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The (cubic) nonlinear Schrédinger equation (NLS)
i) = 00 + 26ly*y

- K being a real parameter - is an evolution equation in one space dimen-
sion. This equation appears as a nonlinear perturbation of the Schrédinger
equation for the wave function of a free one dimensional particle of mass
m = 1/2 - whence the name. However its physical meaning goes far beyond
one-particle quantum mechanics.

Actually the NLS equation describes slowly varying wave envelopes in dis-
persive media and arises in various physical systems such as water waves,
plasma physics, solid-state physics and nonlinear optics. One of the most
successful applications of the NLS equation is their use for the description
of optical solitons in fibers (see for instance [New-Mol92], [Abl-Seg81], [FT],
or [Agr-Boy92] and references quoted therein).

The NLS equation was the second (after the KAV equation) evolution equa-
tion discovered to be integrable by the inverse scattering approach (cf [ZS]).
It turned out that it has the same degree of universality as the KdV equa-
tion, both from a mathematical and physical viewpoint. Actually, in many
technical respects, the NLS equation is simpler and maybe more fundamen-
tal than the KdV equation. For instance the Hamiltonian formalism for the
NLS equation is very simple and straightforward (see next section) while
the Poisson bracket in the Hamiltonian formalism for KdV is degenerate (cf
[Gard] or [KP]).

In this book we only consider the case where x = 1 (defocusing case)

104 = =% + 2|2

with periodic boundary conditions. Our aim is to provide a complete and
self-contained study of this evolution equation viewed as a Hamiltonian sys-
tems.

Hamiltonian formalism
The NLS equation can be written in Hamiltonian form

o _ oM

o~ 'op

with Hamiltonian H given by

H(e, 1) := / (05000, + V2 )da

St

where ?)—% denotes the L2-gradient of H considered as a smooth function of

 and 1. Since we are interested in spatially periodic solutions, we take as



the underlying phase space the Sobolev space HY = HN(S';C) of complex
valued function with period 1 with S* = R/Z and N > 1. For any N > 0),
HY is given by

HY(5%C) = {#)(m) = (k) | l¢lly < 00}

keZ

where

1/2
[l = (Z(l + \kI)ZNI’tZ?(k)V)

keZ

and (k) (k € Z) denote the Fourier coefficients of 1.
We endowed H™(S';C) with the standard Poisson bracket

b3y g [ (OFOG _OFOGN
{Pza}@“w)"ﬁél<8wai 0&8¢) !

where F, G are functionals on HY x HY of class C! with L2-gradient in L.
This makes HY x HY a Poisson manifold on which the NLS equation may
also be represented in the form

, OH

Yo ={H, ¥} =—i P
familiar from classical mechanics.
Notice that the above Hamiltonian H is defined only on H N with N > 1.
However the initial value problem for the NLS equation on the circle S! is
well posed on any Sobolev space H" with N > 0 and thus in particular on
L2(S%;C) (cf [B2)).
The NLS equation admits infinitely many conserved quantities, or integrals,
and there are many ways to construct such integrals (cf [FT], [MV]).
Following P. Lax [L], one obtains a complete set of integrals in a particular
elegant way by considering the spectrum of the associated Zakharov-Shabat
operator (cf [ZS]). For ¢ = (¢1,92) € L? = L?(S*;C?) consider the differ-

ential operator
(1 0)d 0 ¢
L(p) =1 <O _1> . —+ (Lpg o)

We will say that ¢ is of real type and write ¢ € L% if 9 = P1. In this case
L(p) is formally selfadjoint and unitarily equivalent to the AKNS operator
([AKNS]) given by

_. (0 -1\ d (-qp
LAKA&(‘P)-*7’<1 O)dm+<1’ Q)‘
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where p, g are real valued functions related to ¢ by
pr=—q+ip.

It is well known (see [GG]) or chapter I) that for ¢ € L%, the spectrum of
L(yp) considered on the interval [0,2] with periodic boundary conditions is
pure point and consists of an unbounded sequence of periodic eigenvalues

C<AT() SATL(0) < A (9) S A (9) < AT(9) AT (9) < ...

The intervals (A (¢), Af (¢)), possibly empty, are called the gaps of the
potential ¢ and
(@) = A (9) = A (9), keZ
are the gap lengths.
For o = ¢(t,-) € L%, depending also on t, define the corresponding operator

Then ¢, is a solution of the NLS equation if and only if

d
ZL=B.1]

where [B, L] = BL — LB denotes the commutator of L with

d? 2 il d
Bei ;Zier\Wl\z -5 201
ot 2L — g

It follows by an elementary calculation that the flow of

d

EV =BV, V(0)=1

defines a family of unitary operators V'(¢) such that V*(¢)L(¢)V (t) = L(0).
Consequently, the spectrum of L(t) is independent of ¢, and so the periodic
eigenvalues /\f = )\,:Tr(cp) are conserved quantities under the evolution of the
NLS equation. In other words, the flow of the NLS equation defines an
isospectral deformation on the space of all potentials in L%. From an ana-
lytical point of view, however, the periodic eigenvalues are not satisfactory
as integrals, as )\f is not a smooth function ¢ whenever the corresponding
gap collapses. But in section 1.6, we prove that the squared gap lengths

(), keZ

are real analytic on all of L%. Moreover, Grébert and Guillot [GG] showed
that the sequence of gaps lengths determine uniquely the periodic spectrum
of a potential in L%. Therefore, the sequence of squared gap lengths form



another set of integrals, which is smooth on L% and which is equivalent to
the data of the periodic spectrum.
The space L% decomposes into the isospectral sets

Iso(p) = {v € L%

spec(y) = spec(y) } ,

which are invariant under the NLS flow and may also be characterized as

Iso(p) = {v € L | m(¥) = n(p), k€ Z}.

As shown by Grébert and Guillot [GG] (see also chapter I) these are compact
connected tori whose dimension equals the number of positive gap lengths
and is infinite generically.

Moreover, as the asymptotic behavior of the gap lengths characterizes the
regularity of a potential of real type in the same way as its Fourier coefficients
do (see [GK1]), we have

¢ € HY <= Tso(p) C HY
for each N > 0 where
HEY = (HY x HN)n 1% = HY.

Hence also the phase space HY decomposes into a collection of tori of varying
dimension which are invariant under the NLS flow.

All the results about the spectral theory of Zakharov-Shabat operators
needed in this book are presented (and proved) in Chapter I.

Normal form and Birkhoff coordinates

In classical mechanics the existence of a foliation of the phase space into
Lagrangian invariant tori is tantamount, at least locally, to the existence of
action-angle coordinates. This is the content of the Liouville-Arnold-Jost
theorem. In an infinite dimensional setting as the one for the NLS equation,
however, the existence of such coordinates is far less clear as the dimension of
the foliation is nowhere locally constant. Invariant tori of infinite and finite
dimension each form dense subsets of the foliation. Nevertheless, action-
angle coordinates can be introduced globally as we describe now.

To describe the action-angle variables on H™ we introduce the model space
(N>0)

G (Z;R?) == {(,) = (@x, yr)rez | |2, y)llv < o0}
where

1/2
(@ )l = (Z(1+ \kI)QN(ariwLyi)) .

kEL
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The space Z?\,(Z; R?) is endowed with the Poisson structure, induced by the
canonical symplectic structure ZkeZ dzxy, A dyy.

The following theorem was first proven in a quite different form in [BBGK].
A similar version to the one we expand on here was first proven for KdV in
[KP] (cf also [BKM2], [KM]).

Theorem 0.1 There exists a family of diffeomorphisms ® = @) N >0
@ : 3(Z,R?) — HY (S, C)
with the following properties

(i) @ is globally one-to-one, onto, bi-analytic and preserves the Poisson
bracket.

(ii)  The coordinates (xy,yr)rez = ®~ (@) are global Birkhoff coordinates
for NLS. That is the transformed NLS Hamiltonian H o ® depends
only on the actions Ij, := %(:r% + 1/%) k € Z, with (xk, yx)kez, being the
(canonical) coordinates on (% (Z;R?).

(iii) For N > N’
o™ = (™|, .
3

Often it will be convenient to use complex notation

Tp 4 iye = /21 €% (k € 7).

The coordinates (Ij,0)) are referred to as action-angle coordinates. Note
that 0, € R/27Z is well defined whenever Ij, # 0.

In the coordinates (zx,yx)kez € £%(Z;R?) (with N > 1 in order H to be
defined) the NLS Hamiltonian M is a real analytic function of the actions
I = (I})kez alone and the NLS equation reads

M = wi(D)yk Kez
e = —wp(l)zp
where oH
wp(I) = oI,

are the NLS-frequencies which are real analytic functions of I.

It turns out that for 0 < N < 1, the frequencies wy(I) can be defined by
continuous extension although NLS Hamiltonian H itself is not defined.
Theorem 0.1 simultaneously applies to every real analytic Hamiltonian in the
Poisson algebra of any of the Hamiltonians which Poisson commute with all
action variables I, k € Z. In particular, (I,6) are action-angle coordinates
for every equation in the NLS hierarchy.
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Applications

The normal form of NLS stated in Theorem 0.1 gives rise to various appli-
cations. First it shows that every solution of the NLS equation is almost
periodic in time. Actually in action-angle coordinates, every solution is
given by
I(t) = 1% 6(t) = 6° + w(I%)t,

where (19,6°) corresponds to the initial data 1|;—¢ and w(1°) is the (infinite)
vector of frequencies associated with 7°. Hence in the model space every
solution winds around some underlying invariant torus

Tpo = {(z,y) € | 2} +yi =2I), keZ}.

If the number of non vanishing actions is finite, the torus is finite-dimensional
and the solution is quasi-periodic. In this case the solution can also be
represented in terms of Riemann theta functions (cf [BBEIM]). These quasi-
periodic solutions correspond to finite pap potential: Let A C Z be a finite
index set. We introduce the set of A-gap potentials

Ga={pc Lk |mlp) >0 ke A}.

Actually the set G4 is analytically diffeomorphic (via the canonical trans-
formation ® of Theorem 0.1) to

ha={(z,y) € |a}+yl >0 ke A}.
The normal form of NLS allows us to consider small perturbations of the
NLS equation:
Yy = —1i (é)H + 68K>
¢ oy op )
In [GK2] (see also [GK3]) we prove that many finite dimensional tori, in-
variant under NLS-flow, persist under small Hamiltonian perturbations. To

obtain this result we follow a procedure developed for the KdV equation in
[KP] and use a KAM theorem in infinite dimension due to Kuksin [Kul].

12
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In this chapter we present results about the spectral theory of Zakharov-
Shabat operators needed to construct and analyze the Birkhoff map. They
are elementary and, at least for potentials ¢ of real type, i.e. ¢ = (p1,%1),
well known (cf [G], [GG], [MV]). Throughout this section we use freely
techniques and arguments from [GG], [MV], and [PT].

For ¢ = (¢1,¢2) € LZ = L*([0,1], C?) denote by L(¢) the Zakharov-Shabat

operator
. 1 0 d 0 P1
o= 5) g (0 %)

Let M (-, \) = M (-, \; p) be the fundamental 2x 2 matrix solution of L(p)M =
AM, satisfying the initial condition M (0, ;@) = Idaxs for any X € C.

1.1 Basic estimates for M(z, \)

Making the ansatz M (z,\) = E(x, \)N(z,\) with E(z, A) given by

e 0
E(x,\) = ( 0 ei)wt)

one verifies that M satisfies the following integral equation (z > 0)

M(z,\) = E(z,\) + ‘ K(z,y, \)M(y, \)dy (I.1)
0

where K (2,y,\) = K(x,y, \; ) is given by

‘ 0 e AEW g (y)
Koy Ay =i <*@”(’”’y>¢z(y) 0 ) '

Formally, the solution of the above integral equation is given by the following
power series (z > 0)

M(z,A) =Y E®(x,\) (1.2)

k>0

where
EO(z,)) := B(z, )

and, for k > 0, E&+D (2, \) = EF+HD (2, \; ) is defined by

B4z, ) = / " K, 0 E® (5, \)dy
0

which leads to the formula (k > 1,z := z)

- k-1
0

T 1 -1
E®) (2, )) ;:/ d:vl/ d:xg.../ oy, [ [ K (25,2500, N E (g, M)
0 0 j=0
(1.3)
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From (I.3) one deduces (z > 0)

1B ) < e [

0<zp<..<mi1<zw

k
I llet@p)lldas . .. day.
j=1

Here ||A|| denotes the usual operator norm of a 2 x 2 matrix A = (Z ;),

ie.
Al = max (VIaP? + 5%, /Ief? + [dP)
and, similarly, ||o(z)|| = [[(¢1(2), 2(2))]| is given by

Therefore, for any x > 0,

P(@)|* = l1(2)]” + lpa(a) .

C mA|T 1 * ¥
159l < e L ([ otwlay)

and hence the sum 37, E®)(x, ) is absolutely convergent, uniformly on
bounded subsets of [0,1] x C x L2 and

M (@, X Q)| < exp(HmAl + lellz2) (0<z<1) (1.4)

1/2
where [lglz2 == (fy lp(@)|?dz) "

Lemma I.1 (1) For any 0 < xy < 1,M(zo,-,-) is an analytic map on
C x Lé, depending continuously on .

(2) M is a weakly continuous map on [0,1] x C x L% .

Proof (1) Using induction, one shows that E(k)<ll'(], -;+) is an analytic map
on C x L%, depending continuously on zy. Hence the claimed statement is
a consequence of the uniform convergence of 3,50 E® (z, A; ) on bounded
subsets of [0,1] x C x L. -

(2) In view of the uniform convergence of 3,0 E® (z, \; ), it suffices to
prove that for each k > 0, the map ¢ — E®(z, ), ¢) is weakly continuous
in L2, uniformly for (z,)) in bounded subsets of [0,1] x C. We argue by
induction: clearly, for E©)(z,\,¢) = E(z,\) the above assertion holds as
it does not depend on ¢. Assume that it holds up to some k£ > 0. By
definition,

E® (g ) 0) = /”K(wyy,/\;w)E(k)(y, X;p)dy.
0

16 CHAPTER I. SPECTRAL THEORY OF ZS OPERATORS

Let (¢n)m>1 C L% converge weakly to ¢ € L2, ¢, — ¢. Clearly, for
the matrix valued function K, we have K(z,-,X\;¢,) — K(x,-, A;¢) uni-
formly for (z,)) in bounded subsets of [0,1] x C. By induction hypothesis,
limy, oo E®) (3, \; 0n) = E®) (y, A; ) uniformly for (y, A) in a bounded sub-
set of [0,1] x C, one deduces that

T

lim B (@, 0,) = [ K,y 0)E® (4, A )

n—oo 0
=E" V(X p)
uniformly for (z,A) in a bounded subset of [0,1] x C. W
To obtain asymptotics for M(z, A, ¢) as |[A] — oo we need an auxilliary
lemma (cf [AG, Proposition A.1]). Denote by H} = H'(S';C?) the set of

elements ¢ = (1, p2) € L2 in the Sobolev space H!([0, 1]; C?) with periodic
boundary conditions, ¢(0) = (1), and by ||¢|| 51 the H'-norm,

. d .
2 2 2
Il = ol + 1l -l -
Lemma 1.2 Let <p0 € L%, ¢ > 0 and ro > 0 be given and assume that

©° € H{ satisfies ||¢° —¢[|a < e. Then for any ¢ € L% with |0 —¢°|la <o
and (x,\) € [0,1] x C\{0} one has

&
M) = Bla, )l < et (1 e 5y,

Proof As ¢° € Hé, one can integrate by parts to get

T 0 6—'1')\(1—21./) 5(, )
EM z, )\ 0° :i/ < o) e 4ply)d
(AT =1 [\ ceire25(y) 0 Y

_1( 0 TP (y)
22 \ 25 (y) 0 v=0

_L/I . 0 e—iA(z—‘Zy)ay(pi(y) dy
21 Jo \erE=29,05(y) 0 -

In view of the Sobolev inequality [l¢(z)| < [l¢|| g1 we then obtain, for any
0<z<land\#0,

T

3 elfmal

xr
[ED (@, X @) < §TH¢£HHJ .

For ¢ € L% with || — ¢l 2 < ro we have (0 <2 < 1)

IED (@, X5 0) = ED (2, X 9°)| < (ro + e)el ™.
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Combining these two inequalities yields
3
I @)l < o+ 2+ gl el

Asfor k>2and 0 <z <1 (with zg :=z)

k—2

"z 71 rT_o
E(k)(z,)\;tp) :/ dxy / dxg.../ dwj_1 HK(zj,zj_H) E(l)(zk,/\;w).
0 0 0

=0

the above estimate leads to (0 <z < 1,A #0)

180 o < (ro e Ay e L ([ pottan)
LA =0 2N ) ° RV

(L5)
and hence, by (1.2)

&
1M (2 X ) — B, A < elfmNe+ el (m tet %) .

From Lemma 1.2 one obtains the following basic estimates of M (x, A; ¢) and
its derivative M (z,\;¢) ("= ﬁ)

Proposition 1.3 Let ¢ € L?C. Then, uniformly for 0 <z <1, as |\|] = oo
(i) M(xz, ;@) = E(x,\) + o(el™M®),
(ii) M(z,\; ) = E(z,\) + o(el™e),

Proof (i) By Lemma 1.2 with rg = 0, given § > 0 arbitrary, there exists
As > 0 such that

|M(z, X @) — Bz, \)| < del™MT vy > A5

To prove (ii), derive the integral equation (I.1) with respect to A,

M(z,\) = B(z,\) + /Jﬂ K (x,y, \)M (y, \)dy+

. 0 (L6)

+/ K(z,y, \) M (y, \)dy.
0

Using (i) and the identity

. 0 E*M(T*y)cp y
K(z,y,A) = (z—y) <e1)‘(”y)¢2(’l/) 0 )
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one sees that
[ e 0010y = [ BNy + ol )
0 0
Approximating ¢ by an element in H¢ up to € (cf Lemma 1.2) one sees that

T
[ e N Ny = ofel™).
0

Hence equation (1.6) is of the form

~ z .
M(z,\) =E(z,\) + [ K(x,y, \)M(y,\)dy
Jo

where

E(y,\) :== E(z,\) + /Uf K(x,y)M(y,\)dy

satisfies

E(y,\) = E(z,\) + o(eTm7).
Arguing as in the proof of Lemma 1.2 one concludes that

Mz, \) = E(z, A) + o)
and the claimed statement follows. W

We include in this section a result concerning the Wronskian identity for M.
Denote by W (M (z,\)) the Wronskian of M (z, \)

W (M (x,\)) = det M(x, \).
Lemma 1.4 For any ¢ € L2,A € C and z € R,
W(M(z,\) =1.
Proof Writing M (z) = M(z, A, ¢), one has

d dm®

r(2)
oW (M (@) = det(=_— (z)M@)(m))+det(M(1>(x)dJ;; (x)) (L7

where MM (z) and M® (z) denote the first respectively second column of
M. Rewriting LM ) = AM@ (j =1,2) one gets

s (§ ) - (3 5w

which, when substituted into (1.7) leads to %W(]\I(z)) =0, ie. W(M(z))
is independent of x. As M(0) = Idax2, we have W(M(0)) = 1 and the
claimed statement follows. l

Later on we will also use the notation W(F,G) for the Wronskian of two
functions F,G in L2,

W(F,G)(z) = F1(x)Ga(z) — F>o(z)G1(x). (I.8)
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1.2 Periodic spectrum

We denote by spec(p) the spectrum of the operator L(p) with domain
domper (L) := {F € H{ | F(1) = £F(0)}.

By Floquet theory spec(p) coincides with the spectrum of the operator L(y),
considered on [0,2] with periodic boundary conditions.

By the definition of M (z, \), any solution F of LF = AF satisfies F(1,\) =
M(1,A\)F(0,)). Hence A € spec(yp) iff 1 or —1 is an eigenvalue of M (1, \).
As det M(1,)A) =1 (cf Lemma L.4) it follows that spec(p) is the zero set of
the entire function A(), ¢)% — 4 where A(\) = A(), ) is the discriminant

A(N) = trM(1L,A) = Myy(1,0) + Mas(1, N). (1.9)

Lemma 1.2 can be used to locate the periodic eigenvalues of L(yp). For
¢ = 0, spec(p) consists of the eigenvalues k7w (k € Z), each eigenvalue
having multiplicity two. The discriminant A(X,0) is given by

A(X,0) =2cos A

hence A()\,0)2 —4 = 4(cos? A — 1) has indeed as zeroes the eigenvalues kr
(k € Z) of L(0). To locate the zeroes of A(\, )% — 4, we want to use
Rouché’s Theorem.

By Lemma 1.2, given any ¢° € L(Z:, there exist € > 0 and Ny > 0 so that
for any ¢ € L& with [|¢ — ¢°|]2 < e,A € C with [\| > Ny and 0 < z <
LM (2, A, 9) — Bz, \)|| < mellmAl,

As A\, ) =trM(1,\; ) and A(X,0) = 2cos A,

(AN )7 = 4) = (A, 0)* - 4)]
=|A(X ) —2cos A||A(X) + 2 cos A
<A, ) —2cos A (JA(X) — 2cos A| + 4] cos A|)

< 2M(1L A 9) — BN (20M(1 A 0) = BN + 4™

Together with A(X,0)2 — 4 = 4(cos? A — 1) = (2isin \)2, we then obtain
. 1
(A, @)% — 4) — (2isin \)?| < 162‘“”*\.

Notice that for A € C with [\ —n7| > & Vn € Z, one has elmAl < 4 sin A|
(cf [PT] Lemma 1, p. 27) and hence

(AN, )% —4) — (2isin \)?| < 4] sin A2 = |2isin A%,

By Rouché’s Theorem applied to the contours {\ € C | [A—nw| = 7/4} (|n| >
No+1) and {\ € C| |\ = Na+7/4} (N > Ny) we have proved the following
result due to [LM] (see also [GG])

20 CHAPTER I. SPECTRAL THEORY OF ZS OPERATORS

Proposition 1.5 Given any ¢ € L%, there ezist € > 0 and No > 0 so that
for any ¢ € LE with ||¢ — ¢°||2 < £, the following statements hold:

(1) For any |n| > No+1 the set spec(@)N{X € C| |\ —nz| < w/4} contains
precisely one isolated pair ', N, of eigenvalues (counted with multiplicity).
(ii) spec(@)\{NE | |n| = No + 1} is contained in {\ € C | |A| < Now + 5}
and its cardinality is 4No + 2 (with multiplicities).

For |n| > Ny + 1, the pairs of eigenvalues /\5 are ordered lexicographically,
Ay S A de
Re),,

.
n < ReX}
or

Re);, = Re)} and Im), < ImA}.

The 4Ny +2 eigenvalues of L(¢p)inside the disc {|\| < Nom+7/4} are denoted
by A (|n] < Np) so that they are in lexicographic order as well

Ane S A Ny S A hps S A v < SR S AR
By Proposition 1.5, we have
spec(y) = (A | n € Z)

and ..., A\, A, Aits )\:H., ... are ordered lexicographically.

As {\f, A\, } is an isolated pair of eigenvalues for |n| > Ny + 1, one then sees

n

by deforming ¢ to the zero element that
AN 9) =2(=1)" Vn| = No+1, (1.10)

ie. for [n| > No+1,\F are periodic (for n even) or antiperiodic (for n odd)
eigenvalues of L = L(¢), considered on dom e, (L).

Generically, formula (I.10) does not hold for |n| < Nj since the eigenvalues,
being ordered lexicographically, are not continuous with respect to ¢.
However if ¢ = (¢1,p2) is of real type, i.e. 2 = P71 (cf. section 1.4), the
eigenvalues A\ are real and continuous with respect to . Hence, in this
case (1.10) holds for any n € Z and we have A\, < \f <\, Vn€Z.

To express that a sequence (a,)nez in a Banach space (B, || -||) is in ¢2(Z, B)
it is convenient to write £°(n) for a, (n € 7Z).

Proposition 1.6 Locally uniformly in ¢ € L%,
(i) A (p) =nm+ £3(n)
(ii) M(z, XE(9);¢) = Bz, nm) + an(z) where (supocycy lan(@)), oy € £2-

To prove Proposition 1.6 we need the following auxilary result (cf. [AG,
Lemma A.1], [Ma] or [Mis]):
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Lemma 1.7 Let £ C (¥ and F C L*(S',C) be bounded subsets. Then
fy f(t)ei"(k'*f")‘df,)n € (2 uniformly in 0 < x < 1,(ep)nez € € and
ferF.

€%

Proof (Proposition 1.6) To prove (i) recall that, for A € spec(p), trM (1, X;¢) =
+2 and
trM(1, A 9) = trE(L A 0) + Y trE® (1, A ).
k>1

For X\ arbitrary, we have trE(1,\; ) = 2cos A and trE(l)(l,/\; ¢) = 0. To
estimate trE® (1, \F; ), notice that A\¥ = nx + 0(1) by Proposition 5.
Hence by Lemma 1.7, applied to

T rT]
E®(z,\F; ) :/ dzl/ dxa
0 0
. i (3—22 +2 N (221 422
diag (e AR 0 (21 ) g (w2), €7 2“*2“)991(12)@2(11))

with respect to the zs-integration and then to the z;-integration, one de-
duces that uniformly, for 0 < z < 1 and locally uniformly in ¢

EC (1, N5 0) =M (n) .

Arguing as in the proof of Lemma 1.2 (cf (I.5)), we conclude that

D> EW@ X0 = ()

k>2
uniformly for 0 < z <1 and locally uniformly in ¢. It follows that
trM (1,255 ) = 2cos AE + £2(n).
Use that trM (1, \F; ¢) € {+2, -2} and
cos AE = cos(nm + (AF — nr)) = (—=1)" cos(\E — nr)
to conclude that cos(\f —nm) = 1+ (n). Hence \f —nm = o(1) as |n| — oo
locally uniformly in ¢ and in view of the expansion cosz = 1— g(l +0(2?))
it then follows that (\f —nm)? = £1(n), i.e. locally uniformly in ¢
A =nr+2(n)

which shows statement (i).
Similarly, one proves that

0 e W) (4))
BV =i [ 7)) 4
(@ Xs9) =1 | N E2) gy ) 0 y
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satisfies, uniformly in 0 < z <1 and locally uniformly in ¢,
ED (2, 0550) = (n).
Again arguing as in the proof of Lemma 1.2 it then follows that
M(z, )55 0) = B(z, A5) + 2(n).

By (i), we have E(x,A\Y) = E(z,nr) + £}(n) uniformly in 0 < 2 < 1 and
locally uniformly in ¢. Hence statement (ii) is proved as well. B

1.3 Dirichlet spectrum

In this section we consider the operator L(¢) with Dirichlet boundary con-
ditions.

Definition 1.8 A function F = (Fy, Fy) € H'([0,1],C?) satisfies Dirichlet
boundary conditions if

F1(0) = F»(0) 5 F1(1) = F»(1) (L11)

When expressed in F' = (Fl, FZ) with

- 1 = 1
F = m(ﬂ +Fy); Fyi= E(FZ - ") (1.12)
the Dirichlet conditions (I.11) take the more familiar form

F(0)=0; F(1) =0.

the transformation (I.12) is related to the AK NS operator L axns(p) given

by
0 -1\ d —
Laxns(e) = (1 0 ) dz + ( pq 2)

p1=—q+1ip; p2=—q—1ip.

with

in the following way: if F is a solution of LF = AF then F is a solution of
LaxnsF = AF, ie. Lakns(¢) and L(p) are unitarily equivalent.

It follows from the definition of the fundamental matrix M (z) = M (x, \; @)
that the vector function G(z) = G(z, \; ) given by

_(Myy(z) + Mia(x)
Gla) = (M;(w) + M;z(w)>

satisfies L(¢)G = AG and G1(0) — G2(0) = 0.
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Hence the Dirichlet spectrum specpi(¢), consisting of all A\ € C for which
there exists a solution F' € H'([0,1],C?) of the equation, LF = AF, satis-
fying the Dirichlet boundary conditions (I.11), is the zero set of

3(N) = 3(N, @) == (M1 + Mz — My = M) | . w13)
By Proposition 1.3, we have
0(N\) = —2isin A+ o (6\Im,\\) )

Arguing as in the proof of Proposition 1.5 one concludes that the zero set
of 6(X) consists of a sequence (fin)nez With the asymptotics |pn, —nr| < 7,
when listed in such a way that they are ordered lexicographically, i.e. for
any n € 7,

Repiy, < Repiny1 or Rep, = Rejinq and Imypiy, < Imjpipgq.
Following the proof of Proposition 1.6 one shows
Proposition 1.9 Locally uniformly on L%,
(@) = nm + £%(n) (L.14)
M (@, () ) = B, nm) + an(a) (115)
where (SUPogzgl [l (:L‘)||)nEZ € 2.

As a consequence, we have for the eigenfunction G, (z) := G(z, i), corre-
sponding to the Dirichlet eigenvalue p,,, the asymptotic behaviour

Gn(z) = (e7M™ &™) 1 (2(n). (1.16)

To obtain a convenient formula for the eigenfunctions of L(y) correspond-
ing to simple periodic eigenvalues we need to consider additional boundary
conditions for L(y).

