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6 CHAPTER 0. INTRODUCTION

The (cubic) nonlinear Schrödinger equation (NLS)

i∂tψ = −∂2
xψ + 2κ|ψ|2ψ

- κ being a real parameter - is an evolution equation in one space dimen-
sion. This equation appears as a nonlinear perturbation of the Schrödinger
equation for the wave function of a free one dimensional particle of mass
m = 1/2 - whence the name. However its physical meaning goes far beyond
one-particle quantum mechanics.
Actually the NLS equation describes slowly varying wave envelopes in dis-
persive media and arises in various physical systems such as water waves,
plasma physics, solid-state physics and nonlinear optics. One of the most
successful applications of the NLS equation is their use for the description
of optical solitons in fibers (see for instance [New-Mol92], [Abl-Seg81], [FT],
or [Agr-Boy92] and references quoted therein).
The NLS equation was the second (after the KdV equation) evolution equa-
tion discovered to be integrable by the inverse scattering approach (cf [ZS]).
It turned out that it has the same degree of universality as the KdV equa-
tion, both from a mathematical and physical viewpoint. Actually, in many
technical respects, the NLS equation is simpler and maybe more fundamen-
tal than the KdV equation. For instance the Hamiltonian formalism for the
NLS equation is very simple and straightforward (see next section) while
the Poisson bracket in the Hamiltonian formalism for KdV is degenerate (cf
[Gard] or [KP]).
In this book we only consider the case where κ = 1 (defocusing case)

i∂tψ = −∂2
xψ + 2|ψ|2ψ

with periodic boundary conditions. Our aim is to provide a complete and
self-contained study of this evolution equation viewed as a Hamiltonian sys-
tems.

Hamiltonian formalism

The NLS equation can be written in Hamiltonian form

∂ψ

∂t
= −i∂H

∂ψ

with Hamiltonian H given by

H(ψ,ψ) :=

∫

S1

(∂xψ∂xψ + ψ2ψ
2
)dx

where ∂H
∂ψ

denotes the L2-gradient of H considered as a smooth function of

ψ and ψ. Since we are interested in spatially periodic solutions, we take as
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the underlying phase space the Sobolev space HN ≡ HN (S1; C) of complex
valued function with period 1 with S1 = R/Z and N ≥ 1. For any N ≥ 0),
HN is given by

HN (S1; C) :=

{

ψ(x) =
∑

k∈Z
e2iπkxψ̂(k) | ‖ψ‖N <∞

}

where

‖ψ‖N :=

(

∑

k∈Z
(1 + |k|)2N |ψ̂(k)|2

)1/2

and ψ̂(k) (k ∈ Z) denote the Fourier coefficients of ψ.

We endowed HN (S1; C) with the standard Poisson bracket

{F,G}(ψ,ψ) := i

∫

S1

(

∂F

∂ψ

∂G

∂ψ
− ∂F

∂ψ

∂G

∂ψ

)

dx

where F,G are functionals on HN ×HN of class C1 with L2-gradient in L2.
This makes HN ×HN a Poisson manifold on which the NLS equation may
also be represented in the form

ψt = {H, ψ} = −i∂H
∂ψ

familiar from classical mechanics.

Notice that the above Hamiltonian H is defined only on HN with N ≥ 1.
However the initial value problem for the NLS equation on the circle S1 is
well posed on any Sobolev space HN with N ≥ 0 and thus in particular on
L2(S1; C) (cf [B2]).

The NLS equation admits infinitely many conserved quantities, or integrals,
and there are many ways to construct such integrals (cf [FT], [MV]).

Following P. Lax [L], one obtains a complete set of integrals in a particular
elegant way by considering the spectrum of the associated Zakharov-Shabat
operator (cf [ZS]). For ϕ = (ϕ1, ϕ2) ∈ L2 ≡ L2(S1; C2) consider the differ-
ential operator

L(ϕ) := i

(

1 0
0 −1

)

d

dx
+

(

0 ϕ1

ϕ2 0

)

.

We will say that ϕ is of real type and write ϕ ∈ L2
R if ϕ2 = ϕ1. In this case

L(ϕ) is formally selfadjoint and unitarily equivalent to the AKNS operator
([AKNS]) given by

LAKNS(ϕ) := i

(

0 −1
1 0

)

d

dx
+

(

−q p
p q

)

.
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where p, q are real valued functions related to ϕ by

ϕ1 = −q + ip .

It is well known (see [GG]) or chapter I) that for ϕ ∈ L2
R, the spectrum of

L(ϕ) considered on the interval [0, 2] with periodic boundary conditions is
pure point and consists of an unbounded sequence of periodic eigenvalues

. . . < λ−−1(ϕ) ≤ λ+
−1(ϕ) < λ−0 (ϕ) ≤ λ+

0 (ϕ) < λ−1 (ϕ) ≤ λ+
1 (ϕ) < . . . .

The intervals
(

λ−k (ϕ), λ+
k (ϕ)

)

, possibly empty, are called the gaps of the
potential ϕ and

γk(ϕ) := λ+
k (ϕ) − λ−k (ϕ), k ∈ Z

are the gap lengths.
For ϕ = ϕ(t, ·) ∈ L2

R, depending also on t, define the corresponding operator

L(t) = L (ϕ(t, ·)) .

Then ϕ1 is a solution of the NLS equation if and only if

d

dt
L = [B,L]

where [B,L] = BL− LB denotes the commutator of L with

B = i

(

−2 d2

dx2 + |ϕ1|2 −∂ϕ1

dx − 2ϕ1
d
dx

∂ϕ̄1

dx + 2ϕ̄1
d
dx 2 d2

dx2 − |ϕ1|2

)

It follows by an elementary calculation that the flow of

d

dt
V = BV, V (0) = I

defines a family of unitary operators V (t) such that V ∗(t)L(t)V (t) = L(0).
Consequently, the spectrum of L(t) is independent of t, and so the periodic
eigenvalues λ±k = λ±k (ϕ) are conserved quantities under the evolution of the
NLS equation. In other words, the flow of the NLS equation defines an
isospectral deformation on the space of all potentials in L2

R. From an ana-
lytical point of view, however, the periodic eigenvalues are not satisfactory
as integrals, as λ±k is not a smooth function ϕ whenever the corresponding
gap collapses. But in section I.6, we prove that the squared gap lengths

γ2
k(ϕ), k ∈ Z

are real analytic on all of L2
R. Moreover, Grébert and Guillot [GG] showed

that the sequence of gaps lengths determine uniquely the periodic spectrum
of a potential in L2

R. Therefore, the sequence of squared gap lengths form
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another set of integrals, which is smooth on L2
R and which is equivalent to

the data of the periodic spectrum.
The space L2

R decomposes into the isospectral sets

Iso(ϕ) =
{

ψ ∈ L2
R | spec(ψ) = spec(ϕ)

}

,

which are invariant under the NLS flow and may also be characterized as

Iso(ϕ) =
{

ψ ∈ L2
R | γk(ψ) = γk(ϕ), k ∈ Z

}

.

As shown by Grébert and Guillot [GG] (see also chapter I) these are compact
connected tori whose dimension equals the number of positive gap lengths
and is infinite generically.
Moreover, as the asymptotic behavior of the gap lengths characterizes the
regularity of a potential of real type in the same way as its Fourier coefficients
do (see [GK1]), we have

ϕ ∈ HN
R ⇐⇒ Iso(ϕ) ⊂ HN

R

for each N ≥ 0 where

HN
R :=

(

HN ×HN
)

∩ L2
R ≡ HN .

Hence also the phase spaceHN decomposes into a collection of tori of varying
dimension which are invariant under the NLS flow.
All the results about the spectral theory of Zakharov-Shabat operators
needed in this book are presented (and proved) in Chapter I.

Normal form and Birkhoff coordinates

In classical mechanics the existence of a foliation of the phase space into
Lagrangian invariant tori is tantamount, at least locally, to the existence of
action-angle coordinates. This is the content of the Liouville-Arnold-Jost
theorem. In an infinite dimensional setting as the one for the NLS equation,
however, the existence of such coordinates is far less clear as the dimension of
the foliation is nowhere locally constant. Invariant tori of infinite and finite
dimension each form dense subsets of the foliation. Nevertheless, action-
angle coordinates can be introduced globally as we describe now.
To describe the action-angle variables on HN we introduce the model space
(N ≥ 0)

`2N (Z; R2) := {(x, y) = (xk, yk)k∈Z | ‖(x, y)‖N <∞}

where

‖(x, y)‖N :=

(

∑

k∈Z
(1 + |k|)2N (x2

k + y2
k)

)1/2

.
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The space `2N (Z; R2) is endowed with the Poisson structure, induced by the
canonical symplectic structure

∑

k∈Z dxk ∧ dyk.
The following theorem was first proven in a quite different form in [BBGK].
A similar version to the one we expand on here was first proven for KdV in
[KP] (cf also [BKM2], [KM]).

Theorem 0.1 There exists a family of diffeomorphisms Φ ≡ Φ(N), N ≥ 0

Φ : `2N (Z,R2) → HN (S1,C)

with the following properties

(i) Φ is globally one-to-one, onto, bi-analytic and preserves the Poisson
bracket.

(ii) The coordinates (xk, yk)k∈Z = Φ−1(ϕ) are global Birkhoff coordinates
for NLS. That is the transformed NLS Hamiltonian H ◦ Φ depends
only on the actions Ik := 1

2(x2
k + y2

k) k ∈ Z, with (xk, yk)k∈Z, being the
(canonical) coordinates on `2N (Z; R2).

(iii) For N > N ′

Φ(N) = Φ(N ′)




`2
N

.

Often it will be convenient to use complex notation

xk + iyk =
√

2Ik e
iθk (k ∈ Z).

The coordinates (Ik, θk) are referred to as action-angle coordinates. Note
that θk ∈ R/2πZ is well defined whenever Ik 6= 0.
In the coordinates (xk, yk)k∈Z ∈ `2N (Z; R2) (with N ≥ 1 in order H to be
defined) the NLS Hamiltonian H is a real analytic function of the actions
I = (Ik)k∈Z alone and the NLS equation reads

{

ẋk = ωk(I)yk

ẏk = −ωk(I)xk
k ∈ Z

where

ωk(I) =
∂H
∂Ik

are the NLS-frequencies which are real analytic functions of I.
It turns out that for 0 ≤ N < 1, the frequencies ωk(I) can be defined by
continuous extension although NLS Hamiltonian H itself is not defined.
Theorem 0.1 simultaneously applies to every real analytic Hamiltonian in the
Poisson algebra of any of the Hamiltonians which Poisson commute with all
action variables Ik, k ∈ Z. In particular, (I, θ) are action-angle coordinates
for every equation in the NLS hierarchy.
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Applications

The normal form of NLS stated in Theorem 0.1 gives rise to various appli-
cations. First it shows that every solution of the NLS equation is almost
periodic in time. Actually in action-angle coordinates, every solution is
given by

I(t) = I0, θ(t) = θ0 + ω(I0)t,

where (I0, θ0) corresponds to the initial data ψ|t=0 and ω(I0) is the (infinite)
vector of frequencies associated with I0. Hence in the model space every
solution winds around some underlying invariant torus

TI0 =
{

(x, y) ∈ `2 | x2
k + y2

k = 2I0
k , k ∈ Z

}

.

If the number of non vanishing actions is finite, the torus is finite-dimensional
and the solution is quasi-periodic. In this case the solution can also be
represented in terms of Riemann theta functions (cf [BBEIM]). These quasi-
periodic solutions correspond to finite pap potential: Let A ⊂ Z be a finite
index set. We introduce the set of A-gap potentials

GA =
{

ϕ ∈ L2
R | γk(ϕ) > 0 ⇐⇒ k ∈ A

}

.

Actually the set GA is analytically diffeomorphic (via the canonical trans-
formation Φ of Theorem 0.1) to

hA =
{

(x, y) ∈ `2 | x2
k + y2

k > 0 ⇐⇒ k ∈ A
}

.

The normal form of NLS allows us to consider small perturbations of the
NLS equation:

ψt = −i
(

∂H
∂ψ

+ ε
∂K

∂ψ

)

.

In [GK2] (see also [GK3]) we prove that many finite dimensional tori, in-
variant under NLS-flow, persist under small Hamiltonian perturbations. To
obtain this result we follow a procedure developed for the KdV equation in
[KP] and use a KAM theorem in infinite dimension due to Kuksin [Ku1].

12 CHAPTER 0. INTRODUCTION
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In this chapter we present results about the spectral theory of Zakharov-
Shabat operators needed to construct and analyze the Birkhoff map. They
are elementary and, at least for potentials ϕ of real type, i.e. ϕ = (ϕ1, ϕ1),
well known (cf [G], [GG], [MV]). Throughout this section we use freely
techniques and arguments from [GG], [MV], and [PT].
For ϕ = (ϕ1, ϕ2) ∈ L2

C
≡ L2([0, 1],C2) denote by L(ϕ) the Zakharov-Shabat

operator

L(ϕ) := i

(

1 0
0 −1

)

d

dx
+

(

0 ϕ1

ϕ2 0

)

.

LetM(·, λ) ≡M(·, λ;ϕ) be the fundamental 2×2 matrix solution of L(ϕ)M =
λM , satisfying the initial condition M(0, λ;ϕ) = Id2×2 for any λ ∈ C.

I.1 Basic estimates for M(x, λ)

Making the ansatz M(x, λ) = E(x, λ)N(x, λ) with E(x, λ) given by

E(x, λ) :=

(

e−iλx 0
0 eiλx

)

one verifies that M satisfies the following integral equation (x ≥ 0)

M(x, λ) = E(x, λ) +

∫ x

0
K(x, y, λ)M(y, λ)dy (I.1)

where K(x, y, λ) ≡ K(x, y, λ;ϕ) is given by

K(x, y, λ) := i

(

0 e−iλ(x−y)ϕ1(y)

−eiλ(x−y)ϕ2(y) 0

)

.

Formally, the solution of the above integral equation is given by the following
power series (x ≥ 0)

M(x, λ) =
∑

k≥0

E(k)(x, λ) (I.2)

where
E(0)(x, λ) := E(x, λ)

and, for k ≥ 0, E(k+1)(x, λ) ≡ E(k+1)(x, λ;ϕ) is defined by

E(k+1)(x, λ) =

∫ x

0
K(x, y, λ)E(k)(y, λ)dy

which leads to the formula (k ≥ 1, x0 := x)

E(k)(x, λ) :=

∫ x

0
dx1

∫ x1

0
dx2 . . .

∫ xk−1

0
dxk

k−1
∏

j=0

K(xj , xj+1, λ)E(xk, λ).

(I.3)
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From (I.3) one deduces (x ≥ 0)

‖E(k)(x, λ)‖ ≤ e|Imλ|x
∫

0≤xk≤...≤x1≤x

k
∏

j=1

‖ϕ(xj)‖dx1 . . . dxk.

Here ‖A‖ denotes the usual operator norm of a 2 × 2 matrix A =

(

a c
b d

)

,

i.e.

‖A‖ := max
(

√

|a|2 + |b|2,
√

|c|2 + |d|2
)

and, similarly, ‖ϕ(x)‖ = ‖(ϕ1(x), ϕ2(x))‖ is given by

‖ϕ(x)‖2 = |ϕ1(x)|2 + |ϕ2(x)|2.

Therefore, for any x ≥ 0,

‖E(k)(x, λ)‖ ≤ e|Imλ|x
1

k!

(
∫ x

0
‖ϕ(y)‖dy

)k

and hence the sum
∑

k≥0E
(k)(x, λ) is absolutely convergent, uniformly on

bounded subsets of [0, 1] × C × L2
C

and

‖M(x, λ;ϕ)‖ ≤ exp(|Imλ| + ‖ϕ‖L2) (0 ≤ x ≤ 1) (I.4)

where ‖ϕ‖L2 :=
(

∫ 1
0 ‖ϕ(x)‖2dx

)1/2
.

Lemma I.1 (1) For any 0 ≤ x0 ≤ 1,M(x0, ·, ·) is an analytic map on
C × L2

C
, depending continuously on x0.

(2) M is a weakly continuous map on [0, 1] × C × L2
C

.

Proof (1) Using induction, one shows that E (k)(x0, ·; ·) is an analytic map
on C × L2

C
, depending continuously on x0. Hence the claimed statement is

a consequence of the uniform convergence of
∑

k≥0E
(k)(x, λ;ϕ) on bounded

subsets of [0, 1] × C × L2
C
.

(2) In view of the uniform convergence of
∑

k≥0E
(k)(x, λ;ϕ), it suffices to

prove that for each k ≥ 0, the map ϕ 7→ E(k)(x, λ, ϕ) is weakly continuous
in L2

C
, uniformly for (x, λ) in bounded subsets of [0, 1] × C. We argue by

induction: clearly, for E(0)(x, λ, ϕ) = E(x, λ) the above assertion holds as
it does not depend on ϕ. Assume that it holds up to some k ≥ 0. By
definition,

E(k+1)(x, λ;ϕ) =

∫ x

0
K(x, y, λ;ϕ)E(k)(y, λ;ϕ)dy.

16 CHAPTER I. SPECTRAL THEORY OF ZS OPERATORS

Let (ϕn)(n≥1 ⊆ L2
C

converge weakly to ϕ ∈ L2
C
, ϕn ⇁ ϕ. Clearly, for

the matrix valued function K, we have K(x, ·, λ;ϕn) ⇁ K(x, ·, λ;ϕ) uni-
formly for (x, λ) in bounded subsets of [0, 1] × C. By induction hypothesis,
limn→∞E(k)(y, λ;ϕn) = E(k)(y, λ;ϕ) uniformly for (y, λ) in a bounded sub-
set of [0, 1] × C, one deduces that

lim
n→∞

E(k+1)(x, λ;ϕn) =

∫ x

0
K(x, y, λ;ϕ)E(k)(y, λ;ϕ)

= E(k+1)(x, λ;ϕ)

uniformly for (x, λ) in a bounded subset of [0, 1] × C. �

To obtain asymptotics for M(x, λ, ϕ) as |λ| → ∞ we need an auxilliary
lemma (cf [AG, Proposition A.1]). Denote by H1

C
≡ H1(S1; C2) the set of

elements ϕ = (ϕ1, ϕ2) ∈ L2
C

in the Sobolev space H1([0, 1]; C2) with periodic
boundary conditions, ϕ(0) = ϕ(1), and by ‖ϕ‖H1 the H1-norm,

‖ϕ‖2
H1 = ‖ϕ‖2

L2 + ‖ d
dx
ϕ‖2

L2 .

Lemma I.2 Let ϕ0 ∈ L2
C
, ε > 0 and r0 ≥ 0 be given and assume that

ϕε ∈ H1
C

satisfies ‖ϕε−ϕ0‖2 < ε. Then for any ϕ ∈ L2
C

with ‖ϕ−ϕ0‖2 < r0
and (x, λ) ∈ [0, 1] × C\{0} one has

‖M(x, λ;ϕ) −E(x, λ)‖ ≤ e|Imλ|x+‖ϕ‖2

(

r0 + ε+
‖ϕε‖H1

|λ|

)

.

Proof As ϕε ∈ H1
C
, one can integrate by parts to get

E(1)(x, λ;ϕε) = i

∫ x

0

(

0 e−iλ(x−2y)ϕε1(y)

−eiλ(x−2y)ϕε2(y) 0

)

dy

=
1

2λ

(

0 e−iλ(x−2y)ϕε1(y)

eiλ(x−2y)ϕε2(y) 0

)







x

y=0

− 1

2λ

∫ x

0

(

0 e−iλ(x−2y)∂yϕ
ε
1(y)

eiλ(x−2y)∂yϕ
ε
2(y) 0

)

dy .

In view of the Sobolev inequality ‖ϕ(x)‖ ≤ ‖ϕ‖H1 we then obtain, for any
0 ≤ x ≤ 1 and λ 6= 0,

‖E(1)(x, λ;ϕ(ε))‖ ≤ 3

2

e|Imλ|x

|λ| ‖ϕε‖H1 .

For ϕ ∈ L2
C

with ‖ϕ− ϕ0‖L2 < r0 we have (0 ≤ x ≤ 1)

‖E(1)(x, λ;ϕ) −E(1)(x, λ;ϕε)‖ ≤ (r0 + ε)e|Imλ|x.



I.1. BASIC ESTIMATES FOR M(X,λ) 17

Combining these two inequalities yields

‖E(1)(x, λ;ϕ)‖ ≤ (r0 + ε+
3

2|λ| ‖ϕ
ε‖H1)e|Imλ|x.

As for k ≥ 2 and 0 ≤ x ≤ 1 (with x0 := x)

E(k)(x, λ;ϕ) =

∫ x

0
dx1

∫ x1

0
dx2 . . .

∫ xk−2

0
dxk−1





k−2
∏

j=0

K(xj , xj+1)



E(1)(xk, λ;ϕ).

the above estimate leads to (0 ≤ x ≤ 1, λ 6= 0)

‖E(k)(x, λ;ϕ)‖ ≤
(

r0 + ε+
3‖ϕε‖H1

2|λ|

)

e|Imλ|x
1

(k − 1)!

(∫ x

0
‖ϕ(y)‖dy

)k−1

(I.5)
and hence, by (I.2)

‖M(x, λ;ϕ) −E(x, λ)‖ ≤ e|Imλ|x+‖ϕ‖2

(

r0 + ε+
3‖ϕε‖H1

2|λ|

)

.

�

From Lemma I.2 one obtains the following basic estimates of M(x, λ;ϕ) and
its derivative Ṁ(x, λ;ϕ) ( ˙= d

dλ).

Proposition I.3 Let ϕ ∈ L2
C
. Then, uniformly for 0 ≤ x ≤ 1, as |λ| → ∞

(i) M(x, λ;ϕ) = E(x, λ) + o(e|Imλ|x),

(ii) Ṁ(x, λ;ϕ) = Ė(x, λ) + o(e|Imλ|x).

Proof (i) By Lemma I.2 with r0 = 0, given δ > 0 arbitrary, there exists
λδ > 0 such that

|M(x, λ;ϕ) −E(x, λ)| ≤ δe|Imλ|x ∀|λ| ≥ λδ.

To prove (ii), derive the integral equation (I.1) with respect to λ,

Ṁ(x, λ) = Ė(x, λ) +

∫ x

0
K̇(x, y, λ)M(y, λ)dy+

+

∫ x

0
K(x, y, λ)Ṁ (y, λ)dy.

(I.6)

Using (i) and the identity

K̇(x, y, λ) = (x− y)

(

0 e−iλ(x−y)ϕ1(y)

eiλ(x−y)ϕ2(y) 0

)

18 CHAPTER I. SPECTRAL THEORY OF ZS OPERATORS

one sees that
∫ x

0
K̇(x, y, λ)M(y, λ)dy =

∫ x

0
K̇(x, y, λ)E(y, λ)dy + o(e|Imλ|x).

Approximating ϕ by an element in H1
C

up to ε (cf Lemma I.2) one sees that
∫ x

0
K̇(x, y, λ)E(y, λ)dy = o(e|Imλ|x).

Hence equation (I.6) is of the form

Ṁ (x, λ) =
∼
E(x, λ) +

∫ x

0
K(x, y, λ)Ṁ (y, λ)dy

where
∼
E(y, λ) := Ė(x, λ) +

∫ x

0
K̇(x, y)M(y, λ)dy

satisfies ∼
E(y, λ) = Ė(x, λ) + o(e|Imλ|x).

Arguing as in the proof of Lemma I.2 one concludes that

Ṁ(x, λ) =
∼
E(x, λ) + o(e|Imλ|x)

and the claimed statement follows. �

We include in this section a result concerning the Wronskian identity for M .
Denote by W (M(x, λ)) the Wronskian of M(x, λ)

W (M(x, λ)) := detM(x, λ).

Lemma I.4 For any ϕ ∈ L2
C
, λ ∈ C and x ∈ R,

W (M(x, λ)) = 1.

Proof Writing M(x) ≡M(x, λ, ϕ), one has

d

dx
W (M(x)) = det(

dM (1)

dx
(x)M (2)(x)) + det(M (1)(x)

dM (2)

dx
(x)) (I.7)

where M (1)(x) and M (2)(x) denote the first respectively second column of
M . Rewriting LM (j) = λM (j) (j = 1, 2) one gets

dM (j)

dx
(x) = i

(

−1 0
0 1

)(

λM (j)(x) −
(

0 ϕ1

ϕ2 0

)

M (j)(x)

)

which, when substituted into (I.7) leads to d
dxW (M(x)) = 0, i.e. W (M(x))

is independent of x. As M(0) = Id2×2, we have W (M(0)) = 1 and the
claimed statement follows. �

Later on we will also use the notation W (F,G) for the Wronskian of two
functions F,G in L2

C
,

W (F,G)(x) := F1(x)G2(x) − F2(x)G1(x). (I.8)
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I.2 Periodic spectrum

We denote by spec(ϕ) the spectrum of the operator L(ϕ) with domain

domper(L) := {F ∈ H1
C | F (1) = ±F (0)}.

By Floquet theory spec(ϕ) coincides with the spectrum of the operator L(ϕ),
considered on [0, 2] with periodic boundary conditions.
By the definition of M(x, λ), any solution F of LF = λF satisfies F (1, λ) =
M(1, λ)F (0, λ). Hence λ ∈ spec(ϕ) iff 1 or −1 is an eigenvalue of M(1, λ).
As detM(1, λ) = 1 (cf Lemma I.4) it follows that spec(ϕ) is the zero set of
the entire function ∆(λ, ϕ)2 − 4 where ∆(λ) ≡ ∆(λ, ϕ) is the discriminant

∆(λ) := trM(1, λ) = M11(1, λ) +M22(1, λ). (I.9)

Lemma I.2 can be used to locate the periodic eigenvalues of L(ϕ). For
ϕ = 0, spec(ϕ) consists of the eigenvalues kπ (k ∈ Z), each eigenvalue
having multiplicity two. The discriminant ∆(λ, 0) is given by

∆(λ, 0) = 2 cos λ

hence ∆(λ, 0)2 − 4 = 4(cos2 λ − 1) has indeed as zeroes the eigenvalues kπ
(k ∈ Z) of L(0). To locate the zeroes of ∆(λ, ϕ)2 − 4, we want to use
Rouché’s Theorem.
By Lemma I.2, given any ϕ0 ∈ L2

C
, there exist ε > 0 and N0 > 0 so that

for any ϕ ∈ L2
C

with ‖ϕ − ϕ0‖2 < ε, λ ∈ C with |λ| ≥ N0 and 0 ≤ x ≤
1, ‖M(x, λ, ϕ) −E(x, λ)‖ ≤ 1

36e
|Imλ|x.

As ∆(λ, ϕ) = trM(1, λ;ϕ) and ∆(λ, 0) = 2 cos λ,

|(∆(λ, ϕ)2 − 4) − (∆(λ, 0)2 − 4)|
= |∆(λ, ϕ) − 2 cos λ||∆(λ) + 2 cos λ|
≤ |∆(λ, ϕ) − 2 cos λ| (|∆(λ) − 2 cos λ| + 4| cos λ|)
≤ 2‖M(1, λ;ϕ) −E(1, λ)‖

(

2‖M(1, λ;ϕ) −E(1, λ)‖ + 4e|Imλ|
)

.

Together with ∆(λ, 0)2 − 4 = 4(cos2 λ− 1) = (2i sin λ)2, we then obtain

|(∆(λ, ϕ)2 − 4) − (2i sin λ)2| < 1

4
e2|Imλ|.

Notice that for λ ∈ C with |λ− nπ| ≥ π
4 ∀n ∈ Z, one has e|Imλ| < 4| sin λ|

(cf [PT] Lemma 1, p. 27) and hence

|(∆(λ, ϕ)2 − 4) − (2i sin λ)2| < 4| sin λ|2 = |2i sin λ|2.

By Rouché’s Theorem applied to the contours {λ ∈ C | |λ−nπ| = π/4} (|n| ≥
N0+1) and {λ ∈ C | |λ| = Nπ+π/4} (N ≥ N0) we have proved the following
result due to [LM] (see also [GG])
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Proposition I.5 Given any ϕ0 ∈ L2
C
, there exist ε > 0 and N0 > 0 so that

for any ϕ ∈ L2
C

with ‖ϕ− ϕ0‖2 < ε, the following statements hold:

(i) For any |n| ≥ N0 +1 the set spec(ϕ)∩{λ ∈ C | |λ−nπ| < π/4} contains
precisely one isolated pair λ+

n , λ
−
n of eigenvalues (counted with multiplicity).

(ii) spec(ϕ)\{λ±n | |n| ≥ N0 + 1} is contained in {λ ∈ C | |λ| < N0π + π
4}

and its cardinality is 4N0 + 2 (with multiplicities).

For |n| ≥ N0 + 1, the pairs of eigenvalues λ±n are ordered lexicographically,
λ−n 4 λ+

n , i.e.

Reλ−n < Reλ+
n

or

Reλ−n = Reλ+
n and Imλ−n ≤ Imλ+

n .

The 4N0+2 eigenvalues of L(ϕ)inside the disc {|λ| < N0π+π/4} are denoted
by λ±n (|n| ≤ N0) so that they are in lexicographic order as well

λ−−N0
4 λ+

−N0
4 λ−−N0+1 4 λ+

−N0+1 4 . . . 4 λ−N0
4 λ+

N0
.

By Proposition I.5, we have

spec(ϕ) = {λ±n | n ∈ Z}

and . . . , λ−n , λ
+
n , λ

−
n+1, λ

+
n+1, . . . are ordered lexicographically.

As {λ+
n , λ

−
n } is an isolated pair of eigenvalues for |n| ≥ N0 +1, one then sees

by deforming ϕ to the zero element that

∆(λ±n , ϕ) = 2(−1)n ∀|n| ≥ N0 + 1, (I.10)

i.e. for |n| ≥ N0 +1, λ±n are periodic (for n even) or antiperiodic (for n odd)
eigenvalues of L ≡ L(ϕ), considered on domper(L).
Generically, formula (I.10) does not hold for |n| ≤ N0 since the eigenvalues,
being ordered lexicographically, are not continuous with respect to ϕ.
However if ϕ = (ϕ1, ϕ2) is of real type, i.e. ϕ2 = ϕ1 (cf. section I.4), the
eigenvalues λ±n are real and continuous with respect to ϕ. Hence, in this
case (I.10) holds for any n ∈ Z and we have λ−n ≤ λ+

n < λ−n+1 ∀n ∈ Z.
To express that a sequence (an)n∈Z in a Banach space (B, ‖ · ‖) is in `p(Z,B)
it is convenient to write `p(n) for an (n ∈ Z).

Proposition I.6 Locally uniformly in ϕ ∈ L2
C
,

(i) λ±n (ϕ) = nπ + `2(n)

(ii) M(x, λ±n (ϕ);ϕ) = E(x, nπ) + αn(x) where
(

sup0≤x≤1 ‖αn(x)‖
)

n∈Z ∈ `2.

To prove Proposition I.6 we need the following auxilary result (cf. [AG,
Lemma A.1], [Ma] or [Mis]):
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Lemma I.7 Let E ⊆ `∞
C

and F ⊆ L2(S1,C) be bounded subsets. Then
(∫ x

0 f(t)eiπ(k+εn)tdt
)

n∈Z ∈ `2
C

uniformly in 0 ≤ x ≤ 1, (εn)n∈Z ∈ E and
f ∈ F .

Proof (Proposition I.6) To prove (i) recall that, for λ ∈ spec(ϕ), trM(1, λ;ϕ) =
±2 and

trM(1, λ;ϕ) = trE(1, λ;ϕ) +
∑

k≥1

trE(k)(1, λ;ϕ).

For λ arbitrary, we have trE(1, λ;ϕ) = 2 cos λ and trE (1)(1, λ;ϕ) = 0. To
estimate trE(2)(1, λ±n ;ϕ), notice that λ±n = nπ + 0(1) by Proposition I.5.
Hence by Lemma I.7, applied to

E(2)(x, λ±n ;ϕ) =

∫ x

0
dx1

∫ x1

0
dx2

diag
(

e−iλ
±
n (x−2x1+2x2)ϕ1(x1)ϕ2(x2), e

iλ±n (x−2x1+2x2)ϕ1(x2)ϕ2(x1)
)

with respect to the x2-integration and then to the x1-integration, one de-
duces that uniformly, for 0 ≤ x ≤ 1 and locally uniformly in ϕ

E(2)(1, λ±n ;ϕ) = `1(n) .

Arguing as in the proof of Lemma I.2 (cf (I.5)), we conclude that

∑

k≥2

E(k)(x, λ±n ;ϕ) = `1(n)

uniformly for 0 ≤ x ≤ 1 and locally uniformly in ϕ. It follows that

trM(1, λ±n ;ϕ) = 2 cos λ±n + `1(n).

Use that trM(1, λ±n ;ϕ) ∈ {+2,−2} and

cos λ±n = cos(nπ + (λ±n − nπ)) = (−1)n cos(λ±n − nπ)

to conclude that cos(λ±n −nπ) = 1+`1(n). Hence λ±n −nπ = o(1) as |n| → ∞
locally uniformly in ϕ and in view of the expansion cos x = 1− x2

2 (1+O(x2))
it then follows that (λ±n − nπ)2 = `1(n), i.e. locally uniformly in ϕ

λ±n = nπ + `2(n)

which shows statement (i).

Similarly, one proves that

E(1)(x, λ±n ;ϕ) = i

∫ x

0

(

0 e−iλ
±
n (x−2y)ϕ1(y)

−eiλ±n (x−2y)ϕ2(y) 0

)

dy
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satisfies, uniformly in 0 ≤ x ≤ 1 and locally uniformly in ϕ,

E(1)(x, λ±n ;ϕ) = `2(n).

Again arguing as in the proof of Lemma I.2 it then follows that

M(x, λ±n ;ϕ) = E(x, λ±n ) + `2(n).

By (i), we have E(x, λ±n ) = E(x, nπ) + `1(n) uniformly in 0 ≤ x ≤ 1 and
locally uniformly in ϕ. Hence statement (ii) is proved as well. �

I.3 Dirichlet spectrum

In this section we consider the operator L(ϕ) with Dirichlet boundary con-
ditions.

Definition I.8 A function F = (F1, F2) ∈ H1([0, 1],C2) satisfies Dirichlet
boundary conditions if

F1(0) = F2(0) ; F1(1) = F2(1) (I.11)

When expressed in F̃ = (F̃1, F̃2) with

F̃1 :=
1

i
√

2
(F1 + F2) ; F̃2 :=

1√
2
(F2 − F1) (I.12)

the Dirichlet conditions (I.11) take the more familiar form

F̃2(0) = 0 ; F̃2(1) = 0.

the transformation (I.12) is related to the AKNS operator LAKNS(ϕ) given
by

LAKNS(ϕ) :=

(

0 −1
1 0

)

d

dx
+

(

−q p
p q

)

with
ϕ1 = −q + ip ; ϕ2 = −q − ip.

in the following way: if F is a solution of LF = λF then F̃ is a solution of
LAKNSF̃ = λF̃ , i.e. LAKNS(ϕ) and L(ϕ) are unitarily equivalent.
It follows from the definition of the fundamental matrix M(x) ≡M(x, λ;ϕ)
that the vector function G(x) ≡ G(x, λ;ϕ) given by

G(x) :=

(

M11(x) +M12(x)
M21(x) +M22(x)

)

satisfies L(ϕ)G = λG and G1(0) −G2(0) = 0.
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Hence the Dirichlet spectrum specDir(ϕ), consisting of all λ ∈ C for which
there exists a solution F ∈ H1([0, 1],C2) of the equation, LF = λF , satis-
fying the Dirichlet boundary conditions (I.11), is the zero set of

δ(λ) ≡ δ(λ, ϕ) := (M11 +M12 −M21 −M22)




1,λ
. (I.13)

By Proposition I.3, we have

δ(λ) = −2i sinλ+ o
(

e|Imλ|
)

.

Arguing as in the proof of Proposition I.5 one concludes that the zero set
of δ(λ) consists of a sequence (µn)n∈Z with the asymptotics |µn − nπ| ≤ π

4 ,
when listed in such a way that they are ordered lexicographically, i.e. for
any n ∈ Z,

Reµn < Reµn+1 or Reµn = Reµn+1 and Imµn ≤ Imµn+1.

Following the proof of Proposition I.6 one shows

Proposition I.9 Locally uniformly on L2
C
,

µn(ϕ) = nπ + `2(n) (I.14)

M(x, µn(ϕ);ϕ) = E(x, nπ) + αn(x) (I.15)

where
(

sup0≤x≤1 ‖αn(x)‖
)

n∈Z ∈ `2.

As a consequence, we have for the eigenfunction Gn(x) := G(x, µn), corre-
sponding to the Dirichlet eigenvalue µn, the asymptotic behaviour

Gn(x) = (e−inπx, einπx) + `2(n). (I.16)

To obtain a convenient formula for the eigenfunctions of L(ϕ) correspond-
ing to simple periodic eigenvalues we need to consider additional boundary
conditions for L(ϕ).

Definition I.10 A function F = (F1, F2) in H1([0, 1],C2) satisfies the sec-
ond Dirichlet boundary conditions if

F1(0) = −F2(0); F1(1) = −F2(1). (I.17)

When expressed with respect to the function F̃ = (F̃1, F̃2) defined in (I.12),
the boundary conditions (I.17) take the more familiar form

F̃1(0) = 0; F̃1(1) = 0.

Notice that the vector function Ğ(x) ≡ Ğ(x, λ, ϕ) given by M (1)(x) −
M (2)(x), i.e.

Ğ(x) := (M11(x) −M12(x),M21(x) −M22(x))
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satisfies L(ϕ)Ğ = λĞ and Ğ1(0) + Ğ2(0) = 0. Hence the second Dirichlet
spectrum is the zero set of (Ğ1 + Ğ2)





1,λ
, i.e. of

δ̆(λ) ≡ δ̆(λ, ϕ) := (M11 −M12 +M21 −M22)




1,λ
. (I.18)

Arguing as for δ(λ) one concludes that the zero set of δ̆(λ) consists of a se-
quence (µ̆n)n∈Z with asymptotics |µ̆n − nπ| ≤ π/4 listed in such a way that
they are ordered lexicographically and one obtains an analogue of Proposi-
tion I.9. As a consequence we have for the eigenfunction Ğn corresponding
to µ̆n, Ğn(x) := Ğ(x, µn) the asymptotics

Ğn(x) =
(

e−inπx,−einπx
)

+ `2(n). (I.19)

I.4 Spectrum for potentials of real type

We say that a potential ϕ = (ϕ1, ϕ2) is of real type if both q := −(ϕ1 +ϕ2)/2
and p := (ϕ1 − ϕ2)/2i are real valued, i.e. ϕ2 = ϕ1. We denote by L2

R the
space of potentials of real type

L2
R := {(ϕ1, ϕ2) ∈ L2

C | ϕ2 = ϕ1}.

