 2()»2n + A2n-1)

are analytic functions ofy on all of L2. The following is proven in [6].

Proposition 2.3 For each n> 1, t, and y2 are real analytic functions on
L2, such that their B-gradients belong to H. In particular,

It =1+ o(i), (3t) = O(L)

locally uniformly on [2.
Actually, these three propositions hold on some complex neighbourhdofi of

independent of, with Dy, as above. See [15] for the, and«y,, and [6] for the other
quantities.

3 Basic Lemma and Proof of Theorem 1.1

We begin with a simple observation about the product of two solutions of the
equation—y” + qy = Ay for anyq in H1, real or complex.
1
Let (u,v) = f3 u(X)v(x)dx, and letD = d/dx. Further, let
HY'={ue H™: [u] =0}.

Basic Lemma Let f and g be two solutions efy” +qy = Ay with q e H1,
such that either fg is 1-periodic, or g vanishes0ednd 1. Then

2, (fg,h) = (fg,Ph)

for any he H} with P = —3D? + 29 + /I, where Ih= [y h(x) dx.
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Remark. The right hand side is understood in the weak sense:

1

(fg,Ph)y = = ((fg),h"y + (fg,2qh + g'Ih).

N

Of course, forh € Hg, the identity holds in the strong sense as well.

Proof. One verifies by direct calculation that for any two solutichandg
of —y” + qy = 1y one has

L(fg) = 2aD(fg),
whereL = —3D%+ qD + Dq. Hence,
22 fg=1L(fg) +c,
wherelu = fo u(x) dx. Pairing both sides of this equation withe Hol, we get
21 (fg.h) = (IL(fg).h),

as the termc,h) = c[h] vanishes.
We havelh|g = 0 andlh|; = [h] = 0 by the definition ofl . Integration by
parts thus leads to

(IL(fg),h) = —(L(fg).Ih)
1

((foh = (fgyh)| + (fg,Llih).
0

NI =

If fgis 1-periodic, thenthe boundary terms clearly vanish, sincetalsd.-periodic.
If, on the other handgy vanishes at 0 and 1, then

(fg/'h— (foh'|y = fg'hly = (fg' - F'ghlg,

The last term vanishes, too, sinédg’ — f’g is constant by the Wronskian identity.
Hence in either case,

(IL(fg),h) = (fg,LIh).

This is the claim, sinc& | = P. 1

As y;, is differentiable only when it does not vanish, it is convenient to intro-
duce
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dyn  Wheny, # 0,

Oyn =
A 0 otherwise

Then Theorem 1.1 is contained in the following statement.
Theorem 3.1 Let g€ H™ with m > 0. Then(i)
(Oyn,h) = €5, IIhllm

for h ¢ H™, and(ii)
yn = L5(N).

Both estimates hold locally uniformly in g in a complex neighbourhood ®Bf H

Proof. We first show that (ii) follows from (i) for eacim > 0. As the com-
plex neighbourhood oH™ may be described as a union of complex balls centered
in H™, we may connect any in this neighbourhood with the zero potential by a
path

G =a(®)Req+B(t)Img, O0<t=<1

wherea(t) = min(2t, 1) and8(t) = max(2t — 1, 0). By the analyticity ofy,> — see
Proposition 2.3 —we then have

s d
7E(Gs) = véa| = /A g @) dt
= Z/AVn(Qt) (Oyn(Gr), ) dt

S
= 2/0 Yn(Qt) (Oyn(Qr),G) dt,

where A = {t € [0, s]: yn(q;) # 0}. Hence, by the Schwarz inequality,

2 s s .
72| 54/0 |yn2<qt>|dtf0 |@yn(a). G012 dt
1
<4 sup |yn2<qt>|/ |(Dyn(ar),G) 1% dt.
O<t<1 0

Taking the supremum over€ s < 1 on the left hand side and cancelling terms,

1
@] = sup |2 <4 /0 |@yn(a), o) 2 .
<t<
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Now (ii) follows from (i), since the estimate of (i) holds uniformly in a neighbour-
hood of the pattg: by the compactness of theinterval and||6t |, < 219, for
O<t<l1l/2and¥2<t <1.

Now we prove (i). This is done by induction an, and we begin with the
induction step fom > 2. It suffices to considem > 1 such that Réon—1 > 0.

Leth € H™. Since[dyn] = 0, we havedyn, h) = (0yn, ho) for hg = h—T[h].
If v # 0, the Basic Lemma together with Proposition 2.2 then gives

(Oyn.h) = (3, — f3,_1.ho)
1 1
= Tz,]“;”’ Pho) — m(fzzn_rphO)

1 1 1
= TZn( 22n - fzznfl’Ph0>+ <2l2n - 2)»2n—1> <f22n71’Ph0>'

Hence,

1
(@yn.) = 5 (Byn. Pho) - ™ (12, Ph). (1)

2n 2honan-1
The last identity also holds whep, = 0, where fon_1 could beany normalized
eigenfunction form.o, = A2n—1. So this identity holds everywhere.