Definition 1.10 A function F = (Fy, Fy) in H'([0,1],C?) satisfies the sec-
ond Dirichlet boundary conditions if

Fi(0) = —Fy(0); Fi(1) = —Fy(1). (L.17)

When expressed with respect to the function F = (F}, %) defined in (I.12),
the boundary conditions (I.17) take the more familiar form

F1(0) =0; F1(1)=0.

Notice that the vector function Gi(z) = G(z, A, @) given by MW (z) —
M@ (z), ie.

G(z) = (M1 (z) — Mi2(z), Ma1 (z) — Maa(z))
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satisfies L(p)G' = MG and

1(0) + G5(0) = 0. Hence the second Dirichlet
spectrum is the zero set of (G )|

+ éz 1 i.e. of
5(A) = 6\, @) == (M1 — Myg + Moy — Myy) | LA (1.18)

Arguing as for §()\) one concludes that the zero set of 5(A) consists of a se-
quence (fin)nez With asymptotics |ji, — nw| < m/4 listed in such a way that
they are ordered lexicographically and one obtains an analogue of Proposi-
tion 1.9. As a consequence we have for the eigenfunction Gn corresponding
t0 fin, G‘n(w) = va'(ac,un) the asymptotics

Gn(x) = (7™, —e™™) + (n). (1.19)

1.4 Spectrum for potentials of real type

We say that a potential ¢ = (¢1, @2) is of real type if both ¢ := —(¢1+¢2)/2
and p := (¢1 — ¢2)/2i are real valued, i.e. g2 = p1. We denote by L% the
space of potentials of real type

Ly = {(p1,92) € L2 | T2 = o1 }.

For a potential ¢ of real type, L(¢) and Laxns(¢p) are formally selfadjoint.
One verifies that Lype,, i.e. the operator L considered on [0, 2] with periodic
boundary conditions, and L p;y, i.e. the operator L considered on [0, 1] with
Dirichlet boundary conditions (cf Definition 1.8), are both selfadjoint, hence
the periodic and Dirichlet spectrum are real. Moreover, when restricted
to potentials of real type the eigenvalues )\ki,(ga) are continuous in ¢. By
deforming the zero potential (0,0) continuously to ¢, it then follows that
AN) =2(-1)% and, in particular,

Mo SN <A, YReZ. (I.20)

For ¢ of real type, L(p) has an additional symmetry property. Given a

vector F' = (F1, F) and a 2 X 2 matrix A = (Zl Zz>, let
3 4

A* = ("'3 ”’4> D Ft = (Fy, F).

ap az

One verifies that the fundamental matrix solution satisfies

LM*(z,\) = X M*(z,\) .
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As M*(0,\) = (0 1) one then gets (k =1,2)

10
My (2, X) = Mia (@, ) ; M@, ) = My (z, X).

In particular, for A\ real ,
My (x, \) = Mag(x,\) 5 Mia(z,\) = May (2, \). (1.21)

As 6(ur) = 0 we have (My; — JVIQQ)}LM = (My — A/[m)‘l-wc and by the
Wronskian identity, AIUZ\QQ{“\ =1+ ]ﬂlgﬂbl‘l)\ (cf Lemma I.4). One
then obtains with A(ug) = (M1 + ]V[zg)‘l_w

Alp)? = (Mg — Mo)?
= (Ma1 — Mi2)?||
=4+ (M + Moy)?

+4Manz\1M
+ 4+ 4Mq9 Moy |1‘}1k

|1~ﬂk

|1,#k'

By (1.21), (M2 + Mﬂ)‘l#k is real, hence A(u;)? > 4. This shows that for
any k there exists nj € Z with A\;7 < pp, < )\ZY. By deforming the zero
potential continuously to ¢ and using that /\,f, i are continuous in ¢ it
follows that nj = k, i.e.

Ay S <N VEEZ. (1.22)

Notice that (I.20) together with (I.22) implies that the Dirichlet eigenvalues
are all simple and it then follows that 1(¢) is real analytic in ¢, p with ¢,p
given by ¢ = (¢1,¢2) = (—q +1ip, —q — ip).

Finally we present two auxilary results needed later. Note that the second
one provides another proof of the simplicity of all Dirichlet eigenvalues.
Recall that we have introduced

G(z,\) = G(z, A @) == (M1 (x, ) + Mia(x, N), My (2, X) + Maa(z, ).
Lemma I.11 Let p € L%z and A € R. Then
Gala, \) = Gi(w, N (1.23)
and
GG M7z = 6\ (Mix + Mio)|, , — (A (M + Ms)] .
In particular, for A = py. (k € Z)
IGLOI? = () My + Mio)|

where Gi(+) = G(-, k) -

26 CHAPTER I. SPECTRAL THEORY OF ZS OPERATORS

Proof Formula (I.23) is a consequence of (I.21). To prove the claimed
formula for ||G(-,\)||? consider first the case where ¢ is continuous. Then
M (x, \) is continuously differentiable in x. Differentiating LG = AG with
respect to A yields (- = ﬁ .
LG =G+ )G
and, taking the L2-inner product with G, one gets
G2 = (LG, G) — A(G, G).
On the other hand, taking the inner product of LG = AG with G leads to
(G, LG) = MG, G).
Substituting this identity into the former one one gets
IGl7= = (LG, G) - (G, LG)
1
—i / (CL T — ChTr + C1 T — CoTl)
0
1
=i (6162 - 661 + a6y - Ga)

0
where for the last identity we used (I.23). Hence with W(@&,G) denoting
the Wronskian of G and G,

IGI. 71/ LW, G
=iW(G,G)(1,))
= i{ (M1 + Mr2)(Ma1 + Maz) — (M1 + Maz)(Myy + M)},
= i{d(\) (M + Mm)|LA — 86(\) (M + Mlz)h,A}-

As both sides of the last identity are continuous with respect to ¢ € L%,
this identity holds for ¢ € L% as well. B

1.5 Spectral properties of potentials near L%
For potentials ¢ near L2, the regularity properties and the asymptotics

estimates of the periodic eigenvalues (cf Proposition 1.6) can be improved.
To be more precise we write the eigenvalues A\ () in the form

X () = Talp) £ m(9)/2
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where 7,(p) is the arithmetic mean of A} and A,

1 _
a(p) = 5 (An (@) + A (9))
and v, () is the difference,

() = A5 (9) = As ()

The asymptotics of 7,(p) = nm 4 £2(n) obtained from Proposition 1.6 can
be improved as well as the regularity properties of 7, and (7).

First we improve on the localization of the eigenvalues ;¥ (i) for ¢ near L%A
Recall that for g € L% (i.e. 2 = 71) the periodic eigenvalues A = X\ (¢p)
are all real and satisfy

LA SN A G SAL < (nel).

Together with the asymptotics A (pg) = nm + £3(n) (cf Proposition 1.6) it
then follows that min,ez(X, 1 (20) — A (o)) > 0. Set

1 . _ T
K = 2 min{A (o) — M (o), 5 [ m € 2 (1.24)

For any n € Z, denote by T, the counterclockwise oriented circle in C with
center 7,(po) and radius 37, (o) +2K. Note that the circles I';, are pairwise
disjoint. By Proposition 1.6, A (¢) = A\E(¢pg) + €2(n) uniformly for ¢ € L?
close to o. Thus there exist N > 1 and a neighborhood V' =V, C L? of
o so that for any ¢ € V

sup P‘f(ﬁ) — Tulpo)| < K.
|n|>N

As A(X, @) is continuous in ¢ and A and
SIAIP{\A()\A,SOO)\ [ 1A = 7al90)] = m(p0)/2 + K} > 0
there exists a neighborhood Véo C V of o in L? so that for any ¢ €
Vigs =N <n < N and A € C with |X — 7,(0)| = 1m(v0)/2 + K
[A ) = AN po)| < [A(A, po)l/2-

As A(X, ) is analytic in A it follows then from Rouché’s theorem and the
lexicographic ordering of ()\f (¢))kez that for ¢ € V), and =N <n < N,

N5 () = Tul0)] < Yn(p0)/2 + K.

The open set
we= J V, (1.25)
poELZ

is then a neighborhood of L% in L?. We have proved the following
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Lemma 1.12 For any ¢ in W and n € Z,
.. < Re(A; (9)) < Re(N;(9)) < Relhy s (9)) < ...

and
ReX, 1(v) — ReXf(p) > 3K.

Due to the lexicographic ordering, the eigenvalues A} (p) are not continu-
ous. However, we will prove that, for any n € Z, 7,(¢) and (v,(¢))? are
analytic functions on W. First we need to introduce some more notation.

By Proposition 1.6, there exists N > 1 locally uniformly on W so that
[\f —nr| <7/4 Vn| > N. (1.26)

For |n| > N, denote by S,(p) the counterclockwise oriented circle with
center n and radius 7/2 whereas for [n| < N, S, = Sy(p) is defined to be
the circle I';, = T, (). For any n € Z, the Riesz projectors P, = P,(p) are
then well defined,

L _ -1
n =g o (A=L(p))" " dx
1
0._ B 1
P imp /M =L

The Riesz space E,, = E,(¢) corresponding to P, is defined as the range of
an
E, := P,(L*?); ES = P(L?).

Both, E,, and EY are two dimensional subspaces of L? and P, as well as
L(p) P, are bounded operators on L? of finite rank depending analytically
on ¢. Their traces can be computed to be, writing L = L(yp),

trP, =2; trLP, = \} + X\, = 27,.
As trP? = 2 and trL(0)P? = 2n7 we then conclude that
27, — 2nm = Tr(LP,) — Tr (L(0)PY)
=Tr ((L—nm)P,) — Tr ((L(0) — nm) PY)
= TrQn
where Q, = Qn(p) is given by
Qn == (L — nm)Py — (L(0) — n7) PY.
Substituting the formulas for P, and P? into @,, one obtains for |n| > N

1
T 2mi

Q=g [ =) (A= D)7 = A= 20) )
Sn



15. SPECTRAL PROPERTIES OF POTENTIALS NEAR L% 29

Writing L = L(p) = L(0) + B with B = B(p) = (;] %‘g> one has
2

A=D1 =A=LO) "+ A =L 'BA- L)
Iterating the latter formula, and substituting into the formula for @,,, one
gets for any integer N > 1

N

Qn=>_QW + QN+

k=1

where for any k > 1,
( —nm)(A— - — "
Q= o [ =m0 = 1) B - L)y

and

1
27r7

QW (A —nm)(A = L)"YB( — L(0)) *d. (1.27)
Sn

The sequence €}, e, (k € Z), defined by
1 1
V2 V2

is an orthonormal basis of L*([0,2], C?) of eigenfunctions for L(0) where i
are associated with the eigenvalue /\; = A, = km of L(0). When expressed
with respect to this basis, (A — L(0)) ™! is a diagonal operator,

ef (2) = —=(0,1)e"™ ; ¢ (2) == —=(1,0)e ™

1

D = i Z).
(A-D)! ek ppyLy (kez)
Using the Fourier decomposition of ¢; and g9,
_ Z @j(k)eikwx
kez
one gets for k € Z,
b1(= -
BA—LO0) e = o ——= . kﬁ € (1.28)
JEL
and 5ok + )
_ palk +J
BA—L(0)lep =Y 22T ot 1.29
O -2y - L5 (1.29)

In particular one deduces that for any k € Z,

QR g
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Hence one obtains

Talp) —nm = % (tr‘Q(nQ) + trQ(n4)) . (1.30)
The trace tnglz) can be explicitly computed. As

1 : P1(=k — )2 +0)
Q(Z)ek = ﬁ/“g”(/\f rwr)[zj D=k — ) (n 7[‘”)%1

one obtains

( 2 b A\al(a A—nm
QYY) = ZMkZm( k J)W(]Jrk)/v o ™

J ) " (L31)
=2 an -l + )
T 4 n—
J#n

Proposition 1.13 The map ¢ — (7,(p) — n7)nez is analytic on W with
values in P for any 1 < p.

Remark For potentials ¢ with more regularity, 7,(p) has an asvmptotic ex-
pansion of the form 7,, = nw+ =22 Hl(“?) +0 (%) where H1(p fo e1(x)pa(z)de
(cf Lemma 1.22).

Proof As 1) — 1 = 1rQu() and Qu(p) = (L(9) — nm)P, — (L(0) —
nm)PY is analytic on W with values in the space of operators of finite rank
on L?([0,2],C?), 7, (¢) is analytic on W for any n € Z. Hence it suffices to
prove that (7,,(¢) — nm)nez € P locally uniformly on W. Our starting point
is formula (I.30),

1 o 1 <
Tn(p) — nw = 5”@53) + 5"@51,4)-
In view of (I.31), introduce

b(k) =|e1(=k)e2(k)| (k € Z)
u(k) :=1/|k| (k #0); u(0) =0

to obtain the estimate
[trQ® |< (b*u)(?n,)

where b * u denotes the convolution of the two sequences b and u,

(b*u)(n) an— u(k

kEL
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As (b(k))rez € £* locally uniformly on W and (u(k))rez € €7 for any p > 1,
we conclude by Young’s inequality that b+ u € ¢P.

By Lemma I1.14 below we have (HQ(T?)HL(U)) 5 € P locally uniformly
ne.

on W for any p > 1. As the range of stfl) is at most of dimension 4,
we conclude that \trQ(4)\ < 4)|Q4 [lz(z2)- This proves that for any p >
1, (Tn(p) — nm)nez € €F locally un1f01mly onW. H

Lemma 1.14 For any p > 1, (HQS})”L(L?)) . € (P locally uniformly on
ne
w.

Proof For any |n| > N, (cf. (1.26)), the circle S, is given by [A\—nz| = § and
supyes, (A = L)7H|z(z2) is locally uniformly bounded. Hence for [n| > N,
locally unlformly on W,

1Rl (r2) < C;:bp B = L(0) 7' B\ = L(0) 121,
As (cf (1.28) - (1.29))

B(A— L(0)"'B(A — L(0)) e} 72%5

(A= km)(X = jm)
1 Pa(k+j)p1(—=j—14) _
B(A—L(0))"'B(A - L(0 Zme[

one has

_ _ a(k + j)a(j + €
180 10) B~ 1) sy <250 | G
where (k) = |k| 4+ 1 and
a(k) == max(|@1(—k)|, [2(k)]).
By the Cauchy-Schwartz inequality one has for any € > 0,
IBO = L(0) 7' B\ = L(0)) |22y <
a(7 + é)l a(k +5)°
D e
J

—n)2(j —n)

Introduce r(k) := (k)~! (k € Z) and for any sequence (u(k))rez of nonneg-
ative numbers denote by u® the sequence (u(k)*)rez (o > 0). Hence, for
A€ Sy,

IBOV= L)' BO = LO0) M) < 2lallee [l (2 5 a® 5 7175)(2n).
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Given any 1 < p, choose € > 0 so that p(1 —¢) > 1. Asr? € ¢} rl=c c (P
and a? € ¢! (locally uniformly on W) one concludes by Young’s inequality
that ((r?xa? « 7!~ 5)(71))nEZ € 7 (locally uniformly on W). Hence

(300 180 - L) BO- LO) MHgn) e
AES [n[=N

locally uniformly on W. As supycg, [|B(A — L(0)) "' B(A — L(0))~
bounded for any |n| < N, the claimed statement follows. W

1”Z£(L2) is

The next result concerns the sequence (v, (¢)?)nez. For ¢ € W, the operator
2(L —71,1d)? P, has range E, and its eigenvalues are 2(\F —7,,)? = 42 (with
multiplicity two) and 0. Hence

tT(2(L - T?LId)QPn) = ’7;{'
As P, and 7, (cf Proposition 1.13) are analytic on W, the map
W — L(L?),¢ — (L = 7,1d)* P,

and thus ¢ — tr(L — 7,Id)?P, are analytic on W. By Proposition 1.6,
AE = nm+ (%(n) and thus ((\f — )\;)2)"62 € 01, locally uniformly on W.
We thus have proved

Proposition 1.15 The map ¢ — (((¥))?), ., is analytic on W with val-

ues in (.

nez

1.6 Infinite products

The infinite product representations given in this section have been proved
in [GG] for ¢ € L% where L% has been defined by

Ly == {p = (p1,%2) € L*(S;C%) | 2 = B1}.

The proofs are valid for ¢ arbitrary. We recall them for the convenience of
the reader.
Given a sequence of complex numbers (ay)rex with K C Z, we say that the

product [];cx ar is convergent if the limit limy oo [] ax exists. In such
[k[<N
keK

a case we write

H ar = lim H ar
N->oo
keK |k|<N
keK
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A sufficient condition for the convergence of [,z ax, with (ax)rez being a
sequence in C satisfying limy_,oc aga_r =1 is

> lakay — 1] < oo. (1.32)
k>1

This can easily be seen by applying the logarithm to szko aga_y, for ko > 1
sufficiently large,

|log H ara_i | | < Z [log(ara—g)| < Z laga_k — 1|.
k>ko k>ko k>ko
Recall the following two fundamental lemmas on product representations:
Lemma 1.16 Assume that z = (z1)mez is a sequence in C with
b= (bm)mez = (zm — MT)mez € €% .

Then for any X € C, the infinite product

_ _ Zm — A
FO) =~ -0 T 2=
m#0
is convergent. The function f(X) is entire, its roots are given by zy, (m € Z)
and it satisfies
1/2

> bl exp (Cbll)  (1.33)
In|=N/2

f ]
sin A _1| = (N)1/2

AEAN

where 1 3
AN = Upsn{(n + Z)‘/r <A< (n+ Z)’Tl‘}

and C > 0 is an absolute constant.

Proof In view of (1.32), the convergence of [],,, ., z%;/\ follows from
3 |7Zm VA= zm) | (1.34)
m2n? ’ ’
m>1

To verify (1.34), write

(zm = A) A = 2-m) 1 (M7 — A+ b)) A +mm — b_y,) — m?7?
m2r? - m2r?
binb_m | bm —b_m by + b A?

=- + +A -
m2n2 mn m2n2 m2n2
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Hence
Z—m)

Yom Z AR Z Zom) | <
mz>l | m2 2 -

[bmb—m| |bm| + [b—ml A 2 1

14+ — A ——

Z m2n2 + Z mnm + mm + Z m2n2
m>1 m>1 m>1

which converges uniformly on bounded subsets of C. This establishes (I1.34)
and one concludes that f(A) is an entire function. Clearly its roots are
zm (m € Z). It remains to prove the estimate (I.33). By a straightforward
argument one verifies that

ITI +an) —1] < (Z\%\) [T +lan)

(e ()

To apply this estimate recall that sin A has the product representation
mm — A
sin A = A .
I =
meZ\0

Hence, for A € C with (n+ H)mr <N < (n+2) 7

x0T+ 55)

(1.35)

m#0
with
B cal | bn | Hhal
AT Tw(ny’ mr— X1 = w(lm|—n)
Hence in view of (1.35) for any n >0
8 b 8  |bm
sup < (o8 bl ) (s 8 lbml )
(4 <] sln)\ 7 (lm| —n) — 7 (|Im| —n)
A< (n+)m

By the Cauchy-Schwartz inequality

1/2
[bm | 1
_oml < b -
Z (m —n) 1l Z (m —n)?
m>0 0<m<n/2
1/2 1/2
1
m>n/2 m>n/2 \
1/2
<C HbH + Z ‘bmlz
= RE
m>n/2
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where C' > 0 is an absolute constant. Similarly, one has

1/2
[b—m| 4] 2
3 <c 1Y fooml
— 172
m>0 <777, n> <TL) / m>n/2
Hence we conclude that for any N > 0
1/2
||b\| 2
sup ( ) <@t | X Il exp (C[o])
| AeAy sin\ ‘ / I/

for some absolute constant C' > 0.

To prove the following Lemma we will use that for any sequence (@, )mez
in ', with 0 < a,,, < 1/2 one has

H(l + am) = exp <Z log(1 + am)>

m m

= exp <Z (lm) exp <Z (log(1 + am) — am})

m m

and hence

H(l +ap) —1=exp (Z am) -1

m m

+ exp (Z am> (exp (Z (log(1 + am) — am)) - 1) .

m m

Using that |e* — 1| < |z]e*! one then obtains

‘ TIa+am) - 1‘ < ‘ > am eXP(‘ > am
m m

+ exp ( ‘ > am

and together with |log(1 + @) — | < 2|z|? for |z| < 1/2 one concludes that

H;[umm)fl\g
(1o 2 (o] ) o (23 ) (| )

(1.36)

)

) (’ Z (log(1 + am) — am) ‘ exp (Z ’ log(1 + am) — am

)
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Lemma 1.17 Assume that z = (z1)mez i a sequence in C with
b= (bm)mez = (zm — MT)mez € 0 .

Then for any k € Z\{0}, the infinite product

A-2 Zm —
JeA) = —— II — (1.37)
m#£0,k
is convergent for any A € C and defines an entire function with
km—A
H sup \ =2 p0) -1 \ <c (1.38)
A—kr|<r/a | SIDA ez

for some constant C' > 0 which can be chosen uniformly on bounded subsets
of sequences b = (by)mez in £2. As a consequence, given (rp)rez € (4(Z)

with r, > 0,
H sup
[A=km|<ry,

where C'° > 0 can be chosen uniformly on bounded subsets of sequences
(bm)mez in €% and (ry)gez in €*.

<C (I.39)

A + (1| ) <
k

2
€7

Proof The convergence of the product in (1.37) and the analyticity of f is
shown as in the proof of Lemma I.16. To prove (1.38), use again the product
representation % =1Lz % A to get for A € C with [\ — kx| < 7

mm

km— X\ km mm A=z mm — A+ by,
sin A ) = By H (mm —X) km H mm
m#0,k m#0,k
b,
=] (1 + /\) .
m#k mm =

To apply (1.36) to our situation, choose ko > 1 so large that for any |k| > ko
and any A € C with [N —kn| < 7/4, |by|/(mm—X) < 1/2 for any m € Z\{k}
to obtain

km— A
sup ’ ——fr(\) =1 ' < ayexp(ag)
A—kr|</d sin A
where
bm
ag ‘ ‘ 42 ‘ ‘ (1.40)
\A zm\<1r/4 Z mm — )\ Z A kr\<w/4 mmw— A
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The two terms in ay are estimated separately. Towards the first one, recall
that the discrete Hilbert transform is a bounded linear operator from ¢%(Z)
onto (*(Z) (cf. [HLP], Theorem 294), hence for an absolute constant C > 0

H (m— )71- H = CH<bm)mezH~ (1.41)
kEZ

As mm — A > %‘IT‘WL — k| for |\ — knr| < m/4, one also has

‘Zmﬂ'f 7Zmﬂ'b:nk7r| H
m#k

H A— m<7r/4

keZ
<[5 MZ# (m@lL)Z | (42

keZ

< - Ib (Z k2>

where for the last inequality we used that for a = (aj)rez € ¢* and b
(br)kez € €% the convolution a b is again a sequence in £2 with ||a * b||
lIollllalle -

Combining (I.41) and (1.42) leads to

= E
mm — A\

kez
sup __Om
|A—kr|<n/4 | % <m7f A (m—k)r ‘

(1.43)

IA

” A— m<1r/4

[+]
keZ

[ %ﬁ

< Clo

Towards the second term in (1.40) use

1 2
sup —_ < =
A= /cw\<7r/1 [mm — Al — 7

1
m— |

to conclude that

sup — <
- el </ [T — /\|2

k m#

by |? 4 ) 1

DI PETTE TR { I

k m#k J#0
<y

(1.44)

keZ

|
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for some absolute constant C' > 0. Combining (I.43) and (I.44) with (1.40)
finally yields

km— A
H (u_iﬁ‘;m |y e -1 ) - | <

where C' > 0 can be chosen uniformly for bounded subsets of sequences b in

2. Clearly
H sup
A= kr\<1r/1

where again, C' > 0 can be chosen uniformly for bounded sets of sequences
b in ¢2. Hence estimate (I.38) is proved. B

sin A

Eno-1]) se
k| <ko

In Part II, we will need the following lemma which is a consequence of
Lemma .16 and Lemma I.17.

Lemma I.18 Let z:= (2m)mez be a sequence in C with (by, 1= 2 — mn),, 5 €
(2. Then the entire function

FO) =0 —z) [] ===

is bounded on R, uniformly for b = (by)mez in bounded subsets of (*(Z).

Proof By Lemma 1.16, f is entire, hence bounded on bounded subsets of
C and there exists a constant C1 > 0 so that on [J,5o { (n+ ) 7 < A <
(n+3%) 7}, one has |f(A)] < C1. By Lemma 1.17, there exists Cy > 0 so
that for any k € Z and |\ — kn| < 7/4

L5l <el 2

sin A

iy | < 1and |z — Al < [bg| +7/4 < |[b]| +1 for [X — k7| < 7 /4,
s |f(A)] < Co(|[b]| +1). It then follows that

and, as

M <@+ )b +1) YAER.

By Lemma 1.16 and Lemma 1.17, C' := C} + C5 can be chosen uniformly on
bounded subsets of sequences b in ¢2. B

Lemma 1.16 is used to derive product representations for AN =4, A(N),
d(A) and §(N).
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In view of the asymptotics A¥ = nm + ¢2(n), (Proposition 1.6), the infinite
product
M=M=

k?m?

FO) =40 =N -V ]

k40

is convergent.
Lemma 1.19 For ¢ € L and A € C,

A9 — 4 = —a05 — 30 - [ A==
kA0

Proof From Proposition 1.3 and in view of the estimate

MmN < 4sinA| VAe{zeC||z—kn| > VkeZ)

il
4
one gets uniformly on {|\| = (n+ )7},
AN, ) =2cos A+ osin \)
and thus
AN 9)? —4 = (—4sin® \)(1 + o(1)).

By Lemma 1.16,
FON) = —4sin® A\(1 + o(1)).
As f()\) and A(), ¢)% — 4 are both entire functions and have the same roots
we conclude that h()\) := (A(X, )2 —4)/f()) is also entire and satisfies on
{IAl =1In+ 3lm}
h(X) =1+ o(1).

The function h — 1 being harmonic we then conclude by the maximum
principle that h(\) = 1, i.e. AN)2 —4=f()). &

Next we want to obtain a product representation for A(A,(p). First we
have to prove asymptotic estimates for its zeroes. They are obtained by
arguments similar to the ones used to show the asymptotics of the zeroes
AE of A(N)? — 4. By Proposition 1.3, we have for |A| — oo

AN = trM(1,X) = trE(1,A) + o(e™).
As trE(1,\) = —2sin A we conclude that for X sufficiently large

X 1
[A(N) 4+ 2sin | < Ze‘lmM.
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By Rouché¢’s Theorem one then argues as in the proof of Proposition L5 to
conclude that A(A) has a sequence of zeroes (An)nez With A, = n7 + o(1).
Again, we order the \,,’s lexicographically,

Re)'\r,, < Re}\n+1 or Re}\n = Re}\n+1 and Im/'\n < Im/'\n_H.
Arguing as in the proof of Proposition 1.6 one shows that An = nm + 2(n).

Hence, by Lemma 1.16, the following infinite product is absolutely conver-
gent for any A € C,

. Ax — A
9 =208 =) [T 71—
k0
and defines an entire function.
Lemma 1.20 For ¢ € L and A € C,
. ‘ A — A
AN =200 - N ]] —

k#0

Proof Notice that for A in {|A| = [n + 3|r}

AN ) = (—2sin)\) (1 +0(1)) .

Hence we can argue as in the proof of Lemma 1.19 to obtain the claimed
result. W

Recall from section 1.3 that §(\) and §()) are entire functions with zeroes
(ttn)nez and (fin)nez respectively. Both sequences have asymptotics of the
form nm 4 ¢?(n). Hence, by Lemma 1.16 the infinite products

. B — A . iy — A
2 - A d 2 - A —-
i(po — ) I | e i(fio — A) | | =

J#0 J#0

are absolutely convergent for any A € C. Due to the asymptotics d())
and J()\) of the form —2isin X + o(e//™) one can argue as in the proof of
Lemma 1.19 to obtain

Lemma I.21 For ¢ € L% and X € C,

, A
5(X) = 2i(no — N [ A==
ko T
R s — A
0(N) =2i(io = A) | | = —
vy
k#£0
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We end this section by providing refined asymptotics for A, as [n| — oo.
For this purpose introduce the sequences (vy,)nez and (7,)nez given by

M= AL AL T= (A AL/
Lemma 1.22 Locally uniformly for ¢ in L%,
A =T+ 20 (). (I.45)
Proof In a first step we prove the weaker estimate
An = Tn 4+ l(n). (1.46)

By Lemma I1.19,

d .
B0 -4) oxt

- Bl A =N =)
= 40§ -V N TT =00
m#n,0 "

On the other hand, as A(A\}) = 2(-1)",

d

SAO -] =280DAN)

A=A
= 4(-1)"A\).