For a potential ϕ of real type, L(ϕ) and LAKNS(ϕ) are formally selfadjoint.
One verifies that Lper, i.e. the operator L considered on [0, 2] with periodic
boundary conditions, and LDir, i.e. the operator L considered on [0, 1] with
Dirichlet boundary conditions (cf Definition I.8), are both selfadjoint, hence
the periodic and Dirichlet spectrum are real. Moreover, when restricted
to potentials of real type the eigenvalues λ±

k (ϕ) are continuous in ϕ. By
deforming the zero potential (0, 0) continuously to ϕ, it then follows that
∆(λ±k ) = 2(−1)k and, in particular,

λ−k ≤ λ+
k < λ−k+1 ∀k ∈ Z. (I.20)

For ϕ of real type, L(ϕ) has an additional symmetry property. Given a

vector F = (F1, F2) and a 2 × 2 matrix A =

(

a1 a2

a3 a4

)

, let

A∗ =

(

a3 a4

a1 a2

)

; F ∗ = (F2, F1).

One verifies that the fundamental matrix solution satisfies

LM∗(x, λ) = λ M ∗(x, λ) .
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As M∗(0, λ) =

(

0 1
1 0

)

one then gets (k = 1, 2)

M∗
k1(x, λ) = Mk2(x, λ) ; M ∗

k2(x, λ) = Mk1(x, λ).

In particular, for λ real ,

M11(x, λ) = M22(x, λ) ; M12(x, λ) = M21(x, λ). (I.21)

As δ(µk) = 0 we have (M11 − M22)
∣

∣

1,µk
= (M21 − M12)

∣

∣

1,µk
and by the

Wronskian identity, M11M22

∣

∣

1,λ
= 1 + M12M21

∣

∣

1,λ
(cf Lemma I.4). One

then obtains with ∆(µk) = (M11 +M22)
∣

∣

1,µk

∆(µk)
2 = (M11 −M22)

2
∣

∣

1,µk
+ 4M11M22

∣

∣

1,µk

= (M21 −M12)
2
∣

∣

1,µk
+ 4 + 4M12M21

∣

∣

1,µk

= 4 + (M12 +M21)
2
∣

∣

1,µk
.

By (I.21), (M12 +M21)
∣

∣

1,µk
is real, hence ∆(µk)

2 ≥ 4. This shows that for

any k there exists nk ∈ Z with λ−k ≤ µnk
≤ λ+

k . By deforming the zero
potential continuously to ϕ and using that λ±

k , µk are continuous in ϕ it
follows that nk = k, i.e.

λ−k ≤ µk ≤ λ+
k ∀k ∈ Z. (I.22)

Notice that (I.20) together with (I.22) implies that the Dirichlet eigenvalues
are all simple and it then follows that µk(ϕ) is real analytic in q, p with q, p
given by ϕ = (ϕ1, ϕ2) = (−q + ip,−q − ip).
Finally we present two auxilary results needed later. Note that the second
one provides another proof of the simplicity of all Dirichlet eigenvalues.
Recall that we have introduced

G(x, λ) ≡ G(x, λ;ϕ) := (M11(x, λ) +M12(x, λ),M21(x, λ) +M22(x, λ)).

Lemma I.11 Let ϕ ∈ L2
R and λ ∈ R. Then

G2(x, λ) = G1(x, λ) (I.23)

and

‖G(·, λ)‖2
L2 = iδ̇(λ)(M11 +M12)

∣

∣

1,λ
− iδ(λ)(Ṁ11 + Ṁ12)

∣

∣

1,λ
.

In particular, for λ = µk (k ∈ Z)

‖Gk(·)‖2 = iδ̇(µk)(M11 +M12)
∣

∣

1,µk

where Gk(·) = G(·, µk).
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Proof Formula (I.23) is a consequence of (I.21). To prove the claimed
formula for ‖G(·, λ)‖2 consider first the case where ϕ is continuous. Then
M(x, λ) is continuously differentiable in x. Differentiating LG = λG with
respect to λ yields (· = d

dλ ).

LĠ = G+ λĠ

and, taking the L2-inner product with G, one gets

‖G‖2
L2 = (LĠ,G) − λ(Ġ,G).

On the other hand, taking the inner product of LG = λG with Ġ leads to

(Ġ, LG) = λ(Ġ,G).

Substituting this identity into the former one one gets

‖G‖2
L2 = (LĠ,G) − (Ġ, LG)

= i

∫ 1

0
(Ġ′

1G1 − Ġ′
2G2 + Ġ1G

′
1 − Ġ2G

′
2)

= i

∫ 1

0
(Ġ′

1G2 − Ġ′
2G1 + Ġ1G

′
2 − Ġ2G

′
1)

where for the last identity we used (I.23). Hence with W (Ġ,G) denoting
the Wronskian of Ġ and G,

‖G‖2
L2 = i

∫ 1

0

d

dx
W (Ġ,G)dx

= iW (Ġ,G)(1, λ)

= i
{

(Ṁ11 + Ṁ12)(M21 +M22) − (Ṁ21 + Ṁ22)(M11 +M12)
}∣

∣

1,λ

= i
{

δ̇(λ)(M11 +M12)
∣

∣

1,λ
− δ(λ)(Ṁ11 + Ṁ12)

∣

∣

1,λ

}

.

As both sides of the last identity are continuous with respect to ϕ ∈ L2
C
,

this identity holds for ϕ ∈ L2
R as well. �

I.5 Spectral properties of potentials near L2
R

For potentials ϕ near L2
R, the regularity properties and the asymptotics

estimates of the periodic eigenvalues (cf Proposition I.6) can be improved.

To be more precise we write the eigenvalues λ±
n (ϕ) in the form

λ±n (ϕ) = τn(ϕ) ± γn(ϕ)/2
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where τn(ϕ) is the arithmetic mean of λ+
n and λ−n ,

τn(ϕ) :=
1

2

(

λ+
n (ϕ) + λ−n (ϕ)

)

and γn(ϕ) is the difference,

γn(ϕ) := λ+
n (ϕ) − λ−n (ϕ).

The asymptotics of τn(ϕ) = nπ + `2(n) obtained from Proposition I.6 can
be improved as well as the regularity properties of τn and (γn)

2.
First we improve on the localization of the eigenvalues λ±

n (ϕ) for ϕ near L2
R.

Recall that for ϕ0 ∈ L2
R (i.e. ϕ2 = ϕ1) the periodic eigenvalues λ±n = λ±n (ϕ0)

are all real and satisfy

. . . < λ−n ≤ λ+
n < λ−n+1 ≤ λ+

n+1 < . . . (n ∈ Z).

Together with the asymptotics λ±n (ϕ0) = nπ + `2(n) (cf Proposition I.6) it
then follows that minn∈Z(λ

−
n+1(ϕ0) − λ+

n (ϕ0)) > 0. Set

K :=
1

5
min{λ−n+1(ϕ0) − λ+

n (ϕ0),
π

2
| n ∈ Z}. (I.24)

For any n ∈ Z, denote by Γn the counterclockwise oriented circle in C with
center τn(ϕ0) and radius 1

2γn(ϕ0)+2K. Note that the circles Γn are pairwise
disjoint. By Proposition I.6, λ±n (ϕ) = λ±n (ϕ0) + `2(n) uniformly for ϕ ∈ L2

close to ϕ0. Thus there exist N ≥ 1 and a neighborhood V ≡ Vϕ0 ⊆ L2 of
ϕ0 so that for any ϕ ∈ V

sup
|n|≥N

|λ±n (ϕ) − τn(ϕ0)| ≤ K.

As ∆(λ, ϕ) is continuous in ϕ and λ and

sup
λ
{|∆(λ, ϕ0)|

∣

∣ |λ− τn(ϕ0)| = γn(ϕ0)/2 +K} > 0

there exists a neighborhood V ′
ϕ0

⊆ V of ϕ0 in L2 so that for any ϕ ∈
V ′
ϕ0
,−N ≤ n ≤ N and λ ∈ C with |λ− τn(ϕ0)| = γn(ϕ0)/2 +K

|∆(λ, ϕ) − ∆(λ, ϕ0)| ≤ |∆(λ, ϕ0)|/2.

As ∆(λ, ϕ) is analytic in λ it follows then from Rouché’s theorem and the
lexicographic ordering of (λ±k (ϕ))k∈Z that for ϕ ∈ V ′

ϕ0
and −N ≤ n ≤ N ,

|λ±n (ϕ) − τn(ϕ0)| < γn(ϕ0)/2 +K.

The open set

W :=
⋃

ϕ0∈L2
R

V ′
ϕ0

(I.25)

is then a neighborhood of L2
R in L2. We have proved the following
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Lemma I.12 For any ϕ in W and n ∈ Z,

. . . < Re(λ−n (ϕ)) ≤ Re(λ+
n (ϕ)) < Re(λ−n+1(ϕ)) ≤ . . .

and
Reλ−n+1(ϕ) −Reλ+

n (ϕ) > 3K.

Due to the lexicographic ordering, the eigenvalues λ±
n (ϕ) are not continu-

ous. However, we will prove that, for any n ∈ Z, τn(ϕ) and (γn(ϕ))2 are
analytic functions on W . First we need to introduce some more notation.
By Proposition I.6, there exists N ≥ 1 locally uniformly on W so that

|λ±n − nπ| < π/4 ∀|n| ≥ N. (I.26)

For |n| ≥ N , denote by Sn(ϕ) the counterclockwise oriented circle with
center nπ and radius π/2 whereas for |n| < N,Sn ≡ Sn(ϕ) is defined to be
the circle Γn = Γn(ϕ). For any n ∈ Z, the Riesz projectors Pn ≡ Pn(ϕ) are
then well defined,

Pn :=
1

2πi

∫

Sn(ϕ)
(λ− L(ϕ))−1 dλ

P 0
n :=

1

2πi

∫

Sn(0)
(λ− L(0))−1 dλ.

The Riesz space En ≡ En(ϕ) corresponding to Pn is defined as the range of
Pn,

En := Pn(L
2); E0

n := P 0
n(L2).

Both, En and E0
n are two dimensional subspaces of L2 and Pn as well as

L(ϕ)Pn are bounded operators on L2 of finite rank depending analytically
on ϕ. Their traces can be computed to be, writing L ≡ L(ϕ),

trPn = 2; trLPn = λ+
n + λ−n = 2τn.

As trP 0
n = 2 and trL(0)P 0

n = 2nπ we then conclude that

2τn − 2nπ = Tr(LPn) − Tr
(

L(0)P 0
n

)

= Tr ((L− nπ)Pn) − Tr
(

(L(0) − nπ)P 0
n

)

= TrQn

where Qn ≡ Qn(ϕ) is given by

Qn := (L− nπ)Pn − (L(0) − nπ)P 0
n .

Substituting the formulas for Pn and P 0
n into Qn one obtains for |n| ≥ N

Qn =
1

2πi

∫

Sn

(λ− nπ)
(

(λ− L)−1 − (λ− L(0)−1
)

dλ.
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Writing L ≡ L(ϕ) = L(0) +B with B ≡ B(ϕ) =

(

0 ϕ1

ϕ2 0

)

one has

(λ− L)−1 = (λ− L(0))−1 + (λ− L)−1B(λ− L(0))−1.

Iterating the latter formula, and substituting into the formula for Qn, one
gets for any integer N ≥ 1

Qn =
N
∑

k=1

Q(k)
n + Q̆(N+1)

n

where for any k ≥ 1,

Q(k)
n =

1

2πi

∫

Sn

(λ− nπ)(λ− L(0))−1[B(λ− L(0))−1]kdλ

and

Q̆(k)
n =

1

2πi

∫

Sn

(λ− nπ)(λ− L)−1[B(λ− L(0))−1]kdλ. (I.27)

The sequence e+k , e
−
k (k ∈ Z), defined by

e+k (x) :=
1√
2
(0, 1)eikπx ; e−k (x) :=

1√
2
(1, 0)e−ikπx

is an orthonormal basis of L2([0, 2],C2) of eigenfunctions for L(0) where e±k
are associated with the eigenvalue λ+

k = λ−k = kπ of L(0). When expressed
with respect to this basis, (λ− L(0))−1 is a diagonal operator,

(λ−D)−1e±k =
1

λ− kπ
e±k (k ∈ Z).

Using the Fourier decomposition of ϕ1 and ϕ2,

ϕj(x) =
∑

k∈Z
ϕ̂j(k)e

ikπx

one gets for k ∈ Z,

B(λ− L(0))−1e+k =
∑

j∈Z

ϕ̂1(−k − j)

λ− kπ
e−j (I.28)

and

B(λ− L(0))−1e−k =
∑

j∈Z

ϕ̂2(k + j)

λ− kπ
e+j . (I.29)

In particular one deduces that for any k ∈ Z,

trQ(2k+1)
n = 0.
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Hence one obtains

τn(ϕ) − nπ =
1

2

(

trQ(2)
n + trQ̆(4)

n

)

. (I.30)

The trace trQ
(2)
n can be explicitly computed. As

Q(2)
n e±k =

1

2πi

∫

Sn

(λ− nπ)
∑

`,j

ϕ̂1(−k − j)ϕ̂2(j + `)

(λ− kπ)(λ− jπ)(λ − `π)
e±`

one obtains

trQ(2)
n =

2

2πi

∑

k,j

ϕ̂1(−k − j)ϕ̂2(j + k)

∫

Sn

λ− nπ

(λ− kπ)2(λ− jπ)
dλ

=
2

π

∑

j 6=n
ϕ̂1(−n− j)ϕ̂2(j + n)

1

n− j
.

(I.31)

Proposition I.13 The map ϕ 7→ (τn(ϕ) − nπ)n∈Z is analytic on W with
values in `p for any 1 < p.

Remark For potentials ϕ with more regularity, τn(ϕ) has an asymptotic ex-

pansion of the form τn = nπ+H1(ϕ)
nπ +o

(

1
n

)

whereH1(ϕ) :=
∫ 1
0 ϕ1(x)ϕ2(x)dx

(cf Lemma I.22).

Proof As τn(ϕ) − nπ = 1
2 trQn(ϕ) and Qn(ϕ) = (L(ϕ) − nπ)Pn − (L(0) −

nπ)P 0
n is analytic on W with values in the space of operators of finite rank

on L2([0, 2],C2), τn(ϕ) is analytic on W for any n ∈ Z. Hence it suffices to
prove that (τn(ϕ)−nπ)n∈Z ∈ `p locally uniformly on W . Our starting point
is formula (I.30),

τn(ϕ) − nπ =
1

2
trQ(2)

n +
1

2
trQ̆(4)

n .

In view of (I.31), introduce

b(k) :=|ϕ1(−k)ϕ2(k)| (k ∈ Z)

u(k) :=1/|k| (k 6= 0); u(0) = 0

to obtain the estimate

|trQ(2)
n |≤ 2

π
(b ∗ u)(2n)

where b ∗ u denotes the convolution of the two sequences b and u,

(b ∗ u)(n) =
∑

k∈Z
b(n− k)u(k) .
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As (b(k))k∈Z ∈ `1 locally uniformly on W and (u(k))k∈Z ∈ `p for any p > 1,
we conclude by Young’s inequality that b ∗ u ∈ `p.

By Lemma I.14 below we have
(

‖Q̆(4)
n ‖L(L2)

)

n∈Z
∈ `p locally uniformly

on W for any p > 1. As the range of Q̆
(4)
n is at most of dimension 4,

we conclude that |trQ̆(4)
n | ≤ 4‖Q̆4

n‖L(L2). This proves that for any p >
1, (τn(ϕ) − nπ)n∈Z ∈ `p locally uniformly on W . �

Lemma I.14 For any p > 1,
(

‖Q̆(4)
n ‖L(L2)

)

n∈Z
∈ `p locally uniformly on

W .

Proof For any |n| ≥ N , (cf. (I.26)), the circle Sn is given by |λ−nπ| = π
2 and

supλ∈Sn
‖(λ − L)−1‖L(L2) is locally uniformly bounded. Hence for |n| ≥ N ,

locally uniformly on W ,

‖Q̆(4)
n ‖L(L2) ≤ C sup

λ∈Sn

‖B(λ− L(0))−1B(λ− L(0))−1‖2
L(L2).

As (cf (I.28) - (I.29))

B(λ− L(0))−1B(λ− L(0))−1e+k =
∑

j,`

ϕ̂1(−k − j)ϕ̂2(j + `)

(λ− kπ)(λ− jπ)
e+`

B(λ− L(0))−1B(λ− L(0))−1e−k =
∑

j,`

ϕ̂2(k + j)ϕ̂1(−j − `)

(λ− kπ)(λ− jπ)
e−`

one has

‖B(λ− L(0))−1B(λ− L(0))−1‖2
L(L2) ≤ 2

∑

k,`





∑

j

a(k + j)a(j + `)

〈k − n〉〈j − n〉





2

where 〈k〉 = |k| + 1 and

a(k) := max(|ϕ̂1(−k)|, |ϕ̂2(k)|).

By the Cauchy-Schwartz inequality one has for any ε > 0,

‖B(λ− L(0))−1B(λ− L(0))−1‖2
L(L2) ≤

≤ 2
∑

k,`





∑

j

a(j + `)2

〈j − n〉1+ε









∑

j

a(k + j)2

〈k − n〉2〈j − n〉1−ε



 .

Introduce r(k) := 〈k〉−1 (k ∈ Z) and for any sequence (u(k))k∈Z of nonneg-
ative numbers denote by uα the sequence (u(k)α)k∈Z (α > 0). Hence, for
λ ∈ Sn,

‖B(λ− L(0))−1B(λ− L(0))−1‖2
L(L2) ≤ 2‖a‖`2‖r1+ε‖`1(r2 ∗ a2 ∗ r1−ε)(2n).
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Given any 1 < p, choose ε > 0 so that p(1 − ε) > 1. As r2 ∈ `1, r1−ε ∈ `p

and a2 ∈ `1 (locally uniformly on W ) one concludes by Young’s inequality
that

(

(r2 ∗ a2 ∗ r1−ε)(n)
)

n∈Z ∈ `p (locally uniformly on W ). Hence

(

sup
λ∈Sn

‖B(λ− L(0))−1B(λ− L(0))−1‖2
L(L2)

)

|n|≥N
∈ `p

locally uniformly on W . As supλ∈Sn
‖B(λ− L(0))−1B(λ− L(0))−1‖2

L(L2) is

bounded for any |n| ≤ N , the claimed statement follows. �

The next result concerns the sequence (γn(ϕ)2)n∈Z. For ϕ ∈W , the operator
2(L− τnId)2Pn has range En and its eigenvalues are 2(λ±n − τn)2 = γ2

n (with
multiplicity two) and 0. Hence

tr(2(L− τnId)
2Pn) = γ2

n.

As Pn and τn (cf Proposition I.13) are analytic on W , the map

W → L(L2), ϕ 7→ (L− τnId)
2Pn

and thus ϕ 7→ tr(L − τnId)
2Pn are analytic on W . By Proposition I.6,

λ±n = nπ + `2(n) and thus
(

(λ+
n − λ−n )2

)

n∈Z ∈ `1, locally uniformly on W .
We thus have proved

Proposition I.15 The map ϕ 7→
(

(γn(ϕ))2
)

n∈Z is analytic on W with val-

ues in `1.

I.6 Infinite products

The infinite product representations given in this section have been proved
in [GG] for ϕ ∈ L2

R where L2
R has been defined by

L2
R := {ϕ = (ϕ1, ϕ2) ∈ L2(S1; C2) | ϕ2 = ϕ1}.

The proofs are valid for ϕ arbitrary. We recall them for the convenience of
the reader.
Given a sequence of complex numbers (ak)k∈K with K ⊆ Z, we say that the
product

∏

k∈K ak is convergent if the limit limN→∞
∏

|k|≤N
k∈K

ak exists. In such

a case we write

∏

k∈K
ak := lim

N→∞









∏

|k|≤N
k∈K

ak









.
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A sufficient condition for the convergence of
∏

k∈Z ak, with (ak)k∈Z being a
sequence in C satisfying limk→∞ aka−k = 1 is

∑

k≥1

|aka−k − 1| <∞. (I.32)

This can easily be seen by applying the logarithm to
∏

k≥k0 aka−k for k0 > 1
sufficiently large,

| log





∏

k≥k0
aka−k



 | ≤
∑

k≥k0
| log(aka−k)| ≤

∑

k≥k0
|aka−k − 1|.

Recall the following two fundamental lemmas on product representations:

Lemma I.16 Assume that z ≡ (zm)m∈Z is a sequence in C with

b ≡ (bm)m∈Z := (zm −mπ)m∈Z ∈ `2 .

Then for any λ ∈ C, the infinite product

f(λ) := −(z0 − λ)
∏

m6=0

zm − λ

mπ

is convergent. The function f(λ) is entire, its roots are given by zm (m ∈ Z)
and it satisfies

sup
λ∈AN







f(λ)

sinλ
− 1





≤







‖b‖
〈N〉1/2 +





∑

|n|≥N/2
|bm|2





1/2





exp (C‖b‖) (I.33)

where

AN := ∪n≥N{(n+
1

4
)π ≤ |λ| ≤ (n+

3

4
)π}

and C > 0 is an absolute constant.

Proof In view of (I.32), the convergence of
∏

m6=0
zm−λ
mπ follows from

∑

m≥1







(zm − λ)(λ− z−m)

m2π2
− 1




 <∞. (I.34)

To verify (I.34), write

(zm − λ)(λ− z−m)

m2π2
− 1 =

(mπ − λ+ bm)(λ+mπ − b−m) −m2π2

m2π2

= −bmb−m
m2π2

+
bm − b−m

mπ
+ λ

bm + b−m
m2π2

− λ2

m2π2
.
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Hence
∑

m≥1







(zm − λ)(λ− z−m)

m2π2
− 1





≤

∑

m≥1

|bmb−m|
m2π2

+
∑

m≥1

|bm| + |b−m|
mπ

(

1 +
λ

mπ

)

+ λ2
∑

m≥1

1

m2π2

which converges uniformly on bounded subsets of C. This establishes (I.34)
and one concludes that f(λ) is an entire function. Clearly its roots are
zm (m ∈ Z). It remains to prove the estimate (I.33). By a straightforward
argument one verifies that





∏

m

(1 + am) − 1


 ≤
(

∑

m

|am|
)

∏

m

(1 + |am|)

≤
(

∑

m

|am|
)

exp

(

∑

m

|am|
)

.

(I.35)

To apply this estimate recall that sinλ has the product representation

sinλ = λ
∏

m∈Z\0

mπ − λ

mπ
.

Hence, for λ ∈ C with (n+ 1
4)π ≤ |λ| ≤

(

n+ 3
4

)

π

f(λ)

sinλ
=
(

1 − z0
λ

)

∏

m 6=0

(

1 +
bm

mπ − λ

)

with






z0
λ





 ≤ 4
b0
π〈n〉 ,







bm
mπ − λ





 ≤ 8|bm|
π〈|m| − n〉 .

Hence in view of (I.35) for any n ≥ 0

sup
(n+ 1

4
)π≤|λ|

|λ|≤(n+3
4 )π







f(λ)

sinλ
− 1





≤
(

∑

m

8

π

|bm|
〈|m| − n〉

)

exp

(

∑

m

8

π

|bm|
〈|m| − n〉

)

.

By the Cauchy-Schwartz inequality

∑

m≥0

|bm|
〈m− n〉 ≤ ‖b‖





∑

0≤m≤n/2

1

〈m− n〉2





1/2

+





∑

m≥n/2
|bm|2





1/2



∑

m≥n/2

1

〈m− n〉2





1/2

≤ C







‖b‖
〈n〉1/2 +





∑

m≥n/2
|bm|2





1/2
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where C > 0 is an absolute constant. Similarly, one has

∑

m≥0

|b−m|
〈m− n〉 ≤ C







‖b‖
〈n〉1/2 +





∑

m≥n/2
|b−m|2





1/2





.

Hence we conclude that for any N ≥ 0






sup
λ∈AN

(

f(λ)

sinλ
− 1

)






≤







‖b‖
〈N〉1/2 +





∑

|m|≥N/2
|bm|2





1/2





exp (C‖b‖)

for some absolute constant C > 0. �

To prove the following Lemma we will use that for any sequence (am)m∈Z
in `1, with 0 ≤ am ≤ 1/2 one has

∏

m

(1 + am) = exp

(

∑

m

log(1 + am)

)

= exp

(

∑

m

am

)

exp

(

∑

m

(log(1 + am) − am)

)

and hence

∏

m

(1 + am) − 1 = exp

(

∑

m

am

)

− 1

+ exp

(

∑

m

am

)(

exp

(

∑

m

(log(1 + am) − am)

)

− 1

)

.

Using that |ex − 1| ≤ |x|e|x| one then obtains






∏

m

(1 + am) − 1




 ≤






∑

m

am





 exp
(





∑

am







)

+ exp
(





∑

am







)

(







∑

m

(log(1 + am) − am)




 exp

(

∑

m





 log(1 + am) − am







))

and together with | log(1 + x) − x| ≤ 2|x|2 for |x| ≤ 1/2 one concludes that







∏

m

(1 + am) − 1




 ≤
(







∑

m

am





+ 2

(

∑

m





am







2
)

exp

(

2
∑

m





am







2
))

exp
(





∑

am







)

.

(I.36)
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Lemma I.17 Assume that z = (zm)m∈Z is a sequence in C with

b ≡ (bm)m∈Z := (zm −mπ)m∈Z ∈ `2 .

Then for any k ∈ Z\{0}, the infinite product

fk(λ) :=
λ− z0
kπ

∏

m 6=0,k

zm − λ

mπ
(I.37)

is convergent for any λ ∈ C and defines an entire function with

∥

∥

∥

(

sup
|λ−kπ|≤π/4







kπ − λ

sinλ
fk(λ) − 1







)

k∈Z

∥

∥

∥

`2
≤ C (I.38)

for some constant C > 0 which can be chosen uniformly on bounded subsets
of sequences b = (bm)m∈Z in `2. As a consequence, given (rk)k∈Z ∈ `4(Z)
with rk ≥ 0,

∥

∥

∥

(

sup
|λ−kπ|≤rk






fk(λ) + (−1)k







)

k∈Z

∥

∥

∥

`2
≤ C (I.39)

where C > 0 can be chosen uniformly on bounded subsets of sequences
(bm)m∈Z in `2 and (rk)k∈Z in `4.

Proof The convergence of the product in (I.37) and the analyticity of fk is
shown as in the proof of Lemma I.16. To prove (I.38), use again the product
representation sinλ

λ =
∏

m6=0
mπ−λ
mπ to get for λ ∈ C with |λ− kπ| ≤ π

4

kπ − λ

sinλ
fk(λ) =

kπ

λ





∏

m 6=0,k

mπ

(mπ − λ)





λ− z0
kπ





∏

m6=0,k

mπ − λ+ bm
mπ





=
∏

m 6=k

(

1 +
bm

mπ − λ

)

.

To apply (I.36) to our situation, choose k0 ≥ 1 so large that for any |k| ≥ k0

and any λ ∈ C with |λ−kπ| ≤ π/4, |bm|/(mπ−λ) ≤ 1/2 for any m ∈ Z\{k}
to obtain

sup
|λ−kπ|≤π/4







kπ − λ

sinλ
fk(λ) − 1






≤ αk exp(αk)

where

αk := sup
|λ−kπ|≤π/4







∑

m6=k

bm
mπ − λ






+ 2

∑

m

sup
|λ−kπ|≤π/4







bm
mπ − λ







2
. (I.40)
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The two terms in αk are estimated separately. Towards the first one, recall
that the discrete Hilbert transform is a bounded linear operator from `2(Z)
onto `2(Z) (cf. [HLP], Theorem 294), hence for an absolute constant C > 0

∥

∥

∥





∑

m6=k

bm
(m− k)π





k∈Z

∥

∥

∥
≤ C

∥

∥

∥
(bm)m∈Z

∥

∥

∥
. (I.41)

As |mπ − λ| ≥ 1
2π|m− k| for |λ− kπ| ≤ π/4, one also has

∥

∥

∥



 sup
|λ−kπ|≤π/4







∑

m6=k

bm
mπ − λ

−
∑

m6=k

bm
mπ − kπ











k∈Z

∥

∥

∥

≤
∥

∥

∥

1

2π





∑

m6=k

|bm|
(m− k)2





k∈Z

∥

∥

∥

≤ 1

2π
‖b‖

(

∑

k

1

k2

)

(I.42)

where for the last inequality we used that for a = (ak)k∈Z ∈ `1 and b =
(bk)k∈Z ∈ `2 the convolution a ∗ b is again a sequence in `2 with ‖a ∗ b‖ ≤
‖b‖‖a‖`1 .
Combining (I.41) and (I.42) leads to

∥

∥

∥



 sup
|λ−kπ|≤π/4







∑

m6=k

bm
mπ − λ











k∈Z

∥

∥

∥
≤

∥

∥

∥





∑

m6=k

bm
(m− k)π





k∈Z

∥

∥

∥
+
∥

∥

∥



 sup
|λ−kπ|≤π/4







∑

m6=k

(

bm
mπ − λ

− bm
(m− k)π

)











k∈Z

∥

∥

∥

≤ C‖b‖
(I.43)

Towards the second term in (I.40) use

sup
|λ−kπ|≤π/4

1

|mπ − λ| ≤
2

π

1

|m− k|
to conclude that

∑

k

∑

m6=k
sup

|λ−kπ|≤π/4

|bm|2
|mπ − λ|2 ≤

≤
∑

k

∑

m6=k

4

π2

|bm|2
|m− k|2 ≤ 4

π2

(

∑

m

|bm|2
)





∑

j 6=0

1

j2





≤ C‖b‖2

(I.44)
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for some absolute constant C > 0. Combining (I.43) and (I.44) with (I.40)
finally yields

∥

∥

∥

(

sup
|λ−kπ|≤π/4







kπ − λ

sinλ
fk(λ) − 1







)

|k|≥k0






≤ C‖b‖

where C > 0 can be chosen uniformly for bounded subsets of sequences b in
`2. Clearly

∥

∥

∥

(

sup
|λ−kπ|≤π/4







kπ − λ

sinλ
fk(λ) − 1







)

|k|≤k0

∥

∥

∥
≤ C

where again, C > 0 can be chosen uniformly for bounded sets of sequences
b in `2. Hence estimate (I.38) is proved. �

In Part II, we will need the following lemma which is a consequence of
Lemma I.16 and Lemma I.17.

Lemma I.18 Let z := (zm)m∈Z be a sequence in C with (bm := zm −mπ)m∈Z ∈
`2. Then the entire function

f(λ) := (λ− z0)
∏

m6=0

zm − λ

mπ

is bounded on R, uniformly for b ≡ (bm)m∈Z in bounded subsets of `2(Z).

Proof By Lemma I.16, f is entire, hence bounded on bounded subsets of
C and there exists a constant C1 > 0 so that on

⋃

n≥0

{ (

n+ 1
4

)

π ≤ |λ| ≤
(

n+ 3
4

)

π
}

, one has |f(λ)| ≤ C1. By Lemma I.17, there exists C2 > 0 so
that for any k ∈ Z and |λ− kπ| ≤ π/4







f(λ)

zk − λ





 ≤ C2







sinλ

λ− kπ







and, as






sinλ
λ−kπ






≤ 1 and |zk − λ| ≤ |bk| + π/4 ≤ ‖b‖ + 1 for |λ− kπ| ≤ π/4,

one then gets |f(λ)| ≤ C2 (‖b‖ + 1). It then follows that

|f(λ)| ≤ (C1 + C2)(‖b‖ + 1) ∀λ ∈ R.

By Lemma I.16 and Lemma I.17, C := C1 +C2 can be chosen uniformly on
bounded subsets of sequences b in `2. �

Lemma I.16 is used to derive product representations for ∆(λ)2 − 4, ∆̇(λ),
δ(λ) and δ̆(λ).
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In view of the asymptotics λ±n = nπ + `2(n), (Proposition I.6), the infinite
product

f(λ) := −4(λ−0 − λ)(λ+
0 − λ)

∏

k 6=0

(λ+
k − λ)(λ−k − λ)

k2π2

is convergent.

Lemma I.19 For ϕ ∈ L2
C

and λ ∈ C,

∆(λ, ϕ)2 − 4 = −4(λ−0 − λ)(λ+
0 − λ)

∏

k 6=0

(λ+
k − λ)(λ−k − λ)

k2π2
.

Proof From Proposition I.3 and in view of the estimate

e|Imλ| < 4| sinλ| ∀λ ∈ {z ∈ C | |z − kπ| ≥ π

4
∀k ∈ Z}

one gets uniformly on {|λ| = (n+ 1
2)π},

∆(λ, ϕ) = 2 cos λ+ o(sinλ)

and thus

∆(λ, ϕ)2 − 4 = (−4 sin2 λ)(1 + o(1)).

By Lemma I.16,

f(λ) = −4 sin2 λ(1 + o(1)).

As f(λ) and ∆(λ, ϕ)2 − 4 are both entire functions and have the same roots
we conclude that h(λ) := (∆(λ, ϕ)2 − 4)/f(λ) is also entire and satisfies on
{|λ| = |n+ 1

2 |π}
h(λ) = 1 + o(1).

The function h − 1 being harmonic we then conclude by the maximum
principle that h(λ) ≡ 1, i.e. ∆(λ)2 − 4 ≡ f(λ). �

Next we want to obtain a product representation for ∆̇(λ, ϕ). First we
have to prove asymptotic estimates for its zeroes. They are obtained by
arguments similar to the ones used to show the asymptotics of the zeroes
λ±n of ∆(λ)2 − 4. By Proposition I.3, we have for |λ| → ∞

∆̇(λ) = trṀ(1, λ) = trĖ(1, λ) + o(e|Imλ|).

As trĖ(1, λ) = −2 sin λ we conclude that for λ sufficiently large

|∆̇(λ) + 2 sinλ| ≤ 1

4
e|Imλ|.
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By Rouché’s Theorem one then argues as in the proof of Proposition I.5 to
conclude that ∆̇(λ) has a sequence of zeroes (λ̇n)n∈Z with λ̇n = nπ + o(1).
Again, we order the λ̇n’s lexicographically,

Reλ̇n < Reλ̇n+1 or Reλ̇n = Reλ̇n+1 and Imλ̇n ≤ Imλ̇n+1.

Arguing as in the proof of Proposition I.6 one shows that λ̇n = nπ + `2(n).
Hence, by Lemma I.16, the following infinite product is absolutely conver-
gent for any λ ∈ C,

g(λ) := 2(λ̇0 − λ)
∏

k 6=0

λ̇k − λ

kπ

and defines an entire function.

Lemma I.20 For ϕ ∈ L2
C

and λ ∈ C,

∆̇(λ) = 2(λ̇0 − λ)
∏

k 6=0

λ̇k − λ

kπ
.

Proof Notice that for λ in {|λ| = |n+ 1
2 |π}

∆̇(λ, ϕ) = (−2 sin λ) (1 + o(1)) .

Hence we can argue as in the proof of Lemma I.19 to obtain the claimed
result. �

Recall from section I.3 that δ(λ) and δ̆(λ) are entire functions with zeroes
(µn)n∈Z and (µ̆n)n∈Z respectively. Both sequences have asymptotics of the
form nπ + `2(n). Hence, by Lemma I.16 the infinite products

2i(µ0 − λ)
∏

j 6=0

µj − λ

jπ
and 2i(µ̆0 − λ)

∏

j 6=0

µ̆j − λ

jπ

are absolutely convergent for any λ ∈ C. Due to the asymptotics δ(λ)
and δ̆(λ) of the form −2i sinλ + o(e|Imλ|) one can argue as in the proof of
Lemma I.19 to obtain

Lemma I.21 For ϕ ∈ L2
C

and λ ∈ C,

δ(λ) = 2i(µ0 − λ)
∏

k 6=0

µk − λ

kπ

δ̆(λ) = 2i(µ̆0 − λ)
∏

k 6=0

µ̆k − λ

kπ
.
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We end this section by providing refined asymptotics for λ̇n as |n| → ∞.
For this purpose introduce the sequences (γn)n∈Z and (τn)n∈Z given by

γn := λ+
n − λ−n ; τn := (λ+

n + λ−n )/2.

Lemma I.22 Locally uniformly for ϕ in L2
C
,

λ̇n = τn + γ3/2
n `2(n). (I.45)

Proof In a first step we prove the weaker estimate

λ̇n = τn + γn`
2(n). (I.46)

By Lemma I.19,

d

dλ
(∆(λ)2 − 4)







λ=λ+
n

= −4(λ+
0 − λ)(λ−0 − λ)

γn
n2π2

∏

m6=n,0

(λ+
m − λ)(λ−m − λ)

m2π2







λ=λ+
n

.

On the other hand, as ∆(λ+
n ) = 2(−1)n,

d

dλ
(∆(λ)2 − 4)







λ=λ+
n

= 2∆(λ+
n )∆̇(λ+

n )

= 4(−1)n∆̇(λ+
n ).

Combining the two identities we get

∆̇(λ+
n ) = (−1)n+1γn

(

1 + 0

(

1

n

))

∏

m6=n,0

(λ+
m − λ+

n )(λ−m − λ+
n )

m2π2
.

By Lemma I.17,

∏

m6=n,0

λ+
m − λ

mπ

λ−m − λ

mπ







λ=λ+
n

= 1 + `2(n)

and hence

∆̇(λ+
n ) = (−1)n+1γn(1 + `2(n)). (I.47)

By the product representation of Lemma I.20,

∆̇(λ+
n ) = 2(λ̇0 − λ+

n )
λ̇n − λ+

n

nπ

∏

m6=0,n

λ̇m − λ+
n

mπ

= 2(−1)n(λ̇n − λ+
n )(1 + `2(n))
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where we used again Lemma I.17 for the latter identity. In view of (I.47)
one then obtains

2(λ̇n − λ+
n ) = −γn(1 + `2(n))

and substituting λ+
n = τn + γn

2 into this identity leads to (I.46) .