We havePhy € H™2 with ||Phg|l_2 = O(llhlly). By the induction hy-
potheses andy, ~ nZ we thus obtain

1

57 (97 Pho) = =25 _5() [Phollm—2 = €5 [l
n

for the first term. As to the second term, note that= O(n—m+2) by the induction
hypothesis and2, ; = O(1) to obtain

n

P E— f2 Ph = O n—m—2 Ph =£2 n h
zxzmn_l( an-1- Pho) = O( ) IPhollm—2 = €m0 Al

as well. This completes the induction step.

It remains to establish (i) fom = 0 andm = 1. Form = 0, this is a direct
consequence of Proposition 2.2. For= 1, we interpret (1) in the weak sense,
writing

1

1
= (9yn,Pho) = = by P — Poh
2)\.2n (6)/”’ O> 2 ((5Vn) s O> + <6Vn7( O) 0>a

and similary
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1
<f22n—1’ PhO) = 5 <(f22n—1)/’h6> +(f22n—1»(P - PO)hO)’

wherePy = Plg—o = —% D2. The claim then follows with the asymptotic formulas
of Proposition 2.2 fody, and f2,_; and their derivativesl

4 Further Auxiliary Results

In this section we use the approach of the previous section to give new, short
proofs of asymptotic estimates fof — un andk, and theirL2-gradients introduced
in section 2. Let

Cnh = COS 27NnX,

1
Sy = —— sin2znXx,
27n

and let(u,v) = folu(x)v(x) dx as before.

Proposition 4.1 Let g€ H™ with m > 0. Then(i)
(9en.) = (s0.h) + o<nml+2> Il
for h ¢ H™, and(ii)
kn = (S,Q) + O<nn}+2>

Both estimates hold locally uniformly in g in a complex neighbourhood ®Bf H

Proof. Again, (ii) follows from (i). Using the same path as in the proof of
the Basic Lemma, we have

1 1
kn(Q) = Kn(Qt)‘O = /O (0kn(Qr),Ge) dt

1
— (s.0) +/0 (Bren(G) — S, ) .

which gives the result.
To prove (i) by induction, let firsim > 2 andh € H™. It suffices to consider
n > 1 with u, > 0. As, by Proposition 2.1,

Okn = an — [an]gr%
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has mean value zer@j«n,h) = (d«xn,hg) for hg = h — [h]. The Basic Lemma and
the induction hypothesis then give

(dkn,h) = L (9Kn, Pho)
2/un

1
2in ({(sn,Pho) + O(n™™) | Phollm_2)

= —— (s, Pho) + O(n"™2) ||h|m.
2un 0 ( ) m

Moreover, withPy = P|g_o andup = unlg=o,

1 1 0 _
—— (s1.Pho) = = (s, Poho) + 20— F1

(sn, Poho)
24n 2ug 2uQn

1
+ o (Sn, (P — Po)hg).
Mn

The last two terms are again bounded(b(/n—m—z) lIh|l, by standard estimates for
Fourier coefficients, while

1

— (sn, Pohg) =

= h// — h
20 a2z (S = (s.h)

by integration by parts, the boundary terms vanishing by the periodicityrofThis
completes the induction step.

The claim form = 0 andm = 1 follows as in the proof of Theorem 3.1 from
the asymptotic formulas faéxy, in Proposition 2.11

Proposition 4.2 Let g€ H™ with m > 0. Then(i)

1
(d(tn — n),h) = (cq,h) + O<nm+1> hilm

for h ¢ H™M, and(ii)

1
Tn — pn = {(Cn,Q) + O<nm+1>

Both estimates hold locally uniformly in g in a complex neighbourhood Bf H
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Proof. Again, (ii) follows from (i) as in the previous proof. To prove (i) by
induction, we note that alsé&(t, — un) has mean value zero, whence

(0(tn — un),h) = (3(zn — 1n).ho)
for hg = h —[h]. If y5; # 0 andn is sufficiently large, the Basic Lemma then gives

1
(3(tn — pun),h) = 5 (dx2n + 0x2n—1,ho) — (dn,ho)

2n

1 1
== Y > (3m.Pho) — == (dun. Pho)
2m:2n—12)Lm Hn
1 Th— U
= = (3(tn — 1tn), Pho) — ——" (3 tn, Pho)
2Tn ZTnMn
2n - A
n— "2 m
dAm, Pho).
+ > 4r o (9%m. Pho)

m=2n—-1

If yn — 0, then the last sum vanishes, singe- Am — 0, while 9o, stays bounded
in L2. Hence the last identity also makes sense/fpt= 0, if the sum is understood
to be zero.