Combining the two identities we get

A = 1 (140 (1)) T GEAeAD,

2.2
n mem
m#n,0

By Lemma 1.17,

+ _ - _
| A‘ =1+£(n)
mm mm A=A
m#n,0
and hence
A = (1) My, (1 + 2(n)). (1.47)
By the product representation of Lemma 1.20,
X . Ao = NS Am = N
o Ay m n
Alw) =200 = An) nw mm
m#0,n

=2(=1)" (A = A1+ E(n)
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where we used again Lemma 1.17 for the latter identity. In view of (1.47)
one then obtains
200 = A7) = =1+ E(m))

and substituting A, = 7, + % into this identity leads to (1.46) .
To obtain the stronger estimate (I1.45), write

AN =4 =4 = VA =X (V)

where

er(/\) =

AF =g =N I A =N =N
n2m2 m2n? ’
m#n,0
Clearly for v, = 0, (1.45) trivially holds. Now consider the case 7, # 0. By
Lemma .17, we have uniformly on I'y, ;= {A € C||A = \,| = |'y,,,\1/2},
fo=1+0(n).
By Cauchy’s theorem,

L fn</\)71

dfn
)| == | A dA
‘ dA < ) 2mi T'n (/\ - /\n>2 ‘
= |yal 2 (m).
This is used in
_ d 2
0= RAM -],
= (FAA = AD) +AN =) L
_df
+_ _ n
FANT =N TN

to obtain
2000 — ) (L + (1)) = (A7 = An) (An = X)) 1726 ().

In view of (1.46), A¥ — A, = 0(y,) and hence A, —7, = 72/242(71) as claimed.
]

1.7 Branches of square roots

In the sequel we need to specify various branches of square roots. We denote
by 1/z the principal branch of the square root defined for z € C\(—o0,0]
and determined by Y1=1.
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Given a,b € C with Ra < Rb or Ra = RNb and Fa < b, we denote by
/(a—z)(b— z) the standard square root, defined on C\[a,b] and deter-
mined by

=-V2(0-a)
z=b+(b—a)
where [a,b] :={ta+ (1 —t)b|0 <t <1}
For A in C\ (Ugez[\s s Af]), the canonical square root /A(X)2 — 4 is defined
by

V(a—z)(b-2)

- +_
YA —2:=2i{/ (0 NG -V ] W (148)

k#£0

Notice that for |A| << |k|, with )\f = kr + 2(k),

e ()2 ) 2)

and thus the infinite product on the right side of (1.48) is absolutely con-
vergent.
For ¢ = (i1, ¢2) of real type (i.e. p2 = P1), AF € R for all n and one gets

(-DFi/ANZ=4>0 VAL <A< AL, (1.49)
(DF/ANFi0)2—4>0 VA <A< (1.50)
(DFI/AN=i0)2—4>0 VA <A<\ (151)

1.8 Asymptotics for A(), p)

In Part II we need an expansion of A(\) for [k| — oo and of ch™! (Agy)>

as y — 00.

For ¢ = (¢1,¢2) € LZ introduce

1
Hy(p) = /0 o1(z)pa(z)da.

Let Hé/ = H"([0,1];C?) be the Sobolev space of functions ¢ : [0,1] — C?
with 0%f € L% for any 0 < j < N.

Lemma 1.23 Uniformly for ¢ in a bounded subset of Hé,

sin A elfmAl
AN\, p) =2cos A+ TH1(¢) +0 <W .

44 CHAPTER I. SPECTRAL THEORY OF ZS OPERATORS

Remark The asymptotic holds under weaker regularity assumption on ¢.
Proof Recall that A(X) = trM(1,)) and M (z, \) is given by

M(z,\) = E(z,\) + Y E®(z,)).
k>1

We have trE(1,\) = e~ + ¢ = 2cos A and trEM) = 0. Hence

AN =2cos A+ Y _trE®(1,). (1.52)
k>2

To obtain the asymptotics for trE®) (1, X) we write
T
E® (2, ) :/ K(a,y) E®D (y, \)dy .
0

First consider EM (z, \), given by

T —iX(z—2y) P
YR 0 e #1(y)
g (L’A)72A (—e“(”mm(y) 0 d-

Integrate by parts to get

. 1 0 e~ M=) (y)
EW(z,)) = 22 \ a2y (y) 0

7i 0 e”"’"gm(z) ,i 0 671.”\"'”@1(0) 4o ellmA\z
T ox \ e pa(a) 0 2X \ e py(0) 0 A2

where for the last identity we used that

1 R 0 MRl ()
RW(z,)) : = 2 Jo \ere=200 1) 0 ! dy

T

— RW(z, )

y=0

o 0 —eAEIG () |

= (2)\)2 eiA(x—Qy)@é(y) 0 y=0
i T 0 _ez‘)\(Zy—z)wa/(y) 4

- (2/\)2/0 <e“<z*%f;(y> 0 > Y

|ImX|z
(&
=Y (T) -

To get the asymptotics of E?)(x, A) write E®) (2, ) = Jo K(z, y)ED (y, \)dy

with -
L0 e

)
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to obtain, with ®(z
E@(z,))

where we used that

- %‘I’(”) ( 0

FOR A(\, ¢)

= [ e1(®)p2(y)dy,

oAz

. 1 0 e~ M,
/ K(W,y)ﬁ ( Mysﬁz(o) 0

B 01 ()1 (0), —e ) 01 (0)paly) ) dy

2)\ / dzag

(QA)

0
76’»‘2) +0

(0)) dy

e\]m)\\z
22

xadion (21 (1)ea(0). X 01 (0)pa ()

)

x

y=0

‘W /0 diag (=25} (1) (0), 221 (0)2h (1) ) dy

e\]m)\\z
=0 (T :

To get the asymptotics of E®) (z, A) write E®) (2, ) =

This leads to
1
2\

d

E®(z,0) =~

o 7ez)\(z—2y)§92<y

elImAlz
A2 '

)

Integrating by parts once more, one obtains

Arguing as in the proof of Lemma 1.2 we then conclude that

) e\lm)\\x
S E® @A) =0 = |

Thus we get
M(z,\) =

+
Hence, in view of (1.52

AN @)

E®(z,)) =0 (e

k>3

| Iz
A2 ’

E(z,\) + EW(z,))

—i\z

0

i e
ﬁq’(”?)( 0 (,z)\r> +0

)

< )\
=2cos A\ + %Hl

(w)+0<

Jo K (2, y)E) (y, \)dy.

0

elfmAlz
[A]?

elTm|

A2

—M g (y)

) ®(y)dy

) |

)
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Denote by ch™! the branch of arccosh defined on C\(—00, 1) which is given
for z € C\(—o0,1) with [z] > 1 by

ch™1(2) =log(z + 2 {/1 — Zl_z)

with log denoting the principal branch of the logarithm.
Notice that for y large and positive, A(iy) is closed to chy and hence
is in the domain of definition of ch~!(z).

A(iy)
2

Lemma 1.24 Uniformly for ¢ in a bounded subset ofH%, one has for A =

with y — oo
1 (AN ) o iHi(p) 1
L —
ch < 2 i 2\ 0 22

Proof To make notation easier, introduce g(z) := ch~!(z). By Lemma 1.23

—A(Qm =chy+u(y); uly) = zhyyH (¥)+0 (ZZ)

By the Taylor expansion of g(z) at z = ch(y),

Al u(y)?
p ( 52) = atc) + ) e + %g"(ch(m +0u(y))
for some 0 < § < 1. As chy + Ou(y) ~ &, one has

g"(chy + t‘)u(y)) =0(e™)

_ A(ly) Hl 1
1 =\ 21 -
ch < ) =y+ 2% +0 2

Assuming more regularity on ¢ one can obtain the subsequent terms in the

and hence
|

expansion of A(\) and ch™! (#) In the following result we give the next

two terms in the expansion for ch™! (#) For this purpose introduce for
€ HE

1 . 1
. 1
Ha(yp) ::z/0 @pods = 5/0 (Pro2 — o1

1
H;(p) =:/U (€16 + (p102)?) da.

Notice that H;, Hy, Hs are real for ¢ of real type and that Hg is the
Hamiltonian of the defocusing N LS-equation.
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Lemma 1.25 Uniformly for ¢ in a bounded subset ofH(é, one has for A\ = iy
with y — oo

1 (AN p) tHy iHy iH3 1
1=\ ) ey s il
ch < ) iA+ DY +4)\2+8)\3+0 )

Proof Similar to the one of Lemma I.24, using a refined version of Lemma .23
(see also [MV]). B

1.9 Gradients of the discriminant

Given a complex valued function F : L% — C of class C' we denote its
differential by d,F" and its L-gradient by V) F = (%, %)4 For
any v = (v1,v2) € L2 one then has

1/ OF OF
doF v = (VyuFv) = /0 <WU1(I) + WUZ(I)> dx

where (-, -) denotes the dual pairing between the dual of L% and itself.
To obtain formulas for the gradients of the fundamental solutions M () =
(My1, May) and M@ = (Mg, Mas) we need to establish an auxilary result.
Let G € L% and (ag, bp) € C? and consider the following initial value problem
LF(z) = A\F(z) + G(z) (1.53)
F(0) = (ao, by). (I.54)

Lemma I1.26 The initial value problem (1.53) - (1.54) admits a unique so-
lution given by

o) = <ao —i [ @O0 + Galoat >>dr) M)
+ (bo +i /: (Ga(t) My (t) + Gy (t) Moy (t ))dt) M (z).

Proof By the method of the variation of constants, F'(x) is of the form
F(z) = a(z)MY (z) + b(z) M ()
with (a(0),b(0)) = (ag,bo). Substituted into (I.53) one gets

1

/\F+i<0

P1> (¢MO +yM@) =AF + G

which leads to

d MW M@ = (Bl ?) G.

48 CHAPTER I. SPECTRAL THEORY OF ZS OPERATORS

In view of the Wronskian identity, det(M® (z), M®(z)) = 1 one obtains
by Cramer’s rule

d(z) =i det ((’Ol (1)) G(x),M(Q)(:L’)>
—i (G] <l)]ﬂ22(1) + GQ(I)]V[]Q(I))

and, similarly

W(x) =i det (Jvf(l)(m), (I)l ?) G(ac))
— i (M1 (2)Ga(x) + Moy (2)G1 ().

The claimed formulas are then obtained by integrating a'(x) and '(z). B

Lemma 1.27 For any ¢ € L%, 0<z<1,and NeC

MW (z)
= (Mo (£) Mo (£) MWD () — iMyy (£)> M@ 1
dpr (1) (l 21 ( 2 (t () — iMoo ( ) 01]
M) (g
oM (uu11 VMo () MO () — iy (¢ )1
Bw
MO (z
Moy ()2 MD () — i Moy (t) M: 1
“Borll) ( 22 (t () — iMa2a(t) M2 ( ) 0.2](t
M (z) )
T = (iMya (1) M D (2) — iMya () My ()M P (2)) 110,41 (¢
Bty = (M2 M) = M ()M (1) (r)) 018

Proof As each term in the above formulas depends continuously on ¢ it
suffices to establish the formulas for continuous potentials . Then M (x)
is continuously differentiable with respect to  and we may interchange z-
differentiation with ¢-differentiation. Hence, for 1 < j <2 and any v € L%,

dy, (LM (z)) - v = (dp, L -v) M(x) + L dy;M(z) - v
and it follows that d, M - v satisfies the following inhomogeneous equation
LdyM-v=2AdyM-v—(dy,L-v) M

with initial conditions

dy, M(0) - v = <8 g) .

0 —v 0 0
—dy L-v= (0 0):’ —dgy,L-v= (—v 0)

Note that
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and thus, by Lemma 1.26, one obtains

)

%(t(;c) = (U\bl(t)Mm(t)]\I(l)(w) — iMyy (£)>M® (m)) Tjo.01(8)
oM™ )

—sz(t()x) = (11V111(t)1V112( MWD (z) — My ()2 M (2 )) Lo (1)

s oM (z)
Similarly, one computes EEORE

As an application we obtain
Proposition 1.28 For any ¢ € Lé and A € C

]\/{21 (.7}, A)A122<Z7 /\))

VoA p) =i (M = M) | (m(z, A)Mia(x, \)

1.10 Gradients of eigenvalues
In this section we compute the gradients of the Dirichlet eigenvalues k()
and simple periodic eigenvalues A} () & {1 (), fix ()} for ¢ € L%. Recall
that the Dirichlet eigenvalues are real analytic on L% and that

Gila) = MO (i) + MO (, )
is an eigenfunction corresponding to pg, = pg(¢).

Proposition 1.29 For any k € Z and ¢ € L%

1
V@) lte = ([RGB ((May + Map)?, (Myy + M1»)?)

5Kk

where || - || denotes the norm in L?([0,1],C2).

Proof Let ¢ € L%‘ Arguing as in the proof of Lemma 1.27 it suffices to
consider potentials ¢ which are continuous. Thus we may interchange in the
expression dy, (L(¢)Gy(t)) differentiation with respect to ¢ and ¢1. Hence,
for v € L%([0,1],C),

Ay, (L(9)Gi(t)) - v = (dp, L(0) - V)G (t) + L(p) dyp, Gi(t) -v . (L55)
On the other hand, as LGy = ux Gy,

dy (L(9) G (1)) - v = (dg, e - 0) G (t) + prdy, Gi(t) - v . (1.56)
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0
As dy L(g) - v (0 0) (I.55) - (L.56) leads to

0 w(t
(st ) Gult) = (£ = mdnGalt)- 0+ () '3 Gt
Then we take the L%inner product of both sides of this identity with

Gr(-yp). As Li(p) — py is selfadjoint, the L%-inner product of (L(p) —
p)dy, Gi(t) - v with Gy, vanishes and we obtain

1
0wt ——
G Pdme o= [ (3 V) ue -G s
0
As ¢ is of real type, we have, in view of (I1.21),
Gi(t) = Gi(8)" (1.58)

where we recall that for a vector a = (ay,as), the vector a* is given by
a* = (az,a1). Hence the identity (1.57) takes the form

Aoy i - v = ! /1 (£) (Mo (£, i) + Moo (t, jui))? dt.
o lIGx ()12 ' ’

This means that

Oy 2
M. Mo .
e HGk()HZ( 21(z, k) + Moo (, )
and 39’ (I) evaluated at ¢ = (¢1,%1), is given by 3“" = % = 37;’:', ie.
Duk 1 9
(M S Uk M, JHE))C .
Baata) TGO M) M(in)

|
Substituting the asymptotics of Gy, (cf Proposition 1.9) into the formula for
V@)t (cf. Proposition 1.29) one obtains

Corollary 1.30 Locally uniformly on L%,
1 eZzlﬁra:
V(o) itk = 3 (672%7&' + (k)

In order to compute Vw(,,))\f for a simple periodic eigenvalue )\,f # {1k, s}
we first have to derive a formula for a L%normalized eigenfunction Fki(_L)
corresponding to )\f. In section 1.3 we have introduced the entire func-
tions (\) and 8(\). They both have an infinite product representation (cf
section 1.6)

w0 -
S(N) = 2i(po — H fn =2 = 2i(jip — H H"
n#0 n#0
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Further, the derivative A(\) of A(\) admits an infinite product representa-
tion as well (cf section 1.6)

. : An— A

A =200 -3 J] ===

nm
n#0

Hence it follows that for a simple eigenvalue )\f with )\f & {pk, fir} of a
potential ¢ € L%,

—i0OE) g0 = NE 77 e — A

k =2k ' >0 (1.59)
AQY) Mo — Af i An A
and similarly, )
—id(AE)JANE) > 0. (1.60)

Finally we note that for ¢ of real type, M1y = Mo;. Hence Mys + My is
real valued. As

Mz + M| = =50%)60) #0,

1AE

the following expression is well defined
ef = sign ((M12 + Moay) ‘ ) Ai/A(Af)) . (1.61)
ey

In view of (1.59) - (L61) we can introduce for any ¢ € L% and any k € Z
with )\ZT“ & {1, i1} the following functions

+ ST
+ 0y . Sk + —i0(Ay) +
Fi(z) = 5 A()\ki,) Gz, \7) +

i =)
) ———5G(x, A 1.62
31 Rl Ce ) 0o
where we recall that

Gz, \) = (MY 4 M)

K Gz, \) = (MY — M)

z, J?,/\'

As ¢ is of real type, we have M1 = Moy and My = My, hence Gy = G,
él = 76'2 and thus

Fyla) = B (o). (1.63)

Using Proposition 1.28 one verifies the following
Lemma 1.31 For p € L% and k € Z with /\ZTr & {puke, i}

Ve AR = —AW) (i (@) Fiy(2)).

+
A=AF
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Proposition 1.32 For ¢ € L% and k € Z with /\]f 4 {/Lk,ﬁk},Fki(x) is an
eigenfunction corresponding to )\f satisfying j;)l HFki(.T)HZdJ‘ =1 and

vw(m)’\lf = (FlfQ(x)QvFli(m)Z)-

Proof The condition /\ki & { g, fir} is valid in a sufficiently small neighbor-

hood of ¢ in L2([0,1];C?). As A(Af) = 2(—1)* and )\kﬁt is analytic near ¢
one obtains by implicit differentiation that

1

+

VoA = *mvwmﬁ(/\) A
i :

By Lemma 1.31 we then conclude that
VoA = (Fia(@)® Fiy(2)?).

Arguing as in the proof of Proposition 1.29 one sees that Fk_i (z) is an eigen-
function corresponding to A& satisfying fol |FE(2)|Pde = 1. B

I.11 Poisson brackets

In this section we provide formulas for the Poisson brackets {A(u), A(A)}
and {A()‘)’“k}L\:u . Recall that the Poisson bracket of two functionals
F,G defined on L% is defined by

mmm:dl

0

<8F 9G_ OF oG )dT
Ip1(x) Opa(z)  Da() Dpr(w) )

To compute {A(y), A(A)} it is convenient to rewrite the gradient V) A(N),

(cf Proposition 1.28) in a different form. Denote by m4()) the Floquet
multipliers, i.e. the two eigenvalues of the monodromy matrix M (1, ),

ma(A) = ——= £ - /AN)? — 4. (L.64)
Notice that m.(A) +m_(A) = A(X) and, by the Wronskian identity ,
myN)m—(\) =1. (1.65)

For \ with Mja(1, A) # 0 the eigenvectors corresponding to m () are given
by (1,b4(\)) where

me(A) — My (1, A)

A VNI
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Further denote by F*(x,\) the Baker-Akhiezer functions
FE(x,\) := My(x,\) + be(\)Ma(z, A).
Note that LF* = A\F* and
FE@@ +1,0) = me (W FE(z, \).
Writing F* = (Fli,FQi) we get the following formula for the gradient of
A(N):
Lemma 1.33 For A € C with My2(1,\) #0

Fyf (2, N Fy (x, /\))

V@A) = —iMia(1,\) ( Fr o\ P (2.

Proof Each component of the right side of the latter identity is treated
separately. For the second component, note that

Fif (@) Fy () = (Mi1(2) + by Mia(2)) (M (@) + b Mz ()
= My (2)? + bpb_Mig(2)? + (by + b_) My (z) My2 ().

As my +m_ = A(N),

(L66)

Mia(1)(by +b-) = my +m_ — 2M;(1)
= ]\/122(1) — ]\/111(1)
and as mym_ =1 (cf (1.65)),
Mi2(1)%b1b- = (my — My1(1))(m— — My1(1))
=mym_ — (my +m_)My1(1) + My (1)?
=1—AMp(1) + My (1)2
=1- ]\/[11(1)]\/[22(1)
= —Mp(1) M2 (1)
where for the last identity we used the Wronskian identity once more. Hence
Mia(1)byb = =M (1).
Substituting the identities above into (I1.66) one obtains
7i]\112(1)F1+<.T)F]7(I) =— i]v[lg(l)ﬂfn(l‘y + ’L‘Z\Jm(l)]wlg(.r)?
+ L(A111(1> — JLIQZ(I))A/I]l(.L)J\[lQ(‘L)
Hence, by Proposition 1.28,
_0A
dpa(x)’

—iMg(1)Fy () Fy (2)
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Similarly, one proves
. 0A
~ dp(z)

—iM2(1)Fy (2) Fy ()
|
We need two additional auxilary results for the computation of the Poisson
bracket {A(p), A(A)}. Assume that F(z) = (Fi(z), F>(z)) and G(z) =
(G1(z),Ga(x)) are in L3([0,1]; C?) satisfying
L(p)F = AF; L(p)G = pG

for given A, € C and ¢ € L*(S%;C?). Recall that W (F(z),G(z)) denotes
the Wronskian of F' and G (cf (1.8)).

Lemma 1.34 Forany 0 <ax <1,

d

LW (E(),G(@) = i(s — N(F (2)Ga(e) + Fa(2)Gr (2)-

Proof Note that LW (F,G) = W(F',G) + W (F,G') and, as LF = \F,
;s -1 0 _ 0 $1
o e (0 )
_ (-1 0 0
_M(O J“(W O)F.

[ -1 0 _ 0 1
G =ip ( 0 1 G o 0 G
Substituting these formulas for F’ and G’ into the expression for %W(FA, G)
one gets

s (i o) (s (3 )0

(8 3)me) (e )

= i(ﬂ — )\)(Fle + FQGl).

Similarly, one has

Given A € C, introduce the following subset of L?C,

Ny = {p € LE | Mia(1, ;) = 0}
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ot
ot

Lemma 1.35 For any A € C, N, is an analytic submanifold of L(Z: of com-
plex codimension 1.

Proof Recall that Mja(1, ;@) is analytic in ¢. It remains to prove that its
gradient does not vanish on N). By Lemma 1.27,

OMia(1,0)
Op1(t)
which is continuous in t. For ¢ € N, the Wronskian identity becomes

Mi1(1,\)Maa(1,X) = 1. Inparticular, Maz(1,\) # 0 and, evaluating azgz(&,)n
att=1,

= iMao (£, A) (Mag(t, \)My1 (1, ) — Moy (£, \) M1a(1, \)) .

OMi2(1,0)
——— = = {M(1,)\) #0.
o) 2(LA) #
Hence 31\;1’1;—((3),)\) = (g;féf), %) |1,)\ does never vanish on Ny. B

Proposition 1.36 For any A\, pu € C and ¢ € L2

{AN9), A(p,9)} =0.

Proof By Lemma 1.35, Ny and N, are submanifolds in L2 of codimension
1, hence M = {(p,\, 1) | A\, 1t € C; ¢ & Ny UN,,} is dense in L% x C x C.
As {A(N, ¢), A, ¢)} is continuous on L2 x € x C, it suffices to prove that
{A\, ¢), A(, )} = 0 on M. Further the result clearly holds for A = p.
Thus let us consider (p, A, p) € M with X # p. In view of Lemma 1.33,

<3A(>\) DA 9AM) 8A(u)> "
p1(x) Opa(x)  Opa(w) Opr ()

1
= 71'1»112(1,,\)1»112(1,M)A (F5" (2, \)Fy (2, N FF (2, ) Fy (2, 1)

1
(AN, A} =i /

0

— By e N (o, VES (0 0) (2, 0)) da
Denote the latter integrand by f(z, A, ). Then
£ A1) = (ac — bd)

with

ai= B (e, VFy (zp), b= FiH (@, ) Fy (2, ),

c:=Fy (2, \F{ (v,p), d:=F (2, \)Fy (2,p) .
Using the definition of the Wronskian, W ((a1, a2), (b1,b2)) = aibs — a2by
and the identity

2(ac —bd) = (a+b)(c —d)+ (a —b)(c+d)
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one gets

2f (@, A\ ) = (a + )W (F¥ (2, 1), F~ (2, 1))

1.67
+ (c+d)W (F~(z,p), F* (2, 7)) . (£L67)
By Lemma 1.34, we have
— Ay, (F*(z,p), F~(z,))) =c+d
A—p dx e ’
and 4
—1 L
— —W (F (2, ), F(z,)) = b.
s W ) P ) =a
Thus substituting the last two identities into (I1.67) one obtains
P — 1 d —( + (. + (e —(;
24 M) = ~ iy g (WO () (0 0) W ), (2 0).

Hence

1
(AW, A} = =MoL A ML) [ o)
- %ﬁMH(LA)Mu(LM).
W (E*H (@, A), F~ (2, 1)) W (F~ (2, A), F* (z, 1)) ;
As FE(1,)) = ma(\)FE(0,)) and my (\)m_(\) = 1 (cf (1.65)) we conclude
that {A(X), A()} = 0. m

To state our next result notice that

(May + My)> ‘ T M2)? + 4My; Myy) ‘ )
Mk

Mk

= ((]Wn — ]\/122)2 + 4(]\411]\/122 — 1)) ‘ L
sl

= (M + Map)? ‘ 4
1,k

= Au)® — 4.
Denote by {/A(ux)? — 4 the square root with the sign determined such that

Al = 4= (Mo + M) | " (L68)
sk

Using the formulas for the gradients V ;)A(N) and V) obtained in
Lemma 1.33 and Proposition 1.29 one then obtains the following
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Proposition 1.37 Let ¢ € L%. For any A € C and k € Z one has

1 6N
(= AN, i} = 5 = ) (My2 + Mm)‘ . (1.69)
2 5(pk) Lk
In particular for any k and n € Z one has
1
B0, =5 /B4 b (L70)

Proof Arguing as in Proposition 1.36 it suffices to prove (1.69) for ¢ €
L%\NA. For such a ¢, we have by Lemma 1.33 and Proposition 1.29

_i [ (0AN) O AN O
B =i | (amz) Da(z) ~ Dpa(a) a<p1<z)) d

_ ]W]Q(l, )\)

1
= —/0 (Fz"'(l, NFy (x, )\)Gk,l(w)Q — Ff’(z,)\)Fl_ (x,)\)GkYg(z)Q) dx

1GKC)IP

where Gi(z) = (Gr1(x),Gr2(x)) is given by M (x, px) + Mo (z, pi). We
argue as in the proof of Proposition 1.36. Denote by f(z,\) the latter
integrand. Then

f(x,\) =ac—bd

with
a:=Ff (2,\)Gp1(z), b:=FF(1,NGpa(x),

c:=Fy (2, \)Gpi(x), d:=F] (x,)\)Gp2(x) .
Using the definition of the Wronskian and the identity

2(ac —bd) = (a+b)(c—d)+ (a —b)(c+d)

one gets
2f(x,\) = (a+ bW (Gi(z), F~ (z,\)) @)
+ (c+ d)W (Gp(z), Ft(2,N)) . '

By Lemma 1.34, we have, for A\ # puy,

2 (W(Ga), P~ (@.2) =i~ m)fe +d)
and d

L (WG, (2, 3) = 0 — )+ )
Thus substituting the last two identities into (I.71)

20— ) (@, N) = = (W (Grlw), F~ (0, )W (Gi(w), F* (. 1))

dx
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(L.72)

where

J(z) =W (Gk(z),F’(z, )\)) w (Gk(z),F+(z, /\)) .

Note that G(0) = (1,1) and, as Gy, satisfies Dirichlet boundary conditions,
Gra(1) = Gra(1), ie.

Gr(1) = (M1 (1, p) + Maa(1, ) - (1,1).
Further
FE0,0) = (1,62 (V) ; F=(1,0) = me (N F=(0, ).

Hence

J(0) = (b-(A) = (b4 (A) — 1)

T = M+ M) || mo () (b-(3) = Db () = 1)
and, using that m. (\m_(A) = 1 (cf (L65)),

J(1) - J(0) = ((M11 + MH)ZLM - 1) (b-(\) = Dby (A) —1).  (L73)
Recall that Mia(1, A)bs(A) = ms(A) — My (1, A) and
S(A) = Miy(1L,A) + Mia(1,A) — May(1,A) — Maa(1, ).

By a straight forward computation we obtain

Mia(L, ) () — 1)(bs () — 1) = 5(0). (1.72)
Further, as d(ur) = 0, we have (My; + JV[H)‘LM = (Mo + A122)|1Mk and
thus '
(Mis+ Mi2)?| = 1= (M1 + Mia) (Mo + May)| | —1

sHEk sHE

= (M1 Mg — 1+ Mo May) + My Moy + MyaMao) ’l
= (2My1 Mz + My Moy + MiaMap)|
i

= (Moy (M + Mi1) + Mio(May + Mas)) \1

Bk

= (Ma1 + M) (M2 + 1\111)‘1

Mk

o



L12. ISOSPECTRAL FLOWS 59

Substitute (I.74) and (1.75) into (I.73) then leads to

(= VHAQ). ) = 25 s (M M)+ 3 |

As ¢ is assumed to be of real type, ||G(-)||? is given by (cf Lemma 1.11)

GO = i8(u) My + o)

and one finally obtains

(= VAN ) = 5 5O (M4 M),

To prove (1.70) notice that, if A = py, with n # k, 6(u) = 0 and thus

Sk

{AW.m},_ =0

and, if A = p,, with n =k,

lim G

= §(uy,
R e (1)

and thus

1
{AMN), b} = —5(Miz + M)
A=pix 2 1

Mk

1.12 Isospectral flows

In this section we study auxilary isospectral flows of vector fields on the
space of potentials of real type. Recall that Iso(pg) with g € L% denotes
the isospectral set of ¢y,

Iso(po) := {v € L | \g () = Af (o) VEk€EZ}.