To obtain the stronger estimate (I.45), write

∆(λ)2 − 4 = 4(λ+
n − λ)(λ− λ−n )fn(λ)

where

fn(λ) :=
(λ+

0 − λ)(λ−0 − λ)

n2π2

∏

m6=n,0

(λ+
m − λ)(λ−m − λ)

m2π2
.

Clearly for γn = 0, (I.45) trivially holds. Now consider the case γn 6= 0. By
Lemma I.17, we have uniformly on Γn := {λ ∈ C | |λ− λ̇n| = |γn|1/2},

fn = 1 + `2(n).

By Cauchy’s theorem,

∣

∣

∣

∣

dfn
dλ

(λ̇n)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2πi

∫

Γn

fn(λ) − 1

(λ− λ̇n)2
dλ

∣

∣

∣

∣

= |γn|−1/2`2(n).

This is used in

0 =
d

dλ
(∆(λ)2 − 4)







λ=λ̇n

=
(

−4(λ− λ−n ) + 4(λ+
n − λ)

)

fn(λ)






λ=λ̇n

+ 4(λ+
n − λ)(λ− λ−n )

dfn
dλ

(λ)






λ=λ̇n

to obtain

2(λ̇n − τn)(1 + `2(n)) = (λ+
n − λ̇n)(λ̇n − λ−n )|γn|−1/2`2(n).

In view of (I.46), λ±n − λ̇n = 0(γn) and hence λ̇n−τn = γ
3/2
n `2(n) as claimed.

�

I.7 Branches of square roots

In the sequel we need to specify various branches of square roots. We denote
by +

√
z the principal branch of the square root defined for z ∈ C\(−∞, 0]

and determined by +
√

1 = 1.
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Given a, b ∈ C with <a < <b or <a = <b and =a < =b, we denote by
s
√

(a− z)(b− z) the standard square root, defined on C\[a, b] and deter-
mined by

s
√

(a− z)(b− z)






z=b+(b−a)
= − +

√
2 (b− a)

where [a, b] := {ta+ (1 − t)b | 0 ≤ t ≤ 1}.
For λ in C\

(
⋃

k∈Z[λ
−
k , λ

+
k ]
)

, the canonical square root c
√

∆(λ)2 − 4 is defined
by

c
√

∆(λ)2 − 4 := 2i s

√

(λ−0 − λ)(λ+
0 − λ)

∏

k 6=0

s

√

(λ−k − λ)(λ+
k − λ)

kπ
. (I.48)

Notice that for |λ| << |kπ|, with λ±k = kπ + `2(k),

s

√

(λ−k − λ)(λ+
k − λ) = kπ +

√

(

1 + 0

(

1

k

)

− λ

kπ

)(

1 + 0

(

1

k

)

− λ

kπ

)

and thus the infinite product on the right side of (I.48) is absolutely con-
vergent.
For ϕ = (ϕ1, ϕ2) of real type (i.e. ϕ2 = ϕ1), λ

±
n ∈ R for all n and one gets

(−1)ki c
√

∆(λ)2 − 4 > 0 ∀ λ+
k < λ < λ−k+1 (I.49)

(−1)k c
√

∆(λ+ i0)2 − 4 > 0 ∀ λ−k < λ < λ+
k (I.50)

(−1)k−1 c
√

∆(λ− i0)2 − 4 > 0 ∀ λ−k < λ < λ+
k . (I.51)

I.8 Asymptotics for ∆(λ, ϕ)

In Part II we need an expansion of ∆(λ) for |k| → ∞ and of ch−1
(

∆(iy)
2

)

as y → ∞.
For ϕ = (ϕ1, ϕ2) ∈ L2

C
introduce

H1(ϕ) :=

∫ 1

0
ϕ1(x)ϕ2(x)dx.

Let HN
C

≡ HN ([0, 1]; C2) be the Sobolev space of functions ϕ : [0, 1] → C
2

with ∂jxf ∈ L2
C

for any 0 ≤ j ≤ N .

Lemma I.23 Uniformly for ϕ in a bounded subset of H 2
C
,

∆(λ, ϕ) = 2 cos λ+
sinλ

λ
H1(ϕ) + 0

(

e|Imλ|

|λ|2

)

.
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Remark The asymptotic holds under weaker regularity assumption on ϕ.

Proof Recall that ∆(λ) = trM(1, λ) and M(x, λ) is given by

M(x, λ) = E(x, λ) +
∑

k≥1

E(k)(x, λ).

We have trE(1, λ) = e−iλ + eiλ = 2 cos λ and trE(1) = 0. Hence

∆(λ) = 2 cos λ+
∑

k≥2

trE(k)(1, λ). (I.52)

To obtain the asymptotics for trE(k)(1, λ) we write

E(k)(x, λ) =

∫ x

0
K(x, y)E(k−1)(y, λ)dy .

First consider E(1)(x, λ), given by

E(1)(x, λ) = i

∫ x

0

(

0 e−iλ(x−2y)ϕ1(y)

−eiλ(x−2y)ϕ2(y) 0

)

dy.

Integrate by parts to get

E(1)(x, λ) =
1

2λ

(

0 e−iλ(x−2y)ϕ1(y)

eiλ(x−2y)ϕ2(y) 0

)

∣

∣

∣

x

y=0
−R(1)(x, λ)

=
1

2λ

(

0 eiλxϕ1(x)
e−iλxϕ2(x) 0

)

− 1

2λ

(

0 e−iλxϕ1(0)
eiλxϕ2(0) 0

)

+ 0

(

e|Imλ|x

λ2

)

where for the last identity we used that

R(1)(x, λ) : =
1

2λ

∫ x

0

(

0 eiλ(2y−x)ϕ′
1(y)

eiλ(x−2y)ϕ′
2(y) 0

)

dy

=
i

(2λ)2

(

0 −eiλ(2y−x)ϕ′
1(y)

eiλ(x−2y)ϕ′
2(y) 0

)







x

y=0

− i

(2λ)2

∫ x

0

(

0 −eiλ(2y−x)ϕ′′
1(y)

eiλ(x−2y)ϕ′′
2(y) 0

)

dy

= 0

(

e|Imλ|x

λ2

)

.

To get the asymptotics of E(2)(x, λ) writeE(2)(x, λ) =
∫ x
0 K(x, y)E(1)(y, λ)dy

with

K(x, y) = i

(

0 e−iλ(x−y)ϕ1(y)

−eiλ(x−y)ϕ2(y) 0

)
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to obtain, with Φ(x) :=
∫ x
0 ϕ1(y)ϕ2(y)dy,

E(2)(x, λ) =
i

2λ
Φ(x)

(

e−iλx 0
0 −eiλx

)

+ 0

(

e|Imλ|x

λ2

)

where we used that
∫ x

0
K(x, y)

1

2λ

(

0 e−iλyϕ1(0)
eiλyϕ2(0) 0

)

dy

=
i

2λ

∫ x

0
diag

(

eiλ(2y−x)ϕ1(y)ϕ1(0),−eiλ(x−2y)ϕ1(0)ϕ2(y)
)

dy

=
1

(2λ)2
diag

(

eiλ(2y−x)ϕ1(y)ϕ2(0), e
iλ(x−2y)ϕ1(0)ϕ2(y)

) ∣

∣

∣

x

y=0

− 1

(2λ)2

∫ x

0
diag

(

eiλ(2y−x)ϕ′
1(y)ϕ2(0), e

iλ(x−2y)ϕ1(0)ϕ
′
2(y)

)

dy

= 0

(

e|Imλ|x

λ2

)

.

To get the asymptotics ofE(3)(x, λ) write E(3)(x, λ) =
∫ x
0 K(x, y)E(2)(y, λ)dy.

This leads to

E(3)(x, λ) = − 1

2λ

∫ x

0

(

0 −eiλ(2y−x)ϕ1(y)

−eiλ(x−2y)ϕ2(y) 0

)

Φ(y)dy

+ 0

(

e|Imλ|x

λ2

)

.

Integrating by parts once more, one obtains

E(3)(x, λ) = 0

(

e|Imλ|x

λ2

)

.

Arguing as in the proof of Lemma I.2 we then conclude that

∑

k≥3

E(k)(x, λ) = 0

(

e|Imλ|x

λ2

)

.

Thus we get

M(x, λ) = E(x, λ) +E(1)(x, λ)

+
i

2λ
Φ(x)

(

e−iλx 0
0 −eiλx

)

+ 0

(

e|Imλ|x

|λ|2

)

.

Hence, in view of (I.52)

∆(λ, ϕ) = 2 cos λ+
sinλ

λ
H1(ϕ) + 0

(

e|Imλ|

|λ|2

)

.
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�

Denote by ch−1 the branch of arccosh defined on C\(−∞, 1) which is given
for z ∈ C\(−∞, 1) with |z| > 1 by

ch−1(z) = log(z + z
+

√

1 − 1

z2
)

with log denoting the principal branch of the logarithm.
Notice that for y large and positive, ∆(iy) is closed to chy and hence ∆(iy)

2
is in the domain of definition of ch−1(z).

Lemma I.24 Uniformly for ϕ in a bounded subset of H 2
C
, one has for λ = iy

with y → ∞

ch−1

(

∆(λ, ϕ)

2

)

= −iλ+
iH1(ϕ)

2λ
+ 0

(

1

λ2

)

.

Proof To make notation easier, introduce g(z) := ch−1(z). By Lemma I.23

∆(iy)

2
= chy + u(y) ; u(y) =

shy

2y
H1(ϕ) + 0

(

ey

y2

)

.

By the Taylor expansion of g(z) at z = ch(y),

g

(

∆(iy)

2

)

= g(chy) + u(y)g′(chy) +
u(y)2

2
g′′(ch(y) + θu(y))

for some 0 < θ < 1. As chy + θu(y) ∼ ey

2 , one has

g′′(chy + θu(y)) = 0(e−2y)

and hence

ch−1

(

∆(iy)

2

)

= y +
H1

2y
+ 0

(

1

y2

)

.

�

Assuming more regularity on ϕ one can obtain the subsequent terms in the

expansion of ∆(λ) and ch−1
(

∆(iy)
2

)

. In the following result we give the next

two terms in the expansion for ch−1
(

∆(iy)
2

)

. For this purpose introduce for

ϕ ∈ H2
C

H2(ϕ) := i

∫ 1

0
ϕ′

1ϕ2dx =
i

2

∫ 1

0
(ϕ′

1ϕ2 − ϕ1ϕ
′
2

H3(ϕ) :=

∫ 1

0

(

ϕ′
1ϕ

′
2 + (ϕ1ϕ2)

2
)

dx.

Notice that H1, H2, H3 are real for ϕ of real type and that H3 is the
Hamiltonian of the defocusing NLS-equation.
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Lemma I.25 Uniformly for ϕ in a bounded subset of H 4
C
, one has for λ = iy

with y → ∞

ch−1

(

∆(λ, ϕ)

2

)

= −iλ+
iH1

2λ
+
iH2

4λ2
+
iH3

8λ3
+ 0

(

1

λ4

)

.

Proof Similar to the one of Lemma I.24, using a refined version of Lemma I.23
(see also [MV]). �

I.9 Gradients of the discriminant

Given a complex valued function F : L2
C

→ C of class C1 we denote its

differential by dϕF and its L2-gradient by ∇ϕ(x)F =
(

∂F
∂ϕ1(x)

, ∂F
∂ϕ2(x)

)

. For

any v = (v1, v2) ∈ L2
C

one then has

dϕF · v =
(

∇ϕ(x)F, v
)

=

∫ 1

0

(

∂F

∂ϕ1(x)
v1(x) +

∂F

∂ϕ2(x)
v2(x)

)

dx

where (·, ·) denotes the dual pairing between the dual of L2
C

and itself.
To obtain formulas for the gradients of the fundamental solutions M (1) =
(M11,M21) and M (2) = (M12,M22) we need to establish an auxilary result.
LetG ∈ L2

C
and (a0, b0) ∈ C

2 and consider the following initial value problem

LF (x) = λF (x) +G(x) (I.53)

F (0) = (a0, b0). (I.54)

Lemma I.26 The initial value problem (I.53) - (I.54) admits a unique so-
lution given by

F (x) =

(

a0 − i

∫ x

0
(G1(t)M22(t) +G2(t)M12(t)) dt

)

M (1)(x)

+

(

b0 + i

∫ x

0
(G2(t)M11(t) +G1(t)M21(t)) dt

)

M (2)(x).

Proof By the method of the variation of constants, F (x) is of the form

F (x) = a(x)M (1)(x) + b(x)M (2)(x)

with (a(0), b(0)) = (a0, b0). Substituted into (I.53) one gets

λF + i

(

1 0
0 −1

)

(

a′M (1) + b′M (2)
)

= λF +G

which leads to

a′M (1) + b′M (2) = i

(

−1 0
0 1

)

G.
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In view of the Wronskian identity, det(M (1)(x),M (2)(x)) = 1 one obtains
by Cramer’s rule

a′(x) = i det

((

−1 0
0 1

)

G(x),M (2)(x)

)

= −i (G1(x)M22(x) +G2(x)M12(x))

and, similarly

b′(x) = i det

(

M (1)(x),

(

−1 0
0 1

)

G(x)

)

= i (M11(x)G2(x) +M21(x)G1(x)) .

The claimed formulas are then obtained by integrating a′(x) and b′(x). �

Lemma I.27 For any ϕ ∈ L2
C
, 0 ≤ x ≤ 1, and λ ∈ C

∂M (1)(x)

∂ϕ1(t)
=
(

iM21(t)M22(t)M
(1)(x) − iM21(t)

2M (2)(x)
)

1[0,x](t)

∂M (1)(x)

∂ϕ2(t)
=
(

iM11(t)M12(t)M
(1)(x) − iM11(t)

2M (2)(x)
)

1[0,x](t)

∂M (2)(x)

∂ϕ1(t)
=
(

iM22(t)
2M (1)(x) − iM22(t)M21(t)M

(2)(x)
)

1[0,x](t)

∂M (2)(x)

∂ϕ2(t)
=
(

iM12(t)
2M (1)(x) − iM12(t)M11(t)M

(2)(x)
)

1[0,x](t)

Proof As each term in the above formulas depends continuously on ϕ it
suffices to establish the formulas for continuous potentials ϕ. Then M(x)
is continuously differentiable with respect to x and we may interchange x-
differentiation with ϕ-differentiation. Hence, for 1 ≤ j ≤ 2 and any v ∈ L2

C
,

dϕj
(LM(x)) · v = (dϕj

L · v) M(x) + L dϕj
M(x) · v

and it follows that dϕj
M · v satisfies the following inhomogeneous equation

L dϕj
M · v = λdϕj

M · v − (dϕj
L · v) M

with initial conditions

dϕj
M(0) · v =

(

0 0
0 0

)

.

Note that

−dϕ1L · v =

(

0 −v
0 0

)

; −dϕ2L · v =

(

0 0
−v 0

)
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and thus, by Lemma I.26, one obtains

∂M (1)(x)

∂ϕ1(t)
=
(

iM21(t)M22(t)M
(1)(x) − iM21(t)

2M (2)(x)
)

1[0,x](t)

∂M (1)(x)

∂ϕ2(t)
=
(

iM11(t)M12(t)M
(1)(x) − iM11(t)

2M (2)(x)
)

1[0,x](t).

Similarly, one computes ∂M(2)(x)
∂ϕj(t)

. �

As an application we obtain

Proposition I.28 For any ϕ ∈ L2
C

and λ ∈ C

∇ϕ(x)∆(λ, ϕ) = i (M11 −M22)






1,λ

(

M21(x, λ)M22(x, λ)
M11(x, λ)M12(x, λ)

)

− iM12(1, λ)

(

M21(x, λ)2

M11(x, λ)2

)

+ iM21(1, λ)

(

M22(x, λ)2

M12(x, λ)2

)

I.10 Gradients of eigenvalues

In this section we compute the gradients of the Dirichlet eigenvalues µk(ϕ)
and simple periodic eigenvalues λ+

k (ϕ) 6∈ {µk(ϕ), µ̆k(ϕ)} for ϕ ∈ L2
R. Recall

that the Dirichlet eigenvalues are real analytic on L2
R and that

Gk(x) = M (1)(x, µk) +M (2)(x, µk)

is an eigenfunction corresponding to µk ≡ µk(ϕ).

Proposition I.29 For any k ∈ Z and ϕ ∈ L2
R

∇ϕ(x)µk =
1

‖Gk(·)‖2

(

(M21 +M22)
2, (M11 +M12)

2
)







x,µk

where ‖ · ‖ denotes the norm in L2([0, 1],C2).

Proof Let ϕ ∈ L2
R. Arguing as in the proof of Lemma I.27 it suffices to

consider potentials ϕ which are continuous. Thus we may interchange in the
expression dϕ1(L(ϕ)Gk(t)) differentiation with respect to t and ϕ1. Hence,
for v ∈ L2([0, 1],C),

dϕ1(L(ϕ)Gk(t)) · v = (dϕ1L(ϕ) · v)Gk(t) + L(ϕ) dϕ1Gk(t) · v . (I.55)

On the other hand, as LGk = µkGk,

dϕ1(L(ϕ)Gk(t)) · v = (dϕ1µk · v)Gk(t) + µkdϕ1Gk(t) · v . (I.56)
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As dϕ1L(ϕ) · v =

(

0 v
0 0

)

, (I.55) - (I.56) leads to

(dϕ1µk · v) Gk(t) = (L(ϕ) − µk)dϕ1Gk(t) · v +

(

0 v(t)
0 0

)

Gk(t).

Then we take the L2-inner product of both sides of this identity with
Gk(·, ϕ). As Lk(ϕ) − µk is selfadjoint, the L2-inner product of (L(ϕ) −
µk)dϕ1Gk(t) · v with Gk vanishes and we obtain

‖Gk(·)‖2dϕ1µk · v =

∫ 1

0

(

0 v(t)
0 0

)

Gk(t) ·Gk(t)dt. (I.57)

As ϕ is of real type, we have, in view of (I.21),

Gk(t) = Gk(t)
∗ (I.58)

where we recall that for a vector a = (a1, a2), the vector a∗ is given by
a∗ = (a2, a1). Hence the identity (I.57) takes the form

dϕ1µk · v =
1

‖Gk(·)‖2

∫ 1

0
v(t) (M21(t, µk) +M22(t, µk))

2 dt.

This means that

∂µk
∂ϕ1(x)

=
1

‖Gk(·)‖2
(M21(x, µk) +M22(x, µk))

2

and ∂µk

∂ϕ2(x) , evaluated at ϕ = (ϕ1, ϕ1), is given by ∂µk

∂ϕ2
= ∂µk

∂ϕ1
= ∂µk

∂ϕ1
, i.e.

∂µk
∂ϕ2(x)

=
1

‖Gk(·)‖2
(M12(x, µk) +M11(x, µk))

2 .

�

Substituting the asymptotics of Gk (cf Proposition I.9) into the formula for
∇ϕ(x)µk (cf. Proposition I.29) one obtains

Corollary I.30 Locally uniformly on L2
R,

∇ϕ(x)µk =
1

2

(

e2ikπx

e−2ikπx

)

+ `2(k)

In order to compute ∇ϕ(x)λ
±
k for a simple periodic eigenvalue λ±k 6= {µk, µ̆k}

we first have to derive a formula for a L2-normalized eigenfunction F±
k (x)

corresponding to λ±k . In section I.3 we have introduced the entire func-

tions δ(λ) and δ̆(λ). They both have an infinite product representation (cf
section I.6)

δ(λ) = 2i(µ0 − λ)
∏

n6=0

µn − λ

nπ
, δ̆(λ) = 2i(µ̆0 − λ)

∏

n6=0

µ̆n − λ

nπ
.
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Further, the derivative ∆̇(λ) of ∆(λ) admits an infinite product representa-
tion as well (cf section I.6)

∆̇(λ) = 2(λ̇0 − λ)
∏

n6=0

λ̇n − λ

nπ
.

Hence it follows that for a simple eigenvalue λ±
k with λ±k 6∈ {µk, µ̆k} of a

potential ϕ ∈ L2
R,

−iδ(λ±k )

∆̇(λ±k )
= 2

µ0 − λ±k
λ̇0 − λ±k

∏

n6=0

µn − λ±k
λ̇n − λ±k

> 0 (I.59)

and similarly,

−iδ̆(λ±k )/∆̇(λ±k ) > 0. (I.60)

Finally we note that for ϕ of real type, M 12 = M21. Hence M12 +M21 is
real valued. As

(M12 +M21)
2






1,λ±
k

= −δ̆(λ±k )δ(λ±k ) 6= 0,

the following expression is well defined

ε±k := sign

(

(M12 +M21)






1,λ±
k

/∆̇(λ±k )

)

. (I.61)

In view of (I.59) - (I.61) we can introduce for any ϕ ∈ L2
R and any k ∈ Z

with λ±k 6∈ {µk, µ̆k} the following functions

F±
k (x) :=

ε±k
2

+

√

−iδ̆(λ±k )

∆̇(λ±k )
G(x, λ±k ) +

i

2
+

√

−iδ(λ±k )

∆̇(λ±k )
Ğ(x, λ±k ) (I.62)

where we recall that

G(x, λ) = (M (1) +M (2))






x,λ
; Ğ(x, λ) = (M (1) −M (2))







x,λ
.

As ϕ is of real type, we have M 11 = M22 and M21 = M21, hence G1 = G2,

Ğ1 = −Ğ2 and thus

F±
k,2(x) = F±

k,1(x). (I.63)

Using Proposition I.28 one verifies the following

Lemma I.31 For ϕ ∈ L2
R and k ∈ Z with λ±k 6∈ {µk, µ̆k},

∇ϕ(x)∆(λ)






λ=λ±
k

= −∆̇(λ±k )(F±
k,2(x)

2, F±
k,1(x)

2).
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Proposition I.32 For ϕ ∈ L2
R and k ∈ Z with λ±k 6∈ {µk, µ̆k}, F±

k (x) is an

eigenfunction corresponding to λ±k satisfying
∫ 1
0 ‖F±

k (x)‖2dx = 1 and

∇ϕ(x)λ
±
k = (F±

k,2(x)
2, F±

k,1(x)
2).

Proof The condition λ±k 6∈ {µk, µ̆k} is valid in a sufficiently small neighbor-
hood of ϕ in L2([0, 1]; C2). As ∆(λ±k ) = 2(−1)k and λ±k is analytic near ϕ
one obtains by implicit differentiation that

∇ϕ(x)λ
±
k = − 1

∆̇(λ±k )
∇ϕ(x)∆(λ)







λ±
k

.

By Lemma I.31 we then conclude that

∇ϕ(x)λ
±
k = (F±

k,2(x)
2, F±

k,1(x)
2).

Arguing as in the proof of Proposition I.29 one sees that F ±
k (x) is an eigen-

function corresponding to λ±k satisfying
∫ 1
0 ‖F±

k (x)‖2dx = 1. �

I.11 Poisson brackets

In this section we provide formulas for the Poisson brackets {∆(µ),∆(λ)}
and {∆(λ), µk}

∣

∣

λ=µn
. Recall that the Poisson bracket of two functionals

F,G defined on L2
C

is defined by

{F,G}(ϕ) = i

∫ 1

0

(

∂F

∂ϕ1(x)

∂G

∂ϕ2(x)
− ∂F

∂ϕ2(x)

∂G

∂ϕ1(x)

)

dx.

To compute {∆(µ),∆(λ)} it is convenient to rewrite the gradient ∇ϕ(x)∆(λ),
(cf Proposition I.28) in a different form. Denote by m±(λ) the Floquet
multipliers, i.e. the two eigenvalues of the monodromy matrix M(1, λ),

m±(λ) :=
∆(λ)

2
± 1

2
c
√

∆(λ)2 − 4. (I.64)

Notice that m+(λ) +m−(λ) = ∆(λ) and, by the Wronskian identity ,

m+(λ)m−(λ) = 1. (I.65)

For λ with M12(1, λ) 6= 0 the eigenvectors corresponding to m±(λ) are given
by (1, b±(λ)) where

b±(λ) :=
m±(λ) −M11(1, λ)

M12(1, λ)
.
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Further denote by F±(x, λ) the Baker-Akhiezer functions

F±(x, λ) := M1(x, λ) + b±(λ)M2(x, λ).

Note that LF± = λF± and

F±(x+ 1, λ) = m±(λ)F±(x, λ).

Writing F± = (F±
1 , F

±
2 ) we get the following formula for the gradient of

∆(λ):

Lemma I.33 For λ ∈ C with M12(1, λ) 6= 0

∇ϕ(x)∆(λ) = −iM12(1, λ)

(

F+
2 (x, λ)F−

2 (x, λ)
F+

1 (x, λ)F−
1 (x, λ)

)

Proof Each component of the right side of the latter identity is treated
separately. For the second component, note that

F+
1 (x)F−

1 (x) = (M11(x) + b+M12(x)) (M11(x) + b−M12(x))

= M11(x)
2 + b+b−M12(x)

2 + (b+ + b−)M11(x)M12(x).
(I.66)

As m+ +m− = ∆(λ),

M12(1)(b+ + b−) = m+ +m− − 2M11(1)

= M22(1) −M11(1)

and as m+m− = 1 (cf (I.65)),

M12(1)
2b+b− = (m+ −M11(1))(m− −M11(1))

= m+m− − (m+ +m−)M11(1) +M11(1)
2

= 1 − ∆M11(1) +M11(1)
2

= 1 −M11(1)M22(1)

= −M12(1)M21(1)

where for the last identity we used the Wronskian identity once more. Hence

M12(1)b+b− = −M21(1).

Substituting the identities above into (I.66) one obtains

−iM12(1)F
+
1 (x)F−

1 (x) = − iM12(1)M11(x)
2 + iM21(1)M12(x)

2

+ i(M11(1) −M22(1))M11(x)M12(x).

Hence, by Proposition I.28,

−iM12(1)F
+
1 (x)F−

1 (x) =
∂∆

∂ϕ2(x)
.
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Similarly, one proves

−iM12(1)F
+
2 (x)F−

2 (x) =
∂∆

∂ϕ1(x)
.

�

We need two additional auxilary results for the computation of the Poisson
bracket {∆(µ),∆(λ)}. Assume that F (x) = (F1(x), F2(x)) and G(x) =
(G1(x), G2(x)) are in L2([0, 1]; C2) satisfying

L(ϕ)F = λF ; L(ϕ)G = µG

for given λ, µ ∈ C and ϕ ∈ L2(S1; C2). Recall that W (F (x), G(x)) denotes
the Wronskian of F and G (cf (I.8)).

Lemma I.34 For any 0 ≤ x ≤ 1,

d

dx
W (F (x), G(x)) = i(µ− λ)(F1(x)G2(x) + F2(x)G1(x)).

Proof Note that d
dxW (F,G) = W (F ′, G) +W (F,G′) and, as LF = λF ,

F ′ = i

(

−1 0
0 1

)

LF −
(

0 ϕ1

ϕ2 0

)

F

= iλ

(

−1 0
0 1

)

F −
(

0 ϕ1

ϕ2 0

)

F.

Similarly, one has

G′ = iµ

(

−1 0
0 1

)

G−
(

0 ϕ1

ϕ2 0

)

G.

Substituting these formulas for F ′ and G′ into the expression for d
dxW (F,G)

one gets

d

dx
W (F,G) = iλW

((

−1 0
0 1

)

F,G

)

+ iµW

(

F,

(

−1 0
0 1

)

G

)

−W

((

0 ϕ1

ϕ2 0

)

F,G

)

−W

(

F,

(

0 ϕ1

ϕ2 0

)

G

)

= i(µ− λ)(F1G2 + F2G1).

�

Given λ ∈ C, introduce the following subset of L2
C
,

Nλ := {ϕ ∈ L2
C |M12(1, λ;ϕ) = 0}.
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Lemma I.35 For any λ ∈ C, Nλ is an analytic submanifold of L2
C

of com-
plex codimension 1.

Proof Recall that M12(1, λ;ϕ) is analytic in ϕ. It remains to prove that its
gradient does not vanish on Nλ. By Lemma I.27,

∂M12(1, λ)

∂ϕ1(t)
= iM22(t, λ) (M22(t, λ)M11(1, λ) −M21(t, λ)M12(1, λ)) .

which is continuous in t. For ϕ ∈ Nλ, the Wronskian identity becomes
M11(1, λ)M22(1, λ) = 1. In particular, M22(1, λ) 6= 0 and, evaluating ∂M12(1,λ)

∂ϕ1(t)
at t = 1,

∂M12(1, λ)

∂ϕ1(1)
= iM22(1, λ) 6= 0.

Hence ∂M12(1,λ)
∂ϕ(t) =

(

∂M12
∂ϕ1(t) ,

∂M12
∂ϕ2(t)

)

∣

∣

1,λ
does never vanish on Nλ. �

Proposition I.36 For any λ, µ ∈ C and ϕ ∈ L2
C

{∆(λ, ϕ),∆(µ, ϕ)} = 0.

Proof By Lemma I.35, Nλ and Nµ are submanifolds in L2
C

of codimension
1, hence M := {(ϕ, λ, µ) | λ, µ ∈ C; ϕ 6∈ Nλ ∪ Nµ} is dense in L2

C
× C × C.

As {∆(λ, ϕ),∆(µ, ϕ)} is continuous on L2
C
×C×C, it suffices to prove that

{∆(λ, ϕ),∆(µ, ϕ)} = 0 on M. Further the result clearly holds for λ = µ.
Thus let us consider (ϕ, λ, µ) ∈ M with λ 6= µ. In view of Lemma I.33,

{∆(λ),∆(µ)} = i

∫ 1

0

(

∂∆(λ)

∂ϕ1(x)

∂∆(µ)

∂ϕ2(x)
− ∂∆(λ)

∂ϕ2(x)

∂∆(µ)

∂ϕ1(x)

)

dx

= −iM12(1, λ)M12(1, µ)

∫ 1

0

(

F+
2 (x, λ)F−

2 (x, λ)F+
1 (x, µ)F−

1 (x, µ)

− F+
1 (x, λ)F−

1 (x, λ)F+
2 (x, µ)F−

2 (x, µ)
)

dx.

Denote the latter integrand by f(x, λ, µ). Then

f(x, λ, µ) = (ac− bd)

with
a := F+

2 (x, λ)F−
1 (x, µ), b := F+

1 (x, λ)F−
2 (x, µ),

c := F−
2 (x, λ)F+

1 (x, µ), d := F−
1 (x, λ)F+

2 (x, µ) .

Using the definition of the Wronskian, W ((a1, a2), (b1, b2)) = a1b2 − a2b1
and the identity

2(ac− bd) = (a+ b)(c− d) + (a− b)(c+ d)
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one gets

2f(x, λ, µ) = (a+ b)W
(

F+(x, µ), F−(x, λ)
)

+ (c+ d)W
(

F−(x, µ), F+(x, λ)
)

.
(I.67)

By Lemma I.34, we have

−i
λ− µ

d

dx
W
(

F+(x, µ), F−(x, λ)
)

= c+ d

and
−i

λ− µ

d

dx
W
(

F−(x, µ), F+(x, λ)
)

= a+ b.

Thus substituting the last two identities into (I.67) one obtains

2f(x, λ, µ) = − 1

(λ− µ)

d

dx

(

W (F−(x, µ), F+(x, λ)) W (F+(x, µ), F−(x, λ))
)

.

Hence

{∆(λ),∆(µ)} = −iM12(1, λ)M12(1, µ)

∫ 1

0
f(x, λ, µ)dx

=
1

2

1

µ− λ
M12(1, λ)M12(1, µ)·

W (F+(x, λ), F−(x, µ))W (F−(x, λ), F+(x, µ))
∣

∣

∣

1

0
.

As F±(1, λ) = m±(λ)F±(0, λ) and m+(λ)m−(λ) = 1 (cf (I.65)) we conclude
that {∆(λ),∆(µ)} = 0. �

To state our next result notice that

(M21 +M12)
2






1,µk

=
(

(M21 −M12)
2 + 4M21M21

)







1,µk

=
(

(M11 −M22)
2 + 4(M11M22 − 1)

)







1,µk

= (M11 +M22)
2






1,µk

− 4

= ∆(µk)
2 − 4.

Denote by ∗
√

∆(µk)2 − 4 the square root with the sign determined such that

∗
√

∆(µk)2 − 4 = (M21 +M12)






1,µk

. (I.68)

Using the formulas for the gradients ∇ϕ(x)∆(λ) and ∇ϕ(x)µk obtained in
Lemma I.33 and Proposition I.29 one then obtains the following
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Proposition I.37 Let ϕ ∈ L2
R. For any λ ∈ C and k ∈ Z one has

(µk − λ){∆(λ), µk} =
1

2

δ(λ)

δ̇(µk)
(M12 +M21)

∣

∣

∣

1,µk

. (I.69)

In particular for any k and n ∈ Z one has

{∆(λ), µk}






λ=µn

= −1

2
∗
√

∆(µk)2 − 4 δnk. (I.70)

Proof Arguing as in Proposition I.36 it suffices to prove (I.69) for ϕ ∈
L2
R\Nλ. For such a ϕ, we have by Lemma I.33 and Proposition I.29

{∆(λ), µk} = i

∫ 1

0

(

∂∆(λ)

∂ϕ1(x)

∂µk
∂ϕ2(x)

− ∂∆(λ)

∂ϕ2(x)

∂µk
∂ϕ1(x)

)

dx

=
M12(1, λ)

‖Gk(·)‖2

∫ 1

0

(

F+
2 (x, λ)F−

2 (x, λ)Gk,1(x)
2 − F+

1 (x, λ)F−
1 (x, λ)Gk,2(x)

2
)

dx

where Gk(x) = (Gk,1(x), Gk,2(x)) is given by M1(x, µk) + M2(x, µk). We
argue as in the proof of Proposition I.36. Denote by f(x, λ) the latter
integrand. Then

f(x, λ) = ac− bd

with
a := F+

2 (x, λ)Gk,1(x), b := F+
1 (1, λ)Gk,2(x) ,

c := F−
2 (x, λ)Gk,1(x), d := F−

1 (x, λ)Gk,2(x) .

Using the definition of the Wronskian and the identity

2(ac− bd) = (a+ b)(c− d) + (a− b)(c+ d)

one gets

2f(x, λ) = (a+ b)W
(

Gk(x), F
−(x, λ)

)

+ (c+ d)W
(

Gk(x), F
+(x, λ)

)

.
(I.71)

By Lemma I.34, we have, for λ 6= µk,

d

dx

(

W (Gk(x), F
−(x, λ)

)

= i(λ− µk)(c + d)

and
d

dx

(

W (Gk(x), F
+(x, λ)

)

= i(λ− µk)(a+ b) .

Thus substituting the last two identities into (I.71)

2i(λ− µk)f(x, λ) =
d

dx

(

W (Gk(x), F
−(x, λ))W (Gk(x), F

+(x, λ))
)

.
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Hence

(µk − λ){∆(λ), µk} =
M12(1, λ)

‖Gk(·)‖2

∫ 1

0
(µk − λ)f(x, λ)dx

=
M12(1, λ)

‖Gk(·)‖2

i

2
(J(1) − J(0))

(I.72)

where
J(x) := W

(

Gk(x), F
−(x, λ)

)

W
(

Gk(x), F
+(x, λ)

)

.

Note that Gk(0) = (1, 1) and, as Gk satisfies Dirichlet boundary conditions,
Gk,1(1) = Gk,2(1), i.e.

Gk(1) = (M11(1, µk) +M12(1, µk)) · (1, 1).

Further

F±(0, λ) = (1, b±(λ)) ; F±(1, λ) = m±(λ)F±(0, λ).

Hence

J(0) = (b−(λ) − 1)(b+(λ) − 1)

J(1) = (M11 +M12)
2
∣

∣

∣

1,µk

m−(λ)m+(λ)(b−(λ) − 1)(b+(λ) − 1)

and, using that m+(λ)m−(λ) = 1 (cf (I.65)),

J(1) − J(0) =

(

(M11 +M12)
2
∣

∣

∣

1,µk

− 1

)

(b−(λ) − 1)(b+(λ) − 1). (I.73)

Recall that M12(1, λ)b±(λ) = m±(λ) −M11(1, λ) and

δ(λ) = M11(1, λ) +M12(1, λ) −M21(1, λ) −M22(1, λ).

By a straight forward computation we obtain

M12(1, λ)(b−(λ) − 1)(b+(λ) − 1) = δ(λ). (I.74)

Further, as δ(µk) = 0, we have (M11 + M12)
∣

∣

1,µk
= (M21 + M22)

∣

∣

1,µk
and

thus

(M11 +M12)
2
∣

∣

∣

1,µk

− 1 = (M11 +M12)(M22 +M21)
∣

∣

∣

1,µk

− 1

= ((M11M22 − 1 +M12M21) +M11M21 +M12M22)
∣

∣

∣

1,µk

= (2M21M12 +M11M21 +M12M22)
∣

∣

∣

1,µk

= (M21(M12 +M11) +M12(M21 +M22))
∣

∣

∣

1,µk

= (M21 +M12)(M12 +M11)
∣

∣

∣

1,µk

.

(I.75)
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Substitute (I.74) and (I.75) into (I.73) then leads to

(µk − λ){∆(λ), µk} =
iδ(λ)

2

1

‖Gk(·)‖2
((M11 +M12)(M12 +M21))

∣

∣

∣

1,µk

.

As ϕ is assumed to be of real type, ‖Gk(·)‖2 is given by (cf Lemma I.11)

‖Gk(·)‖2 = iδ̇(µk)(M11 +M12)
∣

∣

∣

1,µk

.

and one finally obtains

(µk − λ){∆(λ), µk} =
1

2

δ(λ)

δ̇(µk)
(M12 +M21)

∣

∣

∣

1,µk

.

To prove (I.70) notice that, if λ = µk with n 6= k, δ(µk) = 0 and thus

{∆(λ), µk}
∣

∣

∣

λ=µn

= 0

and, if λ = µn with n = k,

lim
λ→µk

δ(λ)

λ− µk
= δ̇(µk)

and thus

{∆(λ), µk}
∣

∣

∣

λ=µk

= −1

2
(M12 +M21)

∣

∣

∣

1,µk

.

�

I.12 Isospectral flows

In this section we study auxilary isospectral flows of vector fields on the
space of potentials of real type. Recall that Iso(ϕ0) with ϕ0 ∈ L2

R denotes
the isospectral set of ϕ0,

Iso(ϕ0) := {ϕ ∈ L2
R | λ±k (ϕ) = λ±k (ϕ0) ∀k ∈ Z} .