From this point on, one argues as in the previous proof, using

1
Tn — Un = O<nmz)

by the induction hypothesis and standard estimates of Fourier coefficients. The same
applies tor, — A2n and ty — A2n—1, Since a periodic eigenvalue coincides with the
corresponding Dirichlet eigenvalue of a properly shifted potenlial.

To summarize the results of this section, let
on 1= Tpn — Wn + 27i Nkp
ande, = e27inx,

Theorem 4.3 For each n> 1, Reapn and Imay, are real analytic on H",
with

1
op = <a’1’q> + O(nm+l>'

This estimate holds locally uniformly on a complex neighbourhood™®f H
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Remark. With the proofs of Theorems 3.1 and 4.3 we have given an elemen-
tary argument for Proposition B.9 in [6, p. 199], stating that

> 0 (jynl? + Itn — pal?) = O(1)

n>1

locally uniformly on a small complex neighbourhoodldf".

5 Proof of Theorem 1.2
It suffices to prove the density of finite gap potentials within the spaces
HY'={qe H™: [gq] =0}

of potentials of vanishing mean value, since adding a constant to a potential just
shifts the entire spectrum, leaving the gap lengths unchanged.

Rather than the gap lengths, however, we consider the quawntitiesroduced
above in view of the following simple observation.

Lemmab5.1 Forqin L% and any n> 1,

(@) =0 iff an(q) = 0.

Proof. Fix g andn. If y, = 0, thenun, = 1, and then-th Dirichlet eigen-
function gy is also a periodic or anti-periodic eigenfunction. But then

|y/2(17 Mn)| = 19

whence alsa, = 0, and thusyy = 0.

Conversely, ifay, = 0, thenkp, = 0 implies thatg, is a periodic or anti-
periodic eigenfunction, hencey, is also a periodic eigenvalue. Since in addition
un = Tn, the corresponding gap must be collapsed, whence 0. 1

Consider now the map
A: H(Sn — 4" g (oen(@))n>1,
where#™ is the Hilbert space of alomplexsequences = (vp)n>1 with

2 2 2
lvllZ =" n?™ vy |? < oo.

n>1
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By Proposition 4.3 and Theorem A.5 in [6] this map is analytic. By the previous
lemma,q is a finite gap potential, iff all but finitely many coordinatesAg) vanish.
To prove Theorem 1.2, however, it is rather more convenient to consider the
map
G=Aod: M- M

where
®: A™ > HY (Enn=1 > 2Re)  Ene?M

n>1

is the inverse of the restriction of the discrete Fourier transforiifb Since® is a
linear isomorphism it suffices to prove the following statement, which also contains
the statement made in Remark 2 in [6, p. 206].

Proposition 5.2 For £ in a dense subset @™, with m > 0, all but finitely
many coordinates of &) vanish.

Proof. In view of Proposition 4.3, the ma@ is real analytic when consid-
ered as a map
(Re&, Imé&) — (ReG(§), ImG(§)).

Itis of the form| + K, whereK maps#™ into a smaller spacé™’, 0 < o < 1/2.
It follows with Cauchy’s inequality that on some ball around any given poirt'Th
the Jacobian H is uniformly bounded as a linear m#®" — 4™+ . Consequently,

1
TnAK || < =
TN ||m_2

on the same ball for all sufficiently largd in the operator norm o#™, whereTy
denotes the projection onto a&kcepthe firstN coordinates i.™.

Now fix £° in ™M, and lete > 0 be so small that the preceding estimate holds
on the 4-ball B aroundg® for all sufficiently largeN. We may then fixN so large
that also

ITNGEY,, <&
Writing &€ = &N + ¢n With ¢y = Tné we then have
TNG(E) = TNGEN +¢N) = ¢N + TNKEN +2N)

with

=

e TwK |, < 2
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References

uniformly on B. The map

IN >IN+ TNKER +2N)

is thus a local diffeomorphism, and by the inverse function theorem the image of
the ball ||¢n|lm < 4e under this map covers a ball of radius @round Ty G(£°).
Consequently, in view of TNG(£°) [l < €, there existgS = &) + ¢3 with

6% =8%0m = 6% = 6kl < 4

such thatTy G(£%) = 0. Sinces > 0 can be chosen arbitrarily small, this proves the
claim. 1

Remark. The proof incidentally shows that there exists a finite gap potential

with any finite number of Fourier coefficients prescribed arbitrarily.
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