From the infinite product representation of A(\)? — 4, one concludes that,
for any element ¢ € L2, ¢ € Iso(yy) iff

AN @)? —4=AN ) —4 VreC.
By Proposition 1.3, A(X, ) = 2cosA + o(1) as A = ReX — 00, and hence

Iso(po) = {¢ € Lk | A\, ) = A(X o) YA€C}.
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The first flow we consider is the so called phase flow (t € R,z € R)
X(@, 1) = (xa(@, 1), xa (@, 1) = ("1 (), e "ipa()
with initial conditions x(-,0) = ¢(-) € LZ. This flow is Hamiltonian

d (if’Hl(X) 5H1(X)>

arX

it AUV it LYo 7

Opy 01

where H; is given by Hy(p) = fol ©1(z)p2(z)dz. Note that for any given
solution ' = (Fy, Fy) of L(p)F = AF, the function G = (e"/2Fy, e /2 Fy)
and hence (Fy, e~ Fy) as well as (e Fy, ) satisfy L(x(+,t))G = AG. Hence
the fundamental matrix M (z, A, x(+,t)) is related to M(z, A, ¢) as follows

]M]] 6“1”12) (I 76)

M(z, A x(, t)) = (67”]\{21 Moo

T\

In particular its trace is invariant,
A X)) = A\ p) YAeC.

This means that the phase flow is isospectral. Further notice that for ¢ €
L%, x(-,t) stays in L% for any t € R.

Finally we would like to know how the Dirichlet eigenvalues evolve under
the phase flow. Recall that the Dirichlet eigenvalues (ux(¢))kez are given
by the zero set of

5\, @) = (M1 + Mio — My — MZQ)‘1 .

Let us evaluate (A, ¢) at (u*,x!) = (ur(x(8)), x(-,1)) for k € Z,s,t € R
arbitrary. Using (I.76) one then obtains

0

= (My — Mn)‘ + (¢ Myp — e*“Mm|
s xt Ly xS Lusp

=4

— (M2 — Mm)‘ + (€M — e " Mo )1 e

o Lpt e .
= (=€ Mz + e ¥ Myy + " Myg — e Mo )1 s

where for the last identity we used that §(u®, x*) = 0. Hence we have

= (¢t — e”)MlgL (e — e My | L.77)

Xt NTAR) 1,5,

Formula (I1.77) can be used to get some information on the location of the
Dirichlet spectrum of x(-,¢). Recall that for ¢ € L%, all the eigenvalues
)\f,,uk are real and satisfy A\ < ju, < A} (k € 2).
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Lemma 1.38 Let o € L% and k € Z with y,(¢) # 0. Then pu(t) # )\f Sfor
all —m <t < 7 except possibly two.

Proof Assume that —m < to < 7 satisfies ug(x(-, t0)) = Af (@) (= M (x(1)))-
By (I.77) one has

= (et — e"in)Mm) et e’”“)Mm|

At LAl A e
Hence, for any —7 <t < 7 with ¢ # to and pi(x(-,t)) = )\;,
&t _ gito) 0. ‘ — (et _ gmito) 0 |
( Wha|, = M, e
or, as eit — et = _iliHo) (¢=it _ gito),
ei““")Mu’ = —Mgl‘ . (L78)
Ae 1Al

As i, # 0, the eigenvalue A}l is simple and thus the Floquet matrix M (1, A}, ¢)
satisfies M(1,A}, @) # (—1)*1d. As detM(1,Af,¢) =1 and A(Af,p) =
2(—1)* we conclude that

Mg, M. 0,0
(M2, Ma1) LAb #(0,0)
hence the identity (I.78) can hold for at most one value of ¢ in [—m,7)\{t0}.
The result for yu,(t) = A, can be proved in the same fashion. W
From Lemma 1.38, it follows that for ¢ € L% the set
T(p) = {t € [-m,m) | Tk € Z with pg(t) € {AF A}
is countable and we obtain the following
Corollary 1.39 For any ¢ € L% there exists a sequence (@n)p>1 N L%
with the following properties:
(i) o =limy_oopp in L& x LE;
(i) on € Iso(g) and [lon] = [l¢ll ¥n > 1;
(iit) for any n > 1 and any k € Z with ~,(¢) # 0,

Ap (9) = A (0n) < plon) < X (0n) = N (9)-
Proof Choose a sequence (t,)n>1 C [—m,7)\T(p) so that lim, .o t, = 0.

This is possible as T'(¢) is countable. Then (py, := X(tn, ©))n>1 IS a sequence
with the claimed properties. B
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For any given k, we now define an isospectral flow on L?z which leaves all
Dirichlet eigenvalues except the k’th invariant. For any n € Z, denote by
X, () the vector field on L2 given by

LOA(N, p) ,BA()\Ap))
X, z) = (i——F"F, —i———= .
@)= (Gt ) b
Notice that X, () is analytic in ¢ and X,,(¢) € L% for ¢ € L% as A(\, @)
and p1, () are real valued for (), ¢) € Rx L%. Hence the differential equation

=9 (L.79)

d
== Xu(n') 5 7It‘L:U =

dt

is locally (in time) integrable in L% for any initial data ¢ € L%. Denote by
Iz () the maximal interval of existence of the solution 7)(-,¢) of (1.79). To
see that (1.79) is globally integrable, i.e. I;,q:() = R we prove that ||n*||z2
remains bounded for t € I,,,4.(¢). To this end, note that

d t71 tdt
G0 = [ V0A0) - G @)

1
:/0 vap(z)A(Avnt)'vtp(z)A(ant)‘ dx

p=pn(nt)
= {A(/\,nt),A(u,nt>}

p=pan (1)
By Proposition 1.36, {A(X), A(n)} = 0 and thus

LA =0

which shows that the flow ' is isospectral. From the asymptotic expansion
of A()\) given by Lemma 1.23 it follows that for ¢ € H2([0, 1]; C?) the Hamil-
tonian Hj(p) = ‘[61 ©1(z)p2(z)dz is a spectral invariant. More precisely, for
any u,v € H%([0,1]; C?) with u € Iso(v) one has Hy(u) = H(v). Consider
first the case where the initial data ¢ in (1.79) is in H3 := H*([0,1];C?)NL%.
Using the equation L(¢)M (z, A, ¢) = AM(z, X, ¢) one sees that the entries
of the fundamental matrix solution M(x, ), ¢) belong to H2([0,1];C) (in
fact, they belong to H3([0,1];C). Hence, by Proposition .28, the vector-
field X,(p) is an element in H% and the initial value problem (1.79) is
locally integrable in H% As the flow 5! is isospectral we then conclude that
n' € Iso(yp) and therefore

1
I l22 = It 122 + lIns 172 = 2/[] i (@) (@)dz = 2H (n')

= [lellZe-
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Tt follows that Ines(¢) = R and it € H2([0,1];C?) for any ¢ € R. Now let
us consider the general case ¢ € L%. Approximate ¢ by a sequence (¢g)r>1
in H so that limy_.o || — @[z = 0. As the solution n'(py) of (1.79) with
initial data ¢ depends continuously on the initial data and Imaz(ni,) =R
for all k, we conclude that locally uniformly in 4. (),

Jim [l (k) = ' (@)ll 2 = 0.
—00

Furthermore, X, is a continuous map on ng (cf Proposition .28 and Lemma 1.4)

it follows that d d
. ot _ 2t —
dim =t (o) = 20 (@)l = 0.

Hence

d -
S0 (2 = 2Re [ oo 0) e P
1 d—
= Jim 2Re [ (e, ) S (e )
k—o0 0 dt

d
= lim — H;(n' (¢
Jim o 1(1' (er)
=0.

Thus Hy(n'(p)) = %Hn‘(g&)“f:g is constant along the flow 7*(¢) and we con-
clude that for any ¢ € LR Imaz () = R.

Along the flow n'(:) = n'(-, ), the Dirichlet eigenvalues px(t) := u(n')
evolve according to the following equation,

/ Vto(t) - S (@)
- /[ Vtaelt) - Vo AN = {1 A}

A=pin(t) A=pn ()
Hence, using Proposition 1.37, we get

d

1
d YN\
pr oy

(t) = 5

4 k- I.
|A:M o (1.80)

As an application we obtain the following

Proposition 1.40 Let ¢y € L%, (vk)kez a sequence of real numbers sat-
isfying A (o) < v < )\;(goo) (Vk € Z) and (eg)rez a sequence with
e € {1,—1}. Then there ezists a potential ¢ € Iso(pg) N L% such that

llell < lloll,
(@) =i VkeZ

and, for any k € Z with \; < vy, < /\;,

signy/A(ug)? — 4 = eg.
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Remark One can show, using the injectivity of the Birkhoff map (cf sec-
tion II1.8), that the map

o (1= 7oy /ORI = G — 72, sign /B (e ? 4)keo
is a bijection of Iso(pg) N L% onto the torus

{(&mdreo | & + ni = (w/2)* Yk € O}

of genus O where O = O(ypy) := {k € Z | (o) # 0}.
Proof In view of Corollary 1.39 one can choose 1o € Iso(pg) N L% so that

A (00) < (o) < Af(wo) Vk € {n € Z | yn(po) # 0}

and ||[vo]| = |l¢ol|- For any n € Z with ~, # 0, consider the orbit u(t) :=
ur(n') (t €R, k € Z) where i)' is the solution of (1.79) with initial data .
By (1.80), pux(t) remains constant for any k € Z\{n}. As \/A(u,)? —4=0
iff py, € {/\n, 3}, there exist ¢; < 0 < ¢ so that u,(t) is monotone in
t1 <t <ty and limy_¢, pn(t) = /\f(gao) with t1,t_ agreeing with ¢1,t2 up
to permutation. As the flow 7' is isospectral, A(\, ') is independent of ¢
and using formula (1.80) one obtains
2
(1) = 2 5 /A 4

= 18 A ).

Therefore
d? A N
Wﬂn(ti) = tligli Wﬂn(t) = 1 (ADAMT) #0

and it follows that %;tn and hence {/A(un(t))? — 4 changes sign at these
points. Using the same arguments once more one concludes that () moves
back and forth between )\, and A} without stopping. By composing the
flows corresponding to finitely many of the vector fields X,,, one sees that
for any N > 1, there exists )y € L% NIso(¢y) so that for any —N < k < N

we(Yn) = v and, if Ay <vp < A, sign /A(ug)? — 4= ¢

As each of the flows corresponding to the vector fields X, preserves the
L?norm we have [[¢n|| = [[ol/(= [poll]). Therefore there exists a subse-
quence of (¢¥n)n>1, again denoted by (¥n)n>1, which converges weakly
to an element ¢ € L% and hence |¢|| < |l¢o. By Lemma L4 A(X,-)
is a continuous map with respect to the weak topology in Lé Hence
AN YnN) N A(X, @), and, as ¥ € Iso(gg), we have A(X, 1n) = A(X, o)

for any N > 1 and thus A(X, ) = A(X, ¢o), or ¢ € Iso(po).
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On the other hand, for any k¥ € Z and N > k, ur(¢n) = vj. By Lemma 1.4,
the map & (cf (I.13)) is weakly continuous on C x L2([0, 1],C?) and hence,
as 8(vg,Yn) =0 VN >k

0= lim &(vg,¥n) = (v, ¢),
N-—o0

i.e. v is a Dirichlet eigenvalue of 1. As A (¢) < vp < A () it follows that
v = ()

Recall that {/A(uy)? =4 = (Mia + Ma)|, , and use that (A, ) — (M2 +
A/[21>‘1 ), 18 compact on Cx L?([0,1],C?) to conclude by the same reasoning

that sign /A(ug)? — 4 =y for any k € Z with A\ <vp < Af. B

As a second application of the flows introduced above one obtains a density
result that will be used in Part II. Let

Dy = {p € W | vu(p) = 0}

and

By, := {‘P € L?Z I Tn 7 0; fn = Tn; Sign -y A(Nn)z —4= (_I)Tﬁl}'

Proposition 1.41 For any n € Z, D, N L% is contained in the La-closure
of By,.

First we prove the following auxilary result

Lemma 1.42 Letn € Z, ¢ € L% and v € R with v,, <v < A} be given. If
Ay < ptn < A then there exists ¢ € Iso(p) with the following properties
(i) pn () = v; sign/ Alpn(¥))? —4 = (=)

(it) e (¥) = pi(p) Yk € Z\{n}

(i) | — ol < Clom +m')

where the constant C' is locally uniform in ¢.

Proof (Lemma 1.42) Let ' denote the flow satisfying (1.79) with initial data
given by ¢. By Proposition 1.40 there exists t, > 0 so that 1 := n’* satisfies
(i) - (ii). It remains to estimate ||y — || = || [y~ Xn(n")dt]|.

By (1.80), pux(t) := px(n') satisfies

) = 5 V/BGOF 1 G

Notice that 0 < ¢, < T where T denotes the period of ¢t — p(t) and for
Y € L%, ph(v) is defined by

Hy,(¥) = (un (), sign /A(un(¥))? —4).
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From the proof of Proposition 1.40 one learns that %}Ln (t) vanishes precisely
at A\F. Using the product representation of \/A(u)? — 4 together with the
asymptotic estimates given by Lemma 1.17 one then obtains

)\+
n 2
t, <T = 2/ #
A WVAR)? -4

B du
A O =)= An)
=nC
where C' > 0 is independent of n and can be chosen locally uniformly in .

Hence .
Iy — ol < / X (")t < 7C sup || X (n")]].
0 teR

As the flow 7! is isospectral we have A(X,n') = A()\, ¢) and therefore

=nt

I < s [VpmAR |
AnSASAE #

By Proposition 1.28,
. y 1\/121 (I, /\)]\122(1,)\)
VoA = i(Myy — M) \ A < Mix (2, A) My (2, )

Alzl ((L’, /\)2
1\/111 (I, /\)2

. Maa(x, 0)?
+iMa1(1,)) (AITEE‘L /\§2> :

By (L4), ||M(z, ), ¢)|| < ell“l for 0 <2 <1,\ € R and hence

— iMa(1, ) <

[ X0 (") < 2e2W1 sup  (|Myy — Mas| + [Mia| + [Mo )

An AAY
teR

oy @81

Note that

(Myy + May)

Nk

As M(1,)) and thus M (1, \) is analytic, hence locally bounded near X it
follows that for ¢ € R and A\;; < A < )\Tf,

(M M) || =2(-1)" +0()

U (1.82)
5()‘177t) = 0(7n); 60‘1”‘) = 0(n)-
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Together with the identities 2(Myy — M) | 1y =0+ 5)(A) and 2(Myy —
Ma) |, = (86— 8)(A) one then gets

(]W]] - ]\122) i = O("/n); (1\/112 - J\/IQ]) | A = 0(’)/",). (183)

Combining (I1.82) and (I.83) one sees that
My (1,A,0%) = (=1)" +0(m), Maa(1, A1) = (=1)" +0(n).

By (1.21), Ms | A= m‘ 11 Hence the Wronskian identity (M1 Mo —
Mo May) ‘ =1 leads to |M2|? = 0(v,). Substituting these estimates into
(1.81) one sees that

X (')l = 0(vm +72/).
| |

Proof (Proposition 1.41). Notice that
DuNLy ={p € Lk | A(\) =2(-1)"}

is a submanifold of real codimension 2 in L%. Therefore given g € D,, QL%
and € > 0, there exists ¢. € L%\D,, with |j¢o. — ¢ol| < e. As @ — 7, (p) is
continuous on L% and hence lim._o7v,(¢:) = 0, we can choose ¢. so that
0 < Y (pe) < € and in view of Corollary 1.39, by changing ¢. within Iso(p.)
if necessary, we may assume that for any e,

An (pe) < pin(epe) < )‘:{(S@s) .

Hence by Lemma 1.42 it follows that there exists ¥, € Iso(g.) satisfying

tn(e) = Ta(e) (= Tulpe))s
sign/ Apn(Pe))? —4 = (71)n—17

e = gell < Com+ ) |

It follows that v. € B,, and

4= = oll < lltbe = @ell + lloe = ol
<Cle+et?) te

As C can be chosen locally uniformly in ¢ and thus independent of ¢ for €
sufficiently small one concludes that || — | — 0 for e — 0. B

We end this section with an approximation result that will be used in Part
11.
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Proposition 1.43 Let ¢ € L% and n € Z. Assume A, = pin. Then there
exists a sequence (;);>1 C L% with lim;_.oo¥; = ¢ satisfying

(1) A (Whs) < () < Ay (wy) Vi€Z

i) P ()= An (1))
() Sy pnt) P
Proof If A7 (¢) < pn(p) < At(¢) use the isospectral flow i satisfying (I.79)
with initial condition ¢ € Iso(p) satisfying uy(y) = pi(¢) Yk € Z\{n} and
(V) = (). As limyy pn(nt) = A, (cf proof of Proposition 1.40) the
claimed statement follows if one chooses ¥; = 1™ with (7;);>1 being a
monotone sequence satisfying lim; ., 7; = ¢_.
If A5 (¢) = A, (), then by Proposition 1.41 we can choose a sequence (¢; ) >1
in B, such that lim;_,. ¢; = ¢. By Lemma 1.42 there exists for any j > 1
1; € Iso(p;) such that

_ 1
ﬂn(d)]) =\ (50]) + ;’Yn(‘pj)

and
s = @il < € (mles) +mles)?)

where C' > 0 can be choosen independently of j > 1. As lim ;o yn(;) = 0
we then conclude that lim;_,o ¥; = ¢ and (i) and (ii) are satisfied. B
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Figure II.1: a-cycles

II.1 Introduction

Consider the Floquet matrix

) _ (M My
ma = () o

associated with the Zakharov-Shabat equation L(¢)F = AF and its discrim-
inant A(X) = TrM(1,)). The periodic spectrum of ¢ is precisely the zero
set of the entire function A%(\; ¢)—4 and we have the product representation
(cf section 1.6)

A’ —4 =40 - NG - N ]] W ,
k40 o

The square root of A%(\) —4 is defined on the hyperelliptic Riemann surface
Se={(\y) € C? |y = A’(\) -4}

whose genus is precisely the number of open gaps of ¢ minus 1. The Riemann
surface is a spectral invariant associated with ¢. It may be viewed as two
copies of the complex plane slit open along each open gap and then glued
together crosswise along the slits.

The aim of this chapter is to construct a normalized basis of holomorphic
differential on X,. To make this statement more precise, we introduce the
complex Hilbert space Zy of entire function of order < 1 and type < 1,
quadratically integrable on R (see section I1.2). For f € Z, the differential

FOVAA
VAIN) —4

is holomorphic except eventually at the two infinities of ¥,. Denote by ay,
k € Z, the cycles on the canonical sheet

£E = {(A,y> €x, |y= W}

described by figure 1. Here {/AZ2(\) — 4 denotes the canonical root defined
in L.I.7
Theorem II.1 below states that there exists a family of differentials

b (A)dX

AN -4
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with 9; € Ty, such that for any j,k € Z

/ 0 = 2mdjp, -
ag

Further the zeroes of 1; are located near the center of each gap. From
the infinite product representation (II.2), we can see that, in fact, o; have
poles at infinities with non vanishing residues. Thus (¢;) ez is a family of
Abelian differentials of the third kind. This family will play a crucial rule
in the construction of angles for the NLS equation (see chapter III).
The existence of the o;’s was first proven for ¢ of real type in McKean-
Varinsky [MV] (see [MT2] for a similar construction for the Hill’s equation).
The extension of ¢; to a complex neighborhood of L% is not straight forward.
Actually, when ¢ is not of real type X, is a more complicated object since
the periodic eigenvalues are no more real. We construct the v; using the
implicit function theorem.
Let us mention that the above arguments have been used in [KP] to obtain
a similar result for Hill’s equation.
To give a precise statement, let us recall some notations. Let

W= UWOEL% Vy{u
be the neighborhood of L% in L? given by (I.25) where V/, is the neighbor-
hood of g € L% in L? constructed in section I. I.5. There, for any ¢ € W,
we have chosen ¢y € L% with ¢ € V., and denoted by T',(p) the counter
clockwise oriented circle T'y, (o) of center 7,(¢p) and radius %v’n(cpg) +2K
with K > 0 given as in (I1.24). We recall that the circles I',,(¢) are pairwise
disjoint and that there are exactly two periodic eigenvalues of L(y), namely
A (¢) and A (), inside Ty (¢).

Theorem I1.1 There exists a neighborhood U of L% in L? with U C W
so that for any ¢ € U one can find a sequence of entire functions ¥;(\) =
(A @) (j € Z) such that

/ %@:mw (. k € 7). (IL1)
T(p) V sP)° =

The functions (A, @) are analytic in A\, ¢ and admit a product representa-
tion, for j # 0,

vi—A =\
v =—22—= ] & (I.2)
IT g M

and, given for j =0 by,

‘ 0 -\
go(\) = —2]] kk
k#0 4

(I1.3)

72 CHAPTER II. HOLOMORPHIC 1-FORMS

where the zeroes l/i; = (¢) (G, k € Z,k # j) depend analytically on ¢ € U
and are real for ¢ of real type. They satisfy the estimate

sup () = (@) < () an (11.4)
J

where (ay)pez € €% can be chosen locally independently of ¢.
For ¢ =0, the zeroes vj, are given by v}, = kr (j,k € Z with j # k).

We prove this theorem with the help of the implicit function theorem. To
this end we reformulate the statement in terms of a functional equation.
For a € (2 = (*(Z,C), introduce

ay = km+ oy (ICEZ)

and define for j € Z the entire function

ey = 2 T %22 G 20)

oty km
and e —
O —
xo(ha) =[] =
k#£0

For ¢ € W and k € Z, denote by Ay = Ag(p) the linear functional defined
on the space of entire functions by

F(N)dA

A, - f = —_—,
" Tue) VA 9)? —4

For each j € Z we then consider the functional

FI@ W = €5 (ay9) = (Flng),

where for k # j
F(a,9) = (k= ) Ak(9) - x5 ()

and
Fl(a,p) = aj +jm = 75(p)

The proof of Theorem I1.1 will be presented in the subsequent sections.

In section I1.2 we analyse the case ¢ = 0 and then use this case to define a
complex Hilbert space of entire functions Zp . In section II.3 we prove the
analyticity of the maps ¢ — Ak(p), a — x;(,a) and (o, ) — FI(a, ),
and in section I1.4 we apply the implicit function theorem to prove that
for each j € Z the functional equation F7(a,¢) = 0 has a unique solution
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a = al(p) € £% which is defined and analytic on some complex neighborhood
U of L% which can be chosen to be independent of j.
In section IL.5 we verify that

Aj(#) - xj(d (9)) = =7 .

Finally in section I1.6 we prove that the zeroes of (-, a’()) satisfy estimate
(I1.4) and thus the entire functions

7/’](7 419) = 72Xj("0‘j(99))

have all the required properties.

I1.2 The zero potential

Proposition I1.2 For ¢ = 0, the functions ¥;j(X) = ¢;(X,0) of Theo-
rem II.1 are given by

km—A

k40,5 ke =)

2\ km —
v =52 11 A (5 #0) and vo(x )=-2]]—
Proof By (1.9), A(X,0) = 2cos A and hence
VAN 0)2 —4=—2isin\.

Hence by Cauchy’s theorem (IL1) is satisfied for 1;(A,0) := 2284 ““’\ From

jm=X
the product representation sin A = A Hk#o % one then obtains

b =2 T2 Gxo

IT k0,
and 90(A, 0) = =2, 4 k=2 as claimed. W

The sequence (t);(+,0)) ;c; has some additional properties which will be dis-
cussed in the remainder of this section. First we need to introduce some no-
tation. Denote by Z the complex Hilbert space of entire functions f : C — C
satisfying

oo

IFNPdA < 005 [f(N)] < CePl waeC.

—o0

The inner product in Zj is given by

)= [ s
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and ||f| denotes the corresponding norm, ||f]| := (f, f)*/2. By the Paley-
Wiener Theorem, the Fourier transform

—w:/\

of a functionf € Z satisifes
fl@)y=0forzeR, |z|>1.

Hence

/\ \dx<\/_(/\ |2dr)1/2:ﬁ(/:\funm)l/z

and as f(\) = ﬁ fil € f(z)dx it then follows that for any A € C,

|1m)\\ |(LL
/ (IL.5)
< ﬁ eum‘l\f\l-

[F)] <

In fact, the Fourier transform is an isometry of Zy onto

Lpy = {f € LE([R) | supp(f) € [-1,1]}.

Clearly, up(z) := %e”"""ml[,m] (z) (n € Z) is an orthonormal basis of L,
where 1_y1)(x) denotes the characteristic function of the interval [-1,1].
Therefore vy, := F~!(u,) (n € Z) is an orthonormal basis of Zy. The v,’s
can be computed to be

_ (=) sinx
on(A) = VToonm— A

and we conclude that —(/J,,(/\ 0) = (—=1)"*!v,(\) (n € Z) is an orthonor-
mal basis for Zy. For f € 7.'[), apply to

1 _inre
F) = S = Y / F( o)) oo
nezL neZ
the inverse Fourier transform F~! to obtain
=" Vaf(mn)va(N) (IL6)
neL

where we used that suppF(f) C [-1,—1] and thus

/ Ff mnzdl, \/_/ F(f)(@)e™@de = /m f(mn).



I1.2. THE ZERO POTENTIAL 5

Formula (II.6) is known as Kotelnikov’s theorem. As a consequence we have
that for any entire function f with |f(\)] < Cel*, one has

fE€Tyift (f(n7)),eq € (Z). (I1.7)

For ¢ € W and n € Z, denote by A,, = A,(p) the linear functional A, :

o —C,
A)dA
An 'fI:(/n 74411424544*.
Tu(p) VAR, @)? —4

In view of (IL.5), An(p) is continuous and thus an element in the dual space
Z§ of Zy. Hence, by (I1.1) and Proposition I1.2, (%A“(O))nez
in Z§ which is biorthogonal to the orthogonal basis (1/;(-,0)) 7, and therefore
an orthogonal basis of Zg. Notice that

Wy (nm,0) = 2/ (= 1)+ oy (n) = 2(~1)7+155,

is a sequence

and hence one concludes from (I1.1) that %414”(0) is the Dirac measure
Mpr at nm,

An(0) = (71)"+1mmr .

3=

Further, as (—1)"*1u,()) = ﬁw(A,O) (n € Z) is an orthonormal basis of
To, ﬁA"(O) (n € Z) is an orthonormal basis of Z§.

We end this section with two simple observations that will be used in the
subsequent sections.

Lemma I1.3 Let ¢ be an element of L?z and f an entire function which is
real on the real line. If Ag(p) - f =0 for some k € Z then f has a root in
Gilp) = g, AL

Proof By assumption,

J R

. VAN)?Z -4

where v, = () and A(X) = A(X, ¢). If v # 0, we can shrink the contour
T to the interval [A;, Af] to obtain

N F(N)dA

N VA 024

Notice that as ¢y is of real type, /\,f are real, v/A(X —i0)2 — 4 is real valued
for A € [A;,A\}] and does not vanish for A, < A < Af". Therefore f has to
change sign in G (po).

If 43, = 0, we may extract the factor (\—7y)? from the product representation
of A(M)? — 4 and note that the contour integral above turns into a Cauchy
integral arround 7, which then gives f(7;) = 0. B

0.
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Clearly Lemma I1.3 is the motivation why we look for the entire functions
1h; of Theorem IL.1 of the form (I1.2), (IL.3).
The next lemma says that a function in Zy cannot have too many zeroes.

Lemma I1.4 Assume that f € Iy and (2)kez is a sequence of complex
numbers with z, = kr + €2(k). If f(zx) = 0 for any k € Z, then f = 0.