From the infinite product representation of ∆(λ)2 − 4, one concludes that,
for any element ϕ ∈ L2

C
, ϕ ∈ Iso(ϕ0) iff

∆(λ, ϕ)2 − 4 = ∆(λ, ϕ0)
2 − 4 ∀λ ∈ C.

By Proposition I.3, ∆(λ, ϕ) = 2cosλ+ o(1) as λ = Reλ→ ∞, and hence

Iso(ϕ0) := {ϕ ∈ L2
R | ∆(λ, ϕ) = ∆(λ, ϕ0) ∀λ ∈ C} .
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The first flow we consider is the so called phase flow (t ∈ R, x ∈ R)

χ(x, t) = (χ1(x, t), χ2(x, t)) = (eitϕ1(x), e
−itϕ2(x))

with initial conditions χ(·, 0) = ϕ(·) ∈ L2
C
. This flow is Hamiltonian

d

dt
χ =

(

i
∂H1(χ)

∂ϕ2
,−i∂H1(χ)

∂ϕ1

)

where H1 is given by H1(ϕ) =
∫ 1
0 ϕ1(x)ϕ2(x)dx. Note that for any given

solution F = (F1, F2) of L(ϕ)F = λF , the function G = (eit/2F1, e
−it/2F2)

and hence (F1, e
−itF2) as well as (eitF1, F2) satisfy L(χ(·, t))G = λG. Hence

the fundamental matrix M(x, λ, χ(·, t)) is related to M(x, λ, ϕ) as follows

M(x, λ, χ(·, t)) =

(

M11 eitM12

e−itM21 M22

)

∣

∣

∣

∣

∣

x,λ,ϕ

. (I.76)

In particular its trace is invariant,

∆(λ, χ(·, t)) = ∆(λ, ϕ) ∀λ ∈ C.

This means that the phase flow is isospectral. Further notice that for ϕ ∈
L2
R, χ(·, t) stays in L2

R for any t ∈ R.
Finally we would like to know how the Dirichlet eigenvalues evolve under
the phase flow. Recall that the Dirichlet eigenvalues (µk(ϕ))k∈Z are given
by the zero set of

δ(λ, ϕ) = (M11 +M12 −M21 −M22)
∣

∣

∣

1,λ,ϕ
.

Let us evaluate δ(λ, ϕ) at (µs, χt) = (µk(χ(·, s)), χ(·, t)) for k ∈ Z, s, t ∈ R

arbitrary. Using (I.76) one then obtains

δ
∣

∣

∣

µs,χt
= (M11 −M22)

∣

∣

∣

1,µs,χs
+ (eitM12 − e−itM21

∣

∣

∣

1,µs,ϕ

= δ
∣

∣

∣

µs,χs
− (M12 −M21)

∣

∣

∣

1,µs,χs
+ (eitM12 − e−itM21)1,µs,ϕ

= (−eisM12 + e−isM21 + eitM12 − e−itM21)1,µs,ϕ

where for the last identity we used that δ(µs, χs) = 0. Hence we have

δ
∣

∣

∣

µs,χt
= (eit − eis)M12

∣

∣

∣

1,µs,ϕ
− (e−it − e−is)M21

∣

∣

∣

1,µs,ϕ
. (I.77)

Formula (I.77) can be used to get some information on the location of the
Dirichlet spectrum of χ(·, t). Recall that for ϕ ∈ L2

R, all the eigenvalues
λ±k , µk are real and satisfy λ−k ≤ µk ≤ λ+

k (k ∈ Z).
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Lemma I.38 Let ϕ ∈ L2
R and k ∈ Z with γk(ϕ) 6= 0. Then µk(t) 6= λ±k for

all −π ≤ t < π except possibly two.

Proof Assume that −π ≤ t0 < π satisfies µk(χ(·, t0)) = λ+
k (ϕ)

(

≡ λ+
k (χ(·, t))

)

.
By (I.77) one has

δ
∣

∣

∣

λ+
k
,χt

= (eit − eit0)M12

∣

∣

∣

1,λ+
k
,ϕ
− (e−it − e−it0)M21

∣

∣

∣

1,λ+
k
,ϕ
.

Hence, for any −π ≤ t < π with t 6= t0 and µk(χ(·, t)) = λ+
k ,

(eit − eit0)M12

∣

∣

∣

1,λ+
k
,ϕ

= (e−it − e−it0)M21

∣

∣

∣

1,λ+
k
,ϕ

or, as eit − eit0 = −ei(t+t0)(e−it − e−it0),

ei(t+t0)M12

∣

∣

∣

1,λ+
k
,ϕ

= −M21

∣

∣

∣

1,λ+
k
,ϕ
. (I.78)

As γk 6= 0, the eigenvalue λ+
k is simple and thus the Floquet matrixM(1, λ+

k , ϕ)
satisfies M(1, λ+

k , ϕ) 6= (−1)kId. As detM(1, λ+
k , ϕ) = 1 and ∆(λ+

k , ϕ) =
2(−1)k we conclude that

(M12,M21)
∣

∣

∣

1,λ+
k
,ϕ

6= (0, 0)

hence the identity (I.78) can hold for at most one value of t in [−π, π)\{t0}.
The result for µk(t) = λ−k can be proved in the same fashion. �

From Lemma I.38, it follows that for ϕ ∈ L2
R the set

T (ϕ) :=
{

t ∈ [−π, π) | ∃k ∈ Z with µk(t) ∈ {λ+
k , λ

−
k }
}

is countable and we obtain the following

Corollary I.39 For any ϕ ∈ L2
R there exists a sequence (ϕn)n≥1 in L2

R
with the following properties:

(i) ϕ = limn→∞ ϕn in L2
C
× L2

C
;

(ii) ϕn ∈ Iso(ϕ) and ‖ϕn‖ = ‖ϕ‖ ∀n ≥ 1;

(iii) for any n ≥ 1 and any k ∈ Z with γk(ϕ) 6= 0,

λ−k (ϕ) = λ−k (ϕn) < µk(ϕn) < λ+
k (ϕn) = λ+

k (ϕ).

Proof Choose a sequence (tn)n≥1 ⊆ [−π, π)\T (ϕ) so that limn→∞ tn = 0.
This is possible as T (ϕ) is countable. Then (ϕn := χ(tn, ϕ))n≥1 is a sequence
with the claimed properties. �
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For any given k, we now define an isospectral flow on L2
R which leaves all

Dirichlet eigenvalues except the k’th invariant. For any n ∈ Z, denote by
Xn(ϕ) the vector field on L2

C
given by

Xn(ϕ)(x) :=

(

i
∂∆(λ, ϕ)

∂ϕ2(x)
,−i∂∆(λ, ϕ)

∂ϕ1(x)

)

∣

∣

∣

λ=µn(ϕ)
.

Notice that Xn(ϕ) is analytic in ϕ and Xn(ϕ) ∈ L2
R for ϕ ∈ L2

R as ∆(λ, ϕ)
and µn(ϕ) are real valued for (λ, ϕ) ∈ R×L2

R. Hence the differential equation

d

dt
ηt = Xn(η

t) ; ηt
∣

∣

∣

t=0
= ϕ (I.79)

is locally (in time) integrable in L2
R for any initial data ϕ ∈ L2

R. Denote by
Imax(ϕ) the maximal interval of existence of the solution η(·, t) of (I.79). To
see that (I.79) is globally integrable, i.e. Imax(ϕ) = R we prove that ‖ηt‖L2

remains bounded for t ∈ Imax(ϕ). To this end, note that

d

dt
∆(λ, ηt) =

∫ 1

0
∇ϕ(x)∆(λ, ηt) · d

dt
ηt(x)dx

=

∫ 1

0
∇ϕ(x)∆(λ, ηt) · ∇ϕ(x)∆(µ, ηt)

∣

∣

∣

µ=µn(ηt)
dx

=
{

∆(λ, ηt),∆(µ, ηt)
}∣

∣

∣

µ=µn(ηt)
.

By Proposition I.36, {∆(λ),∆(µ)} = 0 and thus

d

dt
∆(λ, ηt) = 0

which shows that the flow ηt is isospectral. From the asymptotic expansion
of ∆(λ) given by Lemma I.23 it follows that for ϕ ∈ H 2([0, 1]; C2) the Hamil-
tonian H1(ϕ) =

∫ 1
0 ϕ1(x)ϕ2(x)dx is a spectral invariant. More precisely, for

any u, v ∈ H2([0, 1]; C2) with u ∈ Iso(v) one has H1(u) = H1(v). Consider
first the case where the initial data ϕ in (I.79) is inH 2

R := H2([0, 1]; C2)∩L2
R.

Using the equation L(ϕ)M(x, λ, ϕ) = λM(x, λ, ϕ) one sees that the entries
of the fundamental matrix solution M(x, λ, ϕ) belong to H 2([0, 1]; C) (in
fact, they belong to H3([0, 1]; C). Hence, by Proposition I.28, the vector-
field Xn(ϕ) is an element in H2

R and the initial value problem (I.79) is
locally integrable in H2

R. As the flow ηt is isospectral we then conclude that
ηt ∈ Iso(ϕ) and therefore

‖ηt‖2
L2 = ‖ηt1‖2

L2 + ‖ηt2‖2
L2 = 2

∫ 1

0
ηt1(x)η

t
1(x)dx = 2H1(η

t)

= ‖ϕ‖2
L2 .
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It follows that Imax(ϕ) = R and ηt ∈ H2([0, 1]; C2) for any t ∈ R. Now let
us consider the general case ϕ ∈ L2

R. Approximate ϕ by a sequence (ϕk)k≥1

in H2
R so that limk→∞ ‖ϕk−ϕ‖L2 = 0. As the solution ηt(ϕk) of (I.79) with

initial data ϕk depends continuously on the initial data and Imax(η
t
k) = R

for all k, we conclude that locally uniformly in Imax(ϕ),

lim
k→∞

‖ηt(ϕk) − ηt(ϕ)‖L2 = 0.

Furthermore,Xk is a continuous map on L2
R (cf Proposition I.28 and Lemma I.4)

it follows that

lim
k→∞

‖ d
dt
ηt(ϕk) −

d

dt
ηt(ϕ)‖L2 = 0.

Hence

d

dt
H1(η

t(ϕ)) = 2Re

∫ 1

0
ηt1(x, ϕ)

d

dt
ηt1(x, ϕ)dx

= lim
k→∞

2Re

∫ 1

0
ηt1(x, ϕk)

d

dt
ηt1(x, ϕk)dx

= lim
k→∞

d

dt
H1(η

t(ϕk))

= 0.

Thus H1(η
t(ϕ)) = 1

2‖ηt(ϕ)‖2
L2 is constant along the flow ηt(ϕ) and we con-

clude that for any ϕ ∈ L2
R, Imax(ϕ) = R.

Along the flow ηt(·) ≡ ηt(·, ϕ), the Dirichlet eigenvalues µk(t) := µk(η
t)

evolve according to the following equation,

d

dt
µk(t) =

∫ 1

0
∇ϕ(x)µk(t) ·

d

dt
ηt(x)dt

=

∫ 1

0
∇ϕ(x)µk(t) · ∇ϕ(x)∆(λ)dx

∣

∣

∣

λ=µn(t)
= {µk,∆(λ)}

∣

∣

∣

λ=µn(t)
.

Hence, using Proposition I.37, we get

d

dt
µk(t) =

1

2
∗
√

∆(λ)2 − 4
∣

∣

∣

λ=µn(t)
δnk. (I.80)

As an application we obtain the following

Proposition I.40 Let ϕ0 ∈ L2
R, (νk)k∈Z a sequence of real numbers sat-

isfying λ−k (ϕ0) ≤ νk ≤ λ+
k (ϕ0) (∀k ∈ Z) and (εk)k∈Z a sequence with

εk ∈ {1,−1}. Then there exists a potential ϕ ∈ Iso(ϕ0) ∩ L2
R such that

‖ϕ‖ ≤ ‖ϕ0‖,
µk(ϕ) = νk ∀k ∈ Z

and, for any k ∈ Z with λ−k < νk < λ+
k ,

sign ∗
√

∆(µk)2 − 4 = εk.
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Remark One can show, using the injectivity of the Birkhoff map (cf sec-
tion III.8), that the map

ϕ 7→
(

µk − τk,
+
√

(γk/2)2 − (µk − τk)2, sign
∗
√

∆(µk)2 − 4
)

k∈O

is a bijection of Iso(ϕ0) ∩ L2
R onto the torus

{(ξk, ηk)k∈O | ξ2k + η2
k = (γk/2)

2 ∀k ∈ O}

of genus ]O where O ≡ O(ϕ0) := {k ∈ Z | γk(ϕ0) 6= 0}.
Proof In view of Corollary I.39 one can choose ψ0 ∈ Iso(ϕ0) ∩ L2

R so that

λ−k (ϕ0) < µk(ψ0) < λ+
k (ϕ0) ∀k ∈ {n ∈ Z | γn(ϕ0) 6= 0}

and ‖ψ0‖ = ‖ϕ0‖. For any n ∈ Z with γn 6= 0, consider the orbit µk(t) :=
µk(η

t) (t ∈ R, k ∈ Z) where ηt is the solution of (I.79) with initial data ψ0.
By (I.80), µk(t) remains constant for any k ∈ Z\{n}. As

√

∆(µn)2 − 4 = 0
iff µn ∈ {λ−n , λ+

n }, there exist t1 < 0 < t2 so that µn(t) is monotone in
t1 < t < t2 and limt→t± µn(t) = λ±n (ϕ0) with t+, t− agreeing with t1, t2 up
to permutation. As the flow ηt is isospectral, ∆(λ, ηt) is independent of t
and using formula (I.80) one obtains

d2

dt2
µn(t) =

1

2

d

dt
∗
√

∆(µn(t))2 − 4

=
1

4
∆(µn(t))∆̇(µn(t)).

Therefore

d2

dt2
µn(t±) = lim

t→t±

d2

dt2
µn(t) =

1

4
∆(λ±n )∆̇(λ±n ) 6= 0

and it follows that d
dtµn and hence ∗

√

∆(µn(t))2 − 4 changes sign at these
points. Using the same arguments once more one concludes that µ(t) moves
back and forth between λ−n and λ+

n without stopping. By composing the
flows corresponding to finitely many of the vector fields Xn, one sees that
for any N ≥ 1, there exists ψN ∈ L2

R ∩ Iso(ψ0) so that for any −N ≤ k ≤ N

µk(ψN ) = νk and, if λ−k < νk < λ+
k , sign ∗

√

∆(µk)2 − 4 = εk.

As each of the flows corresponding to the vector fields Xn preserves the
L2-norm we have ‖ψN‖ = ‖ψ0‖(= ‖ϕ0‖). Therefore there exists a subse-
quence of (ψN )N≥1, again denoted by (ψN )N≥1, which converges weakly
to an element ϕ ∈ L2

R and hence ‖ϕ‖ ≤ ‖ϕ0‖. By Lemma I.4 ∆(λ, ·)
is a continuous map with respect to the weak topology in L2

C
. Hence

∆(λ, ψN ) →
N→∞

∆(λ, ϕ), and, as ψN ∈ Iso(ϕ0), we have ∆(λ, ψN ) = ∆(λ, ϕ0)

for any N ≥ 1 and thus ∆(λ, ϕ) = ∆(λ, ϕ0), or ϕ ∈ Iso(ϕ0).
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On the other hand, for any k ∈ Z and N ≥ k, µk(ψN ) = νk. By Lemma I.4,
the map δ (cf (I.13)) is weakly continuous on C × L2([0, 1],C2) and hence,
as δ(νk, ψN ) = 0 ∀N ≥ k

0 = lim
N→∞

δ(νk, ψN ) = δ(νk, ψ),

i.e. νk is a Dirichlet eigenvalue of ψ. As λ−k (ϕ) ≤ νk ≤ λ+
k (ϕ) it follows that

νk = µk(ϕ).
Recall that ∗

√

∆(µk)2 − 4 = (M12 +M21)
∣

∣

1,µk
and use that (λ, ϕ) → (M12 +

M21)
∣

∣

1,λ,ϕ
is compact on C×L2([0, 1],C2) to conclude by the same reasoning

that sign ∗
√

∆(µk)2 − 4 = εk for any k ∈ Z with λ−k < νk < λ+
k . �

As a second application of the flows introduced above one obtains a density
result that will be used in Part II. Let

Dn := {ϕ ∈W | γn(ϕ) = 0}

and

Bn := {ϕ ∈ L2
R | γn 6= 0; µn = τn; sign

∗
√

∆(µn)2 − 4 = (−1)n+1}.

Proposition I.41 For any n ∈ Z, Dn ∩ L2
R is contained in the L2-closure

of Bn.

First we prove the following auxilary result

Lemma I.42 Let n ∈ Z, ϕ ∈ L2
R and ν ∈ R with γ−n < ν < λ+

n be given. If
λ−n < µn < λ+

n then there exists ψ ∈ Iso(ϕ) with the following properties

(i) µn(ψ) = ν; sign ∗
√

∆(µn(ψ))2 − 4 = (−1)n−1;

(ii) µk(ψ) = µk(ϕ) ∀k ∈ Z\{n}
(iii) ‖ψ − ϕ‖ ≤ C(γn + γ

1/2
n )

where the constant C is locally uniform in ϕ.

Proof (Lemma I.42) Let ηt denote the flow satisfying (I.79) with initial data
given by ϕ. By Proposition I.40 there exists t∗ > 0 so that ψ := ηt∗ satisfies
(i) - (ii). It remains to estimate ‖ψ − ϕ‖ = ‖

∫ t∗
0 Xn(η

t)dt‖.
By (I.80), µk(t) := µk(η

t) satisfies

d

dt
µk(t) =

1

2
∗
√

∆(µn(t))2 − 4 δnk.

Notice that 0 < t∗ < T where T denotes the period of t → µ∗
n(t) and for

ψ ∈ L2
R, µ∗n(ψ) is defined by

µ∗n(ψ) := (µn(ψ), sign ∗
√

∆(µn(ψ))2 − 4).
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From the proof of Proposition I.40 one learns that d
dtµn(t) vanishes precisely

at λ±n . Using the product representation of
√

∆(µ)2 − 4 together with the
asymptotic estimates given by Lemma I.17 one then obtains

t∗ ≤ T = 2

∫ λ+
n

λ−n

2dµ

|
√

∆(µ)2 − 4|

≤ C

∫ λ+
n

λ−n

dµ

+

√

(λ+
n − µ)(µ− λ−n )

= πC

where C > 0 is independent of n and can be chosen locally uniformly in ϕ.
Hence

‖ψ − ϕ‖ ≤
∫ t∗

0
‖Xn(η

t)‖dt ≤ πC sup
t∈R

‖Xn(η
t)‖.

As the flow ηt is isospectral we have ∆(λ, ηt) = ∆(λ, ϕ) and therefore

‖Xn(η
t)‖ ≤ sup

λ−n ≤λ≤λ+
n

‖∇ϕ(x)∆(λ)






ϕ=ηt
‖

By Proposition I.28,

∇ϕ(x)∆(λ) = i(M11 −M22)






1,λ

(

M21(x, λ)M22(x, λ)
M11(x, λ)M12(x, λ)

)

− iM12(1, λ)

(

M21(x, λ)2

M11(x, λ)2

)

+ iM21(1, λ)

(

M22(x, λ)2

M12(x, λ)2

)

.

By (I.4), ‖M(x, λ, ϕ)‖ ≤ e‖ϕ‖ for 0 ≤ x ≤ 1, λ ∈ R and hence

‖Xn(η
t)‖ ≤ 2e2‖ϕ‖ sup

λ
−
n ≤λ≤λ

+
n

t∈R

(|M11 −M22| + |M12| + |M21|)






1,λ,ηt
. (I.81)

Note that

(M11 +M22)






1,λ−
k

= 2(−1)k; δ(µk) = 0; δ̆(µ̆k) = 0.

As M(1, λ) and thus Ṁ (1, λ) is analytic, hence locally bounded near λ−
n it

follows that for t ∈ R and λ−n ≤ λ ≤ λ+
n ,

(M11 +M22)






1,x,ηt
= 2(−1)n + 0(γn)

δ(λ, ηt) = 0(γn); δ̆(λ, η
t) = 0(γn).

(I.82)
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Together with the identities 2(M11 −M22)




1,λ
= (δ + δ̆)(λ) and 2(M12 −

M21)




1,λ
= (δ − δ̆)(λ) one then gets

(M11 −M22)






1,λ
= 0(γn); (M12 −M21)







1,λ
= 0(γn). (I.83)

Combining (I.82) and (I.83) one sees that

M11(1, λ, η
t) = (−1)n + 0(γn), M22(1, λ, η

t) = (−1)n + 0(γn).

By (I.21), M12





1,λ
= M21





1,λ
. Hence the Wronskian identity (M11M22 −

M12M21)




1,λ
= 1 leads to |M12|2 = 0(γn). Substituting these estimates into

(I.81) one sees that
‖Xn(η

t)‖ = 0(γn + γ1/2
n ).

�

Proof (Proposition I.41). Notice that

Dn ∩ L2
R = {ϕ ∈ L2

R | ∆(λ̇n) = 2(−1)n}

is a submanifold of real codimension 2 in L2
R. Therefore given ϕ0 ∈ Dn∩L2

R
and ε > 0, there exists ϕε ∈ L2

R\Dn with ‖ϕε − ϕ0‖ < ε. As ϕ 7→ γn(ϕ) is
continuous on L2

R and hence limε→0 γn(ϕε) = 0, we can choose ϕε so that
0 < γn(ϕε) < ε and in view of Corollary I.39, by changing ϕε within Iso(ϕε)
if necessary, we may assume that for any ε,

λ−n (ϕε) < µn(ϕε) < λ+
n (ϕε) .

Hence by Lemma I.42 it follows that there exists ψε ∈ Iso(ϕε) satisfying

µn(ψε) = τn(ψε)(= τn(ϕε)),

sign ∗
√

∆(µn(ψε))2 − 4 = (−1)n−1,

‖ψε − ϕε‖ ≤ C(γn + γ1/2
n )







ϕε

.

It follows that ψε ∈ Bn and

‖ψε − ϕ0‖ ≤ ‖ψε − ϕε‖ + ‖ϕε − ϕ0‖
≤ C(ε+ ε1/2) + ε.

As C can be chosen locally uniformly in ϕ and thus independent of ε for ε
sufficiently small one concludes that ‖ψε − ϕ0‖ → 0 for ε→ 0. �

We end this section with an approximation result that will be used in Part
II.
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Proposition I.43 Let ϕ ∈ L2
R and n ∈ Z. Assume λ−n = µn. Then there

exists a sequence (ψj)j≥1 ⊆ L2
R with limj→∞ ψj = ϕ satisfying

(i) λ−n (ψj) < µn(ψj) < λ+
n (ψj) ∀j ∈ Z

(ii)
µn(ψj)−λ−n (ψj)

λ+
n (ψj)−µn(ψj)

→
j→∞

0.

Proof If λ−n (ϕ) < µn(ϕ) ≤ λ+
n (ϕ) use the isospectral flow ηt satisfying (I.79)

with initial condition ψ ∈ Iso(ϕ) satisfying µ∗
k(ψ) = µ∗k(ϕ) ∀k ∈ Z\{n} and

µn(ψ) = τn(ϕ). As limt→t− µn(η
t) = λ−n (cf proof of Proposition I.40) the

claimed statement follows if one chooses ψj = ητj with (τj)j≥1 being a
monotone sequence satisfying limj→∞ τj = t−.
If λ−n (ϕ) = λ−n (ϕ), then by Proposition I.41 we can choose a sequence (ϕj)j≥1

in Bn such that limj→∞ ϕj = ϕ. By Lemma I.42 there exists for any j ≥ 1
ψj ∈ Iso(ϕj) such that

µn(ψj) = λ−n (ϕj) +
1

j
γn(ϕj)

and
‖ψj − ϕj‖ ≤ C

(

γn(ϕj) + γn(ϕj)
1/2
)

where C > 0 can be choosen independently of j ≥ 1. As limj→∞ γn(ϕj) = 0
we then conclude that limj→∞ ψj = ϕ and (i) and (ii) are satisfied. �
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Figure II.1: a-cycles

II.1 Introduction

Consider the Floquet matrix

M(1, λ) =

(

M11 M12

M21 M22

)

(1, λ)

associated with the Zakharov-Shabat equation L(ϕ)F = λF and its discrim-
inant ∆(λ) = TrM(1, λ). The periodic spectrum of ϕ is precisely the zero
set of the entire function ∆2(λ;ϕ)−4 and we have the product representation
(cf section I.6)

∆2(λ) − 4 = −4(λ−0 − λ)(λ+
0 − λ)

∏

k 6=0

(λ+
k − λ)(λ−k − λ)

k2π2
.

The square root of ∆2(λ)−4 is defined on the hyperelliptic Riemann surface

Σϕ =
{

(λ, y) ∈ C
2 | y2 = ∆2(λ) − 4

}

whose genus is precisely the number of open gaps of ϕminus 1. The Riemann
surface is a spectral invariant associated with ϕ. It may be viewed as two
copies of the complex plane slit open along each open gap and then glued
together crosswise along the slits.

The aim of this chapter is to construct a normalized basis of holomorphic
differential on Σϕ. To make this statement more precise, we introduce the
complex Hilbert space I0 of entire function of order ≤ 1 and type ≤ 1,
quadratically integrable on R (see section II.2). For f ∈ I0, the differential

ω =
f(λ)dλ

√

∆2(λ) − 4

is holomorphic except eventually at the two infinities of Σϕ. Denote by ak,
k ∈ Z, the cycles on the canonical sheet

Σc
ϕ :=

{

(λ, y) ∈ Σϕ | y = c
√

∆2(λ) − 4
}

described by figure 1. Here c
√

∆2(λ) − 4 denotes the canonical root defined
in I.I.7

Theorem II.1 below states that there exists a family of differentials

σj =
ψj(λ)dλ

√

∆2(λ) − 4
,
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with ψj ∈ I0, such that for any j, k ∈ Z

∫

ak

σj = 2πδjk .

Further the zeroes of ψj are located near the center of each gap. From
the infinite product representation (II.2), we can see that, in fact, σj have
poles at infinities with non vanishing residues. Thus (σj)j∈Z is a family of
Abelian differentials of the third kind. This family will play a crucial rule
in the construction of angles for the NLS equation (see chapter III).
The existence of the σj ’s was first proven for ϕ of real type in McKean-
Varinsky [MV] (see [MT2] for a similar construction for the Hill’s equation).
The extension of σj to a complex neighborhood of L2

R is not straight forward.
Actually, when ϕ is not of real type Σϕ is a more complicated object since
the periodic eigenvalues are no more real. We construct the ψj using the
implicit function theorem.
Let us mention that the above arguments have been used in [KP] to obtain
a similar result for Hill’s equation.
To give a precise statement, let us recall some notations. Let

W = ∪ϕ0∈L2
R
V ′
ϕ0

be the neighborhood of L2
R in L2 given by (I.25) where V ′

ϕ0
is the neighbor-

hood of ϕ0 ∈ L2
R in L2 constructed in section I. I.5. There, for any ϕ ∈W ,

we have chosen ϕ0 ∈ L2
R with ϕ ∈ V ′

ϕ0
and denoted by Γn(ϕ) the counter

clockwise oriented circle Γn(ϕ0) of center τn(ϕ0) and radius 1
2γn(ϕ0) + 2K

with K > 0 given as in (I.24). We recall that the circles Γn(ϕ) are pairwise
disjoint and that there are exactly two periodic eigenvalues of L(ϕ), namely
λ+
n (ϕ) and λ−n (ϕ), inside Γn(ϕ).

Theorem II.1 There exists a neighborhood U of L2
R in L2 with U ⊆ W

so that for any ϕ ∈ U one can find a sequence of entire functions ψj(λ) ≡
ψj(λ, ϕ) (j ∈ Z) such that

∫

Γk(ϕ)

ψj(λ, ϕ)
c
√

∆(λ, ϕ)2 − 4
dλ = 2πδjk (j, k ∈ Z). (II.1)

The functions ψj(λ, ϕ) are analytic in λ, ϕ and admit a product representa-
tion, for j 6= 0,

ψj(λ) = −2
νj0 − λ

jπ

∏

k 6=0,j

νjk − λ

kπ
(II.2)

and, given for j = 0 by,

ψ0(λ) = −2
∏

k 6=0

ν0
k − λ

kπ
(II.3)
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where the zeroes νjk ≡ νjk(ϕ) (j, k ∈ Z, k 6= j) depend analytically on ϕ ∈ U
and are real for ϕ of real type. They satisfy the estimate

sup
j 6=k

|νjk(ϕ) − τk(ϕ)| ≤ |γk(ϕ)|2ak (II.4)

where (ak)k∈Z ∈ `2 can be chosen locally independently of ϕ.

For ϕ = 0, the zeroes νjk are given by νjk = kπ (j, k ∈ Z with j 6= k).

We prove this theorem with the help of the implicit function theorem. To
this end we reformulate the statement in terms of a functional equation.
For α ∈ `2 ≡ `2(Z,C), introduce

ᾱk := kπ + αk (k ∈ Z)

and define for j ∈ Z the entire function

χj(λ, α) :=
ᾱ0 − λ

jπ

∏

k 6=0,j

ᾱk − λ

kπ
(j 6= 0)

and

χ0(λ, α) :=
∏

k 6=0

ᾱk − λ

kπ
.

For ϕ ∈ W and k ∈ Z, denote by Ak ≡ Ak(ϕ) the linear functional defined
on the space of entire functions by

An · f :=

∫

Γn(ϕ)

f(λ)dλ
c
√

∆(λ, ϕ)2 − 4
.

For each j ∈ Z we then consider the functional

F j : `2 ×W → C
Z ; (α,ϕ) 7→

(

F jk (α,ϕ)
)

k∈Z

where for k 6= j

F jk (α,ϕ) := (k − j) Ak(ϕ) · χj(·, α)

and

F jj (α,ϕ) := αj + jπ − τj(ϕ) .

The proof of Theorem II.1 will be presented in the subsequent sections.

In section II.2 we analyse the case ϕ = 0 and then use this case to define a
complex Hilbert space of entire functions I0 . In section II.3 we prove the
analyticity of the maps ϕ 7→ Ak(ϕ), α 7→ χj(., α) and (α,ϕ) 7→ F j(α,ϕ),
and in section II.4 we apply the implicit function theorem to prove that
for each j ∈ Z the functional equation F j(α,ϕ) = 0 has a unique solution
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α = αj(ϕ) ∈ `2 which is defined and analytic on some complex neighborhood
U of L2

R which can be chosen to be independent of j.

In section II.5 we verify that

Aj(ϕ) · χj(·, αj(ϕ)) = −π .

Finally in section II.6 we prove that the zeroes of χj(·, αj(ϕ)) satisfy estimate
(II.4) and thus the entire functions

ψj(, ϕ) := −2χj(·, αj(ϕ))

have all the required properties.

II.2 The zero potential

Proposition II.2 For ϕ = 0, the functions ψj(λ) ≡ ψj(λ, 0) of Theo-
rem II.1 are given by

ψj(λ) =
2λ

jπ

∏

k 6=0,j

kπ − λ

kπ
(j 6= 0) and ψ0(λ) = −2

∏

k 6=0

kπ − λ

kπ
.

Proof By (I.9), ∆(λ, 0) = 2 cos λ and hence

c
√

∆(λ, 0)2 − 4 = −2i sin λ.

Hence by Cauchy’s theorem (II.1) is satisfied for ψj(λ, 0) := 2 sinλ
jπ−λ . From

the product representation sinλ = λ
∏

k 6=0
kπ−λ
kπ one then obtains

ψj(λ, 0) =
2λ

jπ

∏

k 6=0,j

kπ − λ

kπ
(j 6= 0)

and ψ0(λ, 0) = −2
∏

k 6=0
kπ−λ
kπ as claimed. �

The sequence (ψj(·, 0))j∈Z has some additional properties which will be dis-
cussed in the remainder of this section. First we need to introduce some no-
tation. Denote by I0 the complex Hilbert space of entire functions f : C → C

satisfying
∫ ∞

−∞
|f(λ)|2dλ <∞ ; |f(λ)| ≤ Ce|λ| ∀λ ∈ C.

The inner product in I0 is given by

〈f, g〉 :=

∫ ∞

−∞
f(λ)g(λ)dλ
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and ‖f‖ denotes the corresponding norm, ‖f‖ := 〈f, f〉1/2. By the Paley-
Wiener Theorem, the Fourier transform

f̂(x) ≡ F(f)(x) :=
1√
2π

∫ ∞

−∞
e−ixλf(λ)dλ

of a functionf ∈ I0 satisifes

f̂(x) = 0 for x ∈ R , |x| ≥ 1.

Hence

∫ 1

−1
|f̂(x)|dx ≤

√
2

(
∫ 1

−1
|f̂(x)|2dx

)1/2

=
√

2

(
∫ ∞

−∞
|f(λ)|2dλ

)1/2

and as f(λ) = 1√
2π

∫ 1
−1 e

iλxf̂(x)dx it then follows that for any λ ∈ C,

|f(λ)| ≤ 1√
2π

e|Imλ|
∫ 1

−1
|f̂(x)|dx

≤ 1√
π
e|Imλ|‖f‖.

(II.5)

In fact, the Fourier transform is an isometry of I0 onto

L2
PW :=

{

f ∈ L2
C(R) | supp(f) ⊆ [−1, 1]

}

.

Clearly, un(x) := 1√
2
e−iπnx1[−1,1](x) (n ∈ Z) is an orthonormal basis of L2

PW

where 1[−1,1](x) denotes the characteristic function of the interval [−1, 1].
Therefore vn := F−1(un) (n ∈ Z) is an orthonormal basis of I0. The vn’s
can be computed to be

vn(λ) =
(−1)n+1

√
π

sinλ

nπ − λ

and we conclude that 1
2
√
π
ψn(λ, 0) = (−1)n+1vn(λ) (n ∈ Z) is an orthonor-

mal basis for I0. For f ∈ I0, apply to

F(f) =
∑

n∈Z
〈F(f), un〉un =

∑

n∈Z

(∫ 1

−1
F(f)(x)

1√
2
eiπnxdx

)

1√
2
e−inπx

the inverse Fourier transform F−1 to obtain

f(λ) =
∑

n∈Z

√
πf(πn)vn(λ) (II.6)

where we used that suppF(f) ⊆ [−1,−1] and thus

∫ 1

−1
F(f)(x)

1√
2
eiπnxdx =

√
π

1√
2π

∫ ∞

−∞
F(f)(x)eiπnxdx =

√
πf(πn).
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Formula (II.6) is known as Kotelnikov’s theorem. As a consequence we have
that for any entire function f with |f(λ)| ≤ Ce|λ|, one has

f ∈ I0 iff (f(nπ))n∈Z ∈ `2(Z). (II.7)

For ϕ ∈ W and n ∈ Z, denote by An ≡ An(ϕ) the linear functional An :
I0 → C,

An · f :=

∫

Γn(ϕ)

f(λ)dλ
c
√

∆(λ, ϕ)2 − 4
.

In view of (II.5), An(ϕ) is continuous and thus an element in the dual space
I∗

0 of I0. Hence, by (II.1) and Proposition II.2,
(

1
2πAn(0)

)

n∈Z is a sequence
in I∗

0 which is biorthogonal to the orthogonal basis (ψj(·, 0))j∈Z and therefore
an orthogonal basis of I∗

0 . Notice that

ψj(nπ, 0) = 2
√
π(−1)j+1vj(nπ) = 2(−1)j+1δjn

and hence one concludes from (II.1) that (−1)n+1

π ·An(0) is the Dirac measure
mnπ at nπ,

1

π
An(0) = (−1)n+1mnπ .

Further, as (−1)n+1vn(λ) = 1
2
√
π
ψ(λ, 0) (n ∈ Z) is an orthonormal basis of

I0,
1√
π
An(0) (n ∈ Z) is an orthonormal basis of I∗

0 .

We end this section with two simple observations that will be used in the
subsequent sections.

Lemma II.3 Let ϕ be an element of L2
R and f an entire function which is

real on the real line. If Ak(ϕ) · f = 0 for some k ∈ Z then f has a root in
Gk(ϕ) := [λ−k , λ

+
k ].

Proof By assumption,
∫

Γk

f(λ)dλ
c
√

∆(λ)2 − 4
= 0

where γk = γk(ϕ) and ∆(λ) = ∆(λ, ϕ). If γk 6= 0, we can shrink the contour
Γk to the interval [λ−k , λ

+
k ] to obtain

∫ λ+
k

λ−
k

f(λ)dλ
c
√

∆(λ− i0)2 − 4
= 0 .

Notice that as ϕ0 is of real type, λ±k are real, c
√

∆(λ− i0)2 − 4 is real valued
for λ ∈ [λ−k , λ

+
k ] and does not vanish for λ−k < λ < λ+

k . Therefore f has to
change sign in Gk(ϕ0).
If γk = 0, we may extract the factor (λ−τk)2 from the product representation
of ∆(λ)2 − 4 and note that the contour integral above turns into a Cauchy
integral arround τk, which then gives f(τk) = 0. �
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Clearly Lemma II.3 is the motivation why we look for the entire functions
ψj of Theorem II.1 of the form (II.2), (II.3).

The next lemma says that a function in I0 cannot have too many zeroes.

Lemma II.4 Assume that f ∈ I0 and (zk)k∈Z is a sequence of complex
numbers with zk = kπ + `2(k). If f(zk) = 0 for any k ∈ Z, then f ≡ 0.

Proof By Lemma I.17, the infinite product representation

g(λ) := −(z0 − λ)
∏

j 6=0

zj − λ

jπ

is convergent and defines an entire function satisfying g(λ) = (1 + 0(1)) sinλ
uniformly for (n + 1/4)π ≤ |λ| ≤ (n + 3/4)π and n ∈ N . Hence h(λ) :=
f(λ)/g(λ) is an entire function. As f ∈ I0 it follows that there exists C > 0
so that for any λ ∈ C with |λ| = (n+ 1

2 )π (n ≥ 1),

|h(λ)| ≤ Ce|Imλ|/| sin λ| ≤ 4C

where for the latter inequality we used that

e|Imλ| ≤ 4| sin λ| ∀λ ∈ ∩k∈Z{|λ− kπ| ≥ π/4}

(cf [PT, Chapter 2]). Hence by the maximum principle, h is bounded on C

and thus constant by Liouville’s theorem. It follows that for some c ∈ C,

f(λ) = cg(λ) = c (1 + 0(1)) sinλ

uniformly on ∪n≥1{(n+1/4)π < |λ| < (n+3/4)π}. By assumption, f ∈ I0,
hence ‖f‖ <∞ and one concludes that c = 0, hence f ≡ 0. �

II.3 Analyticity properties

In this section we analyze the maps ϕ 7→ Ak(ϕ), α 7→ χj(·, α) and (α,ϕ) 7→
F j(α,ϕ) defined in section II.1. As already pointed out in section II.2,
An(ϕ) ∈ I∗

0 for any ϕ ∈W and n ∈ Z.