Proof By Lemma 1.17, the infinite product representation
zi— A
g = —(z0 = N [] 222

o T

is convergent and defines an entire function satisfying g(A\) = (1 + 0(1)) sin A
uniformly for (n + 1/4)7 < |A\| < (n+3/4)m and n € N. Hence h(\) :=
F(X)/g()) is an entire function. As f € Ty it follows that there exists C > 0
so that for any A € C with [A| = (n+ 3)7 (n > 1),

[R(N)] < Cel™ /| sin A| < 4C
where for the latter inequality we used that

MM < 4lsin N VA € Npez{|A — kr| > 7/4}

(cf [PT, Chapter 2]). Hence by the maximum principle, h is bounded on C
and thus constant by Liouville’s theorem. It follows that for some ¢ € C,

f(A) =cg(A) =c(1+0(1))sin A

uniformly on Up>1{(n+1/4)7 < [A| < (n+3/4)r}. By assumption, f € Zo,
hence || f|| < oo and one concludes that ¢ = 0, hence f =0. B

I1.3 Analyticity properties

In this section we analyze the maps ¢ — Ag(p),a — x;(-,a) and (o, p) —
FI(a, ) defined in section IL.1. As already pointed out in section IL.2,
An(p) € Z; for any ¢ € W and n € Z.
Lemma IL.5 For given o € W,
sup | 4n(p)llz; < C (IL8)
nez

where C' > 0 can be chosen locally uniformly in ¢.
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Proof By Lemma 1.19, A(\)? — 4 admits an infinite product representation
A =N =N

A2 4= =408 =05 -0 [[ 35

k£0

Recall that for any ¢ € W there exists po € L% so that ¢ € V(o) and
Tu(p) = Tnlpo) is the circle of center 7, (¢g) and radius 37, (o) +2K where
K is given by

1 _ m m
K:=-min{ (A, 1(9) =N (90)), 5 n€eZ} < —.
5 2 10
By Lemma 1.17, for any A € I',,(¢o) (n € Z)

sin A

2
A9 — 4= A0 — N0 —A)( ) (14 an(V)

A—nm
where (an(A)), ez satisfies 3, super, (o) | (M)|? < o0 locally uniformly
in ¢. Choose ng > 1 so that for |n| > ng,¥n(@0) < 15, |7(0) — n7| < %

and Supjer,, (o) lan(A)] < 1. It then follows that for A € T',(¢0),

A = | < A = ulpo)| + [mulo0) — | < /4

and hence
sinx \?
sup ‘ 5y -1 ‘ <1
In|>ng —nm
A€l (o)

This shows that there exists C; > 0 such that for any A € U‘n‘znorn(tpo)
1A 9)? =41 >1/CF (IL.9)
and thus, for Cy := C17%/2 and |n| > no,
[An(p) - f| < length (Ty)Cy sup [f(A)]
A€y
< Gof £l

where for the last inequality we have used (IL.5). By the continuity of the
Ay’s, (I1.8) then follows. As indicated, the constant C' in (I1.8) can be chosen
locally uniformly. B

Lemma I1.6 For anyn € Z, the map Ay, : W — I, o — A, (p) is analytic.

Proof By Lemma IL5, A, is locally bounded. Moreover, for any f € Zy,

- O B (Y
= An(e) - f ) VAOVE 4

is analytic, hence A,, is weakly analytic and the claimed statement follows
(cfe.g. [PT, Appendix A]). R
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Lemma IL.7 Let a € £2. Then x;(-,a) € Iy for any j € Z. Furthermore

sup [[x;( o)l < C
JEL

where C > 0 is a constant which can be chosen locally uniformly for o in €2.

Proof Let a € £2 and j € Z be given. By Lemma 1.17, X;(+, @) is entire.
Hence f(A) := (jm— A)x; (), a) is entire as well and satisfies by Lemma 1.16,

FO) = (14 0(1)) sin A

uniformly on Un>o{(n + $)m < |A| < (n+ %)x}. By the maximum principle
it then follows that for some constant C' > 0

lfo<ceM vaec.
As x;(+,a) is entire one then concludes that
()l < Cel

for some constant C’ > 0. It remains to show that

(o)l o= ( I \X_,-(A,aﬂsz)”Q

can be bounded as claimed.
By Lemma I.19, there exists a constant C'; > 0 so that

|7 = Mx;(\ )| <C1 VAER, VjeZ
By Lemma 1.17, there exists Cy > 0 so that for any j € Z
Ixj(A, )| < Co VA e Cwith |A — jr| < w/4.

Combining the last two estimates it follows that for any j € Z,

C
(A, < — .
Ixj(Aa)| < THm = VieR

As €}, Cy can be chosen uniformly on bounded subsets of a’s in £2, so can
the constant C' > 0. The above estimate then leads to the claimed result

" de 1/2
(. < - = A
ot <c([ ) =mc

Lemma I1.8 For any j € Z,0% — Iy, a— x;(-,a) is analytic.
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Proof By Lemma I1.7, the map o — x;(-,) is locally bounded, hence it
suffices to prove that the map o — x;(-,a) is weakly analytic. As Zg is a
Hilbert space and in view of Kotelnikov’s theorem (cf (IL.6)) it is to prove
that for any n € Z,a — A,(0) - x;(-,) = (—=1)" "y (nm, ) is weakly
analytic on ¢2 (cf [PT, Appendix A, Theorem 3]). By definition, one has for
J#0,

g — nm ap + (k—n)m
wlnma) = T T )
g 1 km
k#3,0

and for j =0,

ay + kT
Xo(mﬂa) = H kT
k#0

Hence for any a, 8 € £2, the analyticity of Xj(nm,a+23) in z € C is easily
established. W

To study the properties of the maps F7, we first need to establish additional
estimates for x;(A, a) and A, ().

Lemma I1.9 For any given o € (2 there exists C = C(a) > 0 so that for
anyn,j €Z and A € C

— AlelTmAl

|

C
i\ a)] < —
o)l < =y

where Gy, :=nmT + oy, (n € Z). The constant C can be chosen uniformly on
bounded subsets of a’s in (2.

Proof Introduce for any n,j € Z

Ava) = =200

Notice that
fa(da) = xn(A, a”™)
where o/ € £2 is defined by
o= Yk € Z\{n}
cv;:‘"::O; al:=0.

(I1.10)

As |a?"|| < ||| for any n,j € Z, one concludes from Lemma IL.7 that
fi(, @) € Iy and

sup||f7(a) <C

jm
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where the constant C' > 0 can be chosen uniformly on bounded subsets of
a’s in /2. Hence, by (IL.5), one gets

; C
sup [fi(\, )| < —=elfm,
upl (o)l < =

|
Lemma II.10 Let p € W. Then there exits C = C(p) > 0 so that for any
f€Tpandn el
[An(p) - fI < Csup{|f(N)] | A= Tal@)| < [7nl} -
The constant C' can be chosen locally uniformly in ¢ € W.

Proof Recall that A,, = A,(p) is given by

A, f= ————d\

nd / /AN -4

By the product representation of A(\)? — 4 and Lemma 1.17,
AMN? =4 =4 =N, = A) (L+ (V)

( sup \gn(A)|> e
IA=7n|<l7nl ez

Choose ng so that for any [n| > ng, SUP|s_r,|<|y,| [0n(A)] < 1/2. Tt then
follows that there exists C; > 0 so that

where

inf |1+ 0,N)[V2>1/C1 VneZ (IL.11)
A=l <[l

Alsorecall that, with / denoting the standard root (cf Section I. Ss:Branches
of square roots)

VAMN? =4 =2i{/ (A = N (An = N)V1+0.(N)

with the appropriate choice of the sign of the root y/1+ p,()\). For n € Z
with v, = 0 one gets by Cauchy’s theorem

|4y - f = 27r‘ ‘ < 27Ch|f(7a)l-

Tn
NiETReN)

If v, # 0, deform the contour I',, to the straight line

At) =T+t 7/2 (-1 <t < 1)
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traversed in both directions, but with different choices of the sign of the
root. In this way one obtains

- 1 f W)
IAn-f\72|/712,-%m 1+ 0n (A(t)

<nCp sup |f(N)|
[A=7n|<|Vn]

g

It is easy to see that C; in (II.11) can be chosen locally uniformly on W. W
We can now state the main result of this section:

Proposition I1.11 For each j € Z the map F7 is analytic from (*> x W
into (2. Furthermore the FJ are locally bounded uniformly in j € 7.

Proof Recall that for any (a, @) € (2 x W and k,j € Z with k # 7,
Flla,0) = (k= j) Ax(@) - X, )-

By Lemma II.6 and Lemma II.8, each component F,g, with k # j, of FJ
is analytic and Fjj(oz7 ¢) = @; — 7j(p). Thus FJ is analytic if it is locally
bounded as a map from £2 x W into ¢? (cf [KP, Appendix A, Theorem A.3]).
To prove this notice that by Lemma II.10, there exists C'(¢) > 0 so that

[F (o, 0) < Clp)  sup [k =] [xj(A o).
Perl<inl

By Lemma II.9, for any k,j € Z with k # j and A € C

Wk — A | Ima
Ix; (A a)| < C(a) m‘a mA|,
Notice that for [A — 7| < || one has
ok = Al < fag| + [ = kol + [l
lim = Al = Ci(j — k)
and
[ImA| < |X = kx| < |7 — kn| + |yl -

Furthermore (7, — k7)gez is a sequence in £? which can be bounded locally
uniformly on W. Hence one concludes that

1/2
sup <Z I} (@, W) <C
JEL

k€EZ

where the constant C' = C(a, ¢) can be chosen uniformly on bounded subsets
of a’s and locally uniformly in ¢ € W. R
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II.4 Implicit Function Theorem

In order to apply the implicit function theorem, we have to analyze the
Jacobian of F with respect to a.. At any point («, ¢) of £2x L% this Jacobian
is a bounded linear operator B/ = B’ (a, ) on 02 which is represented by
an infinite matrix B = (by..,,) with elements

i 0
b;c,n = b?«,n ((Y, 90) = da

Fl(o ).

n

One easily computes that for k # j and n # j

) ‘ viha
b= (k=) Aup) - 2 (11.12)
’ Qp — A
whereas
Vi = Opn for k=jorn=7j. (11.13)

Notice that by Proposition II1.2 one has

a0y =kr j ke,

hence o (0) = (ai(O)) =0 and for k # j and n # j, b{c,n at a = a’(0),
¢ =0 is given by

k—3j / d\ 5

T B v o = O%n -

=00 o Tim =N =g O
Together with (I1.12) we then conclude that B7 at a = a/(0), ¢ = 0 is the
identity on £2.
For a € (% and ¢ € L% arbitrary we decompose BY into its diagonal part,
Di = (dj,,), and its off-diagonal part @,

Q=B —DJ.

Denote by (2 the set of real valued sequences in £2.

Lemma I1.12 For any j € Z and any (o, p) € £3 x L% the diagonal oper-
ator DV = D¥(a, ¢) is boundedly invertible on (3.
Further there exists a constant C' > 0 such that for all j € Z

17|l g2y < C and [|(D?) " g2y < C

where C can be chosen locally uniformly in (a, o) € ZDZQ X L%.
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Proof For any j, k € Z, let
; . x;i (M)
d) = (k—j)Ag - J .
k ( 7) Ak (ak 2
We prove that locally uniformly on €% x L%
0 < inf |d}] < 400 .
k,JEL
Ji#k

Notice that y;(A)/(ax — A) is real valued on R and does not change sign for

A, <A< AL Further, (1ML /AN —1i0)2 —4 > 0 for A, < A < Af (cf
(1.50)). It follows that

woakgd@\g( s

ap — A AL SASAE

(=) > o

min -
Ap SASAE ap — A

where for k with 75, = 0, aj := 7 and for k with v, # 0
Mo d
A VA4

Hence aj, > 0 for any k € Z and by the infinite product representation of

/A(N)? — 4 and Lemma 1.17,

A dx
o /A; Jor o

=7(l+ f2(k)) .

ap =2

1+ (k) dx

It follows that inf; ar, > 0 and sup, ar < 400 locally uniformly for ¢ € L%
and it remains to show that

sup max |x;(A)(jm —A)/(ar — A)| < +o0 (IL.14)
kgez A SASAL
Ji#k
and
inf  min |x;(A\)(Gr — A)/(@x —A)] >0. (IL.15)

kJEZ N\~ <A<AT
£k Ap SASAY

Estimate (I1.14) is a consequence of Lemma I1.9. To prove (II.15) notice
that )

XiA G = N/ (@ = X) = xx(A, o)
where o/ € (2 is given by (IL.10). Hence (I.15) is equivalent to

inf _min Ixr(\, a?®)) > 0. (IL.16)
RISE N SASN
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Clearly, for any k,j € Z with j # k, min)\ZS)\S)\Z Ixe(A, a?F)] > 0 and by
Lemma 1.17, one has

k(A @) = 1+ (k)
uniformly for |\ — 74| < 75, and locally uniformly for o € £2 as {ad* | k,j €

Z, j # k} is relatively compact in £2. Hence there exists K > 1 so that for
any |k| > K+ 1, and j € Z with j # k

. 1
min [xx(h )] > <
IR 2

which leads to (II.16). W
The Jacobian B’ can be written as
BJ = DI(Id+T7) and T9 = (D7)7'Q7 .

By construction, 77 = (Tk’ n)k . is given by
’ SME.

1], = (@) (k= ) Ar - (QX—()A) Kt j#n (1117)
and )
T,ﬁyn =0 k#norj#n. (I1.18)

Lemma I1.13 For any j € Z and any (o, ) € (3 x L% such that FI (o, @) =
0, the operator T3 = T (a, ) is a compact on €2 .

Proof Use that (k — j)Ag - x; = 0 to get

(k*j)Aw(anXi)\) (k—j)Ak.(m,ﬂi)

Qp— A Qp— Tk

) + (I1.19)
_k-d), / A=
Th = 0n Jap (G — A)/AN)? -4
By Lemma I1.9
LEICON [P NN
R 11.2
dn—/\|7\j7r—)\| < (IL.20)

where C; > 0 can be chosen independently of j,n € Z. By Lemma 1.17

WADE 4] > {0 - N0 -2)/C WA SASA (2

for some constant Cy > 0 independent of k.
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For k with 4 # 0, parametrize the path of integration in (IL.19) by A(t) =
T + t%/2,—1 < ¢ < 1, to obtain from (IL.20) - (IL.21) for k, j,n € Z with
k#mn,j#n

. XN
(k= ) A - 22|

O_‘n
1 2/1 | (G —F)x; (V) ‘ /2 k4,
=T — aal =X /AN? 4] 2

-1

1 )
Tk j—k 1
= . C Cadt .
~ e — /,l ‘]ﬂ'*/\(t) ‘ Aop 2
Hence in view of Lemma I1.12 and (I1.17) (IL.18)
T}l < /(e =) (11.22)

where C' > 0 is a constant independent of n, j, k and locally uniformly in
a. This inequality continues to hold for k& with v, = 0 since in this case
)\; = A, = a, and thus (k — j)A; - gl(j‘;\ =0.

Therefore

DT P <o
kn

i.e. TV is Hilbert-Schmidt and hence compact. W

Notice that by Lemma I1.3 if (v, ) € (& x L%, satisfies FJ(c, ) = 0 then
for any k € Z the entire function x;(e) has a root in Gg() == [A;, A{]. It
therefore make sense to restrict ourselves to the open domain V' C ZIIQQ X L%
characterized by . .

A Ap AP+ A

k—12+ b gy < 2k *2

As a consequence, any solution (a,¢) € V of Fi(a,p) =0 leads to a mono-
tone sequence (@'{C)kez, which in turn makes « unique.

k41

Lemma I1.14 Let j € Z. For any (o, ) € V such that Fi(a,p) = 0 the

operator BY = B(a, ) is a linear isomorphism on (2.

Proof As ¢ is of real type and « is real, the matrix elements of B7 are real.
To prove that B7 is 1-1 it suffices to show that for any § € Z]?g with B7-3 =0
one has 3 = 0. By the definition of B/, B/ - 8 = 0 implies that 8; = 0 and

D Balk = Ak - (;(N)/(@n = N) =0 VkeZ (11.23)
n
where x;(A) = x;j(\, a), Ay = Ap(p) and &, = nm + ay,.

Introduce

Fi) =D Baxi(N)/ (@n = N) -
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By Lemmas IL.7 and IL4, f; € Zp and the identities (IL.23) then read
A ;=0 Wee 2}

On the other hand, as F(«, ¢) = 0, one has
Apxy =0 Yk € Z\().

As x; # 0 one deduces by Lemma II.4 and Lemma I1.3 that A; - x; # 0.
Thus one can define

_A

) = )~ g

xi(A)

and one has

Argi =0 VkeZ.
The entire function g;()) is real valued for A € R and as both x; and f; are
in Zy, g; is in Zp as well. Hence in view of Lemma IL.3 there exists for any
k € Z a real number \;; < n, < Af so that g;(n,) = 0. By Lemma I1.4 it

then follows that, g; =0, i.e. fj =¢; x; with ¢; = 317){; or

PIPVICY: ﬂi 5 = )

o
netj n

or for any A € C\ {a, | n € Z}

Wzﬂn/(dn*)‘) =¢ -

n#j

As (o, ) € V, the zeroes @&, are pairwise distinct and one concludes that
Bn =0 Vn € Z. This shows that B; is one to one.

By Lemmas I1.12, I1.13 and the Fredholm alternative, B; is thus a linear
isomorphism. W

Lemma II.14 and Proposition II.11 allow to apply the implicit function the-
orem to any particular solution of F7(a, ) = 0 in V. The upshot is the
following result.

Proposition I1.15 For any j € Z there exists a unique real analytic map
oLk — 1}
with graph in V' such that
Fl(al(p),0) = 0.

Further, for any k € Z and any ¢ € L%, df;(gc) € Gi(p)-
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Remark To be precise, uniqueness holds within the class of all such real
analytic maps with graph in V.
Proof Let j € Z and define £ = &7 by

£ :={p e L% |3ac 2 such that (a,p) € V and F/(a, ) = 0} .

Note that the zero potential is in € (cf Proposition I1.2) and L% is connected.
To prove the existence of the map o/ it thus suffices to show that £ is open
and closed in L%.

Applying the implicit function theorem at any solution (, ¢) € V of FI(a, ¢)
0 we conclude from Lemma II.14 that £ is open. Further we claim that for
any solution (a, ) € V of Fi(a, ) = 0 one has

ar € Gp(p) VEkeZ.

For k = j, this holds by definition. For k # j, the fact that Ay, - x;(a) =0
together with Lemma IL.3 imply that y; has at least one root in Gj. As
(o, ) € V, it follows that ay, € Gy, Vk € Z.

This claim allows to prove that & is closed. Let (¢,)n>1 be a sequence in
& converging to ¢g in L%. For each n > 1 let a(n) be an element of Z]IZQ
such that F7(a(n),¢,) = 0. Then @&, := ag(n) + k7 is in Gx(p,). As the
periodic eigenvalues are locally bounded, U,>1Gk () is a bounded set of
R for each k € Z. Therefore, there exists a subsequence, again denoted by
(¢n)n>1 such that ag(n) — oy, for all k € Z. It follows that &y = oy, + km
is in Gy, for any k € Z and in particular (o, ¢) € V and F?(a, o) = 0. This
shows that £ is closed.

To prove tha claimed uniqueness, assume that F7(c, ) = F7(3,¢) = 0 for
some (a, @) and (8, ¢) in V. Then for all k # j, Ay - xj(a) = A - x;(6) =0
and by Lemma I1.4, A; - x;j(a) # 0 and Aj; - x;(B) # 0. Thus the entire
function g := x;(a) — 31;;2{;; x;(B) satisfies A - g = 0 for all k € Z. By
Lemma I1.7 ¢ is in Zy and we conclude from Lemma I1.3 and Lemma I1.4
that g = 0. As («, ) and (3, ¢) are in V, it then follows that o = (3.

As a consequence the map a7 : L% — Z]i is well defined and has is graph in V.
By the implicit function theorem o/ is analytic on a complex neighbourhood
of L%. W

Lemma I1.16 For any ¢ in L?z and k € Z,

al(e) = Milp)  asj— Foo

where M (p) are the roots of A(-, ) = %A(',Lﬂ).

Proof We focus on the limit j — +o0 as the limit j — —oo is calculated in the
same way. For each k the sequence (@7])jen lies in Gy. As Gy is compact,
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there exists a subsequence, again denoted by (@?;)]EN which converges to
some element @° € Gy. Let a® = (a}°)rez where af° := a® — k.
For each sequence 8 € £2, introduce in addition to the functions X the entire
function Bt kA
AB)=Bo—N [ 2————L
X\ 8) = (6o )LIO i

Notice that uniformly on the contours I'y, one has as j — +o0,

(k=) ah) = Z=Sx(had) = —m(a™)  (1124)

and hence
Ap-x(,a®)=0 forallkeZ.

On the other hand, by Lemma 1.20, A(-) = 2x(), 8) with 8 = (Ay — km)rez

A

——2L_() is an exact differential on I'y, one has
/AN

and as

Ap-x(B8)=0 forallkeZ.

Let f := x(B) — x(a*®). By Lemma IL.3 there exists £ = (&k)rez € €2 such
that f(& + km) = 0 for all k& € Z. Therefore the function A — X’EE\)‘E)
entire.

In view of Lemma .17

is

XL B) = sin A(L+0(1)), x(A,a™) = sinA(1-+o(1)), x(\,€) = sin A(I-+o(1))
uniformly on {(n + 1/4)m < |A\| < (n+ 3/4)7} and hence as n — +o0

)
X(A &

A
uniformly on {(n 4+ 1/4)7 < |A| < (n + 3/4)7}. Hence by the maximum
principle, f =0, ie. a® =45 1

=o(1)

—

Each map o/ extends to a complex neighbourhood of L% which might de-
pend on j. The following proposition asserts that the complex extensions
can be done uniformly in j € Z.

Proposition I1.17 The real analytic maps of : L% — (% (j € Z) of Propo-
sition I1.15 extend to a common complex neighbourhood U of L%.

Proof By the implicit function theorem it suffices to show that the inverses
of the Jacobians .
J( o o ;
Bl (9), ) = 5 ((9), )
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are bounded uniformly in j and locally uniformly in ¢ € L%.
We begin by proving that at each point g of L%

1B (0 (p0), 20)) ey < o (1L.25)

uniformly for all j € Z. By Lemma I1.16 and in particular (I1.24), one has
p 1 .
(k—Ji)xj(\ ) — —Q—A()\) for j — 400
T
and hence for bli‘m = (B7(o?(¢0):¢0))k,n given in (I11.12)

Tl A
’ 27 N\, — A

=: by, as j — £00

b
uniformly for k and n in Z. Let B® := (b3, )knez and denote by D>
the diagonal part of B*°. The sequence (aj)]-EZ is relatively compact in £2.
Hence by Lemma I1.12, D7 — D in operator norm and D is boundedly
invertible. Write B = D>®(Id+T>) with T> := (D>)~!(B> — D). By
(I1.22) and the compacity of (a?);ez, one sees that

T} (7 (o), p0)| < Cu/{k — )

Hence the same estimate holds for 7% and thus 779 — T in operator norm
and T is compact.
We claim that B is one to one. Assume that B> -3 = 0 for some element
pe Z]%{. Following the proof of Lemma I1.14 one gets Ay - f =0 forall k € Z
where f:=3% ﬂn}\A(%))\ € Zp and w proves that f =0, i.e. 3=0.
In view of the Fredholm alternative, B> is boundedly invertible. As B/ —
B in operator norm and for each j the linear operator BY(a’ (o), ¢o) is
boundedly invertible, one concludes that (I1.25) holds uniformly for j € Z
ie.

sup [[B7 (o (o), 0) | < o0 .

JEL
By Propostion IL.11, the maps F7 are analytic and locally uniformly bounded
on W uniformly in j. Thus by Cauchy’s estimates (I1.25) remains valid

uniformly on a complex neighbourhood of each ¢y in L% and uniformly for
jez.

II.5 Normalization

Consider the entire functions J)]- =X (a’). By construction, Ay »u‘;L: 0 for
all k # j and by Lemma I1.3 A; - ¢); # 0. Hence we can normalize v;

1 ~

90 CHAPTER II. HOLOMORPHIC 1-FORMS
which then sastisfy (IL.1). It turns out that the constants A; - 1/;]' can be
explicitely computed.
Proposition I1.18 For any j € Z and any ¢ € L%,

4 x(ed) =~ .
Proof Let 1 := xj(/). By Lemma 1.16 one has as n — +00

() = ]_7;1 5 sin (1+0(1)

and
AN)? —4=—4sin® X (1+0(1))
uniformly on {(n+3)r < [A| < (n+3)7}. Asinview of (1.49), /A(N)2 —4 =
—2isin A(1 + o(1)), one then has for n — oo
Ui () -1

=TTy (1+o(1)) (I1.26)

uniformly on {(n+ $)7 < |\ < (n+ )7}

Due to the asymptotics of the eigenvalues )\f one can choose N > 1 so large
that [AF — n7| < m/2 for |n| > N. By Cauchy’s theorem it follows that for
n > max(N, j),

Ui () ;
————dX = A - (I1.27)
./C(O,n7r+7r/2) v/ A()\)Q -4 ! !
where C(0,nm 4+ 7/2) denotes the counterclockwise oriented circle of radius
nm + m/2 centered at 0. Comparing (I1.26) and (I1.27) one concludes that

Aj . ’ll)j =—m. 0

Remark One can explain this computation in aa easier way for finite gap

e - . . P . . . .,

potentails. It turns out that 77_,‘ = —\/ﬁ(v\ is an Abelian differential on the
Riemann surface ¥, given by y? = A(\)?—4. These Abelian differentials are
holomorphic except at the two points at infinity where they have a simple
pole. Let aj be the cycle on the canonical sheet ¥¢ of ¥ determined by
the canonical root {/A(A)2 — 4 which correspond to the contours I'y on C.
Then by Cauchy’s theorem, the conditions fl“k 7; =0 for all k& # j lead to a

relation between j]“ 7n; and the residue of the pole of 7; at infinity on X°.
J

I1.6 Estimates for the zeroes

In this section we prove the refined estimates for the zeroes (ai)kez\{j} of
X;j(a?) as stated in Theorem IL1.
Let U be a neighbourhood of L% as in Proposition PropositionII.23.
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Proposition I1.19 For any ¢ € U,

sup Wi () = T(@)] < Cluk(e)Pax (I1.28)
Sup

where (ay)rez € €% can be chosen locally independently of .

Proof Denote by I‘;c = F;C(L/)) the counterclockwise oriented circle with center
7; and radius | 77’ ‘ + min (K, %) By Lemma 1.17 one has uniformly for
NeT, and k # j

xj (A af) = L_; (1+ (k)
i~

and
VANZ —4=2{/ (N = 0O =N (L + (k)

where the error terms are uniform with respect to j and A € F;c and, locally
with respect to ¢ € U. Therefore

(o)) &~
*) _ FieA
VAN =4 9i(r; = /(M = N = A) e

where uniformly for A € F;c and k # j
Fin) = 1+ E(k) .
As A - x; (o) = 0 for k # j, it follows that

.)\k{r ~j
I % ) Fidr = 0.
N (= N0 - NOF -

Using an integration variable A(t) = 74 + t% and writing ai =T+ fi one
gets

! 51 —t /2 _
[ T T e =0

Denoting

T — Tk
Aip(\) = -2 (X
ik (A) p. — i)
the last equation can be written as

el ! Ajk(/\(f)>dt _w (! tA-’k()\(tl)dt '

1 V1-¢2 2 ) Y1-+¢
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Making the change of variable of integration ¢ — —t and adding the expres-
sion to the one above one gets

& [ A (0D + 430 = -
¥ [ s 0) — Aua1))-
Observe that uniformly for ¢ € (~1,1)
A (A1) =1+ (k) . (I1.30)

To estimate the difference A3 (A(t))—Ajx(A(—t)), we consider k large enough
(locally uniformly in ) such that |A\{f —kr| < w/4 and |\, —kr| < /4 (cf.
Proposition 1.5). We denote by Dy, the circle of center k7 and radius 7 /2.
Express Ajp(A) — 1 for X in the interior of Dy, by the Cauchy formula

1 A]k(z) -1

AN == | T ®

to get
1 At) = A=)
= 557 [, 4 - D5 e

Since A(t) — A(—t) = tvg, one then obtains taking into account (IL.30) and
the size of Dy,

Ajr(AMt) = Ajr(A(=1)) dz

Aj(A®) = Ajp(A(—1) = 1l (k) .
Substituting this expression into (IL.29), we get

50‘)/1 dt (AjA(®) + AjA (1)) = [yl *E (k)
S e * e

Using again (I1.30) we conclude [€]| < |3 |2¢2(k) as claimed. B
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III.1 Introduction

In this chapter we prove that NLS can be brought into normal form as stated
in Theorem 0.1.

For a finite dimensional integrable system there is a well known procedure to
define actions and angles. Actually Flaschka and McLaughlin, extending this
procedure, defined in ([FM]) actions for the KdV equation. Angular vari-
ables which linearize the KdV flow were introduced by a number of authors
(Dubrovin, Its, Krichever, Matveev, Novikov [D], [DKN1], [DKN2], [DMN],
[DN], [IM], McKean and van Moerbecke [MM] and McKean and Trubowitz
[MT1], [MT2]). In [BBEIM] and [MV] a similar algebro-geometric construc-
tion is carried out for the NLS equation.

The proof of Theroem 0.1 uses the definitions of actions [; and angular
variables 0y given by the algebro-geometric approach as an ansatz. We then
prove that the associated Birkhoff coordinates

xp = \/2I} cos O, yp = /21 sin by,

can be extended to real analytic functions defined on all of L%, are canonical
and, thus, give rise to a global canonical coordinate system.

Action-angle construction

Before going on into the details of the proof we would like to review the for-
mal construction of actions and angles. To this end we recall some notation
of chapter I and introduce some more concepts.

Consider the Floquet matrix

) _ (Mun My
ma = (it ) o

associated with the equation L(p)F = AF and its discriminant A(\) =
TrM(1,)). The periodic spectrum of ¢ is given by the zeroes of the entire
function A%(\;¢) — 4 (with multiplicities) and we have the product repre-
sentation (cf section 1.6)

O =N =)

AYN) —d=—4(\g — NG —N) H k272

k#0

Hence this function is a spectral invariant. The square root of A%(\) — 4 is
defined on the hyperelliptic Riemann surface

Y, ={(\y) € C?|y? = A%(\) -4}

whose genus is precisely the number of open gaps of ¢ minus 1. It may be
viewed as two copies of the complex plane slit open along each open gap and
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then glued together crosswise along the slits. Clearly, the Riemann surface
is a spectral invariant associated with .
To define actions and angles we also need to consider the Dirichlet spectrum
(12(9)) gz which satisfies (cf sections 1.3 and 1.4)
< i) < pole) < pale) <.

and

Mo (@) < @) SN (9), kEZ.
Using the Wronskian identity one proves (cf (1.68))

2 _ 2

A (Hk) —4= (]WQ] + ]Vflz) | Ly
Therefore with any Dirichlet eigenvalue i, one can uniquely and analytically
associate a sign of the root \/A2(u;) — 4 by defining (cf (1.68))

Y Az(uk) —4= (A{21 + ]le) ‘ Lo’

This in turn defines the Dirichlet divisor
i = (/‘Im VA2 (n) — 4)

on the Riemann surface .
The Dirichlet eigenvalues can be complemented to a symplectic coordinate
system on L% by introducing the quantities (cf [GG])

(=*
2

Ki(p) = 2log (Myy + Mg + Moy + May

) | T
Then
= () Ki(9))rez

where fiy, = pu, — km, defines a real analytic diffeomorphism from L% into a
subset of a suitable Hilbert space of sequences; furthermore

{1k, e} = 0
s e} = Ore
{Kr, Ke} =0

for all k,¢ € Z (cf [GG] and also [G]). Hence the new variables are canonical
and the induced symplectic 1-form is given by

a= Z Kjdp;.
JEL

We may now define actions by Arnold’s formula,

1 1
Ik:—/a:— //deuj,
27 Je, 2w JXE;; o
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Figure IIL.1: a-cycles

where ¢, is a cycle on the invariant torus Iso(y) corresponding to pg. As
dpj = 0 along ¢y, for j # k,

1 1 (Myy + My + Moy + Mas)
Iy = 5 Krdpr = = [ e 7+ y - - |
T Jey T Jep (lull + Mo + Moy + ﬂfzz) 1,0k

dpg

by partial integration.
Noticing that

(M1 + Mz + Moy + M) [y, = M) + /D2(ui) — 4

a short calculation gives

51 / A(u) J
oo ck'u\/A2(/1,)74 H
In particular the actions only depend on the periodic spectrum. Finally by
analytic continuation the latter integral may be interpreted as a contour
integral on X, with contour given by the cycle a; on the canonical sheet
¥¢, around the lift of [\, Aj] as indicated in figure IIL.1. This formula was
first established in [FM] for KdV and in [MV] for NLS.
Assume that the actions I, admit canonically conjugate angles 6) . Then
the 1-form « reads
a=Y Id;+dS
JEZ
where dS is some exact 1-form. A priori there is no reason for the 1-form
dS to be identically zero. But it turns out that with the choice dS = 0 the
corresponding angles give rise to the canonical relations {I, 0} = djs (see
section IIL.6).
Assuming that a = Z]EZ I;df;, we obtain, at least formally
O

d9k = TIk = Q.

Integrating along any path on Iso(p) from some fixed point ¢ we then get

©
t9k-: / Q.
v Yo

This integral is independent of the path chosen since da = 0 on Iso(yp).
Recall from [G] (see also Proposition 1.40) that the isospectral torus can

be parametrized by (/Lj,sign /A% (p;) — 4) - ‘We then take ¢q to be the
JEL
unique element of Iso(yp) with

(o) = Aj (o) Vi€Z
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and choose the path from ¢q to ¢ obtain by moving successively ji; from /\;
to ui(p) for j =0,1,-1,2,.... This way we obtain

ek:Z/ﬁ;ak'

JELV NG

It remains to identify the 1-forms ay. From a = ZjeZ 1;df; we have

1 1

a=— «,

I = —
J 2r Je, o

Jaj

L/a _9G s
2 Jo, T or,

for all j,k € Z. But these properties uniquely characterize a holomorphic
1-form on X, \ {co£}. Actually oy coincides with the 1-form constructed
in chapter II, i.e. (cf Theorem ILIIL1)

Ye(A)

VAZ(\) —4

hence

ap = dX.

Then we define

m k(M)
0 = / ————————d\ mod 27
2} vEm

for each open gap (A, /\;r) By a slight abuse of terminology, we may refer
to the map ¢ — 6(p) = (0r(¥)) ez as the Abel map.

Birkhoff coordinates

The actions I}, are real analytic on L% (see section II1.2) and each angle 6y,
is real analytic modulo 27 on the dense open domain L%\D;C with

Dy ={p € L | wlp) =0}

(see section IIL.3). In section II1.4 we show that the associated Birkhoff
coordinates (k € Z)

Tk = /2 cos O, yr = /2 sinby

extend real analytically to a complex neighborhood W of L%.

To extend zj, and y; to all of L% we prove that the blow up of 6 when i
collapses is compensated by the rate at which [; vanishes in the process.
For complex potential, i.e. ¢ € W\L%, the situation is more complicated
since the associated Zakharov-Shabat operator is no more selfadjoint. In
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particular, it may happen that A\, = /\kf but pj # A, . In such a case,
although I vanishes, x;, and y; will not vanish.

The canonical relations {zx, z¢} = {yr, ye} = 0 and {zk, yo} = O, k, L € Z,
are proved in section II1.6. In section II1.7 we use these canonical relations
(cf [KM]) to show that the map

Q Lk 39— (kyp)kez € C(Z,R?)

is a local diffeomorphism at every point ¢ € L% . Finally in section II1.8 we
prove, using the property of the action map, that  is a global diffeomor-
phism and hence a canonical transformation.

II1.2 Actions

In this section we define the action variables I,, as introduced by McKean-
Vaninsky [MV] (cf also [FM]) and prove their analyticity as well as asymp-
totic estimates.

Choose a connected neighborhood W of L% := {(¢1,71) | ¢1 € L&} in
L% X L%, as given by Lemma 1.12. For ¢ € W and n € Z, one then has
Re)f < Re,, . In particular,

DA ={0 =8N, +tAf|o<t<1}CC
are pairwise disjoint intervals. They admit mutually disjoint discs Disc,, C

C which can be chosen locally independently of ¢. -

Definition III.1 The neighborhoods Disc, are called isolating neighbor-
hoods for the intervals [\, \}].

Arguing as in [FM] (cf [MV]) one defines the action variables,
_ly AW
mJr, AN?-4
where I';, is a circuit aroun(_i [An, At] inside Disc, with counterclockwise
orientation, and the dot in A(\) denotes differentiation with respect to A.
The root {/A(A)? —4 is defined in section I. 1.7 . By Cauchy’s theorem the

definition of I,, does not depend on the choice of T';, as long as it stays inside
Discy,. In particular, I';, can be chosen to be locally independent of ¢.

I, : d\ (neZ)

Theorem IIL.2 For any n € Z, the function I, is analytic on W with
L?-gradient
Vo In = 1/ Vo) A(N) ! dA (TIL.1)
ple)in = 70 ; () JANE 4 :
Moreover, for ¢ € L%, each function I, is real, nonnegative and vanishes
ifAE =
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Proof Locally on W the contours of integration I';, can be chosen indepen-
dently of ¢. As A is an analytic function of A and ¢ and {/A(N)? —4 is
analytic in a neighborhood of T, the function I,, is clearly analytic on W.
To obtain its gradient we observe that for ¢ € V, (—1)*A()\) > 2 and hence
(=1)"A(N) A(N)? —4 > 0 on the interval [A;;,\}]. Therefore, on a
sufficiently small neighborhood W,, C W of L% and a circuit I';, sufficiently
close to [A;;, A, the principle branch of the logarithm

h(X) = log(—1)" (A(/\) — AN - 4)
is well defined along T,. Since i(\) = —A(h)//A(N)? — 4, partial integra-
tion gives

I, = l/rn log(—1)" (A(A) — /AN 4) A

™
Again keeping I',, fixed and taking the gradient with respect to ¢ € W, one
obtains the above formula for 32; (1 <j <2)on W, As both sides of
(IIL.1) are analytic on W and W is assumed to be connected, (III.1) holds
on all of W.

To prove the last statement of the theorem we observe that

A
Jr, /AN)? -4

in view of the existence of a primitive. With 5\”, denoting the root of A near
A, and A we can therefore also write

dx=0 (ITL.2)

™

=1 / (A— mcL dA. (I11.3)
Iy

For ¢ € L2, we then obtain

2 A . AN
In== DM = M) ———d
R A e
by shrinking the contour of integration to the real interval [A,;, \}] and
taking into account the definition of the canonical root {/A(\)2 — 4. Since
sign ((/\ - X,L)A()\)) = (=1)" ! on [\;,\f], the integrand is nonnegative
and the result follows. W

Let

D, :={peW |, =0}
be the subvariety of potentials in W with collapsed n’th gap. Here 7,
denotes the gap length 7, := A} — A\, € C. As I,, and 7% are both analytic
on W, their quotient is analytic on W\D,. We show that I,,/72 extends
analytically to all of W to a nonvanishing function.
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Theorem I11.3 The quotient I,,/v2 extends analytically to W and satisfies

1,
42 =1+0(n) (nez)
’.Y7l

locally uniformly on W. Moreover, the real part of (4%) is locally uniformly
bounded away from zero in a sufficiently small neighborhood W' C W of L%.

As a consequence
&n = +\/ 4In/'\/%

is a real analytic, nonvanishing function on W' with
én=1+0(n)
locally uniformly on W'.

Remark In the sequel, we will assume that the neighborhood W has been
chosen so that W’ can be chosen to be W.

Proof We show that I,,/2 extends continuously to all of W and is weakly
analytic when restricted to D,,. By standard arguments it then follows that
I, /'y?l is analytic on all of W. Recall the product expansion (cf Lemma 1.19
and Lemma 1.20),

(e =V =Y

A(/\)Z — 4= 74()\3 N =) H k2m?

k#0
(k=N

AN =20 -N]] =

)

where Ay, are the roots of A()). Along the circuit T',, we then can write

Aw A= )
VAN =4 oo — 0w -

with (cf (1.48))

AW VA =N =)
Xn(A) 1 = A=A, \‘/A()\)274
A — A

kl;l JOE N0 - N

=1
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Notice that x, () is analytic in A on Disc,. With the formula (IIL.3) for I,,
we then get for ¢ € W\D,,

I, ==

|
—
>~
|
>
N
>
=
>
I
=

2 2
_ T (z—dn) Tn
=1 o Y o Xn (Tn + z—) dz

upon the substitution A = Tn+27" where I/, is a circuit around [—1, 1], 7, =
LG+ 27) and 6, = 2(A, — Ca) /7 satisfies by Lemma 1.22

S = |yal/20%(n) (I1L.4)
Thus, on W\D,,,

s,

AL, 1 [ (z—6n)°
7_%7_/' ﬁXn(Tn‘FZ—)dZ

The right side of the last identity is continuous on all of W including D,,,
since in view of (IIL.4), when ~,, tends to 0, it tends to

1 22 2 (1 a?
_/ ;—1 Xn('rn)dz = Xn('rn)

L V2 Livli-a?
= —ixn(Tn)-
where we used that V22 —1 |.—,—j= i by section 1.7. But x, and 7,

are analytic on W and hence 412" restricted to the analytic subvariety D,

is analytic. By standard auguments we then conclude that I,,/72 extends
analytically to all of W. Moreover, by the estimates Lemma 1.17 and the
definitions of the standard and the canonical square roots, x,,(\) = i+ £2(n)
for A near [A,, ;] locally uniformly on W. Together with the last two
identities and in view of the asymptotics of 8, (cf (IIL.4))we then conclude

that I
4= =1+ (n)
V2

locally uniformly on W.
Finally on L%

I, 2 [! s\ (8 —6n)
Vet =2 [ ) e o

n

—  lim xp(m) =1
n—oo n—oo
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locally uniformly. Therefore, by choosing the complex neighborhood W' C
W of L% sufficiently small we can assure that, for any n € Z, Re(41, /42) is
positive and on W’ locally uniformly bounded away from zero. B

In section II.3 we show that the map Q from L?C into the space of Birkhoff
coordinates is proper - that is, the preimages of compact sets are compact.
This requires an apriori estimate of [01 p1p2dr in terms of the actions I,,.

It stems from an identity, relating the actions (given by contour integrals)

and the asymptotic expansion of /;‘0 %dk at A = oo.

Proposition I11.4 For ¢ € L%,

1
S Ii(y) = / prpade. (IIL.5)
kez 0

Proof As both sides of (IIL5) are real analytic on L% it suffices to prove the
identity near ¢ = 0. Moreover, as finite gap potentials are dense it suffices
to show the identity for finite gap potentials near zero. Given a finite gap
potential ¢ € L2 (near the zero potential) there exists K > 1 such that

()\)
L= S I =
gzk \k\zs:Kk \k\zs:K r VAR

By Cauchy’s theorem, we have for R = w(K' + }) with K’ > K sufficiently
large

Moo= l/ ,\L’\Z d\
k<K T =k /AR
1

= 7;./|M:Rf()\)d)\

by partial integration with

_ AW
)\)_/R{/md/\.

As [n V%d/\ =0 for any n € Z (cf (IIL2)), f(A) is a well defined

function which is analytic on C\ Ujy<x [A;, A{] It remains to show that
1 1
—= / FN)dx = / P1p2d. (IIL.6)
T JIN=R 0
Notice that z — f (%) is analytic on the punctured disc

1
{zeC\0<\z|<E}.
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As f(X) = 0(\) near infinity (cf Proposition 1.3) and in view of the assump-
tion that ¢ is a finite gap potential it follows that z — f (1) is meromorphic
in a neighborhood of z = 0. Therefore

" dz
?\{,\\:R Fdr= |z|=1/R f(l/z)? (I11.7)

= 2imRes (f(l/z)ziz)

where Res (f(1/2)272) denotes the residue of z — f(1/2z)2z72 at 0.

Denote by ch™! the principal branch of the inverse function of ch. Its domain
is given by C\(—o0,1] and the branch is characterized by ch~!(ch2) = 2.
As (cf Lemma 1.23)

Al
% ~ chy for y — o (II1.8)
g(y) == ch™! (%) is well defined for y real with y — +o00. Furthermore,
/ _ __iAGy)
J'(y) = N and hence
§'(y) = sign (Re /Aiy)? — 4) if'(iy). (11L9)

As the asymptotic estimates (II1.8) hold locally uniformly,

sign (Re \‘/W)

is constant for y large and ¢ sufficiently close to the zero potential. For
¢ = 0 one has A(X\) = 2cos\ and, by the definition of the canonical root (cf
(1.48))

V/A(iy)? — 4 = —2isini)\ = shy > 0.

We then conclude from (II1.9) that we have ¢'(y) = if'(iy) and g(y) = f(iy).
As finite gap potentials are smooth one has, by the expansion in Lemma .24,

Res (f(1/2)z7%) = ;Hl(@. (I11.10)

substituting (II1.10) into (II1.7) one gets

,% /‘.M:Rf()\)d/\ =2 (%Hmp)) = Hi(p)

and the claimed identity (II1.6) follows. B

Remark that (IIL5) is a trace formula relating the actions and the Hamil-
tonian

1
Hi(p) 3:/0 Pp1pada
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which corresponds to the phase flow, (1, 92)(x,t) = (e %p1(x), epa(x)).
In particular we recover from (II1.5) that the frequencies of H; are all 1.
To obtain estimates for the NLS-frequencies, a trace formula involving the
NLS-Hamiltonian will be useful. To this end we introduce, for ¢ € L% and
k € Z (cf [MV], actions at the third level)

)__J)\ =0 one

. S \3 A
Expanding \? = ((,\ — o) + )\k) and using that -ka —V%

gets

Ji =3\ + 3 ! / (A= A)?A(N)dr
T

™ A2 -4
1 / A=A
T Jr, /AN -4

For potentials of real type we obtain the following estimate
Lemma IIL.5 For ¢ € L%,
[ el < (377 + 3[Aelyk +9P) Ik

By [GK1], we have (v)rez € 3 for p € H' = H'(S';C?). Together with
Theorem T11.3 and Lemma ITL.5 one then sees that for ¢ € H?,

(I)kez € 65 5 (Jr)rez € €.

Recall that for ¢ € H' we have introduced the NLS-Hamiltonian
! 2
U,
Hy(p) := /0 (P1h + (0192)?) do.
Introduce H713 = H! HL%. Then the Jj’s satisfy the following trace formula.

Proposition II1.6 For o € W N Hy,
3
ZJk(W) = ZH:i(W)-
kez
Remark Notice that in view of Lemma II1.5,
§8H3 Z (9Jk 3X2

4 9y =0 : 6_Ik 1= Ok
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Hence at I =0, the k’th frequency wy := ‘35; is given by

W ‘ =45} ‘ = 4272,
=0

=0

Proof (Proposition II1.6) As in the proof of Proposition II1.4 it suffices
to establish the identity for finite gap potentials of real type near zero.
Following the line of arguments of the proof of Proposition I11.4 one has

3f(1
> Uk = —2iRes (Mo)
z
ke
_ A -, .
where we recall that f(\ j R Wdu. For y positive and sufficiently
large we have (cf Proposition 111.4) f(iy) = ch™! (Agy)) and hence from
Lemma .25 we get
f(1/2) i
Res< A ,0) = gHg.

Substituting this formula into the above expression for ), ., Jj one obtains

i 3
E Jp=-2i-3- -Hs = —Hs.
k - g3 =13

kezZ

II1.3 Angles

Next we define the angular coordinates ©,, for ¢ € W where, to simplificate
the notations, we denote again by W the neighbourhood of L% in L(Q: X L%
on which Theorem II.1 holds. More precisely the n’th angle ©,, is defined
for ¢ € W\D,, (with D,, :=={p € W | v, = 0}) by

On(p) = mlp) + Z ﬂ 71)
k#n

where

i) = | )
e

(mod 2m)

and

Hi U,L(/\)

VA —

Here \/A(M\)? — 4 is a function defined on the Riemann surface

= {y) eC? |y =AW -4},

©

A () = (1)
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for any n € Z, the Dirichlet divisor s, is the point (p,, (Mi2 + Ma1) |1,,)
on 3, (cf formula (1.68)) and the entire functions (¢n)nez have been con-
structed in Chapter II. The paths of integration can be chosen arbitrarily on
Zw as long as they stay inside an isolating neighborhood (cf Definition ITI.1)
of the corresponding interval [A,;, \;}]. We call such paths admissible.

Note that, since by construction (cf. (IL1)) fp \/% = 27, the
function 7, is considered as a function on W\ D,, taking values in the cylinder
C/2nZ rather than C, whereas the 5}’ can be considered as functions taking
values in C.

We begin by showing that these functions are well defined in the sense that
they are independent of the path of integration. In fact the ﬂ,a") are well
defined on all of .

Lemma IIL.7 (1) The functions ﬂ,(c")(k: # n) are well defined on all of W.
(2) The functions n,(n € Z) are well defined on W\D,,.

Proof Consider ﬁ,in) for k # n. By the product expansions for A()\)2 —4
(cf Lemma 1.19) and ), (A) (cf Theorem II.1) we have

) _
vaN v A M) (IT1.12)

VAN =4 o = 000- )

where \/A(X)2 — 4 and hence /(A — A)(A — A;)) are understood as func-

tions on a neighborhood around [A;;, A{] on the Riemann surface > (The

sign of /(Af — A)(A — Ay) is determined by the one of \/A(X\)2 —4.) The

M\ (A) for k # n are defined as follows (1/,&" )

functions ¢, =)
n) A
(n) B .
oo =-——=11 . (ITL.13)
%#k A =N =)

Clearly, C,E")(A) is analytic in A (near [A;,Af]) and v € W. If v, # 0,
NOM
the factor ——% 2 g integrable on any admissible path. If 75 = 0,
AT =N=A)
S
AF=2DO=A))
analytic function near [A;, Af] on each sheet of >, Hence in both cases,
Jﬁl(cn) is well defined.
The integral is independent of any admissible path of integration, since

M (N
A VAN)E -4

then A, = V,(C ) = )\+ = +4 and the integrand of ﬁ(” is an

dA\=0 k+#n.
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This proves (i). As to n,, the integral exists along an admissible path as
long as A, # A It is well defined modulo 2. This shows claim (ii). W

Next we prove the analyticity of the coefficients /6,(6") (k #n).

Lemma IIL.8 (i) The functions ﬁ,(cn) (k #n) are real analytic on W.
(it) The functions nn(n € Z) are real analytic on W\D,, if taken mod .

Remark The values of 1, have to be taken modulo 7 due to the discontinu-
ities of the periodic eigenvalues as functions of ¢ when ¢ is not of real type
(lexicographic ordering).

Proof In W consider the two subsets

Dy i={p € W |y(p) =0}
Ep={p €W | ux(p) € I\ (9), A5 (0)}} -

Taking into account that 74(¢), ui(p) are analytic on W and A(X, ) is
analytic on C x W, Dy, and W}, are in fact analytic subvarieties of W,

Dy ={p e W|A(r) = 2(-1)%;A(m) = 0}
Ep={p e W | Adu) = 2(-1)"}.

Our plan is to prove that “3,(\"") is analytic on W\(Dy U E}) as well as con-
tinuous on all of W and that ﬁ,(cn) |Ek,ﬁ,(cn) |De\E, are weakly analytic. By
standard arguments it then follows that @,in) is analytic on W. To prove that
ﬂ,(cn) is analytic on W\(Dy U E}) notice that outside of D;ﬁ)\,:r and )\ are
simple eigenvalues and locally there exist analytic functions 5% and 5\; such
that the sets {:\,:r 5\;} and {\;,\; } are equal. In view of the normalizing

+
i £ oY) _ ; ahsatituts
conditlon - \/md)\ = 0 for k # 0, we obtain upon the substitution
A=A +2
B _ /j‘i U gy O )
RVINOYERE 0 Vz\/D(z)
A0, +2)—4

where D(z) = is analytic near z = 0 and satisfies D(0) # 0.
As path of integration we choose an admissible path which does not go
through 5\,‘* (This is possible as ¢ ¢ Ej.) Then D(z) # 0 along the
Yn (g +2)

D(z)
W\(Dy, UEy). As pf = (jug, (M1 + Mio) |1,,,) is analytic on W and A, is

path and hence is smooth along the path and locally analytic on

. Lo - e
analytic we then conclude, in view of Leibniz’s rule, that f{f“ K Yy ta) g,

Va/D()
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is analytic. Hence ﬁ}i”) is analytic on W\(Djy, U E}). Next we show that
ﬁ}(ﬁ") |p, and B/E’L) |g, are weakly analytic. In view of the normalization
N ) - . at g™
- A()\)L4d)‘ =0 we have that 3,
On Dy, we have

E,= 0 and hence it is analytic.
Ak :)\ZT:T;C:VIE") ,
and hence with (II1.12), one can write (¢ € Dy,)

m _ [ ) D= i ™) (\)d
K ./Tk AV —4 6./Tk G W

where ¢ is the sign +£1 determined by p. As pj = (ur, (Miz + Ma1) |1,,)
is analytic, ;3,&") |, is analytic. Alltogether, we conclude that [3,(6") |p, and
[},(cn) |E, are weakly analytic.
It remains to prove that /il(cn) is continuous on all of W. Clearly ﬂ,(cn) is
continuous on W\(Dj, U Ej). One shows easily that it is continuous in
points of E;\Dy and Di\Ej. The continuity in points of Dy N Ej; follows
from (II1.12) and the estimate Vlgn) — 7% = 0(72) (cf Theorem IL.1). This
establishes the analyticity of [3,(6") on W.
The proof for 7, is analogous and even simpler, since we only need to con-
sider the domain W\D,,. In view of the normalization condition (IL.1) we
have .
SO
A VAN -4

for the straight line integral. So as above we can write
o = Hn wn(/\)

" i VA -4

We conclude that modulo 7, the function n, is analytic on W\ (D, UE,,) and

continuous on W\D,,. Since 1, |g,= 0 (modr),n, |g, is weakly analytic
and the statement is proved. B

(111.14)

dX (mod 7).

Lemma II1.9 For k # n,

) _ o (Il =+ [ — Tl
A =o (el

locally uniformly on W.
Proof By (IL.1),
1 2/
N\ — k Un(N) d\ .

@w):/“k D)
Tk S VAR -4 x VAN)?Z—4
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The following argument is not affected if one interchanges the roles of )\;
and A;. Therefore we assume that [pg— Ay | < |ue—Af|. For A near [A;, A{]
we have

¥n(N) _ y](cn) -A (n) A
VAR -4 \/<,\; “ AN - A,;)Ck ™

by equation (II1.12). In view of formula (II1.13) and the asymptotics of )

and A%, C,(Cn) () satisfies

ew-ofty)

for A near [A;, A]. Moreover if we integrate along a straight line £ from ;.
to py on the sheet of X, determined by puj, we have

") _
Y 2 —oq)
A - A

since |, — A | < |k — Af| and l/](c") = 73+ 0(}). Thus it remains to show

that

(n)
A=y

d\ =0 -
S |8 = Ol + e = )

when integrating along the straight line ¢.
This follows with the substitution X = A;” +t(ux — A)

I
*

) 13N — V(”) 4t A\
A=, |d)\|§/ \/\k o |+t n
0

[ — N |dt

A= Ap Vel — A V2
+ (n) 1/2 !
<A A = v A e = A | e — A / —dt
[Ne = w1 T = A | i — A 7
< (N5 = w1+ bk = Ael) + L = A

< 0| — 7| + [l)
where we used that 2ab < a? + b for any real numbers a, b. B

By Young’s inequality it follows from Lemma III.9 that for any p > 2,

(Zk%n ﬁ,(fn)) ’ € (P locally uniformly on W. In particular, 3, := Zk#n /i;(c”)
ne

are analytic functions on W with the property that (8, )nez € 7, and hence

lim, o0 B = 0, locally uniformly on W. We summarize our results of this

section in the following
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Theorem IIL.10 The function ¢ — (Bn()),ez is real analytic from W
with values in (P for any p > 2. The angle function

On =nn+ fn=1n+ Zﬁ](cn)
k#n

is a smooth real valued function defined on L% and extends to a real analytic
function on W\D,, when taken modulo 7.

III.4 Cartesian coordinates

In section I11.2 and II1.3 we have defined actions I,, = £2(v,,/2)? for ¢ € L%
and angles ©,, = 1, + [, for potentials ¢ in L%\Dn and showed that there
exists a neighborhood W of L% in L% x L so that for any n € Z, I, is real
analytic on W and ©,, is real analytic on W\D,, when taken modulo 7.

In this section we introduce the associated Cartesian coordinates. For ¢ €
L%\D,, they are defined as

Ty = /21,0080, y, = \/Esin(-)n.
With this choice we have
dzy A dy, = dI, A dO,, = d(I,dO,).
This definition extends to the complex domain W\D,,
Ty = \/ifn%cas@m Yn = ﬁ&,,,%sin@n. (TI1.15)

In this section we prove that the functions z,,y, (n € Z) are in fact real
analytic functions on W.
Recall that we have already proved that &, and (3, := O, — n, are real
analytic on W and thus it remains to analyze

2E = et (I11.16)
The functions 2z,
WAD,, and n,, is analytic only modulo 7, the functions z
WA\D,, as can be seen from the following argument.

are defined on W\D,,. Although =, is not continuous on
+ are analytic on

n

Lemma IIL.11 The functions zF = v, are analytic on W\D,,.

Proof Locally around every point in W\D,, there exist analytic functions
A and A, such that as sets {\, (¢), A\h ()} = {\; (0), A (9)}. Let

I, P ()
NOVAWN)?2 —4

A=A =AY, G = dX .
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Depending on whether /\_ =\, or )\ = A}, respectively, we then have, in
view of (III.14),

Yo =Fn and n, =7y Or Yy, = —F, and 0, = 7, + 7 (Mod27).
In both cases, we thus obtain

+in, +ifn

e = Fne

As the right side of the latter identity is analytic, the claimed statement
follows. W

In the case k = n we write instead of the representation I11.12 for A near
DAL,
Yn(N) 1

VA -1 i/ =00 - ) ) -
where (,(A) is given by
Y AT, N e S
n = — n
;/ g = NOF = A) jZon \/ A7 =N =N
(IT1.18)
L0
N =-]] ———— (=0 (I11.19)
R ¥ s v

and the two roots in (II1.17) are understood as functions on -, related to
each other by this identity.

Lemma IIL.12 For p € [\, A, ],
Gulp) =1+ 0(7n)

locally uniformly for ¢ in W and uniformly in n € Z.