Lemma II.5 For given ϕ ∈W ,

sup
n∈Z

‖An(ϕ)‖I∗
0
≤ C (II.8)

where C > 0 can be chosen locally uniformly in ϕ.
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Proof By Lemma I.19, ∆(λ)2 − 4 admits an infinite product representation

∆(λ, ϕ)2 − 4 = −4(λ+
0 − λ)(λ−0 − λ)

∏

k 6=0

(λ+
k − λ)(λ−k − λ)

k2π2
.

Recall that for any ϕ ∈ W there exists ϕ0 ∈ L2
R so that ϕ ∈ V ′(ϕ0) and

Γn(ϕ) = Γn(ϕ0) is the circle of center τn(ϕ0) and radius 1
2γn(ϕ0)+2K where

K is given by

K :=
1

5
min

{ (

λ−n+1(ϕ) − λ+
n (ϕ0)

)

,
π

2
| n ∈ Z

}

≤ π

10
.

By Lemma I.17, for any λ ∈ Γn(ϕ0) (n ∈ Z)

∆(λ, ϕ)2 − 4 = −4(λ+
n − λ)(λ−n − λ)

(

sinλ

λ− nπ

)2

(1 + αn(λ))

where (αn(λ))n∈Z satisfies
∑

n supλ∈Γn(ϕ0) |αn(λ)|2 < ∞ locally uniformly

in ϕ. Choose n0 ≥ 1 so that for |n| ≥ n0, γn(ϕ0) ≤ 1
10 , |τn(ϕ0) − nπ| ≤ 1

20
and supλ∈Γn(ϕ0) |αn(λ)| ≤ 1

2 . It then follows that for λ ∈ Γn(ϕ0),

|λ− nπ| ≤ |λ− τn(ϕ0)| + |τn(ϕ0) − nπ| < π/4

and hence

sup
|n|≥n0

λ∈Γn(ϕ0)







(

sinλ

λ− nπ

)2

− 1





< 1.

This shows that there exists C1 > 0 such that for any λ ∈ ∪|n|≥n0
Γn(ϕ0)

|∆(λ, ϕ)2 − 4| ≥ 1/C2
1 (II.9)

and thus, for C2 := C1π
2/2 and |n| ≥ n0,

|An(ϕ) · f | ≤ length (Γn)C1 sup
λ∈Γn

|f(λ)|

≤ C2‖f‖
where for the last inequality we have used (II.5). By the continuity of the
An’s, (II.8) then follows. As indicated, the constant C in (II.8) can be chosen
locally uniformly. �

Lemma II.6 For any n ∈ Z, the map An : W → I∗
0 , ϕ 7→ An(ϕ) is analytic.

Proof By Lemma II.5, An is locally bounded. Moreover, for any f ∈ I0,

ϕ 7→ An(ϕ) · f =

∫

Γn(ϕ)

f(λ)
c
√

∆(λ)2 − 4
dλ

is analytic, hence An is weakly analytic and the claimed statement follows
(cf e.g. [PT, Appendix A]). �
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Lemma II.7 Let α ∈ `2. Then χj(·, α) ∈ I0 for any j ∈ Z. Furthermore

sup
j∈Z

‖χj(·, α)‖ ≤ C

where C > 0 is a constant which can be chosen locally uniformly for α in `2.

Proof Let α ∈ `2 and j ∈ Z be given. By Lemma I.17, χj(·, α) is entire.
Hence f(λ) := (jπ−λ)χj(λ, α) is entire as well and satisfies by Lemma I.16,

f(λ) = (1 + 0(1)) sinλ

uniformly on ∪n≥0{(n+ 1
4 )π ≤ |λ| ≤ (n+ 3

4)π}. By the maximum principle
it then follows that for some constant C > 0

|f(λ)| ≤ Ce|λ| ∀λ ∈ C.

As χj(·, α) is entire one then concludes that

|χj(λ, α)| ≤ C ′e|λ|

for some constant C ′ > 0. It remains to show that

‖χj(·, α)‖ :=

(
∫ ∞

−∞
|χj(λ, α)|2dλ

)1/2

can be bounded as claimed.
By Lemma I.19, there exists a constant C1 > 0 so that



(jπ − λ)χj(λ, α)


 ≤ C1 ∀λ ∈ R, ∀j ∈ Z.

By Lemma I.17, there exists C2 > 0 so that for any j ∈ Z

|χj(λ, α)| ≤ C2 ∀λ ∈ C with |λ− jπ| ≤ π/4.

Combining the last two estimates it follows that for any j ∈ Z,

|χj(λ, α)| ≤ C

1 + |jπ − λ| ∀λ ∈ R.

As C1, C2 can be chosen uniformly on bounded subsets of α’s in `2, so can
the constant C > 0. The above estimate then leads to the claimed result

‖χj(·, α)‖ ≤ C

(∫

R

dx

1 + x2

)1/2

= πC.

�

Lemma II.8 For any j ∈ Z, `2 → I0, α 7→ χj(·, α) is analytic.
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Proof By Lemma II.7, the map α 7→ χj(·, α) is locally bounded, hence it
suffices to prove that the map α 7→ χj(·, α) is weakly analytic. As I0 is a
Hilbert space and in view of Kotelnikov’s theorem (cf (II.6)) it is to prove
that for any n ∈ Z, α 7→ An(0) · χj(·, α) = (−1)n+1πχj(nπ, α) is weakly
analytic on `2 (cf [PT, Appendix A, Theorem 3]). By definition, one has for
j 6= 0,

χj(nπ, α) =
α0 − nπ

jπ

∏

k 6=j,0

αk + (k − n)π

kπ

and for j = 0,

χ0(nπ, α) =
∏

k 6=0

αk + kπ

kπ
.

Hence for any α, β ∈ `2, the analyticity of χj(nπ, α + zβ) in z ∈ C is easily
established. �

To study the properties of the maps F j, we first need to establish additional
estimates for χj(λ, α) and An(ϕ).

Lemma II.9 For any given α ∈ `2 there exists C = C(α) > 0 so that for
any n, j ∈ Z and λ ∈ C

|χj(λ, α)| ≤ C

|jπ − λ| |ᾱn − λ|e|Imλ|

where ᾱn := nπ + αn (n ∈ Z). The constant C can be chosen uniformly on
bounded subsets of α’s in `2.

Proof Introduce for any n, j ∈ Z

f jn(λ, α) :=
jπ − λ

ᾱn − λ
χj(λ, α).

Notice that

f jn(λ, α) = χn(λ, α
j,n)

where αj,n ∈ `2 is defined by

αj,nk := αk ∀k ∈ Z\{n}
αj,nj := 0 ; αj,nn := 0 .

(II.10)

As ‖αj,n‖ ≤ ‖α‖ for any n, j ∈ Z, one concludes from Lemma II.7 that
f jn(·, α) ∈ I0 and

sup
j,n

‖f jn(·, α)‖ ≤ C
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where the constant C > 0 can be chosen uniformly on bounded subsets of
α’s in `2. Hence, by (II.5), one gets

sup
n,j

|f jn(λ, α)| ≤ C√
π
e|Imλ|.

�

Lemma II.10 Let ϕ ∈W . Then there exits C ≡ C(ϕ) > 0 so that for any
f ∈ I0 and n ∈ Z

|An(ϕ) · f | ≤ C sup{|f(λ)| | |λ− τn(ϕ)| ≤ |γn|} .

The constant C can be chosen locally uniformly in ϕ ∈W .

Proof Recall that An ≡ An(ϕ) is given by

An · f =

∫

Γn

f(λ)
c
√

∆(λ)2 − 4
dλ.

By the product representation of ∆(λ)2 − 4 and Lemma I.17,

∆(λ)2 − 4 = −4(λ+
n − λ)(λ−n − λ) (1 + %n(λ))

where
(

sup
|λ−τn|≤|γn|

|%n(λ)|
)

n∈Z
∈ `2.

Choose n0 so that for any |n| ≥ n0, sup|λ−τn|≤|γn| |%n(λ)| ≤ 1/2. It then
follows that there exists C1 > 0 so that

inf
|λ−τn|≤|γn|

|1 + %n(λ)|1/2 ≥ 1/C1 ∀n ∈ Z. (II.11)

Also recall that, with s
√

denoting the standard root (cf Section I. Ss:Branches
of square roots)

c
√

∆(λ)2 − 4 = 2i
s

√

(λ+
n − λ)(λ−n − λ)

√

1 + %n(λ)

with the appropriate choice of the sign of the root
√

1 + %n(λ). For n ∈ Z

with γn = 0 one gets by Cauchy’s theorem

|An · f | = 2π






f(τn)
√

1 + %n(τn)





 ≤ 2πC1|f(τn)|.

If γn 6= 0, deform the contour Γn to the straight line

λ(t) = τn + t · γn/2 (−1 ≤ t ≤ 1)
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traversed in both directions, but with different choices of the sign of the
root. In this way one obtains

|An · f | = 2






∫ 1

−1

f (λ(t))

2iγn

2

√
t2 − 1

√

1 + %n (λ(t))

γn
2
dt






≤ πC1 sup
|λ−τn|≤|γn|

|f(λ)|.

It is easy to see that C1 in (II.11) can be chosen locally uniformly on W . �

We can now state the main result of this section:

Proposition II.11 For each j ∈ Z the map F j is analytic from `2 × W
into `2. Furthermore the F j are locally bounded uniformly in j ∈ Z.

Proof Recall that for any (α,ϕ) ∈ `2 ×W and k, j ∈ Z with k 6= j,

F jk (α,ϕ) = (k − j) Ak(ϕ) · χj(·, α).

By Lemma II.6 and Lemma II.8, each component F j
k , with k 6= j, of F j

is analytic and F jj (α,ϕ) = ᾱj − τj(ϕ). Thus F j is analytic if it is locally

bounded as a map from `2×W into `2 (cf [KP, Appendix A, Theorem A.3]).
To prove this notice that by Lemma II.10, there exists C(ϕ) > 0 so that

|F jk (α,ϕ)| ≤ C(ϕ) sup
|λ−τk |≤|γk|

|k − j| |χj(λ, α)|.

By Lemma II.9, for any k, j ∈ Z with k 6= j and λ ∈ C

|χj(λ, α)| ≤ C(α)






ᾱk − λ

jπ − λ






e|Imλ|.

Notice that for |λ− τk| ≤ |γk| one has

|ᾱk − λ| ≤ |αk| + |τk − kπ| + |γn| ,
|jπ − λ| ≥ C1〈j − k〉

and
|Imλ| ≤ |λ− kπ| ≤ |τk − kπ| + |γk| .

Furthermore (τk − kπ)k∈Z is a sequence in `2 which can be bounded locally
uniformly on W . Hence one concludes that

sup
j∈Z

(

∑

k∈Z
|F jk (α,ϕ)|2

)1/2

≤ C

where the constant C ≡ C(α,ϕ) can be chosen uniformly on bounded subsets
of α’s and locally uniformly in ϕ ∈W . �
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II.4 Implicit Function Theorem

In order to apply the implicit function theorem, we have to analyze the
Jacobian of F j with respect to α. At any point (α,ϕ) of `2×L2

R this Jacobian
is a bounded linear operator Bj ≡ Bj(α,ϕ) on `2 which is represented by
an infinite matrix Bj = (bjk,n) with elements

bjk,n ≡ bjk,n (α,ϕ) :=
∂

∂αn
F jk (α,ϕ).

One easily computes that for k 6= j and n 6= j

bjk,n = (k − j) Ak(ϕ) · χj(λ, α)

ᾱn − λ
(II.12)

whereas

bjk,n = δkn for k = j or n = j . (II.13)

Notice that by Proposition II.2 one has

ᾱjk(0) = kπ j, k ∈ Z ,

hence αj(0) ≡
(

αjk(0)
)

= 0 and for k 6= j and n 6= j, bjk,n at α = αj(0),

ϕ = 0 is given by

bjk,n =
k − j

2i

∫

Γk(0)

dλ

(nπ − λ)(λ− jπ)
= δkn .

Together with (II.12) we then conclude that Bj at α = αj(0), ϕ = 0 is the
identity on `2.

For α ∈ `2 and ϕ ∈ L2
R arbitrary we decompose Bj into its diagonal part,

Dj ≡ (djk,n), and its off-diagonal part Qj ,

Qj := Bj −Dj .

Denote by `2
R

the set of real valued sequences in `2.

Lemma II.12 For any j ∈ Z and any (α,ϕ) ∈ `2
R
× L2

R the diagonal oper-
ator Dj ≡ Dj(α,ϕ) is boundedly invertible on `2

R
.

Further there exists a constant C > 0 such that for all j ∈ Z

‖Dj‖L(`2) ≤ C and ‖(Dj)−1‖L(`2) ≤ C

where C can be chosen locally uniformly in (α,ϕ0) ∈ `2
R
× L2

R.
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Proof For any j, k ∈ Z, let

djk := (k − j)Ak ·
(

χj(λ)

ᾱk − λ

)

.

We prove that locally uniformly on `2
R
× L2

R

0 < inf
k,j∈Z

j 6=k
|djk| < +∞ .

Notice that χj(λ)/(ᾱk −λ) is real valued on R and does not change sign for
λ−k ≤ λ ≤ λ+

k . Further, (−1)k+1 c
√

∆(λ− i0)2 − 4 > 0 for λ−k < λ < λ+
k (cf

(I.50)). It follows that

(

min
λ−

k
≤λ≤λ+

k







(k − j)χj(λ)

ᾱk − λ







)

ak ≤ |djk| ≤
(

max
λ−

k
≤λ≤λ+

k







(k − j)χj(λ)

ᾱk − λ







)

ak

where for k with γk = 0, ak := π and for k with γk 6= 0

ak := 2

∫ λ+
k

λ−
k

dλ
+
√

∆(λ)2 − 4
.

Hence ak > 0 for any k ∈ Z and by the infinite product representation of
+
√

∆(λ)2 − 4 and Lemma I.17,

ak =

∫ λ+
k

λ−
k

dλ

+

√

(λ+
k − λ)(λ− λ−k )

(

1 + `2(k)
)

dλ

= π
(

1 + `2(k)
)

.

It follows that infk ak > 0 and supk ak < +∞ locally uniformly for ϕ ∈ L2
R

and it remains to show that

sup
k,j∈Z

j 6=k

max
λ−

k
≤λ≤λ+

k

|χj(λ)(jπ − λ)/(ᾱk − λ)| < +∞ (II.14)

and
inf

k,j∈Z

j 6=k
min

λ−
k
≤λ≤λ+

k

|χj(λ)(jπ − λ)/(ᾱk − λ)| > 0 . (II.15)

Estimate (II.14) is a consequence of Lemma II.9. To prove (II.15) notice
that

χj(λ)(jπ − λ)/(ᾱk − λ) = χk(λ, α
j,k)

where αj,k ∈ `2 is given by (II.10). Hence (II.15) is equivalent to

inf
k,j∈Z

j 6=k
min

λ−
k
≤λ≤λ+

k

|χk(λ, αj,k)| > 0 . (II.16)
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Clearly, for any k, j ∈ Z with j 6= k, minλ−
k
≤λ≤λ+

k
|χk(λ, αj,k)| > 0 and by

Lemma I.17, one has

|χk(λ, αj,k)| = 1 + `2(k)

uniformly for |λ− τk| ≤ γk and locally uniformly for α ∈ `2 as {αj,k | k, j ∈
Z, j 6= k} is relatively compact in `2. Hence there exists K ≥ 1 so that for
any |k| ≥ K + 1, and j ∈ Z with j 6= k

min
λ−

k
≤λ≤λ+

k

|χk(λ, αj,k)| ≥
1

2

which leads to (II.16). �

The Jacobian Bj can be written as

Bj = Dj(Id+ T j) and T j = (Dj)−1Qj .

By construction, T j =
(

T jk,n

)

k,n∈Z
is given by

T jk,n = (djk)
−1(k − j)Ak ·

(

χj(·)
ᾱn − λ

)

k 6= n, j 6= n (II.17)

and

T jk,n = 0 k 6= n or j 6= n . (II.18)

Lemma II.13 For any j ∈ Z and any (α,ϕ) ∈ `2
R
×L2

R such that F j(α,ϕ) =
0, the operator T j ≡ T j(α,ϕ) is a compact on `2 .

Proof Use that (k − j)Ak · χj = 0 to get

(k − j)Ak ·
(

χj
ᾱn − λ

)

= (k − j)Ak ·
(

χj(·)
ᾱn − λ

− χj(·)
ᾱn − τk

)

=
(k − j)

τk − ᾱn
2

∫ λ+
k

λ−
k

χj(λ)(τk − λ)

(ᾱn − λ) c
√

∆(λ)2 − 4
dλ.

(II.19)

By Lemma II.9






χj(λ)

ᾱn − λ






≤ C1

|jπ − λ| ∀λ ∈ R (II.20)

where C1 > 0 can be chosen independently of j, n ∈ Z. By Lemma I.17

| c
√

∆(λ)2 − 4| ≥ +

√

(λ+
k − λ)(λ− λ−k )/C2 ∀λ−k ≤ λ ≤ λ+

k (II.21)

for some constant C2 > 0 independent of k.
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For k with γk 6= 0, parametrize the path of integration in (II.19) by λ(t) =
τk + tγk/2,−1 ≤ t ≤ 1, to obtain from (II.20) - (II.21) for k, j, n ∈ Z with
k 6= n, j 6= n






(k − j)Ak ·

χj(λ)

ᾱn − λ







≤ 1

|τk − ᾱn|
2

∫ 1

−1







(j − k)χj(λ)

ᾱn − λ







|t|γk/2
| c
√

∆(λ)2 − 4|
γk
2
dt

≤ γk
|τk − ᾱn|

∫ 1

−1







j − k

jπ − λ(t)






C1

1√
1 − t2

C2dt .

Hence in view of Lemma II.12 and (II.17) (II.18)

|T jk,n| ≤ Cγk/〈k − n〉 (II.22)

where C > 0 is a constant independent of n, j, k and locally uniformly in
α. This inequality continues to hold for k with γk = 0 since in this case

λ+
k = λ−k = ᾱk and thus (k − j)Ak · χj(λ)

ᾱn−λ = 0.
Therefore

∑

k,n

|T jk,n|2 <∞

i.e. T j is Hilbert-Schmidt and hence compact. �

Notice that by Lemma II.3 if (α,ϕ) ∈ `2
R
× L2

R, satisfies F j(α,ϕ) = 0 then
for any k ∈ Z the entire function χj(α) has a root in Gk(ϕ) := [λ−k , λ

+
k ]. It

therefore make sense to restrict ourselves to the open domain V ⊂ `2
R
× L2

R
characterized by

λ+
k−1 + λ−k

2
< ᾱk <

λ+
k + λ−k+1

2
.

As a consequence, any solution (α,ϕ) ∈ V of F j(α,ϕ) = 0 leads to a mono-
tone sequence (ᾱjk)k∈Z, which in turn makes α unique.

Lemma II.14 Let j ∈ Z. For any (α,ϕ) ∈ V such that F j(α,ϕ) = 0 the
operator Bj ≡ B(α,ϕ) is a linear isomorphism on `2.

Proof As ϕ is of real type and α is real, the matrix elements of B j are real.
To prove that Bj is 1-1 it suffices to show that for any β ∈ `2

R
with Bj ·β = 0

one has β = 0. By the definition of Bj, Bj · β = 0 implies that βj = 0 and

∑

n

βn(k − j)Ak · (χj(λ)/(ᾱn − λ)) = 0 ∀k ∈ Z (II.23)

where χj(λ) ≡ χj(λ, α), Ak ≡ Ak(ϕ) and ᾱn ≡ nπ + αn.
Introduce

fj(λ) :=
∑

n

βnχj(λ)/(ᾱn − λ) .
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By Lemmas II.7 and II.4, fj ∈ I0 and the identities (II.23) then read

Ak · fj = 0 ∀k ∈ Z\{j}.

On the other hand, as F (α,ϕ) = 0, one has

Ak · χj = 0 ∀k ∈ Z\{j}.

As χj 6= 0 one deduces by Lemma II.4 and Lemma II.3 that Aj · χj 6= 0.
Thus one can define

gj(λ) := fj(λ) − Aj · fj
Aj · χj

χj(λ)

and one has
Akgj = 0 ∀k ∈ Z.

The entire function gj(λ) is real valued for λ ∈ R and as both χj and fj are
in I0, gj is in I0 as well. Hence in view of Lemma II.3 there exists for any
k ∈ Z a real number λ−k ≤ ηk ≤ λ+

k so that gj(ηk) = 0. By Lemma II.4 it

then follows that, gj ≡ 0, i.e. fj = cj χj with cj =
Aj ·fj

Aj ·χj
or

∑

n6=j
χj(λ)

βn
ᾱn − λ

= cjχj(λ)

or for any λ ∈ C \ {ᾱn | n ∈ Z}

π
∑

n6=j
βn/(ᾱn − λ) = cj .

As (α,ϕ) ∈ V , the zeroes ᾱn are pairwise distinct and one concludes that
βn = 0 ∀n ∈ Z. This shows that Bj is one to one.
By Lemmas II.12, II.13 and the Fredholm alternative, Bj is thus a linear
isomorphism. �

Lemma II.14 and Proposition II.11 allow to apply the implicit function the-
orem to any particular solution of F j(α,ϕ) = 0 in V . The upshot is the
following result.

Proposition II.15 For any j ∈ Z there exists a unique real analytic map

αj : L2
R → `2R

with graph in V such that

F j(αj(ϕ), ϕ) = 0 .

Further, for any k ∈ Z and any ϕ ∈ L2
R, ᾱjk(ϕ) ∈ Gk(ϕ).
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Remark To be precise, uniqueness holds within the class of all such real
analytic maps with graph in V .

Proof Let j ∈ Z and define E ≡ E j by

E := {ϕ ∈ L2
R | ∃α ∈ `2R such that (α,ϕ) ∈ V and F j(α,ϕ) = 0} .

Note that the zero potential is in E (cf Proposition II.2) and L2
R is connected.

To prove the existence of the map αj it thus suffices to show that E is open
and closed in L2

R.
Applying the implicit function theorem at any solution (α,ϕ) ∈ V of F j(α,ϕ) =
0 we conclude from Lemma II.14 that E is open. Further we claim that for
any solution (α,ϕ) ∈ V of F j(α,ϕ) = 0 one has

ᾱk ∈ Gk(ϕ) ∀k ∈ Z .

For k = j, this holds by definition. For k 6= j, the fact that Ak · χj(α) = 0
together with Lemma II.3 imply that χj has at least one root in Gk. As
(α,ϕ) ∈ V , it follows that ᾱk ∈ Gk ∀k ∈ Z.
This claim allows to prove that E is closed. Let (ϕn)n≥1 be a sequence in
E converging to ϕ0 in L2

R. For each n ≥ 1 let α(n) be an element of `2
R

such that F j(α(n), ϕn) = 0. Then ᾱn := αk(n) + kπ is in Gk(ϕn). As the
periodic eigenvalues are locally bounded, ∪n≥1Gk(ϕn) is a bounded set of
R for each k ∈ Z. Therefore, there exists a subsequence, again denoted by
(ϕn)n≥1 such that αk(n) → αk for all k ∈ Z. It follows that ᾱk := αk + kπ
is in Gk for any k ∈ Z and in particular (α,ϕ) ∈ V and F j(α,ϕ0) = 0. This
shows that E is closed.
To prove tha claimed uniqueness, assume that F j(α,ϕ) = F j(β, ϕ) = 0 for
some (α,ϕ) and (β, ϕ) in V . Then for all k 6= j, Ak ·χj(α) = Ak ·χj(β) = 0
and by Lemma II.4, Aj · χj(α) 6= 0 and Aj · χj(β) 6= 0. Thus the entire

function g := χj(α) − Aj ·χj(α)
Aj ·χj(β) χj(β) satisfies Ak · g = 0 for all k ∈ Z. By

Lemma II.7 g is in I0 and we conclude from Lemma II.3 and Lemma II.4
that g ≡ 0. As (α,ϕ) and (β, ϕ) are in V , it then follows that α = β.

As a consequence the map αj : L2
R → `2

R
is well defined and has is graph in V .

By the implicit function theorem αj is analytic on a complex neighbourhood
of L2

R. �

Lemma II.16 For any ϕ in L2
R and k ∈ Z,

ᾱjk(ϕ) → λ̇k(ϕ) as j → ±∞

where λ̇k(ϕ) are the roots of ∆̇(·, ϕ) = d
dλ∆(·, ϕ).

Proof We focus on the limit j → +∞ as the limit j → −∞ is calculated in the
same way. For each k the sequence (ᾱjk)j∈N lies in Gk. As Gk is compact,
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there exists a subsequence, again denoted by (ᾱjk)j∈N which converges to
some element ᾱ∞

k ∈ Gk. Let α∞ = (α∞
k )k∈Z where α∞

k := ᾱ∞
k − kπ.

For each sequence β ∈ `2, introduce in addition to the functions χj the entire
function

χ(λ, β) := (β0 − λ)
∏

k 6=0

βk + kπ − λ

kπ
.

Notice that uniformly on the contours Γk one has as j → +∞,

(k − j)χj(λ, α
j) =

k − j

jπ − λ
χ(λ, αj) → −πχ(λ, α∞) (II.24)

and hence

Ak · χ(·, α∞) = 0 for all k ∈ Z .

On the other hand, by Lemma I.20, ∆̇(·) = 2χ(λ, β) with β = (λ̇k − kπ)k∈Z
and as ∆̇(λ)

c
√

∆(λ)2−4
dλ is an exact differential on Γk, one has

Ak · χ(·, β) = 0 for all k ∈ Z .

Let f := χ(β) − χ(α∞). By Lemma II.3 there exists ξ ≡ (ξk)k∈Z ∈ `2 such

that f(ξk + kπ) = 0 for all k ∈ Z. Therefore the function λ 7→ f(λ)
χ(λ,ξ) is

entire.
In view of Lemma I.17

χ(λ, β) = sinλ(1+o(1)), χ(λ, α∞) = sinλ(1+o(1)), χ(λ, ξ) = sinλ(1+o(1))

uniformly on {(n+ 1/4)π ≤ |λ| ≤ (n+ 3/4)π} and hence as n→ +∞

f(λ)

χ(λ, ξ)
= o(1)

uniformly on {(n + 1/4)π ≤ |λ| ≤ (n + 3/4)π}. Hence by the maximum
principle, f ≡ 0, i.e. α∞ = β. �

Each map αj extends to a complex neighbourhood of L2
R which might de-

pend on j. The following proposition asserts that the complex extensions
can be done uniformly in j ∈ Z.

Proposition II.17 The real analytic maps αj : L2
R → `2

R
(j ∈ Z) of Propo-

sition II.15 extend to a common complex neighbourhood U of L2
R.

Proof By the implicit function theorem it suffices to show that the inverses
of the Jacobians

Bj(αj(ϕ), ϕ) =
∂F j

∂α
(αj(ϕ), ϕ)
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are bounded uniformly in j and locally uniformly in ϕ ∈ L2
R.

We begin by proving that at each point ϕ0 of L2
R

‖(Bj(αj(ϕ0), ϕ0))
−1‖L(`2) <∞ (II.25)

uniformly for all j ∈ Z. By Lemma II.16 and in particular (II.24), one has

(k − j)χj(λ, α
j) → − 1

2π
∆̇(λ) for j → ±∞

and hence for bjk,n ≡ (Bj(αj(ϕ0), ϕ0))k,n given in (II.12)

bjk,n → Ak ·
−1

2π

∆̇(λ)

λ̇n − λ
=: b∞k,n as j → ±∞

uniformly for k and n in Z. Let B∞ := (b∞k,n)k,n∈Z and denote by D∞

the diagonal part of B∞. The sequence (αj)j∈Z is relatively compact in `2.
Hence by Lemma II.12, Dj → D∞ in operator norm and D∞ is boundedly
invertible. Write B∞ = D∞(Id+T∞) with T∞ := (D∞)−1(B∞−D∞). By
(II.22) and the compacity of (αj)j∈Z, one sees that

|T jk,n(αj(ϕ0), ϕ0)| ≤ Cγk/〈k − n〉

Hence the same estimate holds for T∞ and thus T j → T∞ in operator norm
and T∞ is compact.
We claim that B∞ is one to one. Assume that B∞ · β = 0 for some element
β ∈ `2

R
. Following the proof of Lemma II.14 one gets Ak · f = 0 for all k ∈ Z

where f :=
∑

n βn
∆̇(λ)

λ̇n−λ
∈ I0 and w proves that f ≡ 0, i.e. β = 0.

In view of the Fredholm alternative, B∞ is boundedly invertible. As Bj →
B∞ in operator norm and for each j the linear operator B j(αj(ϕ0), ϕ0) is
boundedly invertible, one concludes that (II.25) holds uniformly for j ∈ Z

i.e.
sup
j∈Z

‖Bj(αj(ϕ0), ϕ0)
−1‖ <∞ .

By Propostion II.11, the maps F j are analytic and locally uniformly bounded
on W uniformly in j. Thus by Cauchy’s estimates (II.25) remains valid
uniformly on a complex neighbourhood of each ϕ0 in L2

R and uniformly for
j ∈ Z. �

II.5 Normalization

Consider the entire functions ψ̃j := χj(α
j). By construction, Ak · ψ̃j = 0 for

all k 6= j and by Lemma II.3 Aj · ψ̃j 6= 0. Hence we can normalize ψ̃j

ψj :=
1

Aj · ψ̃j
ψ̃j
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which then sastisfy (II.1). It turns out that the constants Aj · ψ̃j can be
explicitely computed.

Proposition II.18 For any j ∈ Z and any ϕ ∈ L2
R,

Aj · χj(αj) = −π .

Proof Let ψ̃j := χj(α
j). By Lemma I.16 one has as n→ +∞

ψ̃j(λ) =
−1

jπ − λ
sinλ (1 + o(1))

and
∆(λ)2 − 4 = −4 sin2 λ (1 + o(1))

uniformly on {(n+ 1
4)π ≤ |λ| ≤ (n+ 3

4)π}. As in view of (I.49), c
√

∆(λ)2 − 4 =
−2i sin λ(1 + o(1)), one then has for n→ ∞

ψ̃j(λ)
c
√

∆(λ)2 − 4
=

−1

2iλ
(1 + o(1)) (II.26)

uniformly on {(n+ 1
4)π ≤ |λ| ≤ (n+ 3

4)π}.
Due to the asymptotics of the eigenvalues λ±k one can choose N ≥ 1 so large
that |λ±n − nπ| < π/2 for |n| ≥ N . By Cauchy’s theorem it follows that for
n > max(N, j),

∫

C(0,nπ+π/2)

ψ̃j(λ)
c
√

∆(λ)2 − 4
dλ = Aj · ψ̃j (II.27)

where C(0, nπ+ π/2) denotes the counterclockwise oriented circle of radius
nπ + π/2 centered at 0. Comparing (II.26) and (II.27) one concludes that
Aj · ψ̃j = −π. �

Remark One can explain this computation in aa easier way for finite gap

potentails. It turns out that ηj :=
ψ̃j√
∆2−4

dλ is an Abelian differential on the

Riemann surface Σ, given by y2 = ∆(λ)2−4. These Abelian differentials are
holomorphic except at the two points at infinity where they have a simple
pole. Let ak be the cycle on the canonical sheet Σc of Σ determined by
the canonical root c

√

∆(λ)2 − 4 which correspond to the contours Γk on C.
Then by Cauchy’s theorem, the conditions

∫

Γk
ηj = 0 for all k 6= j lead to a

relation between
∫

Γj
ηj and the residue of the pole of ηj at infinity on Σc.

II.6 Estimates for the zeroes

In this section we prove the refined estimates for the zeroes (ᾱjk)k∈Z\{j} of
χj(α

j) as stated in Theorem II.1.
Let U be a neighbourhood of L2

R as in Proposition PropositionII.23.
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Proposition II.19 For any ϕ ∈ U ,

sup
j 6=k

|νjk(ϕ) − τk(ϕ)| ≤ C|γk(ϕ)|2ak (II.28)

where (ak)k∈Z ∈ `2 can be chosen locally independently of ϕ.

Proof Denote by Γ
′

k ≡ Γ
′

k(ϕ) the counterclockwise oriented circle with center

τj and radius




γj

2



 + min
(

K, 1
j

)

. By Lemma I.17 one has uniformly for

λ ∈ Γ
′

k and k 6= j

χj
(

λ, αj
)

=
ᾱjk − λ

τj − λ

(

1 + `2(k)
)

and
c
√

∆(λ)2 − 4 = 2i s

√

(λ+
k − λ)(λ−k − λ)

(

1 + `2(k)
)

where the error terms are uniform with respect to j and λ ∈ Γ
′

k and, locally
with respect to ϕ ∈ U . Therefore

χj
(

λ, αj
)

c
√

∆(λ)2 − 4
=

ᾱjk − λ

2i(τj − λ) s

√

(λ+
k − λ)(λ−k − λ)

fjk(λ)

where uniformly for λ ∈ Γ
′

k and k 6= j

fjk(λ) = 1 + `2(k) .

As Ak · χj
(

αj
)

= 0 for k 6= j, it follows that

∫ λ+
k

λ−
k

ᾱjk − λ

(τj − λ) s

√

(λ+
k − λ)(λ−k − λ)

fjk(λ)dλ = 0.

Using an integration variable λ(t) = τk + tγk

2 and writing ᾱjk = τk + ξjk one
gets

∫ 1

−1

ξjk − t γk/2

(τj − τk − tγk/2)
+
√

1 − t2
fjk(λ(t))dt = 0.

Denoting

Ajk(λ) :=
τj − τk
τj − λ

fjk(λ)

the last equation can be written as

ξ
(j)
k

∫ 1

−1

Ajk(λ(t))
+
√

1 − t2
dt =

γk
2

∫ 1

−1
t
Ajk(λ(t))

+
√

1 − t2
dt .
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Making the change of variable of integration t→ −t and adding the expres-
sion to the one above one gets

ξ
(j)
k

∫ 1

−1

dt
+
√

1 − t2
(Ajk(λ(t)) +Ajk(λ(−t))) =

γk
2

∫ 1

−1

tdt
+
√

1 − t2
(Ajk(λ(t)) −Ajk(λ(−t))) .

(II.29)

Observe that uniformly for t ∈ (−1, 1)

Ajk(λ(t)) = 1 + `2(k) . (II.30)

To estimate the difference Ajk(λ(t))−Ajk(λ(−t)), we consider k large enough
(locally uniformly in ϕ) such that |λ+

k − kπ| < π/4 and |λ−k − kπ| < π/4 (cf.
Proposition I.5). We denote by Dk the circle of center kπ and radius π/2.
Express Ajk(λ) − 1 for λ in the interior of Dk by the Cauchy formula

Ajk(λ) − 1 =
1

2iπ

∫

Dk

Ajk(z) − 1

z − λ
dz

to get

Ajk(λ(t)) −Ajk(λ(−t)) =
1

2iπ

∫

Dk

(Ajk(z) − 1)
λ(t) − λ(−t)

(z − λ(t))(z − λ(−t))dz .

Since λ(t) − λ(−t) = tγk, one then obtains taking into account (II.30) and
the size of Dk,

Ajk(λ(t)) −Ajk(λ(−t)) = γk`
2(k) .

Substituting this expression into (II.29), we get

ξ
(j)
k

∫ 1

−1

dt
+
√

1 − t2
(Ajk(λ(t)) +Ajk(λ(−t))) = |γk|2`2(k) .

Using again (II.30) we conclude |ξjk| ≤ |γk|2`2(k) as claimed. �
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III.1 Introduction

In this chapter we prove that NLS can be brought into normal form as stated
in Theorem 0.1.
For a finite dimensional integrable system there is a well known procedure to
define actions and angles. Actually Flaschka and McLaughlin, extending this
procedure, defined in ([FM]) actions for the KdV equation. Angular vari-
ables which linearize the KdV flow were introduced by a number of authors
(Dubrovin, Its, Krichever, Matveev, Novikov [D], [DKN1], [DKN2], [DMN],
[DN], [IM], McKean and van Moerbecke [MM] and McKean and Trubowitz
[MT1], [MT2]). In [BBEIM] and [MV] a similar algebro-geometric construc-
tion is carried out for the NLS equation.
The proof of Theroem 0.1 uses the definitions of actions Ik and angular
variables θk given by the algebro-geometric approach as an ansatz. We then
prove that the associated Birkhoff coordinates

xk =
√

2Ik cos θk, yk =
√

2Ik sin θk

can be extended to real analytic functions defined on all of L2
R, are canonical

and, thus, give rise to a global canonical coordinate system.

Action-angle construction

Before going on into the details of the proof we would like to review the for-
mal construction of actions and angles. To this end we recall some notation
of chapter I and introduce some more concepts.
Consider the Floquet matrix

M(1, λ) =

(

M11 M12

M21 M22

)

(1, λ)

associated with the equation L(ϕ)F = λF and its discriminant ∆(λ) =
TrM(1, λ). The periodic spectrum of ϕ is given by the zeroes of the entire
function ∆2(λ;ϕ) − 4 (with multiplicities) and we have the product repre-
sentation (cf section I.6)

∆2(λ) − 4 = −4(λ−0 − λ)(λ+
0 − λ)

∏

k 6=0

(λ+
k − λ)(λ−k − λ)

k2π2
.

Hence this function is a spectral invariant. The square root of ∆2(λ) − 4 is
defined on the hyperelliptic Riemann surface

Σϕ =
{

(λ, y) ∈ C
2 | y2 = ∆2(λ) − 4

}

whose genus is precisely the number of open gaps of ϕ minus 1. It may be
viewed as two copies of the complex plane slit open along each open gap and
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then glued together crosswise along the slits. Clearly, the Riemann surface
is a spectral invariant associated with ϕ.
To define actions and angles we also need to consider the Dirichlet spectrum
(µk(ϕ))k∈Z which satisfies (cf sections I.3 and I.4)

. . . < µ−1(ϕ) < µ0(ϕ) < µ1(ϕ) < . . .

and
λ−k (ϕ) ≤ µk(ϕ) ≤ λ+

k (ϕ), k ∈ Z.

Using the Wronskian identity one proves (cf (I.68))

∆2(µk) − 4 = (M21 +M12)
2




1,µk
.

Therefore with any Dirichlet eigenvalue µk one can uniquely and analytically
associate a sign of the root

√

∆2(µk) − 4 by defining (cf (I.68))

∗
√

∆2(µk) − 4 = (M21 +M12)




1,µk
.

This in turn defines the Dirichlet divisor

µ∗k =
(

µk,
∗
√

∆2(µn) − 4
)

on the Riemann surface Σϕ.
The Dirichlet eigenvalues can be complemented to a symplectic coordinate
system on L2

R by introducing the quantities (cf [GG])

Kk(ϕ) = 2 log
(−1)k

2
(M11 +M12 +M21 +M22)





1,µk
.

Then
ϕ 7→ (µ̂k(ϕ), Kk(ϕ))k∈Z

where µ̂k = µk − kπ, defines a real analytic diffeomorphism from L2
R into a

subset of a suitable Hilbert space of sequences; furthermore

{µk, µ`} = 0

{Kk, µ`} = δk`

{Kk,K`} = 0

for all k, ` ∈ Z (cf [GG] and also [G]). Hence the new variables are canonical
and the induced symplectic 1-form is given by

α =
∑

j∈Z
Kjdµj .

We may now define actions by Arnold’s formula,

Ik =
1

2π

∫

ck

α =
1

2π

∑

j∈Z

∫

ck

Kjdµj ,
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Figure III.1: a-cycles

where ck is a cycle on the invariant torus Iso(ϕ) corresponding to µk. As
dµj = 0 along ck for j 6= k,

Ik =
1

2π

∫

ck

Kkdµk =
1

π

∫

ck

µk
(Ṁ11 + Ṁ12 + Ṁ21 + Ṁ22)

(M11 +M12 +M21 +M22)







1,µk

dµk

by partial integration.
Noticing that

(M11 +M12 +M21 +M22)




1,µk
= ∆(µk) + ∗

√

∆2(µk) − 4

a short calculation gives

Ik =
1

π

∫

ck

µ
∆̇(u)

√

∆2(µ) − 4
dµ.

In particular the actions only depend on the periodic spectrum. Finally by
analytic continuation the latter integral may be interpreted as a contour
integral on Σϕ, with contour given by the cycle ak on the canonical sheet
Σc
ϕ around the lift of [λ−k , λ

+
k ] as indicated in figure III.1. This formula was

first established in [FM] for KdV and in [MV] for NLS.
Assume that the actions Ik admit canonically conjugate angles θk . Then
the 1-form α reads

α =
∑

j∈Z
Ijdθj + dS

where dS is some exact 1-form. A priori there is no reason for the 1-form
dS to be identically zero. But it turns out that with the choice dS = 0 the
corresponding angles give rise to the canonical relations {Ik, θ`} = δk` (see
section III.6).
Assuming that α =

∑

j∈Z Ijdθj, we obtain, at least formally

dθk =
∂α

∂Ik
:= αk.

Integrating along any path on Iso(ϕ) from some fixed point ϕ0 we then get

θk =

∫ ϕ

ϕ0

αk.

This integral is independent of the path chosen since dα = 0 on Iso(ϕ).
Recall from [G] (see also Proposition I.40) that the isospectral torus can

be parametrized by
(

µj, sign
∗
√

∆2(µj) − 4
)

j∈Z
. We then take ϕ0 to be the

unique element of Iso(ϕ) with

µj(ϕ0) = λ−j (ϕ0) ∀j ∈ Z
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and choose the path from ϕ0 to ϕ obtain by moving successively µj from λ−j
to µ∗j(ϕ) for j = 0, 1,−1, 2, . . .. This way we obtain

θk =
∑

j∈Z

∫ µ∗j

λ−j

αk.

It remains to identify the 1-forms αk. From α =
∑

j∈Z Ijdθj we have

Ij =
1

2π

∫

cj

α =
1

2π

∫

aj

α,

hence
1

2π

∫

aj

αk =
∂Ij
∂Ik

= δjk

for all j, k ∈ Z. But these properties uniquely characterize a holomorphic
1-form on Σϕ \ {∞±}. Actually αk coincides with the 1-form constructed
in chapter II, i.e. (cf Theorem II.II.1)

αk =
ψk(λ)

√

∆2(λ) − 4
dλ .

Then we define

θk =
∑

j∈Z

∫ µ∗j

λ−j

ψk(λ)
√

∆2(λ) − 4
dλ mod 2π

for each open gap (λ−k , λ
+
k ). By a slight abuse of terminology, we may refer

to the map ϕ 7→ θ(ϕ) ≡ (θk(ϕ))k∈Z as the Abel map.

Birkhoff coordinates

The actions Ik are real analytic on L2
R (see section III.2) and each angle θk

is real analytic modulo 2π on the dense open domain L2
R\Dk with

Dk = {ϕ ∈ L2
R | γk(ϕ) = 0}

(see section III.3). In section III.4 we show that the associated Birkhoff
coordinates (k ∈ Z)

xk =
√

2Ik cos θk, yk =
√

2Ik sin θk

extend real analytically to a complex neighborhood W of L2
R.

To extend xk and yk to all of L2
R we prove that the blow up of θk when γk

collapses is compensated by the rate at which Ik vanishes in the process.
For complex potential, i.e. ϕ ∈ W\L2

R, the situation is more complicated
since the associated Zakharov-Shabat operator is no more selfadjoint. In
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particular, it may happen that λ−k = λ+
k but µk 6= λ−k . In such a case,

although Ik vanishes, xk and yk will not vanish.
The canonical relations {xk, x`} = {yk, y`} = 0 and {xk, y`} = δk`, k, ` ∈ Z,
are proved in section III.6. In section III.7 we use these canonical relations
(cf [KM]) to show that the map

Ω : L2
R 3 ϕ 7→ (xk, yk)k∈Z ∈ `2(Z,R2)

is a local diffeomorphism at every point ϕ ∈ L2
R . Finally in section III.8 we

prove, using the property of the action map, that Ω is a global diffeomor-
phism and hence a canonical transformation.

III.2 Actions

In this section we define the action variables In as introduced by McKean-
Vaninsky [MV] (cf also [FM]) and prove their analyticity as well as asymp-
totic estimates.
Choose a connected neighborhood W of L2

R := {(ϕ1, ϕ1) | ϕ1 ∈ L2
C
} in

L2
C
× L2

C
, as given by Lemma I.12. For ϕ ∈ W and n ∈ Z, one then has

Reλ+
n < Reλ−n+1. In particular,

[λ−n , λ
+
n ] := {(1 − t)λ−n + tλ+

n | 0 ≤ t ≤ 1} ⊆ C

are pairwise disjoint intervals. They admit mutually disjoint discs Discn ⊆
C which can be chosen locally independently of ϕ.

Definition III.1 The neighborhoods Discn are called isolating neighbor-
hoods for the intervals [λ−n , λ

+
n ].

Arguing as in [FM] (cf [MV]) one defines the action variables,

In :=
1

π

∫

Γn

λ
∆̇(λ)

c
√

∆(λ)2 − 4
dλ (n ∈ Z)

where Γn is a circuit around [λ−n , λ
+
n ] inside Discn with counterclockwise

orientation, and the dot in ∆̇(λ) denotes differentiation with respect to λ.
The root c

√

∆(λ)2 − 4 is defined in section I. I.7 . By Cauchy’s theorem the
definition of In does not depend on the choice of Γn as long as it stays inside
Discn. In particular, Γn can be chosen to be locally independent of ϕ.

Theorem III.2 For any n ∈ Z, the function In is analytic on W with
L2-gradient

∇ϕ(x)In = − 1

π

∫

Γn

∇ϕ(x)∆(λ)
1

c
√

∆(λ)2 − 4
dλ. (III.1)

Moreover, for ϕ ∈ L2
R, each function In is real, nonnegative and vanishes

iff λ+
n = λ−n .
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Proof Locally on W the contours of integration Γn can be chosen indepen-
dently of ϕ. As ∆ is an analytic function of λ and ϕ and c

√

∆(λ)2 − 4 is
analytic in a neighborhood of Γ, the function In is clearly analytic on W .
To obtain its gradient we observe that for ϕ ∈ V, (−1)k∆(λ) ≥ 2 and hence
(−1)n∆(λ) ±

√

∆(λ)2 − 4 > 0 on the interval [λ−n , λ
+
n ]. Therefore, on a

sufficiently small neighborhood Wn ⊆W of L2
R and a circuit Γn sufficiently

close to [λ−n , λ
+
n ], the principle branch of the logarithm

h(λ) = log(−1)n
(

∆(λ) − c
√

∆(λ)2 − 4
)

is well defined along Γn. Since ḣ(λ) = −∆̇(h)/ c
√

∆(λ)2 − 4, partial integra-
tion gives

In =
1

π

∫

Γn

log(−1)n
(

∆(λ) − c
√

∆(λ)2 − 4
)

dλ.

Again keeping Γn fixed and taking the gradient with respect to ϕ ∈Wn one
obtains the above formula for ∂In

∂ϕj
(1 ≤ j ≤ 2) on Wn. As both sides of

(III.1) are analytic on W and W is assumed to be connected, (III.1) holds
on all of W .
To prove the last statement of the theorem we observe that

∫

Γn

∆̇(λ)
c
√

∆(λ)2 − 4
dλ = 0 (III.2)

in view of the existence of a primitive. With λ̇n denoting the root of ∆̇ near
λ−n and λ+

n we can therefore also write

In =
1

π

∫

Γn

(λ− λ̇n)
∆̇(λ)

c
√

∆(λ)2 − 4
dλ. (III.3)

For ϕ ∈ L2
R, we then obtain

In =
2

π

∫ λ+
n

λ−n

(−1)n−1(λ− λ̇n)
∆̇(λ)

+
√

∆(λ)2 − 4
dλ

by shrinking the contour of integration to the real interval [λ−
n , λ

+
n ] and

taking into account the definition of the canonical root c
√

∆(λ)2 − 4. Since

sign
(

(λ− λ̇n)∆̇(λ)
)

= (−1)n−1 on [λ−n , λ
+
n ], the integrand is nonnegative

and the result follows. �

Let
Dn := {ϕ ∈W | γn = 0}

be the subvariety of potentials in W with collapsed n’th gap. Here γn
denotes the gap length γn := λ+

n − λ−n ∈ C. As In and γ2
n are both analytic

on W , their quotient is analytic on W\Dn. We show that In/γ
2
n extends

analytically to all of W to a nonvanishing function.

100 CHAPTER III. BIRKHOFF COORDINATES

Theorem III.3 The quotient In/γ
2
n extends analytically to W and satisfies

4
In
γ2
n

= 1 + `2(n) (n ∈ Z)

locally uniformly on W . Moreover, the real part of
(

4 In
γ2

n

)

is locally uniformly

bounded away from zero in a sufficiently small neighborhood W ′ ⊆W of L2
R.

As a consequence

ξn := +
√

4In/γ2
n

is a real analytic, nonvanishing function on W ′ with

ξn = 1 + `2(n)

locally uniformly on W ′.

Remark In the sequel, we will assume that the neighborhood W has been
chosen so that W ′ can be chosen to be W .

Proof We show that In/γ
2
n extends continuously to all of W and is weakly

analytic when restricted to Dn. By standard arguments it then follows that
In/γ

2
n is analytic on all of W . Recall the product expansion (cf Lemma I.19

and Lemma I.20),

∆(λ)2 − 4 = −4(λ+
0 − λ)(λ−0 − λ)

∏

k 6=0

(λ−k − λ)(λ+
k − λ)

k2π2

∆̇(λ) = 2(λ̇0 − λ)
∏

k 6=0

(λ̇k − λ)

kπ

where λ̇k are the roots of ∆̇(λ). Along the circuit Γn we then can write

∆̇(λ)
c
√

∆(λ)2 − 4
=

λ− λ̇n

s

√

(λ−n − λ)(λ−n − λ)
χn(λ)

with (cf (I.48))

χn(λ) : =
∆̇(λ)

λ− λ̇n

s

√

(λ−n − λ)(λ−n − λ)

c
√

∆(λ)2 − 4

= i
∏

k 6=n

λ̇k − λ

s

√

(λ+
k − λ)(λ−k − λ)

.
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Notice that χn(λ) is analytic in λ on Discn. With the formula (III.3) for In
we then get for ϕ ∈W\Dn,

In =
1

π

∫

Γn

(λ− λ̇n)
∆̇(λ)

c
√

∆(λ)2 − 4
dλ

=
1

π

∫

Γn

(λ− λ̇n)
2

s

√

(λ+
n − λ)(λ−n − λ)

χn(λ)dλ

=
γ2
n

4π

∫

Γ′
n

(z − δn)
2

s
√
z2 − 1

χn

(

τn + z
γn
2

)

dz

upon the substitution λ = τn+z γn

2 , where Γ′
n is a circuit around [−1, 1], τn =

1
2(λ+

n + λ−n ) and δn = 2(λ̇n − ζn)/γn satisfies by Lemma I.22

δn = |γn|1/2`2(n) (III.4)

Thus, on W\Dn,

4In
γ2
n

=
1

π

∫

Γ′
n

(z − δn)
2

s
√
z2 − 1

χn

(

τn + z
γn
2

)

dz.

The right side of the last identity is continuous on all of W including Dn,
since in view of (III.4), when γn tends to 0, it tends to

1

π

∫

Γ′
n

z2

s
√
z2 − 1

χn(τn)dz = χn(τn)
2

π

∫ 1

−1

x2

i +
√

1 − x2
dx

= −iχn(τn).

where we used that s
√
z2 − 1 |z=x−i0= i by section I.7. But χn and τn

are analytic on W and hence 4In
γ2

n
restricted to the analytic subvariety Dn

is analytic. By standard arguments we then conclude that In/γ
2
n extends

analytically to all of W . Moreover, by the estimates Lemma I.17 and the
definitions of the standard and the canonical square roots, χn(λ) = i+`2(n)
for λ near [λ−n , λ

−
n ] locally uniformly on W . Together with the last two

identities and in view of the asymptotics of δn (cf (III.4))we then conclude
that

4
In
γ2
n

= 1 + `2(n)

locally uniformly on W .
Finally on L2

R

0 < 4
In
γ2
n

=
2

π

∫ 1

−1
χn

(

τn +
sγn
2

) (s− δn)
2

+
√

1 − s2
ds

→
n→∞

lim
n→∞

χn(τn) = 1
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locally uniformly. Therefore, by choosing the complex neighborhood W ′ ⊆
W of L2

R sufficiently small we can assure that, for any n ∈ Z, Re(4In/γ
2
n) is

positive and on W ′ locally uniformly bounded away from zero. �

In section III.3 we show that the map Ω from L2
C

into the space of Birkhoff
coordinates is proper - that is, the preimages of compact sets are compact.
This requires an apriori estimate of

∫ 1
0 ϕ1ϕ2dx in terms of the actions In.

It stems from an identity, relating the actions (given by contour integrals)

and the asymptotic expansion of
∫ λ
λ0
λ ∆̇(λ)

c
√

∆(λ)2−4
dλ at λ = ∞.

Proposition III.4 For ϕ ∈ L2
R,

∑

k∈Z
Ik(ϕ) =

∫ 1

0
ϕ1ϕ2dx. (III.5)

Proof As both sides of (III.5) are real analytic on L2
R it suffices to prove the

identity near ϕ = 0. Moreover, as finite gap potentials are dense it suffices
to show the identity for finite gap potentials near zero. Given a finite gap
potential ϕ ∈ L2

R (near the zero potential) there exists K ≥ 1 such that

∑

k∈Z
Ik =

∑

|k|≤K
Ik =

∑

|k|≤K

1

π

∫

Γk

λ∆̇(λ)
c
√

∆(λ)2 − 4
dλ.

By Cauchy’s theorem, we have for R = π(K ′ + 1
2) with K ′ ≥ K sufficiently

large

∑

|k|≤K
Ik =

1

π

∫

|λ|=R
λ

∆̇(λ)
c
√

∆(λ)2 − 4
dλ

= − 1

π

∫

|λ|=R
f(λ)dλ

by partial integration with

f(λ) :=

∫ λ

R

∆̇(λ)
c
√

∆(λ)2 − 4
dλ.

As
∫

Γn

∆̇(λ)
c
√

∆(λ)2−4
dλ = 0 for any n ∈ Z (cf (III.2)), f(λ) is a well defined

function which is analytic on C\ ∪|k|≤K [λ−k , λ
+
k ]. It remains to show that

− 1

π

∫

|λ|=R
f(λ)dλ =

∫ 1

0
ϕ1ϕ2dx. (III.6)

Notice that z 7→ f
(

1
z

)

is analytic on the punctured disc

{z ∈ C | 0 < |z| < 1

R
} .
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As f(λ) = 0(λ) near infinity (cf Proposition I.3) and in view of the assump-
tion that ϕ is a finite gap potential it follows that z 7→ f

(

1
z

)

is meromorphic
in a neighborhood of z = 0. Therefore

∮

|λ|=R
f(λ)dλ =

∮

|z|=1/R
f(1/z)

dz

z2

= 2iπRes
(

f(1/z)z−2
)

(III.7)

where Res
(

f(1/z)z−2
)

denotes the residue of z 7→ f(1/z)z−2 at 0.
Denote by ch−1 the principal branch of the inverse function of ch. Its domain
is given by C\(−∞, 1] and the branch is characterized by ch−1(ch2) = 2.
As (cf Lemma I.23)

∆(iy)

2
∼ chy for y → ∞ (III.8)

g(y) := ch−1
(

∆(iy)
2

)

is well defined for y real with y → +∞. Furthermore,

g′(y) = i∆̇(iy)
+
√

∆(iy)2−4
and hence

g′(y) = sign
(

Re c
√

∆(iy)2 − 4
)

if ′(iy). (III.9)

As the asymptotic estimates (III.8) hold locally uniformly,

sign
(

Re c
√

∆(iy)2 − 4
)

is constant for y large and ϕ sufficiently close to the zero potential. For
ϕ = 0 one has ∆(λ) = 2cosλ and, by the definition of the canonical root (cf
(I.48))

c
√

∆(iy)2 − 4 = −2i sin iλ = shy > 0.

We then conclude from (III.9) that we have g ′(y) = if ′(iy) and g(y) = f(iy).
As finite gap potentials are smooth one has, by the expansion in Lemma I.24,

Res
(

f(1/2)z−2
)

=
i

2
H1(ϕ). (III.10)

substituting (III.10) into (III.7) one gets

− 1

π

∫

|λ|=R
f(λ)dλ = −2i

(

i

2
H1(ϕ)

)

= H1(ϕ)

and the claimed identity (III.6) follows. �

Remark that (III.5) is a trace formula relating the actions and the Hamil-
tonian

H1(ϕ) :=

∫ 1

0
ϕ1ϕ2dx
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which corresponds to the phase flow, (ϕ1, ϕ2)(x, t) = (e−itϕ1(x), e
itϕ2(x)).

In particular we recover from (III.5) that the frequencies of H1 are all 1.

To obtain estimates for the NLS-frequencies, a trace formula involving the
NLS-Hamiltonian will be useful. To this end we introduce, for ϕ ∈ L2

C
and

k ∈ Z (cf [MV], actions at the third level)

Jk(ϕ) :=
1

π

∫

Γk

λ3 ∆̇(λ)
c
√

∆(λ)2 − 4
dλ.

Expanding λ3 =
(

(λ− λ̇k) + λ̇k

)3
and using that

∫

Γk

∆̇(λ)
c
√

∆(λ)2−4
dλ = 0 one

gets

Jk = 3λ̇2
kIk + 3λ̇k

1

π

∫

Γk

(λ− λ̇k)
2∆̇(λ)dλ

c
√

∆(λ)2 − 4

+
1

π

∫

Γk

(λ− λ̇k)
3∆̇(λ)

c
√

∆(λ)2 − 4
dλ.

For potentials of real type we obtain the following estimate

Lemma III.5 For ϕ ∈ L2
R,

|Jk| ≤ (3λ̇2
k + 3|λ̇k|γk + γ2

k)Ik.

By [GK1], we have (γk)k∈Z ∈ `21 for ϕ ∈ H1 ≡ H1(S1; C2). Together with
Theorem III.3 and Lemma III.5 one then sees that for ϕ ∈ H 1,

(Ik)k∈Z ∈ `12 ; (Jk)k∈Z ∈ `2.

Recall that for ϕ ∈ H1 we have introduced the NLS-Hamiltonian

H3(ϕ) :=

∫ 1

0

(

ϕ′
1ϕ

′
2 + (ϕ1ϕ2)

2
)

dx.

IntroduceH1
R := H1∩L2

R. Then the Jk’s satisfy the following trace formula.

Proposition III.6 For ϕ ∈W ∩H1
R,

∑

k∈Z
Jk(ϕ) =

3

4
H3(ϕ).

Remark Notice that in view of Lemma III.5,

3

4

∂H3

∂Ik







I=0
=
∑

k

∂Jk
∂Ik







I=0
= 3λ̇2

k
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Hence at I = 0, the k’th frequency ωk := ∂H3
∂Ik

is given by

ωk







I=0
= 4λ̇2

k







I=0
= 4k2π2.

Proof (Proposition III.6) As in the proof of Proposition III.4 it suffices
to establish the identity for finite gap potentials of real type near zero.
Following the line of arguments of the proof of Proposition III.4 one has

∑

k∈Z
Jk = −2iRes

(

3f(1/z)

z4
, 0

)

where we recall that f(λ) :=
∫ λ
R

∆̇(µ)
c
√

∆(µ)2−4
dµ. For y positive and sufficiently

large we have (cf Proposition III.4) f(iy) = ch−1
(

∆(iy)
2

)

and hence from

Lemma I.25 we get

Res

(

f(1/z)

z4
, 0

)

=
i

8
H3.

Substituting this formula into the above expression for
∑

k∈Z Jk one obtains

∑

k∈Z
Jk = −2i · 3 · i

8
H3 =

3

4
H3.

�

III.3 Angles

Next we define the angular coordinates Θn for ϕ ∈W where, to simplificate
the notations, we denote again by W the neighbourhood of L2

R in L2
C
× L2

C

on which Theorem II.1 holds. More precisely the n’th angle Θn is defined
for ϕ ∈W\Dn (with Dn := {ϕ ∈W | γn = 0}) by

Θn(ϕ) = ηn(ϕ) +
∑

k 6=n
β

(n)
k (ϕ)

where

ηn(ϕ) =

∫ µ∗n

λ−n

ψn(λ)
√

∆(λ)2 − 4
dλ (mod 2π)

and

β
(n)
k (ϕ) =

∫ µ∗
k

λ−
k

ψn(λ)
√

∆(λ)2 − 4
dλ. (III.11)

Here
√

∆(λ)2 − 4 is a function defined on the Riemann surface

∑

ϕ

:= {(λ, y) ∈ C
2 | y2 = ∆(λ)2 − 4} ,
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for any n ∈ Z, the Dirichlet divisor µ∗
n is the point (µn, (M12 +M21) |1,µn)

on
∑

ϕ (cf formula (I.68)) and the entire functions (ψn)n∈Z have been con-
structed in Chapter II. The paths of integration can be chosen arbitrarily on
∑

ϕ as long as they stay inside an isolating neighborhood (cf Definition III.1)

of the corresponding interval [λ−n , λ
+
n ]. We call such paths admissible.

Note that, since by construction (cf. (II.1))
∫

Γn

ψn(λ)√
∆(λ)2−4

dλ = 2π, the

function ηn is considered as a function onW\Dn taking values in the cylinder
C/2πZ rather than C, whereas the βnk can be considered as functions taking
values in C.
We begin by showing that these functions are well defined in the sense that

they are independent of the path of integration. In fact the β
(n)
k are well

defined on all of W .

Lemma III.7 (1) The functions β
(n)
k (k 6= n) are well defined on all of W .

(2) The functions ηn(n ∈ Z) are well defined on W\Dn.

Proof Consider β
(n)
k for k 6= n. By the product expansions for ∆(λ)2 − 4

(cf Lemma I.19) and ψn(λ) (cf Theorem II.1) we have

ψn(λ)
√

∆(λ)2 − 4
=

ν
(n)
k − λ

√

(λ+
k − λ)(λ− λ−k )

ζ
(n)
k (λ) (III.12)

where
√

∆(λ)2 − 4 and hence
√

(λ+
k − λ)(λ− λ−k ) are understood as func-

tions on a neighborhood around [λ−k , λ
+
k ] on the Riemann surface

∑

ϕ. (The

sign of
√

(λ+
k − λ)(λ− λ−k ) is determined by the one of

√

∆(λ)2 − 4.) The

functions ζ
(n)
k (λ) for k 6= n are defined as follows (ν

(n)
n := τn)

ζ
(n)
k (λ) := − 1

τn − λ

∏

j 6=k

ν
(n)
j − λ

s

√

(λ−j − λ)(λ+
j − λ)

. (III.13)

Clearly, ζ
(n)
k (λ) is analytic in λ (near [λ−k , λ

+
k ]) and ψ ∈ W . If γk 6= 0,

the factor
ν
(n)
k

−λ
√

(λ+
k
−λ)(λ−λ−

k
)

is integrable on any admissible path. If γk = 0,

then λ−k = ν
(n)
k = λ+

k ,
ν
(n)
k

−λ
√

(λ+
k
−λ)(λ−λ−

k
)

= ±i and the integrand of β
(n)
k is an

analytic function near [λ−k , λ
+
k ] on each sheet of

∑

ϕ. Hence in both cases,

β
(n)
k is well defined.

The integral is independent of any admissible path of integration, since

∫ λ−
k

λ+
k

ψn(λ)
√

∆(λ)2 − 4
dλ = 0 k 6= n.
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This proves (i). As to ηn, the integral exists along an admissible path as
long as λ−n 6= λ+

n . It is well defined modulo 2π. This shows claim (ii). �

Next we prove the analyticity of the coefficients β
(n)
k (k 6= n).

Lemma III.8 (i) The functions β
(n)
k (k 6= n) are real analytic on W .

(ii) The functions ηn(n ∈ Z) are real analytic on W\Dn if taken mod π.

Remark The values of ηn have to be taken modulo π due to the discontinu-
ities of the periodic eigenvalues as functions of ϕ when ϕ is not of real type
(lexicographic ordering).

Proof In W consider the two subsets

Dk :={ϕ ∈W | γk(ϕ) = 0}
Ek :=

{

ϕ ∈W | µk(ϕ) ∈ {λ+
k (ϕ), λ−k (ϕ)}

}

.

Taking into account that τk(ϕ), µk(ϕ) are analytic on W and ∆(λ, ϕ) is
analytic on C ×W,Dk and Wk are in fact analytic subvarieties of W ,

Dk = {ϕ ∈W | ∆(τk) = 2(−1)k; ∆̇(τk) = 0}
Ek = {ϕ ∈W | ∆(µk) = 2(−1)k}.

Our plan is to prove that β
(n)
k is analytic on W\(Dk ∪ Ek) as well as con-

tinuous on all of W and that β
(n)
k |Ek

, β
(n)
k |Dk\Ek

are weakly analytic. By

standard arguments it then follows that β
(n)
k is analytic on W . To prove that

β
(n)
k is analytic on W\(Dk ∪ Ek) notice that outside of Dk, λ

+
k and λ−k are

simple eigenvalues and locally there exist analytic functions λ̃+
k and λ̃−k such

that the sets {λ̃+
k , λ̃

−
k } and {λ+

k , λ
−
k } are equal. In view of the normalizing

condition
∫ λ+

k

λ−
k

ψn(λ)√
∆(λ)2−4

dλ = 0 for k 6= 0, we obtain upon the substitution

λ = λ̃−k + z

β
(n)
k =

∫ µ∗
k

λ̃−
k

ψn(λ)
√

∆(λ)2 − 4
dλ =

∫ µ∗
k
−λ̃−

k

0

ψn(λ̃
−
k + z)

√
z
√

D(z)
dz

where D(z) :=
∆2(λ̃−

k
+z)−4
z is analytic near z = 0 and satisfies D(0) 6= 0.

As path of integration we choose an admissible path which does not go
through λ̃+

k . (This is possible as ϕ /∈ Ek.) Then D(z) 6= 0 along the

path and hence
ψn(λ̃−

k
+z)√

D(z)
is smooth along the path and locally analytic on

W\(Dk ∪Ek). As µ∗k = (µk, (M21 +M12) |1,µk
) is analytic on W and λ̃−k is

analytic we then conclude, in view of Leibniz’s rule, that
∫ µ∗

k
−λ̃−

k

0
ψn(λ̃−

k
+z)

√
z
√
D(z)

dz
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is analytic. Hence β
(n)
k is analytic on W\(Dk ∪ Ek). Next we show that

β
(n)
k |Dk

and β
(n)
k |Ek

are weakly analytic. In view of the normalization
∫ λ+

k

λ−
k

ψn(λ)√
∆(λ)2−4

dλ = 0 we have that β
(n)
k |Ek

= 0 and hence it is analytic.

On Dk we have
λ−k = λ+

k = τk = ν
(n)
k ,

and hence with (III.12), one can write (ψ ∈ Dk)

β
(n)
k =

∫ µ∗
k

τk

ψn(λ)
√

∆(λ)2 − 4
dλ = ε

∫ µ∗
k

τk

ζ
(n)
k (λ)dλ

where ε is the sign ±1 determined by µ∗
k. As µ∗k = (µk, (M12 +M21) |1,µk

)

is analytic, β
(n)
k |Dk

is analytic. Alltogether, we conclude that β
(n)
k |Dk

and

β
(n)
k |Ek

are weakly analytic.

It remains to prove that β
(n)
k is continuous on all of W . Clearly β

(n)
k is

continuous on W\(Dk ∪ Ek). One shows easily that it is continuous in
points of Ek\Dk and Dk\Ek. The continuity in points of Dk ∩ Ek follows

from (III.12) and the estimate ν
(n)
k − τk = 0(γ2

k) (cf Theorem II.1). This

establishes the analyticity of β
(n)
k on W .

The proof for ηn is analogous and even simpler, since we only need to con-
sider the domain W\Dn. In view of the normalization condition (II.1) we
have

∫ λ+
n

λ−n

ψn(λ)
√

∆(λ)2 − 4
= ±π (III.14)

for the straight line integral. So as above we can write

ηn =

∫ µ∗n

λ̃−n

ψn(λ)
√

∆(λ)2 − 4
dλ (mod π).

We conclude that modulo π, the function ηn is analytic on W\(Dn∪En) and
continuous on W\Dn. Since ηn |En= 0 (modπ), ηn |En is weakly analytic
and the statement is proved. �

Lemma III.9 For k 6= n,

β
(n)
k = 0

( |γk| + |µk − τk|
|n− k|

)

locally uniformly on W .

Proof By (II.1),

β
(n)
k =

∫ µ∗
k

λ−
k

ψn(λ)
√

∆(λ)2 − 4
dλ =

∫ µ∗
k

λ+
k

ψn(λ)
√

∆(λ)2 − 4
dλ .
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The following argument is not affected if one interchanges the roles of λ+
k

and λ−k . Therefore we assume that |µk−λ−k | ≤ |µk−λ+
k |. For λ near [λ−k , λ

+
k ]

we have

ψn(λ)
√

∆(λ)2 − 4
=

ν
(n)
k − λ

√

(λ+
k − λ)(λ− λ−k )

ζ
(n)
k (λ)

by equation (III.12). In view of formula (III.13) and the asymptotics of ν
(n)
m

and λ±m, ζ
(n)
k (λ) satisfies

ζ
(n)
k (λ) = 0

(

1

〈n− k〉

)

for λ near [λ−k , λ
+
k ]. Moreover if we integrate along a straight line ` from λ−

k

to µk on the sheet of Σϕ determined by µ∗k we have

√

√

√

√

ν
(n)
k − λ

λ+
k − λ

= 0(1)

since |µk − λ−k | ≤ |µk − λ+
k | and ν

(n)
k = τk + 0(γ2

k). Thus it remains to show
that

∫ µ∗
k

λ−
k

+

√

√

√

√

∣

∣

∣

λ− ν
(n)
k

λ− λ−k

∣

∣

∣
dλ = 0(|γk| + |µk − τk|)

when integrating along the straight line `.

This follows with the substitution λ = λ−k + t(µk − λ−k )

∣

∣

∣

∫ µ∗
k

λ−
k

+

√

√

√

√

∣

∣

∣

λ− ν
(n)
k

λ− λ−k

∣

∣

∣ dλ
∣

∣

∣ ≤
∫ 1

0

+

√

|λ−k − ν
(n)
k | + t|µk − λ−k |√

t|µk − λ−k |1/2
|µk − λ−k |dt

≤ +

√

|λ−k − ν
(n)
k | + |µk − λ−k | |µk − λ−k |1/2

∫ 1

0

1√
t
dt

≤
(

|λ−k − ν
(n)
k | + |µk − λ−k |

)

+ |µk − λ−k |
≤ 0(|µk − τk| + |γk|)

where we used that 2ab ≤ a2 + b2 for any real numbers a, b. �

By Young’s inequality it follows from Lemma III.9 that for any p > 2,
(

∑

k 6=n β
(n)
k

)

n∈Z
∈ `p locally uniformly onW . In particular, βn :=

∑

k 6=n β
(n)
k

are analytic functions on W with the property that (βn)n∈Z ∈ `p, and hence
limn→∞ βn = 0, locally uniformly on W . We summarize our results of this
section in the following
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Theorem III.10 The function ϕ 7→ (βn(ϕ))n∈Z is real analytic from W
with values in `p for any p > 2. The angle function

Θn = ηn + βn = ηn +
∑

k 6=n
β

(n)
k

is a smooth real valued function defined on L2
R and extends to a real analytic

function on W\Dn when taken modulo π.

III.4 Cartesian coordinates

In section III.2 and III.3 we have defined actions In = ξ2n(γn/2)
2 for ϕ ∈ L2

R
and angles Θn = ηn + βn for potentials ϕ in L2

R\Dn and showed that there
exists a neighborhood W of L2

R in L2
C
×L2

C
so that for any n ∈ Z, In is real

analytic on W and Θn is real analytic on W\Dn when taken modulo π.
In this section we introduce the associated Cartesian coordinates. For ϕ ∈
L2
R\Dn, they are defined as

xn =
√

2IncosΘn, yn =
√

2InsinΘn.

With this choice we have

dxn ∧ dyn = dIn ∧ dΘn = d(IndΘn).

This definition extends to the complex domain W\Dn,

xn =
√

2ξn
γn
2
cosΘn, yn =

√
2ξn

γn
2
sinΘn. (III.15)

In this section we prove that the functions xn, yn (n ∈ Z) are in fact real
analytic functions on W .
Recall that we have already proved that ξn and βn := Θn − ηn are real
analytic on W and thus it remains to analyze

z±n := γne
±iηn . (III.16)

The functions z±n are defined on W\Dn. Although γn is not continuous on
W\Dn and ηn is analytic only modulo π, the functions z±n are analytic on
W\Dn as can be seen from the following argument.

Lemma III.11 The functions z±n = γne
±iηn are analytic on W\Dn.

Proof Locally around every point in W\Dn there exist analytic functions
λ̃+
n and λ̃−n such that as sets {λ̃−n (ϕ), λ̃+

n (ϕ)} = {λ−n (ϕ), λ+
n (ϕ)}. Let

γ̃n = λ̃+
n − λ̃−n , η̃n :=

∫ µ∗n

λ̃+
n

ψn(λ)
√

∆(λ)2 − 4
dλ .
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Depending on whether λ̃−n = λ−n or λ̃−n = λ+
n , respectively, we then have, in

view of (III.14),

γn = γ̃n and ηn = η̃n or γn = −γ̃n and ηn = η̃n + π (mod2π).

In both cases, we thus obtain

γne
±iηn = γ̃ne

±iη̃n .

As the right side of the latter identity is analytic, the claimed statement
follows. �

In the case k = n we write instead of the representation III.12 for λ near
[λ−n , λ

+
n ],

ψn(λ)
√

∆(λ)2 − 4
=

1

i
√

(λ+
n − λ)(λ−n − λ)

ζn(λ) (III.17)

where ζn(λ) is given by

ζn(λ) = − ν
(n)
0 − λ

s

√

(λ−0 − λ)(λ+
0 − λ)

∏

j 6=0,n

ν
(n)
j − λ

s

√

(λ−j − λ)(λ+
j − λ)

(n 6= 0)

(III.18)

ζ0(λ) = −
∏

j 6=0

ν
(0)
j − λ

s

√

(λ−j − λ)(λ+
j − λ)

(n = 0) (III.19)

and the two roots in (III.17) are understood as functions on
∑

ϕ related to
each other by this identity.

Lemma III.12 For µ ∈ [λ−n , λ
−
n ],

ζn(µ) = 1 + 0(γn)

locally uniformly for ϕ in W and uniformly in n ∈ Z.

Proof First let ϕ ∈ L2
R with γn > 0. In view of Theorem II.1 and the

definition of the canonical root c
√

∆(λ)2 − 4 (cf Section I.7) we have

(−1)n+1

∫ λ+
n

λ−n

ψn(λ)
+
√

∆(λ)2 − 4
dλ = π
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for the straight line integral from λ−n to λ+
n . On this line, ζn is positive while

the sign of ψn(λ) is (−1)n+1. With (III.17), we then obtain

π =

∫ λ+
n

λ−n

ζn(λ)

+

√

(λ+
n − λ)(λ− λ−n )

dλ

=

∫ λ+
n

λ−n

ζn(µ)

+

√

(λ+
n − λ)(λ− λ−n )

dλ+

∫ λ+
n

λ−n

ζn(λ) − ζn(µ)

+

√

(λ+
n − λ)(λ− λ−n )

dλ

= πζn(µ) + 0

(

sup
λ−n ≤λ≤λ+

n



ζn(λ) − ζn(µ)




)

for any λ−n ≤ µ ≤ λ+
n . Hence

ζn(µ) = 1 + 0

(

sup
λ−n ≤λ≤λ+

n



ζn(λ) − ζn(µ)




)

.