Proof First let ¢ € L';’1 with v, > 0. In view of Theorem II.1 and the
definition of the canonical root {/A(A)2 — 4 (cf Section 1.7) we have

N wnm
A VAN

(_1)n+1
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for the straight line integral from A;, to A;}}. On this line, , is positive while
the sign of ¥,,(\) is (—1)"*1. With (II1.17), we then obtain

_ [ Cn/\
ﬂf/: - D)

/ Gl H dA+/ Gu(A Cn(ﬂ) A\
A OE == A0) An A: N —An)

= 77(11(#) +0 ( sup | Cn()\) - (n(ﬂ) ‘ >

A ASAE
for any A, < p < Af. Hence
Ca(p) =1+0 ( sup |Cn = Cn(p) |> .
A AN
By Lemma .17, ¢,(\) = 727;17;’\7( (1 +£2(n)) (cf Theorem II.1) and

AN?2-4 sinA
A =N =N ()\ —nm

2
) (14 £%(n))

(cf Lemma 1.19), uniformly for |\ — nz| < §. Hence (,(A) is bounded
uniformly for A with |\ —nz| < 7/4, n € Z, and locally uniformly on W.
In view of the asymptotics A = nm + £2(n) we then obtain by Cauchy’s

estimate that d’fl)\(n()\) is bounded and hence we have
| Cn</\) - Cn(ﬂ) | < C‘ A—p | <c ‘ Tn ‘ (HI'ZO)
for any A, p € [A;;, A}] with a uniform constant ¢. This proves the claim for

o€ L.
For ¢ € W one has

AL $n()
i AN+ i0)2—4

iﬁi/” +Cn
(O

As the estimate (II1.20) holds for ¢ € W, we can use the same arguments
as in the real type case to conclude that for ¢ € W,

Cn(p) = £1 4 0(7n)

d\=m

and thus

As (,()) is continuous in A and ¢ the claimed statement follows. B
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We now have to investigate the limiting behavior of 2z as ¢ approaches a
point ¥ in D,,. This limit is different from zero when ¢ is in the open set

Xo = {p € W |uale) & [\, (0), A7 (2]}

Notice that X, N L% = 0. Let

Xn(p) = /un ) = Galn) g (IT1.21)

A—Tp
This integral exists due to the analyticity of (,, in A and is analytic in ¢. To

facilitate the statement of the following result define €,, = +1 for potentials
¢ in X, in such a way that (cf. (IIL.17))

- Cn Hn)
—igny/ (A YT =N [, = VAWuR)? w,, ) (I11.22)

where the root {/A(u)2 — 4 has been defined in (I1.68). Notice that j, &
A7 AF] for ¢ € X, hence &, is well defined.

Lemma II1.13 As ¢ € W\D,, tends to ¢ € D, N X,,,
A€ —2(1 £ £,) (ttn — )T xn
where &, is gwen by (I11.22).
Proof As X, is open and ¢ € X,, N D,, we have ¢ € X,, for ¢ sufficiently

close to 1. By assumption, we have ¢ € W\ D,,, hence we can write, modulo
27,

S Y
A \/T
/#n . Cn( ) O
YACTIEDVCTEPY)
=1, + 1,
where
Hn —
), = ien/ 7@"0\") dX\
S =N (AR =)
and

Hn —
. / G —6e)
/\i N —A
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Let us first analyze the limiting behaviour of /7. If ¢ — 1, then 7, — 0
and /(A — A)(A\n — A) = —(A—7,) by the definition of the standard root

e Hence

A—Th

) fn ¢ (A) = G
inl — en / () = Gnlmn) d\ = e xn((¥) (mod2r) .
Consequently, e — etenxn(¥)

Now consider 77},. The substitution A = 7,, + 27,,/2 leads to

Hn d\
” /A; JOd = N0n - )

= f(en)

with
Hn — Tn

O =
n ‘= 5 Z) i =¢n —
¢ Tn/2 V21

It follows that

etif(2) — —zFea V22 -1

as both sides are analytic univalent functions on C \ [—1,1] which have the
same limit at —1 and satisfy the same differential equation

Hence we obtain

o : - Ca(
et — (FI () — (, ontend/t —1 1)
Now let ¢ converge to 1. Then limg_y(ttn —74) # 0. Hence limg,_. 0,' = 0

and we claim that
(7972 te, {/ﬁ)% L (IT1.23)
To see it note that v/z2 — 1= —z3/1 —1/22 for |2| > 1 and thus
—ontend/R—1=—0, (1 +e, m) (IT1.24)
and, taking any branch of the logarithm,
log (79n TenV/o} - 1)%
(e, YT 1720

An)

= ~n log ("/n

—Tn

—0
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which establishes (II1.23). By Lemma II1.12, (,,(A;;) = 14 0(v5) and hence
in order to prove convergence of e for ¢ — 1) it remains to show that
Yn(—on £ en /0% — 1) converges. By (II1.24) we have, as ¢ — 1),

o (—on Eent/B—1) = =2(pn —7a) (1 £ 20 /1 1/23)
— =2(ptn — Tn)(1 £ &p).
Combined with the limit for e*# we conclude that

lm e = =2, — 7) (1 £ € )e=Xn |
o= 4

as claimed. W
In view of the preceding result it is natural to extend the functions z* to

D,, by defining

+ . 72(1 + 571)(”71 - Tn)ﬁig"x" on D, N X,
0 on D\ X,,.
+in!]

Proposition II1.14 The functions A/ncii”/n,c n and hence z:f = et

extended as above, are analytic on W. Moreover

2E=0(

Ynl| + ‘Nn - Tn‘)

locally uniformly on W.

Proof To show that z;f are analytic on W, notice that D,, is an analytic
variety. Hence it suffices to prove that zf are continuous on W, analytic on
W\D,, and that the restriction of z;* to D,, is (weakly) analytic.

By Lemma III.11, zf are analytic on W\D,, and, by inspection of the for-
mula for 2, one sees that z; are continuous on W. To see that 2 | p, are
is weakly analytic

weakly analytic notice that, from its definition, z;* ‘ DX

and z = 0. As D,\X, is an analytic variety it then follows that

a Dn\Xn
z,f | Dy is weakly analytic. We thus have shown that z;f are analytic on W.
To prove the claimed estimate, we recall from the proof of Lemma II1.13
that on W\D,,

’Yneim” = Tn (7£7n ten \/x \Q?L - 1)
with on, = 2(ptn — 74)/7s and

”// — e /“” Cn()‘) - (’rl()\;) d\
n — &n
TRRVICREEDY O ED

)
eim"
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In view of the analyticity and local uniform boundedness of ¢;, (cf. Lemma II1.12)

we have e = 0(1). By (II1.23),
T
(~entent/—1)" =0
As (,(A;) = 1+ 0(75) it then suffices to bound vy, (—gn £, /02 — 1). For
lon] <1 we have
[n(=en £ en /0% = 1)| < 2/
whereas for |g,| > 1, we have

[(—onten/02 —1)| = |20t —7a) | [1£en /1= 0n?] <4|pn—7a].

It follows that the claimed estimate for v,e* holds locally uniformly on
W\D,, and uniformly in n. By the continuity of z:F on W, these estimates
hold locally uniformly on all of W. B

In view of Proposition III.14 it is possible to define for ¢ in W

Q) := (2 (), yn())nez,
where z,(¢), yn(p) are analytic functions on W,
zn(p) = ﬁ%(ziciﬂn + 25 e
é (IT1.25)
yn(0) = \/Eﬁ(szelﬂn _ Z;E*IﬁnA

In view of the asymptotics of pn, — T, Yn, &n and B, it follows from Propo-
sition II1.14 that Q is a continuous, locally bounded map with values in
(%(Z,C?) . As the components x,(¢) and y,(¢)(n € Z) are analytic on W
we have established the following main result of this section

Theorem II1.15 The map
Q: L% — (3(2,C?

extends to an analytic map on W with values in (>(Z,C?).

II1.5 Gradients

In this section we compute the gradients of ;¥ on L%ﬁDn and prove asymp-
totic estimates on finite gap potentials which will be needed later.

To compute Vw(m)zf on L%ﬂDn it is convenient to approximate ¢ € L%ﬂDn
(cf. Proposition 1.41) by potentials ¢ in

By = {¢ € LE\Dy L in =105 sign{/Blm) 4= (—1)""1} .
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For ¢ € L%z denote by H,, = (Hp1, Hp2) the L?-normalized eigenfunction
for the Dirichlet eigenvalue fi,,

1

Hy = ——Gn
Gl

where G,, defined as in section 1.1.3 and by K, = (Ku1,Kp) the L%
normalized solution of LF = p,F which is L?-orthogonal to H, and sat-
isfies the normalization condition 2 (K,;(0) — K,2(0)) > 0. Notice that

K,,1(0) — Kp,2(0) # 0 since, otherwisé, K, would be proportional to H,.
Recall that ¢ € L2 is a finite gap potential if the set A := {n € Z | \}\ # A7}
is finite.

Lemma II1.16 At € L% N Dy,
Vi = (Kna £iHu)? , (Kn £iH)%) .
Moreover, for finite gap potentials,
V@ zn = —2(0,e 72 4 (%(n)
Vi)?n = —2(e*™me 0) + 2(n) .
At =0, the above identities hold without error term.

Proof To compute the gradient sz:f at 1 € L%ﬂDn we approximate v by
elements ¢ in B, N L%. Recall that sign(vy, (un)) = (—1)"71, sign((a(pn)) =
1, and, as ¢ € B), ﬁL?2

A2 — 1= (-1

From the definition of the s-root,

=1,
A=ptn —i0

sign <L (AF = N(An *A>> ‘

it then follows that
) . _ . VA 24
1 =sign (z A =N =) ‘ N "0) = sign (%Cﬂ(ung .
= Hn —U v n

Going through the calculations in the proof of Lemma II1.13 with &, = 1
and A —i0 € [A;,\}], one verifies that they remain valid for ¢ € B,. In
particular 7, = 7/, + 1/, where

() = / i LT AR

TEERVACT DY [0 WD)
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As ¢ € L% N Dy, xu(¥) = 0 by the definition (IIL21) of y, and hence
ni(¥) = 0. Thus from

+ =1 +in], +inl!
2y = e = e et

and the fact that 7/, is analytic we conclude that at ¢ € L% N Dy,

vi‘)(z):’:ni = Bnléiglaw vw(m)(’Yneiin,")-

Moreover, as 0, = “};’/;" satisfies —1 < g, < 1,

'Yneimil = 'Yn(_gn BV 9721 - l)cn(/\;>

can be written as

- Cn
e = (*Q(Mn —Ta) iy, Y1 - 9%) (7971 +iy/1- 0%) (II1.26)

where (, := Cu(\;) — 1 satisfies ¢, = 0(y,) by Lemma IIL12 and therefore

én :
N S L)
g, e VIma) = i ()
As ¢ € By, one has pu,, = 7, as well as g, = 0. Further, in the limit, the
first factor on the right side of (III.26) vanishes. As the gradients of both
factors on the right side of (II1.26) have a limit on ¢ — 1, the product rule
can be applied and we conclude from the considerations above that
+ . +in),
szn = B"lalignﬂw vkp('Ync nm)
=2(Vymn — Vpn) £ iBnlai{;nﬂw VoYn-

In particular this shows that limp, 5,y Vv, exists. Recall that the gra-
dient of a simple periodic eigenvalue /\f is given by (cf. Proposition 1.32)

vw(z))‘ﬁ = (Ffz(l)z F7ﬁ(w)2)

where Fi¥ = (F5, F3) is a normalized eigenfunction of Af(¢). Hence

: : 2 —)2 2 —)2
s i Ve = plim ((F5)° = (F)* (FL) = (F)?)

and, by the analyticity of 7,

W = m () + ()’ (B + (Fa)?).

Combining the two limits we conclude that the limit of F%(z)? and the limit
of F;ﬁ (x)? exist in L? as ¢ — 1). Actually by Lemma IT1.17 below,

Fi(9) = lim | Fr(o9)
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exists in H' and, F;f (-,4) and F,; (-,%) are orthogonal, of norm 1 and satisfy

L (F0) - FA0) > 0.

It follows that

Ft =ak, + SH (I1.27)
=|BlKn — (I11.28)
|ﬂ K
where a > 0,3 € C\{0} and a? + \/3|2 = 1. By Lemma IIL.18 below, o = %
and by Lemma II1.19 below, 8 = —=. Thus
lim ( FTTZ ’ nl ) - ((F7:2)27 (Frjl)z)

anww
=2 (Hn2Kn27 Hannl)

and

29y = (B (F1)?) + (F)?, (F)?)
= (H2, + K2, H2 + K2)).

Further, by Proposition 1.29
vw(z)ﬂn = (Hgﬂa Hﬁl)
It then follows that
Vo =2 (Vi@ T — Vi@in)) iiBnlaing V() Tn
= (K2y — H2y, K2, — H})) £ 2i (Hy2Kn2, Hi K ) -

To prove the second part of Lemma IIL.16, let ¢ be a finite gap potential
and N > 0 be an integer such that A} (v) = A, () for |n| > N. Then
1 € D,, and the above formula for Vd,(m)zﬁf holds for any |n| > N. Recall
that H,, admits an asymptotic estimate (cf (I1.16))

H" — % (6—i117r276in7rz) 4 éZ(n)
As K, is a linear combination of M® (z, u,,) and M® (x, ju,), one deduces
from Proposition 1.6 (page 20) and the orthogonality and normalization
conditions .

K, = L (e—inwz 7ein7rz) + Z2<n)

/5 )

Inserting these asymptotic estimates into the formula for Vu)(z)z:f leads to
the stated asymptotics.
Clearly, the above formula for Vw(z)z,f , evaluated for ¢p = 0, leads to the
claimed formulas for ngﬁ. |
It remains to prove the three Lemmas used in the proof of Lemma III.16.
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Lemma II1.17 For ¢ € L% N Dy, limp,5pp FE(, ) exist in H'. The
limiting functions, denoted by F(-,v), are eigenfunctions of L(1)) corre-
sponding to the eigenvalue A (¥) = A\, (), they are orthogonal, of L?-norm

n

1 and satisfy L (F5(0) — F5(0)) > 0.
Proof For ¢ € B, write
Fy = ia*G(z, X7, @) +0*G(z, A7, 0)

where we recall that G = M® — M@ and G = M® + M and, in view of
(1.62), ay. and by are in R with a* > 0. It remains to study the convergence
of a* and b* as ¢ — 9. We already observed in the proof of Lemma II1.16
that (F5)? and (F)? converge in L2. One has for j = 1,2
(F5)° = (ia*Gj + b*G))?
= —(a*)2G3 + 2ia*b*G;G; + (b4)*GE
In a straightforward way one verifies that

XW = (G3,GY); XD = (GoGa, G1G1) ;3 X© = (G3,G?)

are linearly independent. Denote by Y1, Y® Y ®) the biorthogonal basis
to XM, Xx@ XG) je Y Y@ v® are elements in span(X(l),X(z),X(3>)
satisfying

(YO, xk)y = S

As XM X®@ X®) are continuous functions of A, ¢ with values in L2 so are
y® Y(2) Y<3) hence the L2-convergence of ((F;Lz) (Fi) ) imply that

(
(
(

where the dot denote the dual pairing between L? x L? and itself, i.e. F-G =
jbl(FlGl + F>Gy)dx (no complex conjugation).
As a* > 0, we have

+
F2
1

5
:

3

Z) y — 7<ai)2 T pE

B
)

F=

<)

.2

0|
S

3

Ty
i

S

2

B

_— = ==

)

)

) (2) _ uli + W_W +
)2> = 2a*b B
)

)

n

=

ot —ak = VAt
and
bt — VC=.
Hence

|a®b*| = a* |p*| — o, VCE.
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We claim that

lim —=1. (I11.29)
Bn3e—y a~

To see this identity holds recall that (cf. (1.62))

iS(\E) . —id(AE)
FE0) = L+ 20 g Jri+ %) G0, AE).
0 =5 {[Zp G0N + 5 (R0 00N
By Lemma .21
. c— A
5(X) = 2i(no — N) [ ==
kio T
and by Lemma I1.20
AN =2(A — A) Akk_ A
kio T
Hence
at 1 ,[—ié /\ﬁ —i6(An
2 ﬁ )/
LAMR) (/\?T

As Ay = 7o + O(V,SL/Q) (cf. Lemma 1.22) we conclude that

lim 40\;) = lim M:—l.
Bup— ANY)  Badp—v N, — AL

As py, = 1, for ¢ € B, we have

+ At
im0 gy WA
Bn3p—9 6(A\n)  Bn3p—d T, — Ay

hence (IT1.29) follows. Further we claim that
al, >0. (I11.30)
To see this, it suffices to show that aX, # 0. Notice that for ¢ € B,

0= (F} F)=ata (G AD), G, A )+
+ Z(l+b7 <é(a )\I),G(, )‘;» - b+i(l7 (G()‘:{) é(a )‘;»
+ b0 (G A, G AD))
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where (-, -) denote the inner product in L?. Assume that aZ, = 0. Then, by
(I11.29), a3, = 0 and as [b*| — {/CF it then follows that as ¢ — 1)

0="b"0"(G(-,\}),G(-,\y)) + o(1)

or
brb~ X 0 and (bTh7)2 - CtCT =0
Hence either CT = 0 or C~ = 0. Without loss of generality assume that
C* = 0. Together with A* = B+ = 0t then follows that ((F,;)?, (Fi};)?) —
0 which contradicts ||F,7|| = 1 hence claim (IIL.30) follows.
Combining limp, 5,y 2iatb* = BE and limp,54ya* = aX > 0 one
concludes - "
4 _ 2ia7h e B +
2ia* 2ia%,

=:1by

and hence, as G, G are continuous in A, , with values in H*,
Fyf = ia* GO Ny L 0) + DG N 0) = 03, G (- A ) + DRG0, A ),
in H! with A := A} (). As a consequence
Ff () = %Gl A ) + DG M ¥)

are orthogonal, (F;r(-,w),F;(-,w)) = 0 of norm 1, |FE(-,4)|| = 1, and
satisfy the normalization condition 1 ( £(0,9) — F5(0, ¥)) =2a% >0. W

i

Next we compute the values of a and 8 in (II1.27) and (II1.28).

Lemma IIL.18 o = L.

S

Proof For ¢ € L2,

1 0 d 1 0 d
+ + a
O =i i) = (5 ) et =i (g ) )

Asi (1 701> < is formally selfadjoint, we have, integrating by parts

0 da
(1 0 d
ey ) s

G ) (s )

Hence, with

Fp(D) = (~1)"Fy(0) 5 Hu(1) = Huo(1) 5 Hui(0) = Hua(0)

we get

NF = ) (B Ha) = i (B (0) = F5(0) (~) Haa(1) — Har 0)) -
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Similarly one shows
s = 1) (B s Ha) = i (Fi (0) = Fg(0)) (<) Hoa (1) = Har 0)) -

For ¢ € B, we have u, = 7, and v, > 0. Thus A\ — p, = —(A\;; — pp,) =
Yn/2 > 0. Hence Hpi(1) — (—1)"Hp1(0) # 0 and then, with the identities
above,

(Ff Ha) _ F(0) — EH(0)

= . I11.31
(Firfa)  Fol0) Foyl0) sy
The limits of both sides of (II1.31) are computed separately,
lim <F:1Hn> _ limBnévﬂw(F;rv Hn> _ 3 _ 7@
Bu3o—y (Fy ,Hy)  limp, 5oy (Fn , Hy) 704‘% a’
B = F50) o (Km(0) — Knp(0) + B (Hni(0) — Hno(0))
Bnag—v 1 (0) = Fip(0) 18] (K1 (0) = K (0)) = avgly (Hi1(0) = H2(0))
-
18]
where we used convergence in H' of F and the normalization condition
K,,1(0) — K,,2(0) # 0. Hence together with (II1.31) we get 7% = 7% or

IB>=0a? Asa® + B> =1 and a > 0 it follows that o = 1//2. W
Lemma III.19 § = %
Proof As @® + 6> = 1 and a = 1/v/2 (Lemma IIL18) it follows that

|8 = 1/+/2. It remains to prove that 8 > 0. By Lemma II1.17 and the
definition of 5 we have

B= lim (FF H,). (I11.32)
Bnap—y

As in the proof of Lemma II1.18 write

F = ) (B Ha) = 1 (F0) = F(0) (<) Hu (D) = Ha0)) -
By Lemma II1.17, one has in the limit ¢ — ¢
i (F:'I(O) — F:'Q(O)) <0.

Further, with Hp(z) = G“‘"Ci'fﬁ) and Gn1(0) =1,

(—1)" Ho (1) — Hoa (0) = ﬁ (~1)" G (1) — 1).
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(=1D)"G1(1,un)—1
S

n ~Hn

To compute the limit of for ¢ — 1 write, for ¢ € By,

1

Gl(LHn) = (Gl(l:ﬂ7z)+G2(1~,Hn))

(M11(1, prn) + Mo (1, 1))

o= o)

+ 5 (Ma1(L, pn) + Mia(1, i)

Voo
= §A(Hn) + 3 A(.U'n)2 —4
where we used that, by definition (1.68),

VA(n)? = 4= Mai (1, pn) + Mio(1, ).

As A(\;) =2(-1)" and A} — pp, = ,/2 we then conclude

(_1)73(_17:?) — - (_Vi)n (M) — A,)) + (_vi)n VA~ 4,

[N

By Taylor’s remainder formula, with p, = 7,

S [N
AGs) = A0 =3 [ Aaear
where \(t) = A\, + t7,,/2. Hence, with A, := A7 (¢) = AF(v),

lim Alpn) = A(N,)

=A(\) =0
Bnop—y Tn/2 )

As, for ¢ € By, (=1)""1/A(un)? — 4 = {/A(un)? — 4 we then have

—1)" — —1)"
lim M = lim = Apn)? —4<0.
Bn3g— Yn/2 Bp3o—tY  Tn

Combining (II1.32) (II1.33) with the results above, one concludes

(1" Ha (1) - Hia(0))
Wn/Q

. . (_1)"G1(17N/n) -1
—i(F50) - F50) i (CEOGmIZ1)

B=1i(F5(0) - F50)

>0.

Lemma II1.16 allows us to obtain asymptotic estimates of V )z, and
V o(z)Yn Where ¢ is a finite gap potential.
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Proposition II1.20 For any finite gap potential o,

1 —i2mna
Vp(m)xn — _ﬁ (€L27\'n1 i2 ) + ZZ( )
v@(l)y" — % (7ei27rnz,e—127mz) + Z?(n) .

At o = 0 the latter identities hold without error term.

Proof Let ¢ be a finite gap potential and let N > 0 be such that A\ =
A, V|n| > N +1. By (IIL.15) and (II1.16)

n
=2 §n (4 ifn | ——iba
Tn = ZI zp € 4 2z
and
Yn = \/5% (z;rei’s” - z;e"ﬂ") .

Recall that &, = 1+¢2(n) (cf Theorem I11.3) and 3, = 0(%) (cf Lemma ITL.9,
using that v, = 0 and pg — 7, = 0V|k| > N+1). AszF =0for [n| > N+1
one obtains

1
Vo()Tn = V27

1 (Vw(x)z;f + V¢<1)z;) +€2(n)

and 1
Vo = V25 (Vo = Vew?a) +E0)-

The claimed asymptotics then follow from Lemma II1.16. B

II1.6 Canonical relations

In this section we prove that the map Q : L% — (*(Z,R?) is Poisson, i.e.
that the push forward of the Poisson structure by € is the canonical Poisson
structure on ¢?(Z,R?).

First, following Mc Kean-Vaninsky [MV] we establish canonical relations for
the action and angle variables.

Proposition II1.21 For any ¢ € L =, and k,n € Z,
{Le(p), In(0)} = 0.
Proof By Theorem III.2, for k € Z and j = 1,2,

on _ 1[oaN 1
pj(z) 7 Jr, Opi(x) /AN —4
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and hence

A, A}

fﬂ/m / \/7\/7

0 for any A, 1 € C (Proposition 1.36 page 55) it follows

{I, I} = d\dp.
As {AN), A(p)} =
that {I;H =01
Next we want to show that for ¢ € L% with v # 0, {I, 0k} = dpk. Recall
that 6 = ny + Zj#k [3]@ is a real analytic function on W\Dj, with values
in R/7Z (cf Theorem III.10). First we compute {ﬁ](k), I,,} for any j,n € Z)

. . k
where, for convenience, ﬁ,(c )= nk. Introduce

Lemma II1.22 Let ¢ € L% and k € Z with vx(p) # 0. Then, for any
j,n €Z,

() (B9, a0} = 1M ).

) 13®) 1 e
(i) 18" I}y = =35 |1, Vagm

Proof As the cases j = k and j # k are proved in the same way, let us
concentrate on j = k. Recall that

_ g [ V)
e = B N VA -4 @

where p1;; = (pg, yx) is a point on the Riemann surface ¥, with
Yk = v A(pk)Q —4= (]Wm + Zﬂlz) ‘ Ly

Further, the gradient of the action variable I, is given by (cf Theorem II1.2)

1 1
I,=—-= 2DAN) ——= d\.
n 7T/angg(./) ( )C A —4d
Hence

{m, In}y = {me, A(N) . (I11.34)

= 7=
By Corollary 1.39 there exists a sequence (¢;)>1 € Iso(y) with lim; . ¢; =
¢ in L% so that

A < mi(pg) < AT Vi EZ.
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As A, )\, and 9y are isospectral invariants it then follows that for any ¢;

_ W) "
)} 7\*/&7{’ M}

{0k, AN

By Proposition 1.37

{1, A} = 3 1

and thus, for any ¢;,

(s AN} = 5ol B g,

As both sides of the latter identity are continuous in ¢ it remains valid for
@ = limj_o @; and (i) is proved. Substituting this formula into (II1.34)
then leads to

1 gff”w

271' T z/A

{nk, In} =

Lemma II1.23 For any ¢ € L%, the infinite sum gp(X) = 3, gj(-k)
absolutely summable locally uniformly in A\ and one has

Proof Recall that

: (A) r(p
qJ()(A)i)\( . (1)
My 6(/‘])
Using the product representation of ¥, and the estimate of the zeroes V](»k)
of Yy, pj — I/J = 2(j) (j # k) (cf Theorem I1.1) as well as the estimate on

(5

infinite products given in Lemma 1.17 one sees that ¥y (p;) = = ])) for any

j € Z. By the infinite product representation for 5(/\) and again Lemma [.17
it follows that 1/5(#1-) = 0(1) for j — oo. Finally, as [§(\)] < Cel/™
uniformly for A € C one then concludes that the series E_,g](-k) converges
uniformly in any strip |[ImA| < a and is an entire function which we denote
by gk () satisfying

lge(M)] < ¢l (A e C).

Next we prove that gp is an element in Zg. As | ;59/3 ‘ < C()\JT) where
J J

C can be chosen independently of j it follows from the asymptotics of
wk(u])/é(,u] ) that [ |gk(A)[2dA < co and therefore gy € Zo.
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9 (1e) = vr(ue)dje (7. € Z) and
thus gr () = VYr(pe) Y0 € Z. As 1)y, is also an element of Zj, Lemma I1.4
implies that g = ¢,. B

From the definition of g}k) one sees that g

Proposition I11.24 Let k,n € Z. Then for any ¢ € L%\Dj,
{Invek} = Onk-
Proof By Theorem III.10, £ = ]#ﬁ (k) converges locally uniformly for ¢

in W\Dy. Hence by Cauchy’s theorem, this holds for the gradient 7,0k
as well. Combining Lemma I11.22 and Lemma II1.23 then yields

1 dA
st} = g [ )y = e

where for the latter identity we use the normalization condition of ¥y (cf
Theorem I11.1). W

It remains to prove that the variables ©) commute with each other.

Proposition II1.25 Let ¢ € L%\(Dy, U D,,) with n,k arbitrary. Then
{0k, 0,} =0.

The proof of this Proposition requires the following three auxilary Lemmas:

Lemma II1.26 For any j # ¢ and ¢ € L%\D,

007) 1 1
B A — 1 AOG)

- 1,
{3 A} = 54/ A)? -
Proof By Proposition 1.29
1
Vetwts = e (Cr2@)’ Gnla)’)

where Gj(z) = MW (x, ;) + M® (x, ;) is an eigenfunction corresponding
to pj and by Proposition 1.32,

VoA = (szz(z)z-,F[l(@Q)
where (cf (1.62))

—id(A;) i, [—i6();)

{300 G(z,2;)  (IIL35)
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is an eigenfunction corresponding to A, . Hence
7 i 1 - 2 - 2
iy = o |, (Ge@Fa®) - (Cu@ @)

i ! _ _ _ -
= W/ﬂ (G1~2F£,1 + Gj,le,z) (Gj:QFZ,l - G.i-,le,z) dz.