By Lemma I.17, ψn(λ) = −2 sinλ
λ−nπ (1 + `2(n)) (cf Theorem II.1) and

∆(λ)2 − 4

(λ+
n − λ)(λ−n − λ)

= −4

(

sinλ

λ− nπ

)2

(1 + `2(n))

(cf Lemma I.19), uniformly for |λ − nπ| ≤ π
4 . Hence ζn(λ) is bounded

uniformly for λ with |λ − nπ| ≤ π/4, n ∈ Z, and locally uniformly on W .
In view of the asymptotics λ±n = nπ + `2(n) we then obtain by Cauchy’s
estimate that d

dλζn(λ) is bounded and hence we have



ζn(λ) − ζn(µ)


 ≤ c


λ− µ


 ≤ c


γn


 (III.20)

for any λ, µ ∈ [λ−n , λ
+
n ] with a uniform constant c. This proves the claim for

ϕ ∈ L2
R.

For ϕ ∈W one has

∫ λ+
n

λ−n

ψn(λ)
c
√

∆(λ+ i0)2 − 4
dλ = π

and thus

±π =

∫ λ+
n

λ−n

ζn(λ)

+

√

(λ+
n − λ)(λ− λ−n )

dλ .

As the estimate (III.20) holds for ϕ ∈ W , we can use the same arguments
as in the real type case to conclude that for ϕ ∈W ,

ζn(µ) = ±1 + 0(γn)

As ζn(λ) is continuous in λ and ϕ the claimed statement follows. �
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We now have to investigate the limiting behavior of z±n as ϕ approaches a
point ψ in Dn. This limit is different from zero when ψ is in the open set

Xn := {ϕ ∈W


µn(ϕ) /∈ [λ−n (ϕ), λ+
n (ϕ)]}.

Notice that Xn ∩ L2
R = ∅. Let

χn(ϕ) :=

∫ µn

τn

ζn(λ) − ζn(τn)

λ− τn
dλ. (III.21)

This integral exists due to the analyticity of ζn in λ and is analytic in ϕ. To
facilitate the statement of the following result define εn = ±1 for potentials
ϕ in Xn in such a way that (cf. (III.17))

−iεn s

√

(λ+
n − λ)(λ−n − λ)





λ=µn
= ∗
√

∆(µn)2 − 4
ζn(µn)

ψn(µn)
(III.22)

where the root ∗
√

∆(µ)2 − 4 has been defined in (I.68). Notice that µn /∈
[λ−n , λ

+
n ] for ϕ ∈ Xn, hence εn is well defined.

Lemma III.13 As ϕ ∈W\Dn tends to ψ ∈ Dn ∩Xn,

γne
±iηn → −2(1 ± εn)(µn − τn)e

±εnχn

where εn is given by (III.22).

Proof As Xn is open and ψ ∈ Xn ∩Dn we have ϕ ∈ Xn for ϕ sufficiently
close to ψ. By assumption, we have ϕ ∈W \Dn, hence we can write, modulo
2π,

ηn =

∫ µ∗n

λ−n

ψn(λ)
√

∆(λ)2 − 4
dλ

=

∫ µn

λ−n

i
ζn(λ)

εn
s

√

(λ+
n − λ)(λ−n − λ)

dλ

= η′n + η′′n

where

η′n := iεn

∫ µn

λ−n

ζn(λ
−
n )

s

√

(λ+
n − λ)(λ−n − λ)

dλ

and

η′′n := iεn

∫ µn

λ−n

ζn(λ) − ζn(λ
−
n )

s

√

(λ+
n − λ)(λ−n − λ)

dλ.
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Let us first analyze the limiting behaviour of η ′′n. If ϕ → ψ, then γn → 0

and s

√

(λ+
n − λ)(λ−n − λ) → −(λ− τn) by the definition of the standard root

s
√

. Hence

iη′′n → εn

∫ µn

τn

ζn(λ) − ζn(τn)

λ− τn
dλ = εnχn((ψ) (mod2π) .

Consequently, e±iη
′′
n → e±εnχn(ψ).

Now consider η′n. The substitution λ = τn + zγn/2 leads to

εn

∫ µn

λ−n

dλ

s

√

(λ+
n − λ)(λ−n − λ)

= f(%n)

with

%n :=
µn − τn
γn/2

; f(z) := εn

∫ z

−1

dz
s
√
z2 − 1

.

It follows that

e±if(z) = −z ∓ εn
s
√

z2 − 1

as both sides are analytic univalent functions on C \ [−1, 1] which have the
same limit at −1 and satisfy the same differential equation

q′(z)
q(z)

= ± εn
s
√
z2 − 1

.

Hence we obtain

e±iη
′
n = e∓f(zn)ζn(λ−n ) =

(

−%n ± εn
s
√

%2
n − 1

)ζn(λ−n )
.

Now let ϕ converge to ψ. Then limϕ→ψ(µn−τn) 6= 0. Hence limϕ→ψ %
−1
n = 0

and we claim that
(

−%n ± εn
s
√

%2
n − 1

)γn → 1. (III.23)

To see it note that s
√
z2 − 1 = −z +

√

1 − 1/z2 for |z| > 1 and thus

−%n ± εn
s
√

%2
n − 1 = −%n

(

1 ± εn
+
√

1 − 1/%2
n

)

(III.24)

and, taking any branch of the logarithm,

log
(

−%n ± εn
s
√

%2
n − 1

)γn

= −γn log

(

γn
−2

µn − τn
(1 ± εn

+
√

1 − 1/%2
n)

−1

)

→ 0
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which establishes (III.23). By Lemma III.12, ζn(λ
−
n ) = 1 + 0(γn) and hence

in order to prove convergence of γne
±iη′n for ϕ→ ψ it remains to show that

γn(−%n ± εn
s
√

%2
n − 1) converges. By (III.24) we have, as ϕ→ ψ,

γn

(

−%n ± εn
s
√

%2
n − 1

)

= −2(µn − τn)
(

1 ± εn
+
√

1 − 1/%2
n

)

→ −2(µn − τn)(1 ± εn).

Combined with the limit for e±iη
′′
n we conclude that

lim
ϕ→ψ

γne
±iηn = −2(µn − τn)(1 ± εn)e

±εnχn




ψ

as claimed. �

In view of the preceding result it is natural to extend the functions z±n to
Dn by defining

z±n :=

{

−2(1 ± εn)(µn − τn)e
±εnχn on Dn ∩Xn

0 on Dn\Xn.

Proposition III.14 The functions γne
±in′

n , e±in
′′
n and hence z±n = γne

±iηn ,
extended as above, are analytic on W . Moreover

z±n = 0(|γn| + |µn − τn|)

locally uniformly on W .

Proof To show that z±n are analytic on W , notice that Dn is an analytic
variety. Hence it suffices to prove that z±n are continuous on W , analytic on
W\Dn and that the restriction of z±n to Dn is (weakly) analytic.
By Lemma III.11, z±n are analytic on W\Dn and, by inspection of the for-
mula for z±n , one sees that z±n are continuous on W . To see that z±n





Dn
are

weakly analytic notice that, from its definition, z±n




Dn∩Xn
is weakly analytic

and z±n




Dn\Xn
≡ 0. As Dn\Xn is an analytic variety it then follows that

z±n




Dn
is weakly analytic. We thus have shown that z±n are analytic on W .

To prove the claimed estimate, we recall from the proof of Lemma III.13
that on W\Dn

γne
±iηn = γn

(

−%n ± εn
s
√

%2
n − 1

)ζn(λ−n )
e±iη

′′
n

with %n = 2(µn − τn)/γn and

η′′n = iεn

∫ µn

λ−n

ζn(λ) − ζn(λ
−
n )

s

√

(λ+
n − λ)(λ−n − λ)

dλ.
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In view of the analyticity and local uniform boundedness of ζn (cf. Lemma III.12)
we have e±iη

′′
n = 0(1). By (III.23),

(

−%n ± εn
s
√

%2
n − 1

)γn

= 0(1) .

As ζn(λ
−
n ) = 1 + 0(γn) it then suffices to bound γn(−%n ± εn

s
√

%2
n − 1). For

|%n| ≤ 1 we have
|γn(−%n ± εn

s
√

%2
n − 1)| ≤ 2|γn|

whereas for |%n| > 1, we have



γn(−%n± εn s
√

%2
n − 1)



 =


2(µn− τn)






1± εn +

√

1 − %−2
n



 ≤ 4


µn− τn


.

It follows that the claimed estimate for γne
±iηn holds locally uniformly on

W\Dn and uniformly in n. By the continuity of z±n on W , these estimates
hold locally uniformly on all of W . �

In view of Proposition III.14 it is possible to define for ϕ in W

Ω(ϕ) := (xn(ϕ), yn(ϕ))n∈Z,

where xn(ϕ), yn(ϕ) are analytic functions on W ,

xn(ϕ) =
√

2
ξn
4

(z+
n e

iβn + z−n e
−iβn)

yn(ϕ) =
√

2
ξn
4i

(z+
n e

iβn − z−n e
−iβn .

(III.25)

In view of the asymptotics of µn− τn, γn, ξn and βn, it follows from Propo-
sition III.14 that Ω is a continuous, locally bounded map with values in
`2(Z,C2) . As the components xn(ϕ) and yn(ϕ)(n ∈ Z) are analytic on W
we have established the following main result of this section

Theorem III.15 The map

Ω : L2
R → `2(Z,C2)

extends to an analytic map on W with values in `2(Z,C2).

III.5 Gradients

In this section we compute the gradients of z±n on L2
R∩Dn and prove asymp-

totic estimates on finite gap potentials which will be needed later.
To compute ∇ψ(x)z

±
n on L2

R∩Dn it is convenient to approximate ψ ∈ L2
R∩Dn

(cf. Proposition I.41) by potentials ϕ in

Bn := {ϕ ∈ L2
R\Dn | µn = τn ; sign ∗

√

∆(µn)2 − 4 = (−1)n−1} .
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For ϕ ∈ L2
R denote by Hn = (Hn1,Hn2) the L2-normalized eigenfunction

for the Dirichlet eigenvalue µn

Hn =
1

‖Gn‖
Gn

where Gn defined as in section I.I.3 and by Kn = (Kn1,Kn2) the L2-
normalized solution of LF = µnF which is L2-orthogonal to Hn and sat-
isfies the normalization condition 1

i (Kn1(0) −Kn2(0)) > 0. Notice that
Kn1(0) −Kn2(0) 6= 0 since, otherwise, Kn would be proportional to Hn.
Recall that ϕ ∈ L2

R is a finite gap potential if the set A := {n ∈ Z | λ+
n 6= λ−n }

is finite.

Lemma III.16 At ψ ∈ L2
R ∩Dn,

∇ψ(x)z
±
n =

(

(Kn2 ± iHn2)
2 , (Kn1 ± iHn1)

2
)

.

Moreover, for finite gap potentials,

∇ψ(x)z
+
n = −2(0, e−2πinx) + `2(n)

∇ψ(x)z
−
n = −2(e2πinx, 0) + `2(n) .

At ψ = 0, the above identities hold without error term.

Proof To compute the gradient ∇ψz
±
n at ψ ∈ L2

R∩Dn we approximate ψ by
elements ϕ in Bn∩L2

R. Recall that sign(ψn(µn)) = (−1)n−1, sign(ζn(µn)) =
1, and, as ϕ ∈ Bn ∩ L2

R

∗
√

∆(µn)2 − 4 = (−1)n−1

From the definition of the s-root,

sign

(

i
s

√

(λ+
n − λ)(λ−n − λ)

)







λ=µn−i0
= 1,

it then follows that

1 = sign

(

i s

√

(λ+
n − λ)(λ−n − λ)







λ=µn−i0

)

= sign

(

∗
√

∆(µn)2 − 4

ψn(µn)
ζn(µn)

)

.

Going through the calculations in the proof of Lemma III.13 with εn = 1
and λ − i0 ∈ [λ−n , λ

+
n ], one verifies that they remain valid for ϕ ∈ Bn. In

particular ηn = η′n + η′′n where

η′′n(ϕ) =

∫ µn

λ−n

ζn(λ) − ζn(λ
−
n )

i s

√

(λ+
n − λ)(λ−n − λ)

dλ.
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As ψ ∈ L2
R ∩ Dn, χn(ψ) = 0 by the definition (III.21) of χn and hence

η′′n(ψ) = 0. Thus from

z±n = γne
±iηn = γne

±iη′ne±iη
′′
n

and the fact that η′′n is analytic we conclude that at ψ ∈ L2
R ∩Dn,

∇ψ(x)z
±
n = lim

Bn3ϕ→ψ
∇ϕ(x)(γne

±iη′n).

Moreover, as %n = µn−τn
γn/2

satisfies −1 < %n < 1,

γne
±iη′n = γn(−%n ± s

√

%2
n − 1)ζn(λ−n )

can be written as

γne
±iη′n =

(

−2(µn − τn) ± iγn
+
√

1 − %2
n

)(

−%n ± i +
√

1 − %2
n

)ζ̂n
(III.26)

where ζ̂n := ζn(λ
−
n ) − 1 satisfies ζ̂n = 0(γn) by Lemma III.12 and therefore

lim
Bn3ϕ→ψ

(

−%n ± i +
√

1 − %2
n

)ζ̂n
= lim

Bn3ϕ→ψ
(±i)ζ̂n = 1.

As ϕ ∈ Bn, one has µn = τn as well as %n = 0. Further, in the limit, the
first factor on the right side of (III.26) vanishes. As the gradients of both
factors on the right side of (III.26) have a limit on ϕ→ ψ, the product rule
can be applied and we conclude from the considerations above that

∇ψz
±
n = lim

Bn3ϕ→ψ
∇ϕ(γne

±iη′n)

= 2(∇ψτn −∇ψµn) ± i lim
Bn3ϕ→ψ

∇ϕγn.

In particular this shows that limBn3ϕ→ψ∇ϕγn exists. Recall that the gra-
dient of a simple periodic eigenvalue λ±n is given by (cf. Proposition I.32)

∇ϕ(x)λ
±
n =

(

F±
n2(x)

2, F±
n1(x)

2
)

where F±
n = (F±

n1, F
±
n2) is a normalized eigenfunction of λ±n (ϕ). Hence

lim
Bn3ϕ→ψ

∇ϕ(x)γn = lim
Bn3ϕ→ψ

(

(F+
n2)

2 − (F−
n2)

2, (F+
n1)

2 − (F−
n1)

2
)

and, by the analyticity of τn,

2∇ψ(x)τn = lim
Bn3ϕ→ψ

(

(F+
n2)

2 + (F−
n2)

2, (F+
n1)

2 + (F−
n1)

2
)

.

Combining the two limits we conclude that the limit of F ±
n2(x)

2 and the limit
of F±

n1(x)
2 exist in L2 as ϕ→ ψ. Actually by Lemma III.17 below,

F±
n (·, ψ) = lim

Bn3ϕ→ψ
F±
n (·, ϕ)
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exists inH1 and, F+
n (·, ψ) and F−

n (·, ψ) are orthogonal, of norm 1 and satisfy

1

i

(

F±
n1(0) − F±

n2(0)
)

> 0.

It follows that

F+
n = αKn + βHn (III.27)

F−
n = |β|Kn − α

β

|β|Hn (III.28)

where α > 0, β ∈ C\{0} and α2 + |β|2 = 1. By Lemma III.18 below, α = 1√
2

and by Lemma III.19 below, β = 1√
2
. Thus

lim
Bn3ϕ→ψ

∇ϕ(x)γn =
(

(F+
n2)

2, (F+
n1)

2
)

−
(

(F−
n2)

2, (F−
n1)

2
)

= 2 (Hn2Kn2,Hn1Kn1)

and

2∇ψ(x)τn =
(

(F+
n2)

2, (F+
n1)

2
)

+
(

(F−
n2)

2, (F−
n1)

2
)

=
(

H2
n2 +K2

n2,H
2
n1 +K2

n1

)

.

Further, by Proposition I.29

∇ψ(x)µn = (H2
n2,H

2
n1).

It then follows that

∇ψ(x)z
±
n = 2

(

∇ψ(x)τn −∇ψ(x)µn)
)

± i lim
Bn3ϕ→ψ

∇ϕ(x)γn

=
(

K2
n2 −H2

n2,K
2
n1 −H2

n1

)

± 2i (Hn2Kn2,Hn1Kn1) .

To prove the second part of Lemma III.16, let ψ be a finite gap potential
and N ≥ 0 be an integer such that λ+

n (ψ) = λ−n (ψ) for |n| ≥ N . Then
ψ ∈ Dn and the above formula for ∇ψ(x)z

±
n holds for any |n| ≥ N . Recall

that Hn admits an asymptotic estimate (cf (I.16))

Hn =
1√
2

(

e−inπx, einπx
)

+ `2(n).

As Kn is a linear combination of M (1)(x, µn) and M (2)(x, µn), one deduces
from Proposition I.6 (page 20) and the orthogonality and normalization
conditions

Kn =
i√
2

(

e−inπx,−einπx
)

+ `2(n).

Inserting these asymptotic estimates into the formula for ∇ψ(x)z
±
n leads to

the stated asymptotics.
Clearly, the above formula for ∇ψ(x)z

±
n , evaluated for ψ = 0, leads to the

claimed formulas for ∇0z
±
n . �

It remains to prove the three Lemmas used in the proof of Lemma III.16.
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Lemma III.17 For ψ ∈ L2
R ∩ Dn, limBn3ϕ→ψ F

±
n (·, ϕ) exist in H1. The

limiting functions, denoted by F±
n (·, ψ), are eigenfunctions of L(ψ) corre-

sponding to the eigenvalue λ+
n (ψ) = λ−n (ψ), they are orthogonal, of L2-norm

1 and satisfy 1
i

(

F±
n1(0) − F±

n2(0)
)

> 0.

Proof For ϕ ∈ Bn write

F±
n = ia±Ğ(x, λ±n , ϕ) + b±G(x, λ±n , ϕ)

where we recall that Ğ = M (1) −M (2) and G = M (1) +M (2) and, in view of
(I.62), a± and b± are in R with a± > 0. It remains to study the convergence
of a± and b± as ϕ→ ψ. We already observed in the proof of Lemma III.16
that (F±

n2)
2 and (F±

n1)
2 converge in L2. One has for j = 1, 2

(F±
nj)

2 = (ia±Ğj + b±Gj)
2

= −(a±)2Ğ2
j + 2ia±b±ĞjGj + (b±)2G2

j .

In a straightforward way one verifies that

X(1) := (Ğ2
2, Ğ

2
1) ; X(2) := (Ğ2G2, Ğ1G1) ; X(3) := (G2

2, G
2
1)

are linearly independent. Denote by Y (1), Y (2), Y (3) the biorthogonal basis
toX(1), X(2), X(3), i.e. Y (1), Y (2), Y (3) are elements in span(X (1), X(2), X(3))
satisfying

〈Y (j), X(k)〉 = δjk.

As X(1), X(2), X(3) are continuous functions of λ, ϕ with values in L2 so are
Y (1), Y (2), Y (3), hence the L2-convergence of

(

(F±
n2)

2, (F±
n1)

2
)

imply that

(

(F±
n2)

2

(F±
n1)

2

)

· Y (1) = −(a±)2
ϕ→ψ−→ −A±

(

(F±
n2)

2

(F±
n1)

2

)

· Y (2) = 2ia±b±
ϕ→ψ−→ B±

(

(F±
n2)

2

(F±
n1)

2

)

· Y (3) = (b±)2
ϕ→ψ−→ C±

where the dot denote the dual pairing between L2×L2 and itself, i.e. F ·G =
∫ 1
0 (F1G1 + F2G2)dx (no complex conjugation).

As a± > 0, we have

a± → a±∞ :=
+
√
A±

and
|b±| → +

√
C±.

Hence

|a±b±| = a±|b±| → a±∞
+
√
C±.
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We claim that

lim
Bn3ϕ→ψ

a+

a−
= 1. (III.29)

To see this identity holds recall that (cf. (I.62))

F±
n (0) =

i

2
+

√

−iδ(λ±n )

∆̇(λ±n )
Ğ(0, λ±n ) +

ε±n
2

+

√

−iδ̆(λ±n )

∆̇(λ±n )
G(0, λ±n ).

By Lemma I.21

δ(λ) = 2i(µ0 − λ)
∏

k 6=0

µk − λ

kπ

and by Lemma I.20

∆̇(λ) = 2(λ̇0 − λ)
∏

k 6=0

λ̇k − λ

kπ
.

Hence

a+

a−
=

1

2
+

√

−iδ(λ+
n )

∆̇(λ+
n )

/1

2
+

√

−iδ(λ−n )

∆̇(λ−n )

= +

√

∆̇(λ−n )

∆̇(λ+
n )

δ(λ+
n )

δ(λ−n )
.

As λ̇n = τn + 0(γ
3/2
n ) (cf. Lemma I.22) we conclude that

lim
Bn3ϕ→ψ

∆̇(λ−n )

∆̇(λ+
n )

= lim
Bn3ϕ→ψ

λ̇n − λ−n
λ̇n − λ+

n

= −1.

As µn = τn for ϕ ∈ Bn we have

lim
Bn3ϕ→ψ

δ(λ+
n )

δ(λ−n )
= lim

Bn3ϕ→ψ

τn − λ+
n

τn − λ−n
= −1

hence (III.29) follows. Further we claim that

a+
∞ > 0 . (III.30)

To see this, it suffices to show that a+
∞ 6= 0. Notice that for ϕ ∈ Bn,

0 = 〈F+
n , F

−
n 〉 =a+a−〈Ğ(·, λ+

n ), Ğ(·, λ−n )〉+
+ ia+b−〈Ğ(·, λ+

n ), G(·, λ−n )〉 − b+ia−〈G(·, λ+
n ), Ğ(·, λ−n )〉

+ b+b−〈G(·, λ+
n ), G(·, λ−n )〉
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where 〈·, ·〉 denote the inner product in L2. Assume that a+
∞ = 0. Then, by

(III.29), a−∞ = 0 and as |b±| → +
√
C± it then follows that as ϕ→ ψ

0 = b+b−〈G(·, λ+
n ), G(·, λ−n )〉 + o(1)

or
b+b−

ϕ→ψ−→ 0 and (b+b−)2 → C+C− = 0.

Hence either C+ = 0 or C− = 0. Without loss of generality assume that
C+ = 0. Together withA+ = B+ = 0 it then follows that

(

(F+
n1)

2, (F+
n1)

2
)

→
0 which contradicts ‖F+

n ‖ = 1 hence claim (III.30) follows.
Combining limBn3ϕ→ψ 2ia±b± = B± and limBn3ϕ→ψ a

± = a±∞ > 0 one
concludes

b± =
2ia±b±

2ia±
ϕ→ψ−→ B±

2ia±∞
=: b±∞

and hence, as G, Ğ are continuous in λ, ϕ, with values in H1,

F±
n = ia±Ğ(·, λ±n , ϕ) + b±G(·, λ±n , ϕ) → ia±∞Ğ(·, λ∗, ψ) + b±∞G(·, λ∗, ψ),

in H1 with λ∗ := λ+
n (ψ). As a consequence

F±
n (·, ψ) := ia±∞Ğ(·, λ∗, ψ) + b±∞G(·, λ∗, ψ)

are orthogonal, 〈F+
n (·, ψ), F−

n (·, ψ)〉 = 0, of norm 1, ‖F±
n (·, ψ)‖ = 1, and

satisfy the normalization condition 1
i

(

F±
n1(0, ψ) − F±

n2(0, ψ)
)

= 2a±∞ > 0. �

Next we compute the values of α and β in (III.27) and (III.28).

Lemma III.18 α = 1√
2
.

Proof For ϕ ∈ L2
R,

(λ+
n − µn)〈F+

n ,Hn〉 = 〈i
(

1 0
0 −1

)

d

dx
F+
n ,Hn〉 − 〈F+

n , i

(

1 0
0 −1

)

d

dx
Hn〉.

As i

(

1 0
0 −1

)

d
dx is formally selfadjoint, we have, integrating by parts

〈i
(

1 0
0 −1

)

d

dx
F+
n ,Hn〉 =

(

i

(

1 0
0 −1

)

F+
n

)

·H̄n







1

0
+〈F+

n , i

(

1 0
0 −1

)

d

dx
Hn〉.

Hence, with

F±
nj(1) = (−1)nF±

nj(0) ; Hn1(1) = Hn2(1) ; Hn1(0) = Hn2(0)

we get

(λ+
n − µn)〈F+

n ,Hn〉 = i
(

F+
n1(0) − F+

n2(0)
)

(

(−1)nHn1(1) −Hn1(0)
)

.
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Similarly one shows

(λ−n − µn)〈F−
n ,Hn〉 = i

(

F−
n1(0) − F−

n2(0)
)

(

(−1)nHn1(1) −Hn1(0)
)

.

For ϕ ∈ Bn, we have µn = τn and γn > 0. Thus λ+
n − µn = −(λ−n − µn) =

γn/2 > 0. Hence Hn1(1) − (−1)nHn1(0) 6= 0 and then, with the identities
above,

〈F+
n ,Hn〉

〈F−
n ,Hn〉

= −F
+
n1(0) − F+

n2(0)

F−
n1(0) − F−

n2(0)
. (III.31)

The limits of both sides of (III.31) are computed separately,

lim
Bn3ϕ→ψ

〈F+
n ,Hn〉

〈F−
n ,Hn〉

=
limBn3ϕ→ψ〈F+

n ,Hn〉
limBn3ϕ→ψ〈F−

n ,Hn〉
=

β

−α β
|β|

= −|β|
α

,

lim
Bn3ϕ→ψ

−F
+
n11(0) − F+

n2(0)

F−
n1(0) − F−

n2(0)
= − α (Kn1(0) −Kn2(0)) + β (Hn1(0) −Hn2(0))

|β| (Kn1(0) −Kn2(0)) − α β
|β| (Hn1(0) −Hn2(0))

= − α

|β|

where we used convergence in H1 of F±
n and the normalization condition

Kn1(0) −Kn2(0) 6= 0. Hence together with (III.31) we get − |β|
α = − α

|β| or

|β|2 = α2. As α2 + |β|2 = 1 and α > 0 it follows that α = 1/
√

2. �

Lemma III.19 β = 1√
2
.

Proof As α2 + |β|2 = 1 and α = 1/
√

2 (Lemma III.18) it follows that
|β| = 1/

√
2. It remains to prove that β ≥ 0. By Lemma III.17 and the

definition of β we have

β = lim
Bn3ϕ→ψ

〈F+
n ,Hn〉. (III.32)

As in the proof of Lemma III.18 write

(λ+
n − µn)〈F+

n ,Hn〉 = i
(

F+
n1(0) − F+

n2(0)
)

(

(−1)nHn1(1) −Hn1(0)
)

.

(III.33)
By Lemma III.17, one has in the limit ϕ→ ψ

i
(

F+
n1(0) − F+

n2(0)
)

< 0 .

Further, with Hn1(x) = Gn1(x)
‖Gn‖ and Gn1(0) = 1,

(−1)nHn1(1) −Hn1(0) =
1

‖Gn‖
((−1)nGn1(1) − 1) .
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To compute the limit of (−1)nG1(1,µn)−1

λ+
n −µn

for ϕ→ ψ write, for ϕ ∈ Bn,

G1(1, µn) =
1

2
(G1(1, µn) +G2(1, µn))

=
1

2
(M11(1, µn) +M22(1, µn))

+
1

2
(M21(1, µn) +M12(1, µn))

=
1

2
∆(µn) +

1

2
∗
√

∆(µn)2 − 4

where we used that, by definition (I.68),

∗
√

∆(µn)2 − 4 = M21(1, µn) +M12(1, µn).

As ∆(λ−n ) = 2(−1)n and λ+
n − µn = γn/2 we then conclude

(−1)nG1(1, µn) − 1

λ+
n − µn

=
(−1)n

γn

(

∆(µn) − ∆(λ−n )
)

+
(−1)n

γn

∗
√

∆(µn)2 − 4.

By Taylor’s remainder formula, with µn = τn

∆(µn) − ∆(λ−n ) =
γn
2

∫ 1

0
∆̇(λ(t))dt

where λ(t) = λ−n + tγn/2. Hence, with λ∗ := λ−n (ψ) = λ+
n (ψ),

lim
Bn3ϕ→ψ

∆(µn) − ∆(λ−n )

γn/2
= ∆̇(λ∗) = 0

As, for ϕ ∈ Bn, (−1)n−1 ∗
√

∆(µn)2 − 4 = +
√

∆(µn)2 − 4 we then have

lim
Bn3ϕ→ψ

(−1)nG1(1, µn) − 1

γn/2
= lim

Bn3ϕ→ψ

(−1)n

γn

∗
√

∆(µn)2 − 4 ≤ 0.

Combining (III.32) (III.33) with the results above, one concludes

β = i
(

F+
n1(0) − F+

n2(0)
)

(

(−1)nHn1(1) −Hn1(0)
)

γn/2

= i
(

F+
n1(0) − F+

n2(0)
)

lim
Bn3ϕ→ψ

(

(−1)nG1(1, µn) − 1

γn/2

)

≥ 0.

�

Lemma III.16 allows us to obtain asymptotic estimates of ∇ϕ(x)xn and
∇ϕ(x)yn where ϕ is a finite gap potential.
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Proposition III.20 For any finite gap potential ϕ,

∇ϕ(x)xn = − 1√
2

(

ei2πnx, e−i2πnx
)

+ `2(n)

∇ϕ(x)yn =
i√
2

(

−ei2πnx, e−i2πnx
)

+ `2(n) .

At ϕ = 0 the latter identities hold without error term.

Proof Let ϕ be a finite gap potential and let N ≥ 0 be such that λ+
n =

λ−n ∀|n| ≥ N + 1. By (III.15) and (III.16)

xn =
√

2
ξn
4

(

z+
n e

iβn + z−n e
−iβn

)

and

yn =
√

2
ξn
4i

(

z+
n e

iβn − z−n e
−iβn

)

.

Recall that ξn = 1+`2(n) (cf Theorem III.3) and βn = 0( 1
n) (cf Lemma III.9,

using that γk = 0 and µk− τk = 0 ∀|k| ≥ N +1). As z±n = 0 for |n| ≥ N +1
one obtains

∇ϕ(x)xn =
√

2
1

4

(

∇ϕ(x)z
+
n + ∇ϕ(x)z

−
n

)

+ `2(n)

and

∇ϕ(x)yn =
√

2
1

4i

(

∇ϕ(x)z
+
n −∇ϕ(x)z

−
n

)

+ `2(n).

The claimed asymptotics then follow from Lemma III.16. �

III.6 Canonical relations

In this section we prove that the map Ω : L2
R → `2(Z,R2) is Poisson, i.e.

that the push forward of the Poisson structure by Ω is the canonical Poisson
structure on `2(Z,R2).
First, following Mc Kean-Vaninsky [MV] we establish canonical relations for
the action and angle variables.

Proposition III.21 For any ϕ ∈ L2
R, and k, n ∈ Z,

{Ik(ϕ), In(ϕ)} = 0.

Proof By Theorem III.2, for k ∈ Z and j = 1, 2,

∂Ik
∂ϕj(x)

= − 1

π

∫

Γk

∂∆(λ)

∂ϕj(x)

1
c
√

∆(λ)2 − 4
dλ
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and hence

{Ik, In} =
1

π2

∫

Γk

∫

Γn

{∆(λ),∆(µ)}
c
√

∆(λ)2 − 4 c
√

∆(µ)2 − 4
dλdµ.

As {∆(λ),∆(µ)} = 0 for any λ, µ ∈ C (Proposition I.36 page 55) it follows
that {Ik, In} = 0. �

Next we want to show that for ϕ ∈ L2
R with γk 6= 0, {In, θk} = δnk. Recall

that θk = ηk +
∑

j 6=k β
(k)
j is a real analytic function on W\Dk with values

in R/πZ (cf Theorem III.10). First we compute {β (k)
j , In} for any j, n ∈ Z)

where, for convenience, β
(k)
k := ηk. Introduce

g
(k)
j (λ) :=

δ(λ)

λ− µj

ψk(µj)

δ̇(µj)
.

Lemma III.22 Let ϕ ∈ L2
R and k ∈ Z with γk(ϕ) 6= 0. Then, for any

j, n ∈ Z,

(i) {β(k)
j ,∆(λ)} = 1

2g
(k)
j (λ).

(ii) {β(k)
j , In} = − 1

2π

∫

Γn

g
(k)
j (λ)

c
√

∆(λ)2−4
dλ.

Proof As the cases j = k and j 6= k are proved in the same way, let us
concentrate on j = k. Recall that

ηk ≡ β
(k)
k =

∫ µ∗
k

λ−
k

ψk(λ)
√

∆(λ2) − 4
dλ

where µ∗k = (µk, yk) is a point on the Riemann surface Σϕ with

yk = ∗
√

∆(µk)2 − 4 = (M21 +M12)




1,µk
.

Further, the gradient of the action variable In is given by (cf Theorem III.2)

5ϕ(x)In = − 1

π

∫

Γn

5ϕ(x)∆(λ)
1

c
√

∆(λ)2 − 4
dλ.

Hence

{ηk, In} = − 1

π

∫

Γn

1
c
√

∆(λ)2 − 4
{ηk,∆(λ)}dλ. (III.34)

By Corollary I.39 there exists a sequence (ϕj)j≥1 ⊆ Iso(ϕ) with limj→∞ ϕj =
ϕ in L2

R so that

λ−k < µk(ϕj) < λ+
k ∀j ∈ Z.
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As ∆, λ−k and ψk are isospectral invariants it then follows that for any ϕj

{ηk,∆(λ)} =
ψk(µk)

∗
√

∆(µk)2 − 4
{µk,∆(λ)}.

By Proposition I.37

{µk,∆(λ)} =
1

2

δ(λ)

δ̇(µk)

1

λ− µk

∗
√

∆(µk)2 − 4

and thus, for any ϕj,

{ηk,∆(λ)} =
1

2

δ(λ)

λ− µk

ψk(µk)

δ̇(µk)
=

1

2
g
(k)
k (λ).

As both sides of the latter identity are continuous in ϕ it remains valid for
ϕ = limj→∞ ϕj and (i) is proved. Substituting this formula into (III.34)
then leads to

{ηk, In} = − 1

2π

∫

Γn

g
(k)
k (λ)

c
√

∆(λ)2 − 4
.

�

Lemma III.23 For any ϕ ∈ L2
R, the infinite sum gk(λ) =

∑

j g
(k)
j (λ) is

absolutely summable locally uniformly in λ and one has

gk = ψk.

Proof Recall that

g
(k)
j (λ) =

δ(λ)

λ− µj

ψk(µj)

δ̇(µj)
.

Using the product representation of ψk and the estimate of the zeroes ν
(k)
j

of ψk, µj − ν
(k)
j = `2(j) (j 6= k) (cf Theorem II.1) as well as the estimate on

infinite products given in Lemma I.17 one sees that ψk(µj) = `2(j)
〈k−j〉 for any

j ∈ Z. By the infinite product representation for δ̇(λ) and again Lemma I.17
it follows that 1/δ̇(µj) = 0(1) for j → ∞. Finally, as |δ(λ)| ≤ Ce|Imλ|

uniformly for λ ∈ C one then concludes that the series Σjg
(k)
j converges

uniformly in any strip |Imλ| ≤ a and is an entire function which we denote
by gk(λ) satisfying

|gk(λ)| ≤ C ′e|Imλ| (λ ∈ C).

Next we prove that gk is an element in I0. As




δ(λ)
λ−µj



 ≤ C 1
〈λ−µj 〉 where

C can be chosen independently of j it follows from the asymptotics of
ψk(µj)/δ̇(µj) that

∫∞
−∞ |gk(λ)|2dλ <∞ and therefore gk ∈ I0.
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From the definition of g
(k)
j one sees that g

(k)
j (µ`) = ψk(µ`)δj` (j, ` ∈ Z) and

thus gk(µ`) = ψk(µ`) ∀` ∈ Z. As ψk is also an element of I0, Lemma II.4
implies that gk ≡ ψk. �

Proposition III.24 Let k, n ∈ Z. Then for any ϕ ∈ L2
R\Dk

{In, θk} = δnk.

Proof By Theorem III.10, βk = Σj 6=kβ
(k)
j converges locally uniformly for ϕ

in W\Dk. Hence by Cauchy’s theorem, this holds for the gradient 5ϕ(x)βk
as well. Combining Lemma III.22 and Lemma III.23 then yields

{In, θk} =
1

2π

∫

Γn

ψk(λ)
dλ

c
√

∆(λ)2 − 4
= δnk

where for the latter identity we use the normalization condition of ψk (cf
Theorem II.1). �

It remains to prove that the variables Θk commute with each other.

Proposition III.25 Let ϕ ∈ L2
R\(Dk ∪Dn) with n, k arbitrary. Then

{Θk,Θn} = 0.

The proof of this Proposition requires the following three auxilary Lemmas:

Lemma III.26 For any j 6= ` and ϕ ∈ L2
R\D`

{µj , λ−` } =
1

2
∗

√

∆(µj)2 − 1
δ(λ−` )

δ̇(µj)

1

λ−` − µj

1

∆̇(λ−` )
.

Proof By Proposition I.29

∇ϕ(x)µj =
1

‖Gj(·)‖2

(

Gj,2(x)
2, Gj,1(x)

2
)

where Gj(x) = M (1)(x, µj) +M (2)(x, µj) is an eigenfunction corresponding
to µj and by Proposition I.32,

∇ϕ(x)λ
−
` =

(

F−
`,2(x)

2, F−
`,1(x)

2
)

where (cf (I.62))

F−
` (x) =

ε−`
2

+

√

−iδ̆(λ−` )

∆̇(λ−` )
G(x, λ−` ) +

i

2
+

√

−iδ(λ−` )

∆̇(λ−` )
Ğ(x, λ−` ) (III.35)
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is an eigenfunction corresponding to λ−` . Hence

{µj , λ−` } =
i

‖Gj‖2

∫ 1

0

(

Gj,2(x)F
−
`,1(x)

)2
−
(

Gj,1(x)F
−
`,2(x)

)2
dx

=
i

‖Gj‖2

∫ 1

0

(

Gj,2F
−
`,1 +Gj,1F

−
`,2

)(

Gj,2F
−
`,1 −Gj,1F

−
`,2

)

dx.

By the definition of the Wronskian,

W [F−
` , Gj ] = F−

`,1Gj,2 − F−
`,2Gj,1

and by Lemma I.34

−i
λ−` − µj

d

dx
W [F−

` , Gj ] = F−
`,1Gj,2 + F−

`,2Gj,1

and thus

{µj, λ−` } =
1

λ−` − µj

1

‖Gj‖2

1

2

(

W [Gj , F
−
` ](x)

)2






1

0
. (III.36)

As Gj,1(1) = Gj,2(1) as well as Gj,1(0) = 1 = Gj,2(0) and F−
` is periodic or

antiperiodic one computes

(

W [Gj, F
−
` ](x)

)2






1

0
=
(

Gj,1(1)
2 − 1)(F−

`,2(0) − F−
`,1(0)

)2
. (III.37)

The two terms on the right side of (III.37) can be simplified further. Using
that Gj satisfies Dirichlet boundary conditions, i.e.

(M11 +M12)






1,µj

= (M21 +M22)






1,µj

together with the Wronskian identity 1 = M11M22 −M12M21 one has

Gj,1(1)
2 − 1 = (M11 +M12)

2 − 1

= (M11 +M12)(M21 +M22) − (M11M22 −M12M21)

= (M11 +M12)M21 +M12(M22 +M21)

= (M11 +M12)(M21 +M12)

where for the last identity we made use of the Dirichlet boundary conditions
once more. As

∗

√

∆(µj)2 − 4 = (M12 +M21)




1,µj

and

‖Gj‖2 = iδ̇(µj)(M11 +M12)




1,µj
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one thus obtains

Gj,1(1)
2 − 1 =

−i
δ̇(µj)

∗

√

∆(µj)2 − 4‖Gj‖2. (III.38)

Concerning (F−
`,2(0) − F−

`,1(0))
2, use that G(0, λ) = (1, 1) and Ğ(0, λ) =

(1,−1) to conclude from (III.35) that

(

F−
`,2(0) − F−

`,1(0)
)2

= iδ(λ−` )/∆̇(λ−` ). (III.39)

Substituting (III.37) - (III.39) into (III.36) yields the claimed formula. �

Lemma III.26 allows us to prove that {Θk,Θn} = 0 for certain potentials
ϕ ∈ L2

R:

Lemma III.27 Let ϕ ∈ L2
R\(Dk ∪ Dn) (with n, k ∈ Z arbitrary) with

µj(ϕ) = λ−j (ϕ) for any j ∈ Z. Then {Θk,Θn} = 0.

Proof In view of the definition Θk =
∑

j∈Z β
(k)
j (with β

(k)
k := ηk) the claimed

result follows if we prove that for any given j, ` ∈ Z, {β (k)
j , β

(n)
` } = 0. As the

Poisson bracket is skew symmetric it suffices to consider the case j 6= `. By
Proposition I.43, the potential ϕ can be approximated in L2

R by a sequence
(ϕα)α≥1 so that, for any α ≥ 1

λ−j (ϕα) < µj(ϕα) < λ+
j (ϕα),

λ−` (ϕα) < µ`(ϕα) < λ+
` (ϕα),

lim
α→∞

µj − λ−j
λ+
j − µj







ϕα

= 0 and lim
α→∞

µ` − λ−`
λ+
` − µ`







ϕα

= 0.

(III.40)

From the definition of β
(k)
j (cf (III.11)) and the product representations of

ψk and ∆2 − 4 one gets

∇ϕα(x)β
(k)
j =

ψk(µj)
∗
√

∆(µj)2 − 4

(

∇ϕα(x)µj −∇ϕα(x)λ
−
j

)

+ 0





√

√

√

√

µj − λ−j
λ+
j − µj







ϕα





(III.41)

where the error term is uniform in 0 ≤ x ≤ 1 and α ≥ 1. This leads to the
following decomposition

{β(k)
j , β

(n)
` } = A+R (III.42)
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where

A :=
ψk(µj)

∗
√

∆(µj)2 − 4

ψn(µ`)
∗
√

∆(µ`)2 − 4

(

−{µj , λ−` } − {λ−j , µ`}
)

and R is the remainder term defined by the identity (III.42). First we want
to prove that limα→∞R(ϕα) = 0. Recall that (cf Proposition I.29)

∇ϕα(x)µj =
1

‖Gj(·)‖2

(

Gj,2(x)
2, Gj,1(x)

2
)

(III.43)

and (cf Proposition I.32),

∇ϕα(x)λ
−
j =

(

F−
j,2(x)

2, F−
j,1(x)

2
)

(III.44)

where (cf (I.62))

F−
j (x) =

ε−j
2

+

√

√

√

√

−iδ̆(λ−j )

∆̇(λ−j )
G(x, λ−j ) +

i

2
+

√

√

√

√

−iδ(λ−j )

∆̇(λ−j )
Ğ(x, λj). (III.45)

is a normalized eigenfunction corresponding to λ−
j ≡ λ−j (ϕα). Using the

product representation for δ(λ), δ̆(λ) (cf Lemma I.21) ∆̇(λ) (cf Lemma I.20)
and the definition Gj(x) = G(x, µj) as well as (III.40) it follows that

lim
α→∞

F−
j (x, ϕα) =

Gj(x, ϕ)

‖Gj(·, ϕ)‖ .

Therefore
lim
α→∞

‖∇ϕα(x)(µj − λ−j )‖ = 0. (III.46)

Furthermore, by the product representations of the quantities involved, the

sequence

(

ψk(µj)
+

√

µj−λ−j
λ+

j −µj

1
∗
√

∆(µj)2−4





ϕα

)

α≥1

is bounded. Hence in view

of (III.40) - (III.42) and (III.46), limα→∞R(ϕα) = 0 and thus
{

β
(k)
j , β

(n)
`

}

(ϕ) = lim
α→∞

{

β
(k)
j , β

(n)
`

}

(ϕα)

= lim
α→∞

ψk(µj)ψn(µ`)
∗
√

∆(µj)2 − 4 ∗
√

∆(µ`)2 − 4

(

{

λ−` , µj
}

+
{

µ`, λ
−
j

})

where we also used that {µj, µ`} =
{

λ−` , λ
−
j

}

= 0. The terms on the right

side of the equation above are treated separately and in the same way. Let
us consider the first term only. By Lemma III.26 we have

lim
α→∞

ψk(µj)ψn(µ`)
∗
√

∆(µj)2 − 4 ∗
√

∆(µ`)2 − 4
{µj , λ−` }

= lim
α→∞

1

2

ψk(µj)ψn(µ`)
∗
√

∆(µ`)2 − 4

δ(λ−` )

δ̇(µj)

1

∆̇(λ−` )

1

λ−` − µj
.
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In view of (III.40), it follows from the product representation of δ(λ) and
∆(λ)2 − 4 that

lim
α→∞

δ(λ−` )
∗
√

∆(µ`)2 − 4
= 0.

Since γ` 6= 0 we have limα→∞ ∆̇(λ−` ) = ∆̇(λ−` ) 6= 0. As δ̇(µj) is uniformly
bounded away from 0 and limα→∞(λ−` −µj) = λ−` −λ−j 6= 0 we thus conclude
that

lim
α→∞

ψk(µj)ψn(µ`)
∗
√

∆(µ`)2 − 4

δ(λ−` )

δ̇(µj)

1

∆̇(λ−` )

1

λ−` − µj
= 0

and Lemma III.27 is proved. �

Lemma III.28 Let ϕ ∈ L2
R\(Dk ∪Dn) with n, k ∈ Z arbitrary. Then for

any λ ∈ C

{{Θk,Θn},∆(λ)} = 0.

Proof Introduce h(λ) := {{Θk,Θn},∆(λ)}. First we want to prove that
h ∈ I0. By the Jacobi identity,

h(λ) = {Θk, {Θn,∆(λ)}} − {Θn, {Θk,∆(λ)}} .

By Lemma III.22 (i) one gets

{Θk,∆(λ)} =
1

2

∑

j∈Z
g
(k)
j (λ) =

1

2
ψk(λ)

where the latter identity holds by Lemma III.23. Therefore

h(λ) =
1

2
{Θk, ψn(λ)} − 1

2
{Θn, ψk(λ)}.

Recall that ψn : W → I0, ϕ 7→ ψn(·, ϕ) is analytic. Hence, for

ϕ ∈ L2
R\(Dk ∪Dn) ,

h is in I0. Moreover, in view of the formula

∇ϕ(x)Ij = − 1

π

∫

Γj

∇ϕ(x)∆(λ)
c
√

∆(λ)2 − 4
dλ

one has

{{Θk,Θn}, Ij} = − 1

π

∫

Γj

h(λ)
c
√

∆(λ)2 − 4
dλ .

Using the Jacobi identity for {{Θk,Θn}, Ij} once more one then concludes
from the canonical relations {Θk, Ij} = −δkj (cf Proposition III.24) that

Aj(h) ≡
∫

Γj

h(λ)
c
√

∆(λ)2 − 4
dλ = 0 ∀j ∈ Z.
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By Lemma II.3 and Lemma II.4 it then follows that h = 0. �

We are now in position to prove Proposition III.25:

Proof (of Proposition III.25) As finite gap potentials are dense in L2
R\(Dk∪

Dn) and {Θk,Θn} is continuous it suffices to show that {Θk,Θn} = 0 for
any finite gap potential ϕ in L2

R\(Dk ∪Dn). Using the isospectral flows ηt

introduced in (I.79) together with {{Θk,Θn},∆(λ)} = 0 (cf Lemma III.28)
one sees that

d

dt
{Θk,Θn}(ηt) =

∫ 1

0
∇ϕ(x){Θk,Θn} ·

d

dt
ηtdx

= {{Θk,Θn},∆(λ)}






λ=µj(ηt)
= 0.

This leads to the identity

{Θk,Θn}(ϕ0) = {Θk,Θn}(ϕ)

with ϕ0 ∈ Iso(ϕ) satisfying

µj(ϕ0) = λ−j (ϕ) ∀j ∈ Z.

But by Lemma III.27, {Θk,Θn}(ϕ0) = 0 and hence {Θk,Θn}(ϕ) = 0. �

The results obtained in this section allow us to prove the following

Theorem III.29 For any ϕ ∈ L2
R and k, n ∈ Z, {xk, xn} = {yk, yn} = 0

and {xk, yn} = δkn.

Proof Let k, n ∈ Z be fixed. As L2
R\(Dk ∪Dn) is dense in L2

R and the coor-
dinates as well as their Poisson brackets are continuous it suffices to prove
the canonical relations for ϕ in L2

R\(Dk∪Dn). Then xj and yj (j = k, n) are
given by xj =

√

2IjcosΘj and yj =
√

2IjsinΘj. Using Propositions III.21,
III.24, and III.25 one sees that {xk, xn} = 0 and {yk, yn} = 0. Moreover one
computes {xk, yn} as follows,

{xk, yn} =
1√
2Ik

cos Θk

√

2In cos Θn{Ik,Θn}

−
√

2Ik sinΘk
1√
2In

sinΘn{Θk, In}

= (sin2 Θn + cos2 Θn){Ik,Θn}
= δkn.

�
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III.7 Local diffeomorphism

For any N ≥ 0, let HN ≡ HN (S1,C2) be the Sobolev space of periodic
functions g : R → C

2 of period 1 of the form g(x) =
∑

k ĝ(k)e
i2kπx satisfying

‖g‖N <∞ where

‖g‖N :=

(

∑

k∈Z
〈k〉2N |ĝ(k)|2

)1/2

and denote by HN
R the space of potentials of real type in HN

HN
R := L2

R ∩HN (S1,C2)

and by Ω(N) the restriction of Ω ≡ Ω(0) to HN
R . From [GK1] we learn that

γ(ϕ) := (γn(ϕ))n∈Z is in the sequence space `2N for any ϕ ∈ HN
R . Here

`2N ≡ `2N (Z,C2) is the Hilbert space

`2N := {a = (ak)k∈Z ∈ `2





‖a‖N <∞}

with

‖a‖N :=

(

∑

k∈Z
〈k〉2N |ak|2

)1/2

.

Hence Ω(N) maps HN
R into `2N and, in the sequel, will be viewed as a map

Ω(N) : HN
R → `2N .

In this section we prove that, for any N ≥ 0, Ω(N) is real analytic and, at
each point in HN

R , a local diffeomorphism. We begin by showing that Ω(0)

is a local diffeomorphism at each point in L2
R.

First we need to introduce some more notation. We introduce the following
orthonormal basis of L2([0, 1],C2) only used in this section, (k ∈ Z)

e+k (x) := − 1√
2

(

ei2πkx, , e−i2πkx
)

; e−k :=
i√
2

(

−ei2πkx, e−i2πkx
)

.

Further we define for any ϕ ∈ L2
R (k ∈ Z)

d+
k (x, ϕ) := ∇ϕ(x)xk ; d−k (x, ϕ) := ∇ϕ(x)yk

and note that by Proposition III.20, d±k (x, 0) = e±k (x) (k ∈ Z).

Lemma III.30 For any ϕ ∈ L2
R, the differential dϕΩ is a linear isomor-

phism from L2([0, 1],C2) onto `2(Z,C2).
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Proof Let ϕ ∈ L2
R. For any F ∈ L2([0, 1],C2) one has

dϕΩ(F ) =
(

d+
k (ϕ) · F, d−k (ϕ) · F

)

k∈Z

where the dot denotes the dual pairing between the dual of L2([0, 1],C2)
and itself (no complex conjugation).
Noticing that the sequence (d±k (ϕ))k∈Z is bounded in L2([0, 1],C2), we in-
troduce A ≡ A(ϕ) the bounded linear operator on L2([0, 1],C2) given by

A(ϕ) : F 7→
∑

k∈Z
〈F, e+k 〉d+

k (ϕ) + 〈F, e−k 〉d−k (ϕ) (III.47)

where 〈·, ·〉 denotes the inner product in L2([0, 1],C2) (i.e. 〈F,G〉 = F · Ḡ ).
One has for any k ∈ Z

Ae±k = d±k
and thus

d±k · F = Ae±k · F = e±k ·A∗F .

Therefore
dϕΩ(F ) =

(

e+k ·A(ϕ)∗F, e−k ·A(ϕ)∗F
)

k∈Z
and thus it remains to prove that A ≡ A(ϕ) is a linear isomorphism of
L2([0, 1],C2).
As
∑

k∈Z
‖(A− I)(e+k )‖2 + ‖(A− I)(e−k )‖2 =

∑

k∈Z
‖d+

k − e+k ‖2 + ‖d−k − e−k ‖2

one deduces by Proposition III.20 that, if ϕ ∈ L2
R is a finite gap potential,

then A(ϕ) − I is a Hilbert-Schmidt operator and thus a compact operator.
Given ϕ ∈ L2

R, choose a sequence of finite gap potentials in L2
R with ϕ =

limn→∞ ϕn. As ϕ 7→ Ω(ϕ) is analytic, ϕ 7→ A(ϕ) is continuous and thus
A(ϕ) − I = limn→∞(A(ϕn) − I) is compact as well.
Further we claim that A is 1-1. Noticing that

{H,K}(ϕ) = ∇ϕ(x)H · J∇ϕ(x)K

where J = i

(

0 1
−1 0

)

one gets, using the canonical relations established in

Theorem III.29, that for any k, n ∈ Z

d±k · Jd∓n = ±δkn and d±k · Jd±n = 0 .

Therefore if AF = 0 then for any n ∈ Z

0 = AF · Jd∓n = ±〈F, e±n 〉
i.e. F = 0. Hence A is 1-1 and by the Fredholm alternative we conclude
that A is an isomorphism. �

To prove Ω(N) is a local diffeomorphism we need the following auxilary
result:
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Lemma III.31 Let N ≥ 0 and ϕ be any finite gap potential in L2
R. Then

for any F ∈ HN (S1,C2),

〈∇ϕ(x)xn, F 〉 = 〈e+n , F 〉 + `2N (n)

〈∇ϕ(x)yn, F 〉 = 〈e−n , F 〉 + `2N (n)

where the error terms `2N (n) are uniformly bounded in `2N on bounded sets
of functions F in HN (S1,C2).

Proof Both asymptotic estimates are proven in the same way, so let us
concentrate on the first one. We argue by induction. For N = 0, the
statement follows from Proposition III.20. Next assume that the statement
holds up to some integer N . From the definition (III.25) we see that for any
n with γn = 0,

∇ϕ(x)xn =
√

2
ξn
4

(eiβn∇z+
n + e−iβn∇z−n ). (III.48)

By Lemma III.16 for |n| sufficiently large,

∇ϕ(x)z
±
n = 2

(

∇ϕ(x)τn −∇ϕ(x)µn
)

± i lim
Bn3ψ→ϕ

∇ψ(x)γn (III.49)

where limBn3ψ→ϕ∇ψ(x)γn is of the form

(

F̃+
n,2(x)

2, F̃+
n,1(x)

2
)

−
(

F̃−
n,2(x)

2, F̃−
n,1(x)

2
)

and F̃±
n =

(

F̃±
n,1, F̃

±
n,1

)

being both solutions of the equation LF = λ+
nF .

It turns out that ∇ϕ(x)z
±
n satisfies a nonlocal equation of first order. Intro-

duce the operator L̃ ≡ L̃(ϕ)

L̃(ϕ) :=

(

1 0
0 −1

)

d

dx
+ 2

(

−ϕ2D
−1ϕ1 ϕ2D

−1ϕ2

−ϕ1D
−1ϕ1 ϕ1D

−1ϕ2

)

where D−1 denotes the inverse of the restriction of d
dx to H1

0 (S1,C),

D−1 : L2(S1,C) → H1
0 (S1,C)

and

H1
0 (S1,C) := {f ∈ H1(S1,C)







∫ 1

0
f(x)dx = 0}.

One verifies that for any function F = (F1, F2) ∈ H1(S1,C2) satisfying
LF = λF one has

L̃
(

(F2)
2, (F1)

2
)

= 2iλ
(

(F2)
2, (F1)

2
)

− 2i

(∫ 1

0
F1F2 dx

)

(ϕ2, ϕ1).
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In particular, if F1(x) = F2(x) and ‖F‖2 = 1, then

∫ 1

0
F1F2dx = 1/2‖F‖2 = 1/2

and the formula above reads, with

ϕ∗ := (ϕ2, ϕ1) ,

L̃
(

(F2)
2, (F1)

2
)

= 2iλ
(

(F2)
2, (F1)

2
)

− iϕ∗.

Applying this formula to each term on the right side of the expression (III.49)
separately, one concludes from (I.21) (page 25) Proposition I.29 and Propo-
sition I.32

L̃
(

∇ϕ(x)z
±
n

)

= 2iλ+
n∇ϕ(x)z

±
n .

By (III.48) it then follows that for any F ∈ HN+1(S1,C2),

〈∇ϕ(x)xn, F 〉L2 =
1

2iλ+
n
〈L̃(ϕ)∇ϕ(x)xn, F 〉L2

=
1

2iλ+
n
〈∇ϕ(x)xn,−L̃(ϕ∗)F 〉L2

where for the latter identity we used that the adjoint of L̃(ϕ) is given by
−L̃(ϕ∗). Clearly, L(ϕ∗)F ∈ HN (S1,C2) and thus, by the induction hypoth-
esis applied to it one has

〈∇ϕ(x)xn, F 〉 =
1

2iλ+
n

(

〈e+n ,−L̃(ϕ∗)F 〉L2 + `2N (n)
)

where the error term is uniformly bounded on bounded sets inHN+1(S1,C2)
since the linear map L̃(ϕ∗) : HN+1(S1,C2) → HN (S1,C2) is continuous for

N ≥ 0. Notice that B := −L(ϕ∗) +

(

1 0
0 −1

)

d
dx is a bounded operator on

HN+1 and

〈e+n ,−
(

1 0
0 −1

)

d

dx
F 〉 = 〈

(

1 0
0 −1

)

d

dx
e+n , F 〉

= 2iπn〈e+n , F 〉.

Together with the asymptotics λ±n = nπ+`2(n) (cf Proposition I.6) one then
obtains

〈∇ϕ(x)xn, F 〉 =
πn

λ+
n
〈e+n , F 〉 +

1

λ+
n
〈e+n , BF 〉 + `2N+1(n)

=

(

1 +O(
1

n
)

)

〈e+n , F 〉 +
1

λ+
n
〈e+n , BF 〉 + `2N+1(n).
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Integrating by parts we have

|〈e+n , F 〉| ≤
‖F‖N+1

〈n〉N+1

and

|〈e+n , BF 〉| ≤ C(ϕ)
‖F‖N+1

〈n〉N+1

where C(ϕ) is a constant depending only on ϕ and its derivatives. Hence it
follows that

〈∇ϕ(x)xn, F 〉 = 〈e+n , F 〉 + `2N+1(n)

where the error term is uniformly bounded on bounded sets of functions F
in HN+1(S1,C2). This proves the induction step. �

Lemma III.31 will now be used to prove

Theorem III.32 For any N ≥ 0,Ω(N) is real analytic and a local diffeo-
morphism near any point in HN

R .

Proof To see that Ω(N) : W ∩ HN → `2N is real analytic ( with W as in
Theorem III.15) it suffices to show that Ω(N) is locally bounded and that

each component Ω
(N)
j := (xj , yj) is real analytic on W ∩ HN . The latter

statement clearly follows from the fact that Ω : W → `2 is real analytic.
The local boundedness of Ω follows from the asymptotic estimate

|xn| + |yn| = 0(|µn − τn| + |γn|)

(cf Proposition III.14, Theorem III.3 and Lemma III.9) and the asymptotic
estimates for γn and µn − τn established in [GK1] (see also [Ma]). These
estimates imply that for any N ≥ 1, the maps ϕ 7→ (γn(ϕ))n∈Z and ϕ 7→
(µn(ϕ) − τn(ϕ))n∈Z from HN (S1,C2) to `2N are bounded.

To see that Ω(N) is a local diffeomorphism on HN
R , one has to prove that, at

each point ϕ ∈ HN
R , dϕΩ(N) is a linear isomorphism from HN (S1,C2) onto

`2N . Clearly, dϕΩ(N) is the restriction to HN (S1,C2) of dϕΩ and thus by
Lemma III.30, dϕΩ(N) is 1-1. Further, following the notation established in
this Lemma, on has for any F ∈ HN ([0, 1],C2)

dϕΩ(N)(F ) =
(

d+
k (ϕ) · F, d−k (ϕ) · F

)

k∈Z

and, with F = (F1, F2),

d0Ω
(N)(F ) =

(

e+k · F, e−k · F
)

k∈Z

=

(

1√
2

(

F̂1(−k), F̂2(k)
)

(

−1 −i
1 1

))

k∈Z
.



III.8. GLOBAL PROPERTIES 139

As the Fourier transform realises a linear isomorphism from HN ([0, 1],C)
onto `2N (Z,C), we deduce that d0Ω

(N) is a linear isomorphism fromHN (S1,C2)
onto `2N .
By the Fredholm alternative it thus remains to show that

R ≡ R(ϕ) := dϕΩ(N) − d0Ω
(N)

is a compact operator from HN (S1,C2) into `2N .
Denote by Rk, k ∈ Z, the k-th component of R, i.e. the operator from HN

into C
2 given by

RkF =
(

(d+
k − e+k ) · F, (d−k − e−k ) · F

)

We introduce for each K ≥ 1 the finite rank operator RK defined by

RKF ≡
(

RKk F
)

k∈Z

where for |k| ≤ K, RKk F = RkF and for |k| > K, RKk F = 0. Denoting for
any k ∈ Z

ak := sup{‖Rk(ϕ)F‖ | F ∈ HN , ‖F‖N = 1} .
one has

‖R−RK‖L(HN ,`2
N

) ≤
∑

|k|>K
〈k〉Na2

k .

Therefore, as by Lemma III.31 the sequence (ak)k∈Z is in `2N , we deduce
that, for each finite gap potentail ϕ, R(ϕ) is the uniform limit of finite rank
operators and thus a compact operator.
Approximating an arbitrary ϕ ∈ HN

R by a sequence of finite gap potentials
(ϕn)n≥1 in HN

R and using that R(ϕ) is real analytic, hence in particular
continuous in ϕ, one sees that limn→∞R(ϕn) = R(ϕ) is compact as well. �

III.8 Global properties

The purpose of this section is to prove that Ω(N) is 1 − 1 and onto for any
N ≥ 0. To this end we show that the action map

I : L2
R → `1, ϕ 7→ (Ik(ϕ))k∈Z .

is proper. We begin with establishing auxilary results concerning various
asymptotic estimates.

Lemma III.33 Let ϕ ∈ L2
R, λ ∈ R and F ∈ H1([0, 1],C2) with ‖F‖L2 = 1

satisfying L(ϕ)F = λF . Then

‖F‖L∞ ≤
√

2 exp(‖ϕ1‖L2).
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Proof Introduce F̃ (x) := E(x, λ)−1F (x) where (cf page 14)

E(x, λ) = diag(e−iλx, eiλx).

Substitute F (x) = E(x, λ)F̃ (x) into the equation LF = λF to obtain

d

dx
F̃ (x) = i

(

0 e2iλxϕ1(x)

−e−2iλxϕ1(x) 0

)

F̃ (x).

Denoting by Q(x) the matrix

Q(x) := i

(

0 e2iλxϕ1(x)

−e−2iλxϕ1(x) 0

)

one gets
d

dx
‖F̃ (x)‖2 = F̃ ·QF̃ + F̃ ·QF̃

and thus, for any 0 ≤ s ≤ x ≤ 1,

‖F̃ (x)‖2 = ‖F̃ (s)‖2 +

∫ x

s

(

F̃ ·QF̃ + F̃ ·QF̃
)

dt. (III.50)

As λ ∈ R, we have |F̃ (x)| = |F (x)| for any x and thus
∫ x
0 ‖F̃ (s)‖2ds ≤ 1 for

any 0 ≤ x ≤ 1. Integrating both sides of (III.50) with respect to s from 0
to x then leads to

x‖F̃ (x)‖2 ≤ 1 +

∫ x

0
ds

∫ x

s
dt





F̃ ·QF̃ + F̃ ·QF̃







≤ 1 + 2

∫ x

0
ds

∫ x

s
dt




F̃ (t)






2


ϕ1(t)






= 1 + 2

∫ x

0
t





F̃ (t)







2



ϕ1(t)






dt.

By Gronwall’s lemma one gets for 0 ≤ x ≤ 1,

x‖F̃ (x)‖2 ≤ exp

(

2

∫ x

0






ϕ1(t)






dt

)

≤ exp (2‖ϕ‖L2 ) .

In particular, for any 1
2 ≤ x ≤ 1,

‖F̃ (x)‖ ≤
√

2 exp (‖ϕ‖L2) .

Reversing the orientation on the interval [0, 1] one obtains the same inequal-
ity for x ∈ [0, 1/2]. �

Corollary III.34 For any ϕ ∈ L2
R and n ∈ Z,

(i) |µn(ϕ) − nπ| ≤ 2
√

2‖ϕ‖e
√

2‖ϕ‖,

(ii) |λ±n (ϕ) − nπ| ≤ 2
√

2‖ϕ‖e
√

2‖ϕ‖.
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Proof (i) As µn(0) = nπ, one has by Taylor’s formula

µn(ϕ) − nπ =

∫ 1

0

d

dt
(µn(tϕ)) dt

=

∫ 1

0
〈∇tϕ(·)µn, ϕ(·)〉dt.

By Proposition I.29,

∇ϕ(x)µn =
1

‖Gn(·)‖2

(

Gn,2(x)
2, Gn,1(x)

2
)

where we recall that

Gn(x) = G(x, µn) = M (1)(x, µn) +M (2)(x, µn) .

Hence by Lemma III.33,

‖G‖L∞

/

‖G‖L2 ≤
√

2 exp (‖ϕ1‖L2)

and therefore, with ‖ϕ‖L2 =
√

2‖ϕ1‖L2






〈∇tϕ(·)µn, ϕ(·)〉






≤ 2 exp (2‖ϕ1‖L2) (‖ϕ1‖L2 + ‖ϕ2‖L2)

≤ 2
√

2 exp
(√

2‖ϕ‖L2

)

‖ϕ‖L2 .

To prove (ii) recall from Proposition I.40 that for any given n ∈ Z there
exists ϕ± ∈ Iso(ϕ) such that µn(ϕ

±) = λ±n (ϕ) and ‖ϕ±‖ ≤ ‖ϕ‖. Hence (ii)
is a consequence of (i). �

Corollary Corollary7.2 can be used to prove the following properness result
for the actions.

Lemma III.35 The map I : L2
R → `1, ϕ 7→ (Ik(ϕ))k∈Z is proper.

Remark With some effort one can prove that (cf [MV])
∑ |µn(ϕ) − nπ|2 ≤

C(‖ϕ‖). This uniform estimate can be used to prove that the map L2
R 3

ϕ 7→ (I(ϕ))k∈Z is proper. Nevertheless our proof of Lemma III.35 use only
the weaker estimates established in Corollary Corollary7.2.

Proof It is to prove that any sequence (ϕj)j≥1 in L2
R with the property

that (I(ϕj))j≥1 converges in `1(Z) to a sequence J := (Jk)k∈Z admits
a convergent subsequence. By Proposition III.4, we have for any j ≥ 1,
∑

k∈Z Ik(ϕj) = ‖ϕ‖2 and hence

lim
j→∞

‖ϕj‖2 =
∑

k∈Z
Jk .
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In particular, (ϕj)j≥1 admits a weakly convergent subsequence in L2
R which

we again denote by (ϕj)j≥1. Denote its limit by ϕ. By Corollary III.34, the
sequences (λ±n (ϕj))j≥1 are bounded for any n ∈ Z. Hence without loss of
generality we may assume that each of these sequences converges,

ξ±n := lim
j→∞

λ±n (ϕj).

By Lemma I.1, ∆(λ, ϕ) is a weakly continuous map on C × L2
R, hence

2(−1)n = ∆(λ±n (ϕj), ϕj) → ∆(ξ±n , ϕ).

It follows that ξ±n ∈ spec(ϕ). Since for any j, (λ±n (ϕj))n∈Z is a nondecreasing
sequence, (ξ±n )n∈Z is nondecreasing as well, more precisely

. . . ≤ ξ+
n−1 ≤ ξ−n ≤ ξ+n ≤ . . . .

Further, as
∆(ξ±n , ϕ) = (−1)n2 (III.51)

it is impossible that for any n, k ∈ Z

ξ+n = λ−k and ξ−n+1 = λ+
k

or
ξ−n = λ+

k and ξ+
n = λ−k+1.

Hence one can choose an increasing sequence (kn)n∈Z in Z so that

ξ±n ∈ {λ±k | kn ≤ k < kn+1}.

Further choose mutually disjoint open discs in C, (Bn)n∈Z, so that for any
n ∈ Z,

Bn ∩ spec(ϕ) = {λ±k | kn ≤ k < kn+1}
and

∂Bn ∩ spec(ϕ) = ∅
where ∂Bn denotes the boundary of Bn with counterclockwise orientation.
For any n ∈ Z, there exists jn ≥ 1 so that for any j ≥ jn,

λ±n (ϕj) ∈ Bn

and
λ±k (ϕj) 6∈ Bn ∀k ∈ Z\{n}.

Hence we have for any j ≥ jn

In(ϕj) =
1

π

∫

∂Bn

λ∆̇(λ, ϕj)
c
√

∆(λ, ϕj)2 − 4
dλ.
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Again using that ∆ is weakly continuous it then follows that

Jn = lim
j→∞

In(ϕj) =
1

π

∫

∂Bn

λ∆̇(λ, ϕ)
c
√

∆(λ, ϕ)2 − 4
dλ.

Further, by Cauchy’s theorem,

1

π

∫

∂Bn

λ∆̇(λ, ϕ)
c
√

∆(λ, ϕ)2 − 4
dλ =

∑

kn≤k<kn+1

Ik(ϕ).

Hence
Jn =

∑

kn≤k<kn+1

Ik(ϕ).

Combining the results above one concludes that

lim
j→∞

‖ϕj‖2 =
∑

n∈Z
Jn =

∑

n∈Z

∑

kn≤k<kn+1

Ik(ϕ) =
∑

n∈Z
Ik(ϕ)

= ‖ϕ‖2

where for the latter equality we used again Proposition III.4. Together with
the weak convergence of (ϕj)j≥1 it then follows that ϕ = limj→∞ ϕj strongly
in L2

R. �

The properness of the action map I allows to prove that Ω is bijective.
Denote by `2

R
the sequence space `2(Z; R2).

Proposition III.36 The map Ω : L2
R → `2

R
is 1 − 1 and onto.

Proof It is convenient to denote by ΩR the restriction of Ω to L2
R,

ΩR : L2
R → `2R .

For
A := {z ∈ `2R | ]Ω−1

R (z) = 1}
it is then to show that A = `2

R
. As `2

R
is connected this amounts to show

that A is open, closed and nonempty.

First notice that for any ϕ ∈ L2
R with Ω(ϕ) = 0 we have Ik(ϕ) = 0 ∀k ∈ Z

and hence, by Proposition III.4,

‖ϕ‖2 =
∑

k∈Z
Ik(ϕ) = 0

and thus ϕ = 0. This shows that 0 ∈ A, hence A 6= ∅.
Next we show that A is open. Let z0 := Ω(ϕ0) be in A. As ΩR is a local
diffeomorphism there exist an open neighborhood U of ϕ0 in L2

R and an open
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neighborhood V of z0 in `2
R

so that ΩR




V
: U → V is a diffeomorphism.

Thus for any z ∈ V , ]Ω−1
R (z) ≥ 1.

Introduce for any n ≥ 1, the neighborhoods Un := U ∩Bn of ϕ0 and Vn :=
Ω(Un) of z0 where Bn denotes the ball in L2

R with center ϕ0 and radius 1
n .

We claim that there exists n ≥ 1 so that Vn ⊆ A.
Arguing by contradiction, assume that no such n exists. Then one can find
a sequence (zn)n≥1 with zn ∈ Vn and two sequences (ϕn)n≥1, (ψn)n≥1 with
ϕn ∈ Un, ψn ∈ L2

R\U such that ΩR(ϕn) = zn = ΩR(ψn). Notice that
limn→∞ zn = z0 and limn→∞ ϕn = ϕ0. By Lemma III.35, ΩR : L2

R → `2

is proper. Therefore there exists a subsequence, again denoted by (ψn)n≥1

which L2 converges to an element ψ in the closed set L2
R\U . By the conti-

nuity of Ω, z0 = Ω(ψ) which contradicts the assumption z0 ∈ A.

It remains to prove that A is closed. Let (zn)n≥1 be a sequence in A which
converges to z in `2. Let ϕn = Ω−1

R (zn). As ΩR is proper we may assume
that (ϕn)n≥1 converges in L2

R. Denote by ϕ its limit. By continuity of
Ω,Ω(ϕ) = z. Assume that z /∈ A. Then there exists ψ ∈ L2

R with ψ 6= ϕ
such that Ω(ψ) = ϕ. As Ω is a local diffeomorphism there exits n with
ϕn /∈ A which contradicts our assumption that the sequence zn = Ω(ϕn) be
in A. �

To prove that for any N ≥ 1 the restriction Ω(N) is 1-1 and onto as well we
need a result corresponding to Lemma III.35 for H 1

R
(

:= H1 ∩ L2
R
)

.

Denote by I(1) the restriction of the action map I : L2
R → `1 to H1

R and by
`1k the weighted Banach space

`1k := {(aj)j∈Z |
∑

j

〈j〉k|aj | <∞} .

Recall from [GK1] that (γk(ϕ))k∈Z ∈ `21 for ϕ ∈ H1. As Ik = ξ2k(γk/2)
2 and

ξk = 1 + `2(k) (Theorem III.3) it then follows that (Ik)k∈Z ∈ `12. Further,
ξk > 0 and ξk = 1+`2(k) locally uniformly on L2

R (cf Theorem III.3). Hence
on any compact subset K of L2

R,

sup
k∈Z
ϕ∈K

1/ξk <∞ (III.52)

and, by the continuity of γ : L2
R → `2, ϕ 7→ (γk(ϕ))k∈Z

γ(K) :=
{

(γk(ϕ))k∈Z | ϕ ∈ K
}

⊆ `2 is compact . (III.53)

Lemma III.37 The map I (1) : H1
R → `12 is proper.

Proof Let (ϕn)n≥1 be a sequence in H1
R such that (I(ϕn))n≥1 converges

in `12 to an element in `12. It is to prove that (ϕn)n≥1 admits a convergent
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subsequence in H1
R. By Lemma III.35 we may assume that (ϕn)n≥1 con-

verges in L2
R. Denote its limit by ϕ. In section III.2, we have introduced

the functionals defined on L2
R

Jj =
1

π

∫

Γj

λ3 ∆̇(λ)
c
√

∆(λ)2 − 4
dλ.

By Lemma III.5 and (III.53), the convergence of (I(ϕn))n≥1 in `12 implies

that (Jj(ϕn))j∈Z converges in `1.
By Proposition III.6, using that ϕn = (ϕn1, ϕn2) is of real type (i.e. ϕn1 =
ϕn2),

∫ 1

0

(

|ϕ′
n1|2 + |ϕ2

n1|2
)

dx =
3

4

∑

k∈Z
Jk(ϕn). (III.54)

Hence (‖ϕ′
n‖)n≥1 is bounded and we may assume without loss of generality

that ϕn converges weakly inH1
R and, as a consequence, ϕ ∈ H1

R and ϕn ⇁ ϕ.
As ϕ 7→ Jk(ϕ) is continuous on L2

R for any k ∈ Z one has limn→∞ Jk(ϕn) =
Jk(ϕ) and therefore

lim
n→∞

(Jk(ϕn))k∈Z = (Jk(ϕ))k∈Z

in `1. In view of (III.54) and the compactness of the Sobolev embedding
H1

R ↪→ C(S1,C2) it then follows that

lim
n→∞

∫ 1

0
‖ϕ′

n(x)‖2dx =

∫ 1

0
‖ϕ′(x)‖2dx

and hence ϕn → ϕ in H1
R. �

Arguing as in the proof of Proposition III.36 and using Lemma III.37 one
sees that Ω(1) : H1

R → `21 is a real analytic diffeomorphism. To prove the
corresponding result for Ω(N) with N ≥ 1 arbitrary we use a spectral char-
acterization of the regularity of a potential, established in [GK1] (N ≥ 1
arbitrary),

ϕ ∈ HN
R ⇐⇒ ϕ ∈ H1

R and (γn(ϕ))n∈Z ∈ `2N .

As Ω(1) is onto this characterization implies that Ω(N) : HN
R → `2N is onto

for any N ≥ 1.
Summarizing the results of this section one has

Theorem III.38 For any N ≥ 0, the map Ω(N) : HN
R → `2N is a real

analytic diffeomorphism.
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