By the definition of the Wronskian,
WIE,,Gjl = F;,Gj2 — F,Gja
and by Lemma 1.34
—i

d _ _ _
N EW[F[ Gyl = FpyGha+ FipGia
¢ T My AT

and thus

1

- s (WG F (@) ‘O. (I11.36)

{1, N} = ——7=5

N w16 P
As Gj1(1) = Gj2(1) as well as Gj1(0) = 1 = G;2(0) and F, is periodic or
antiperiodic one computes

(W(Gs, Fr)w)* |,

2
o= (G = D(FEL0) - FL) . (Ls?)

The two terms on the right side of (II1.37) can be simplified further. Using
that G satisfies Dirichlet boundary conditions, i.e.

(M1 + M)

= (M3 + M)

st 1o

together with the Wronskian identity 1 = My Mg — M2 M1 one has

Gi1(1)? = 1= (M1 + Myp)? — 1
= (M1 + Mya)(My + Mag) — (Myy Moy — My Myy)
= (]\111 + ]\112)]»[21 + A112(1V[2‘2 + J\/Izl)
= (M1 + Mi2)(Mo1 + M)

where for the last identity we made use of the Dirichlet boundary conditions
once more. As

/A(1j)? — 4 = (M + May) ‘ Ly
and

IG;1* = 0 () (M1 + Mr2) |,
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one thus obtains

Cia(1)? — 1= ¢/ Au)? — 4165 (I11.38)
)

Concerning (F,,(0) — F,7(0))?, use that G(0,A) = (1,1) and G(0,)) =

(1,—1) to conclude from (I11.35) that

2 .
(Fial0) = F1(0)) =607)/A0)- (11139)
Substituting (II1.37) - (II1.39) into (II1.36) yields the claimed formula. W

Lemma II1.26 allows us to prove that {©,0,} = 0 for certain potentials
o€ L:

Lemma II1.27 Let ¢ € LA\(Dy U Dy,) (with n,k € Z arbitrary) with
i () = X; () for any j € Z. Then {©y,O0,} = 0.

Proof In view of the definition O =, ﬂﬁk) (with [},(Ck) = 1) the claimed
result follows if we prove that for any given j, ¢ € Z, {ﬁ](.k), ;3;“)} =0. As the
Poisson bracket is skew symmetric it suffices to consider the case j # ¢. By
Proposition 1.43, the potential ¢ can be approximated in L% by a sequence
(¢a)ax1 so that, for any a > 1

A;(‘P0> < #J(Sﬁu) < )\;(LP(J,
A < e(pa) < AF ,
¢ <<Pa> lj\[}ﬁa) ¢ (‘Poc) (111.40)
o -
lim ui J =0and lim Mi a =0.
a=00 AT — i L pa a—00 A" — py 1 pa

From the definition of ﬂ](k) (cf (IIL.11)) and the product representations of
i and A% — 4 one gets

Yre(15)

(k) _
v#%(z)ﬁj - A(ui)z 4

(Veuwts = Vet )
(I11.41)

where the error term is uniform in 0 < x <1 and a > 1. This leads to the
following decomposition

BY. 5"y =A+R (I11.42)
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where

U, (lﬁ) Un (/‘l) - -

= - g A = A
V=1 Y= () )

and R is the remainder term defined by the identity (II1.42). First we want
to prove that lim,—,c R(pa) = 0. Recall that (cf Proposition 1.29)

V@)t = e 1( e (Gj2(2)?,Gja(2)?) (I11.43)

and (cf Proposition 1.32),

(IT1.44)

%G(r \)- (IT145)

is a normalized eigenfunction corresponding to )\; = )\;(goa). Using the

product representation for §(A), §(A) (cf Lemma 1.21) A()) (cf Lemma 1.20)
and the definition Gj(z) = G(x, i) as well as (IIL40) it follows that

e Gjlz,0) w)
Jim F7 (%, p0) = GGl
Therefore
I [V, (5 = A7)l =0. (I11.46)

Furthermore, by the product representations of the quantities involved, the

sequence <’l/}k-(/l,j> i/ i}ii\j: \/ﬁ ‘ v"‘),,zl is bounded. Hence in view
of (IT1.40) - (I11.42) and (I11.46), lim,—c0 R(pa) = 0 and thus

{82,807} (o) = tim {8,5"} (ea)

. Wi (1) ¥n (pae) - -
= lim i ()\,L +{ ,,)\,-})

e F e AR R G
where we also used that {u;, e} = {)\( A } = 0. The terms on the right
side of the equation above are treated separately and in the same way. Let
us consider the first term only. By Lemma I11.26 we have

wk (115)tn (2e)

lim {uj, A\, }
a=o0 3/A(13)% — 43/ Au)? — 4 e
— lim _wk(ﬂj)wn(w)m 1 1
050 2 (/A ()2 — 4 8(15) BOG) N — 15
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In view of (IIL.40), it follows from the product representation of §(\) and
A(N)? — 4 that
i )
a=co /A(jg)2 — 4
Since vy, # 0 we have limg—o0 A(/\;) = A(/\[) #0. As 5(;@) is uniformly
bounded away from 0 and limg .o (A, —p15) = A, 7/\; # 0 we thus conclude

that
i D) 007 L1
000 {/A(ue)? — 4 8(1y) AOT) A — 1
and Lemma I11.27 is proved. B

=0

Lemma II1.28 Let ¢ € L3\(Dy U D,,) with n,k € Z arbitrary. Then for
any A € C
{{Ok, 00}, AN} = 0.

Proof Introduce h(\) := {{O,0,},A(N\)}. First we want to prove that
h € Zy. By the Jacobi identity,

P(A) = {Ok: {On; AN)}} = {On, {Ok, AN}

By Lemma II1.22 (i) one gets
k
101, AN} = 3 X6 0) = Jea)

JEL
where the latter identity holds by Lemma II1.23. Therefore
1 1
MY = {0k, UM} ~ 5100 1N
Recall that ¢, : W — Zy, ¢ +— 1y, (-, ) is analytic. Hence, for
o e LAZ\(DrUD,),

h is in Zy. Moreover, in view of the formula

1 N
Vo) = VL)
one has
({0001, 1} = - "“’

d)\
HRVIANON
Using the Jacobi identity for {{©, —n},Ij} once more one then concludes
from the canonical relations {©y, I;} = —dj; (cf Proposition I11.24) that

dA\=0 Vjez

):/ _ )
“Jr, /A —4
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By Lemma I1.3 and Lemma II.4 it then follows that A =0. W

We are now in position to prove Proposition II1.25:

Proof (of Proposition II1.25) As finite gap potentials are dense in L%\ (DU
D,,) and {©4,0,} is continuous it suffices to show that {©,0,} = 0 for
any finite gap potential ¢ in L%\(Dy, U D,,). Using the isospectral flows n'
introduced in (I.79) together with {{O,0,}, A(A)} =0 (cf Lemma III.28)
one sees that

d 1 d
5{9167(%}(77” :/0 V(@) {Ok, On} - ﬁfltdﬂf

= {6k, 0n}, A(N)} =0

A=p;(n*)

This leads to the identity
{Ok, On} (o) = {Ok, On}(¢)
with g € Iso(p) satisfying
wi(po) = Aj (@) Vi€Z.
But by Lemma II1.27, {0, 0,}(¢0) = 0 and hence {O,0,}(¢) =0. B

The results obtained in this section allow us to prove the following

Theorem III.29 For any ¢ € L% and k,n € Z,{xp,xn} = {yk,yn} = 0
and {zp, yn} = Okn-

Proof Let k,n € Z be fixed. As L%\(Dy, UD,,) is dense in L% and the coor-
dinates as well as their Poisson brackets are continuous it suffices to prove
the canonical relations for ¢ in L%\(DyUD,,). Then z; and y; (j = k,n) are
given by z; = \/Z_chos(—)j and y; = \/2_Ijsin(—)j. Using Propositions I11.21,
I11.24, and II1.25 one sees that {zk, z,} = 0 and {yx,yn} = 0. Moreover one
computes {xy, yn} as follows,

{.T 1 }—L
k> Yn *\/Q—Ik

— \/2I}; sin Oy,

cos O/2I,, cos Op{I};, 0, }

1
sin ©, {6, I,
\/2T"§1n n{ ks n}
= (sin? O, + cos? ©,) {11, ©,,}

= Okn-
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IT1.7 Local diffeomorphism

For any N > 0, let HY = HN(S',C?) be the Sobolev space of periodic
functions g : R — C2 of period 1 of the form g(z) = 3, §(k)e’2*™ satistying
llglln < oo where

1/2
gl = <Z<k>2N\.@(k)\2>
k€EZ

and denote by H{av the space of potentials of real type in HY
HY = 1% n HY(S',C?)

and by Q) the restriction of @ = Q©) to HY. From [GK1] we learn that
Y() = (¥n())nez is in the sequence space €3 for any ¢ € HEY. Here
0% = (%(Z,C?) is the Hilbert space

G = {a = (@rez € & lally < o0}

with

1/2
lally = (Z(k)z’v\ak\2> .

keZ

Hence Q&) maps H{av into Z?, and, in the sequel, will be viewed as a map
QM) o HY - .

In this section we prove that, for any N > 0, Q) is real analytic and, at
each point in H%' , a local diffeomorphism. We begin by showing that Q(®)
is a local diffeomorphism at each point in L%

First we need to introduce some more notation. We introduce the following
orthonormal basis of L2([0,1],C?) only used in this section, (k € Z)

1 . o 7 o ,
+ — i2wka —i2rkx | . - . i2nkx —i2wke
ek(z).ff—(e ThE et ) ;e .7—(76 ThE e Trem )

V2 V2
Further we define for any ¢ € L% (k € Z)

df (z,0) = Vowmar s d (2,0) == VU
and note that by Proposition 11120, di (z,0) = ei (z) (k € Z).

Lemma IIT.30 For any ¢ € L%, the differential d ) is a linear isomor-
phism from L%([0,1],C2) onto ¢*(Z,C?).
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Proof Let ¢ € L%. For any F € L?([0,1],C?) one has
A QF) = (df (0) - By (9) - F) g

where the dot denotes the dual pairing between the dual of L2([0,1],C?)
and itself (no complex conjugation).
Noticing that the sequence (df(«p))kez is bounded in L?([0,1],C?), we in-
troduce A = A(p) the bounded linear operator on L2([0, 1], C?) given by

Alp) s F o Y (Foed)df (9) + (Frep )dg () (I11.47)

kez

where (-,-) denotes the inner product in L2([0,1],C?) (i.e. (F,G)=F-G).
One has for any k € Z

and thus
+ + 3
di; - F=Ae; - F= Pk CA'F

Therefore
dQF) = (eff - Al@) Freg - A@)' F) iy

and thus it remains to prove that A = A(p) is a linear isomorphism of

L2([0,1],C?).

As
DA =DEDIP + 1A= DD =D lldi — ef 1P + lldy, — eI
keZ kezZ

one deduces by Proposition III.20 that, if ¢ € LR is a finite gap potential,
then A(p) — I is a Hilbert-Schmidt operator and thus a compact operator.
Given ¢ € L%, choose a sequence of finite gap potentials in L% with ¢ =
limy, o0 . As @ — Q(p) is analytic, ¢ — A(y) is continuous and thus
A(p) — I =limy, o (A(py) — I) is compact as well.

Further we claim that A is 1-1. Noticing that

{HK}() = Vo H - IV K

where J =1 Pl é) one gets, using the canonical relations established in
Theorem II1.29, that for any k,n € Z
df - Jdf =6, and  df - JdE =
Therefore if AF' = 0 then for any n € Z
0=AF - Jdi = +(F,¢)
i.e. FF =0. Hence A is 1-1 and by the Fredholm alternative we conclude
that A is an isomorphism. B

To prove QW) is a local diffeomorphism we need the following auxilary
result:
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Lemma IIL.31 Let N > 0 and ¢ be any finite gap potential in L%. Then
for any F € HN(S',C?),

(vw(z)an> = < :»F> +[%V(n)

(Vo F) = (5. F) + Bel)

where the error terms é%\,(n) are uniformly bounded in é?v on bounded sets
of functions F in HN(S',C?).

Proof Both asymptotic estimates are proven in the same way, so let us
concentrate on the first one. We argue by induction. For N = 0, the
statement follows from Proposition II1.20. Next assume that the statement
holds up to some integer N. From the definition (III.25) we see that for any
n with v, =0,

Vo) Tn = ﬂ%(eiﬂnwﬁ +e vz, (I11.48)
By Lemma II1.16 for |n| sufficiently large,

Ve zr =2 (Vo)™ — Ve@tn) £ lim Vi (111.49)

Br3¢—
where limp, 54— Vi(z)¥n is of the form

(Fia@? Bt @)) = (Fra@)? By (0)%)

and Ff = (Fnil, 3 1) being both solutions of the equation LF = A} F.

It turns out that V2 satisfies a nonlocal equation of first order. Intro-

duce the operator L = L(y)
7 1 0\d —p2 D71y 992D71<02>
L = —+2 _ _
(¥) (O —1> dx (—wD Yor 1Dy
where D! denotes the inverse of the restriction of 7 to HL(SY,C),
D71 (S, C) — Hi(SY,C)

and
HU(S',C) = {f e H'(S',C ‘/f = o).

One verifies that for any function F = (Fy, Fy) € H'(S',C?) satisfying
LF = AF one has

L ((F2)2’ (F1)2) = 2i\ ((F2)27 (F1)2) — 2 </01 nr d:v) (¢2,¢1)-
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In particular, if Fy(z) = Fy(z) and ||[F||> = 1, then
1
/ FiFydz =1/2|F|? =1/2
0
and the formula above reads, with

©" = (g2, 1) »
L ((Fy)?, (F1)?) = 20\ ((F2)?, (F1)?) — g™,

Applying this formula to each term on the right side of the expression (I11.49)
separately, one concludes from (I.21) (page 25) Proposition 1.29 and Propo-
sition 1.32

L (vv(m)zf) = Qi)‘;v

+
(@)%

By (II1.48) it then follows that for any F € HN*1(S1,C?),

1 -
(V@) ns F) 2 = m@(%@)vmz)zm F)p2
1 .
= mewm —L(p*)F) 2
T

where for the latter identity we used that the adjoint of L(p) is given by
—L(¥%). Clearly, L(p*)F € HY(S',C?) and thus, by the induction hypoth-
esis applied to it one has

1 — )
(Vowon F) = oo (e, ~L@F)iz + By ()

where the error term is uniformly bounded on bounded sets in HN+1(S!, C?)
since the linear map L(p*) : HN+1(S!,C?) — HN(S',C?) is continuous for

N > 0. Notice that B := —L(p*) + (é 701

1 0 d 1 0 d
+ e — alipe
(o D) an=1(p &) e
= 2imn(e), F).

% is a bounded operator on

HN+ and

Together with the asymptotics A¥ = nm+£2(n) (cf Proposition 1.6) one then
obtains

™ 1
(Vo(ytn, F) = )\—Jr(eI,F) + /\—Jr(e;[,BF) + 41 (n)
n T

1 1
— <1 + O(;)) (e, F) + = (e}, BF) +Z?V+1(n).
n
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Integrating by parts we have

1P L4
<n)1\"+1

[{ex, ) <

n s

and
]| v-+1
(n)N+1

where C(yp) is a constant depending only on ¢ and its derivatives. Hence it
follows that

exr, BF)| < C(p)

<vw(z)zn7F> = <e;:7F) + Z%\/‘Fl(/,L)

where the error term is uniformly bounded on bounded sets of functions F'
in HN+1(S1,C?). This proves the induction step. B

Lemma II1.31 will now be used to prove

Theorem I11.32 For any N > 0,QW) s real analytic and a local diffeo-
morphism near any point in H%

Proof To see that Q) - W n HN — 2% is real analytic ( with W as in
Theorem I11.15) it suffices to show that Q(V) is locally bounded and that
E»N) := (z;,y;) is real analytic on W N HV. The latter
statement clearly follows from the fact that Q : W — ¢2 is real analytic.
The local boundedness of € follows from the asymptotic estimate

each component

[20] + [yn| = O(|ttn — Tal + [7nl)

(cf Proposition II1.14, Theorem II1.3 and Lemma II1.9) and the asymptotic
estimates for v, and yu, — 7, established in [GK1] (see also [Ma]). These
estimates imply that for any N > 1, the maps ¢ — (Vn(¢))nez and ¢ —
(1tn(0) = Tn(9)) ez, from HN (S, C?) to €3 are bounded.

To see that Q) is a local diffeomorphism on Hg, one has to prove that, at
each point ¢ € Hg s dWQ(N) is a linear isomorphism from HN (S, CQ) onto
8. Clearly, d, QW) is the restriction to HN(S",C?) of d,Q and thus by
Lemma I11.30, de(N ) is 1-1. Further, following the notation established in
this Lemma, on has for any F € HV([0,1],C?)

4 QN(F) = (8 () - Fodj (9) - F) ey

and, with F' = (F1, ),

QN (F) = (e} - Frey - F), g

= <% (Fl(*k)vFZ(m) <_11 Ei))kez .

S
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As the Fourier transform realises a linear isomorphism from H™ ([0, 1],C)
onto £3(Z, C), we deduce that doQ™) is a linear isomorphism from HN (S, C?)
onto Z?V.

By the Fredholm alternative it thus remains to show that

R = R(p) := d,0W) — 0™

is a compact operator from HV(S!,C?) into (3.
Denote by Ry, k € Z, the k-th component of R, i.e. the operator from HY
into C? given by
ReF = ((df —¢ef)- F,(dy —ej) F)

We introduce for each K > 1 the finite rank operator R¥ defined by

RNF = (REF),_,
where for |k| < K, REF = RyF and for |k| > K, REXF = 0. Denoting for
any k€ Z

ai = sup{|| R (0)F|| | F € HY, ||F||ly =1} .

one has
IR - RK”L(HN/;,) <> (WNap
|k|>K

Therefore, as by Lemma IIL.31 the sequence (ay)rez is in €%, we deduce
that, for each finite gap potentail ¢, R(¢p) is the uniform limit of finite rank
operators and thus a compact operator.

Approximating an arbitrary ¢ € H%’ by a sequence of finite gap potentials
(¢n)n>1 in HY and using that R(y) is real analytic, hence in particular
continuous in ¢, one sees that lim, .. R(pn) = R(yp) is compact as well. W

ITI.8 Global properties

The purpose of this section is to prove that QV) is 1 — 1 and onto for any

N > 0. To this end we show that the action map
I: ng =0 o= (Ik(9)) ez -

is proper. We begin with establishing auxilary results concerning various
asymptotic estimates.

Lemma II1.33 Let ¢ € L%, )\ € R and F € HY([0,1],C?) with ||[F|: =1
satisfying L(p)F = AF. Then

[l < V2exp(lleallz2)-
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Proof Introduce F(x) := E(z, \)"'F(z) where (cf page 14)
E(z,)\) = diag(e”™, &),

Substitute F(z) = E(x, A)F(z) into the equation LF = AF' to obtain

) 0 2o (2)\ =
he) =i <_672M1m 01 >F(I)-

Denoting by Q(z) the matrix

. 0 &2 (z)
Qx) =1 (_efzmm 0 >
one gets
d - [
—||F@)||>=F-QF + F-QF
LIF@)? = F-QF +
and thus, for any 0 < s <z <1,
~ ~ T o ~ ~ —_
IE@)? = [|E(s)]? +/ (F QF + F- QF) dt. (ITL.50)

As A € R, we have |F(z)| = |F(z)| for any = and thus I | F(s)||?ds < 1 for
any 0 < 2z < 1. Integrating both sides of (IIL.50) with respect to s from 0
to x then leads to
~ - T T - ~ -~ =
$\\F(x)\\z§1+/ ds/ dt‘F~QF+F~QF|
JO - Js . ) )
§1+2/ ds/ dt‘F(t)| Wl(t)‘
0 5
T o2
:1+2/ t‘F(t)‘ |¢1(t)'dp
0
By Gronwall’s lemma one gets for 0 <z <1,
T
AF@IP <o (2 |or0]a) < ewp @Al
Jo
In particular, for any % <z<1,
[F@) < v2exp (loll2) -

Reversing the orientation on the interval [0, 1] one obtains the same inequal-
ity for z € [0,1/2]. B

Corollary II1.34 For any ¢ € L% and n € Z,
(i) |in(p) —nm| < 2V2|p]| eVl
(it) INE(p) — | < 2v/2] el
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Proof (i) As p1,(0) = nm, one has by Taylor’s formula
ld
i) —nm = [ G (e
J0O

1
= /0 (Vi by ()it

By Proposition 1.29,
1
Vo(ayhin = [eReIE (Gn2(2)?,Gna(2)?)

where we recall that
Gn(x) = G2, tn) = MO (@, i) + MO (2, 1) -
Hence by Lemma I11.33,
Gl o= /1G] L2 < V2exp ([ o1l z2)

and therefore, with [|¢||2 = v2||¢1( 12

(Vig(ytin, () | < 2exp (2ll1ll2) (lenllze + llallr2)
< 2v2exp (VElolz ) el o

To prove (ii) recall from Proposition 1.40 that for any given n € Z there
exists pF € Iso(p) such that u,(p%) = AE(p) and [|p*| < [|¢|. Hence (ii)
is a consequence of (i). W

Corollary Corollary7.2 can be used to prove the following properness result
for the actions.

Lemma II1.35 The map I : L3 — €', ¢ — (I;()) ey is proper.

Remark With some effort one can prove that (cf [MV]) 3 |pn(p) — na|? <
C(|l¢l). This uniform estimate can be used to prove that the map L% >
@+ (I¢p))rez is proper. Nevertheless our proof of Lemma II1.35 use only
the weaker estimates established in Corollary Corollary7.2.

Proof 1t is to prove that any sequence (g;);>1 in L% with the property
that (I(p;));5; converges in 1(Z) to a sequence J := (Ji)rez admits
a convergent subsequence. By Proposition III.4, we have for any j > 1,
Syez Ii(@;) = lp|? and hence

lim [ |2 = .
Jim el > T

keZ
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In particular, (¢;);>1 admits a weakly convergent subsequence in L% which
we again denote by (¢;);>1. Denote its limit by ¢. By Corollary II1.34, the
sequences (A ()51 are bounded for any n € Z. Hence without loss of
generality we may assume that each of these sequences converges,

& = lim AT (p;).
j—o00
By Lemma 1.1, A(), ¢) is a weakly continuous map on C x L%, hence

2(-1)" = AN (95) 95) — Al 0)-

It follows that ¢ € spec(p). Since for any j, (/\?,f(gaj))nez is a nondecreasing
sequence, (£F)nez is nondecreasing as well, more precisely

LSk < <gh <

n—1 —=

Further, as

A6y 0) = (-1)"2 (ITL.51)
it is émpossible that for any n,k € Z
f:[ =N, and &, | = )\;
or
& =N and & = Arg1-
Hence one can choose an increasing sequence (ky,)nez in Z so that

£T:LE € {)‘f | kn <k< k71+1}-

Further choose mutually disjoint open discs in C, (Bj,)nez, so that for any
n €7,
B, N spec(p) = {/\,f [ kn <k <kpi1}
and
OBy, N spec(p) =0
where 0B,, denotes the boundary of B,, with counterclockwise orientation.
For any n € Z, there exists j, > 1 so that for any j > jy,,

Af(‘pj) € Bn
and
A(e;) € By k€ Z\{n}.

Hence we have for any j > j,,

1 A, vj))

- —==8 gy
T Jop, /AN )2 —4

In(%‘) =
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Again using that A is weakly continuous it then follows that

Jo = lim Ln(p)) = & M)
J—0o0

———— d\.
T Joap, /AN )2 —4

Further, by Cauchy’s theorem,

1 AA(X, p)

g T A= Ti()-
Hence
o= Y (o)
kn<k<kni1

Combining the results above one concludes that
. 2 - o
Jim il =3 Ta=3" > Ile) = Iule)
nez n€Z kn<k<knii nez

= llel®

where for the latter equality we used again Proposition III1.4. Together with
the weak convergence of (¢;);>1 it then follows that ¢ = lim;_, @; strongly
inIL%. W

The properness of the action map I allows to prove that € is bijective.
Denote by (2 the sequence space ¢%(Z;R?).
Proposition I11.36 The map Q: L% — (2 is 1 — 1 and onto.

Proof 1t is convenient to denote by Qg the restriction of Q to L%,
For
A= {2 105 (2) = 1}

it is then to show that A = E]% As fﬁ is connected this amounts to show
that A is open, closed and nonempty.

First notice that for any ¢ € L% with Q(p) = 0 we have Iy(p) =0 Vk € Z
and hence, by Proposition I11.4,
lell* =" Tx(w) =0
keZ
and thus ¢ = 0. This shows that 0 € A, hence 4 # (.

Next we show that A is open. Let zp := Q(pg) be in A. As Qg is a local
diffeomorphism there exist an open neighborhood U of ¢g in L% and an open
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neighborhood V' of zy in Z]i so that Qg | v 1 U — V is a diffeomorphism.
Thus for any z € V, 105" (2) > 1.

Introduce for any n > 1, the neighborhoods U,, := U N B,, of ¢y and V,, :=
Q(U,) of zp where B,, denotes the ball in L% with center ¢y and radius %
We claim that there exists n > 1 so that V,, C A.

Arguing by contradiction, assume that no such n exists. Then one can find
a sequence (2, )p>1 With z, € V;, and two sequences (¢n)n>1, (¥n)n>1 with
on € Uy, ¥n € LH\U such that Qr(p,) = 2z, = Qr(¢,). Notice that
limy, 00 2, = 20 and lim, 00 0y, = @o. By Lemma I11.35, Qg : L?R — 2
is proper. Therefore there exists a subsequence, again denoted by (¥p)n>1
which L? converges to an element ¢ in the closed set L%\U. By the conti-
nuity of 2, z9 = Q(¢) which contradicts the assumption zy € A.

It remains to prove that A is closed. Let (z,)n>1 be a sequence in A which
converges to z in 2. Let @, = Q;;(zn). As Qg is proper we may assume
that (¢n)n>1 converges in L% Denote by ¢ its limit. By continuity of
Q,Q(p) = z. Assume that z ¢ A. Then there exists 1 € L% with ¢ # ¢
such that Q(y)) = ¢. As Q is a local diffeomorphism there exits n with
n ¢ A which contradicts our assumption that the sequence z, = Q(p,) be
inA R

To prove that for any N > 1 the restriction QW) s 1-1 and onto as well we
need a result corresponding to Lemma IT1.35 for H713 (:: H'Nn L%)

Denote by 1) the restriction of the action map I : L% — 0" to H}z and by
[}C the weighted Banach space

0= {(a))jez | Z(]’)ﬂ%‘\ < oo} .

Recall from [GK1] that (y(¢)) ez € €3 for ¢ € H'. As I, = £}(v/2)? and
& = 1+ (%(k) (Theorem IIL3) it then follows that (Ij)rez € (5. Further,
& > 0 and & = 1+¢2(k) locally uniformly on L% (cf Theorem II1.3). Hence
on any compact subset K of L%,

sup1/&, < oo (I11.52)
Sl

and, by the continuity of + : L?z — 02, 0 (7%(0)) ez
Y(E) == {(7())pez | ¢ € K} C €2 is compact . (II1.53)
Lemma II1.37 The map IV : H712 — 0} is proper.

Proof Let (¢n)n>1 be a sequence in H} such that (I(¢y)),s; converges
in £3 to an element in £}. It is to prove that (¢n)n>1 admits a convergent
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subsequence in H,la By Lemma II1.35 we may assume that (¢, )p>1 con-
verges in L%. Denote its limit by ¢. In section III.2, we have introduced
the functionals defined on L%

Jj= l/ PN AR dA
J T I, .

By Lemma IIL5 and (IIL53), the convergence of (I(¢n)),>; in £} implies
that (J;(¢n));cy converges in o
By Proposition II1.6, using that ¢, = (¢n1,¢n2) is of real type (ie. Tp1 =
‘10712))
! 2 2 2 3
[ el + 1) do = 3 duteon) (11L54)
0
kez

Hence ([|¢y,[1),,>; is bounded and we may assume without loss of generality
that ¢, converges weakly in H}2 and, as a consequence, ¢ € H. 712 and @, — ¢.
As ¢ — Ji(y) is continuous on L% for any k € Z one has lim,, o0 Ji(0n) =
Ji(¢) and therefore

Jim (Tk(Pn))kez = (Je(©))rez

in ¢. In view of (II1.54) and the compactness of the Sobolev embedding
H} < C(S',C?) it then follows that

n—oo

1 1
lim /0 I (@) d = /0 I (@) dz
and hence ¢, — ¢ in Hs. B

Arguing as in the proof of Proposition II11.36 and using Lemma III.37 one
sees that Q) : HE — €2 is a real analytic diffeomorphism. To prove the
corresponding result for QN) with N > 1 arbitrary we use a spectral char-
acterization of the regularity of a potential, established in [GK1] (N > 1
arbitrary),

p € HY <=y € Hy and (Y (P)nez € G-

As QU is onto this characterization implies that Q) : HY — (% is onto
for any N > 1.
Summarizing the results of this section one has

Theorem III.38 For any N > 0, the map QW) H{% — va is a real
analytic diffeomorphism.
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