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Abstract

Guillopé, L. and M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative
curvature near infinity, Asymptotic Analysis 11 (1995) 1-22.

Let X be a conformally compact n-dimensional manifold with constant negative curvature —1 near infinity. The resolvent
(A—s(n—1-5)"!, Res > n— 1, of the Laplacian on X extends to a meromorphic family of operators on C and its poles
are called resonances or scattering poles. If Nx(r) is the number of resonances in a disc of radius » we prove the following
upper bound: Nx(r) € Cr*tl 4 C.

1. Introduction and statement of the results

The purpose of this paper is to provide polynomial upper bounds on the number of resonances
for the Laplacian on some infinite volume complete manifolds with constant negative curvature
near infinity. Referring to Definitions 1 and 2 below we can state the result as

Theorem. Let X be a conformally compact n-dimensional manifold with constant negative cur-
vature near infinity. If Rx is the set of resonances of X then there exists a constant C such
that

#{SE’RX: s| < r} <or™tt Lo, (1.1)
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The class of manifolds we consider constitutes the simplest general case similar to the one
studied in [13], in which neighbourhoods of infinity are locally isometric to neighbourhoods of
infinity of the free hyperbolic space H" = SO(n, 1)/SO(n). A large class of examples is provided
by the convex co-compact quotients ["\H" (see Fig. 1) which were studied in [1, 6, 14, 19-22].

The new upper bound (1.1) generalizes, in a weaker form, the results of [9] to higher dimensions
but the method of proof is rather different. In [9] we proceeded by an analogy with the Euclidean
case replacing R? by (w — e*w)\HZ. Through a careful analysis of this model quotient we could
apply the methods of [16, 24, 25], once the meromorphic continuation was established as in [23].
By using a more refined approach to meromorphic continuation due to Mazzeo and Melrose [13]
we can now proceed more directly. Roughly speaking, we are taking advantage of the regularity of
the hyperbolic Laplacian when considered in terms of degenerdte elliptic boundary value problems.

Since for n = 2 the bound in (1.1) improves to O(r°) (see [9]) and since the asymptotics are
known for some explicit higher dimensional quotients (see Remark 1), our present result is almost
certainly not optimal. The expected power on the right hand side of (1.1) is n.

The class of manifolds considered here is given by

Definition 1. A complete Riemannian manifold (X, g) is called conformally compact with constant
negative curvature near infinity if and only if
(i) there exists an incomplete metric h on X such that (X, h) is a compact manifold with a C*
boundary X(o0) = ax:
(ii) there exists p € C*(X), plxio) = 0, dp|x(s0) # 0 such that g = p~ 2p;
(iii) for some neighbourhood Y C X of X(o0) all sectional curvatures of g are equal to —1.

For a manifold X, let us denote the Laplacian by A. Then the resolvent R(s) = (A — s(n —
1 —s))”', Res > n — 1, extends to the complex plane as a meromorphic family of operators
from Lgomp(X ) to HIEOC(X ) (see Proposition 3.2). The resonances of the Laplacian A are defined
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Fig. 1. X = (w — e‘w)\H>.
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as the poles of that meromorphic continuation. This is motivated by the Euclidean scattering as,
for instance, in the Lax—Phillips theory [11, 23]. For hyperbolic quotients, resonances correspond
also to the poles of the meromorphic continuation of Eisenstein series [19, 20].

Definition 2. A resonance sq of the Laplacian is a pole of R and the multiplicity is given by the
rank of

/ (n—1—2s)R(s)ds
Ts

0

where s, is sufficiently small closed curve of index 1 relative to sg.

Remark 1. By using elementary representation theory (see [5]), the resonances for H" can be
computed: for n odd, there are no resonances, while for n even each negative integer —k is a
resonance with multiplicity m}, equal to the multiplicity of the eigenvalue k(k + n — 1) of the
Laplacian on the standard sphere S". Consequently,

#{s € Run: |s| <r} ~ F(n-l—l) r", r—o0.

Resonances for hyperbolic cylinders X = (w — ew)\H" were computed by C.L. Epstein [4] and
the first author [8], see also the appendix of [9]:

Rx = -N +iZ2n/,

where each vertical line — K + iZ27/£ has multiplicity

[K/2] ,
2 Z m}‘(—_zp.
p=0
Consequently
l
#{seRx: |s|<r}~——=r", r—oo.

2n-2n(2)?

The preceding computation is based on the spectral analysis of one-dimensional Schrodinger op-
erators with Poschl-Teller potentials, which can also be used for the hyperbolic space H".

Remark 2. In the case of constant negative curvature, Perry proposed to study the distribution
of resonances through the meromorphic continuation of the Fried—Ruelle zeta function which is a
topic of great interest in its own right. That meromorphic continuation was proved in dimension
two by the first author [8] and a meromorphic continuation with an order estimate for higher
dimensional convex co-compact quotients was announced in [22]. That would give a bound

#{s e Rpun: |s| <7} = OE(TH+E)
for all € > 0.
For notational simplicity we will use below the letter C' to denote a large, but not necessarily

the same constant. For u a system of coordinates, A, will denote the pull-back through u of the
Euclidean Laplacian.
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2. The model problem

The purpose of this section is to present a convenient representation of the resolvent of the free
hyperbolic Laplacian. In the half-space model we have

(H", gin) = (RE™! x (0, 00)y,y 2 (dx* + dy?)) (2.1)
so that
Aur = y" Dy (y* " Dy) + v Ax. 2.2)

We will write w = (x,y) and denote by d(w,w') the hyperbolic distance between w,w’ € H". We
recall that

|x . x!‘z 4+ y2 n y.’2

coshd(w,w’) = o, (2.3)
The resolvent kernel Ry(s)(w,w’) satisfies
(Aur — s(n — 1 — 8)) Ro(s)(w, w') = bun(w, w'),
(2.4)

fw) = [ b ww)fw)dvolu, [ € CF(HY),

and since the Laplacian is invariant under the isometry group, Ry(s)(w,w’) is a function of d(w, w')
alone. We have a well-known expression (see, e.g., [19, 21])

n—1

T 5 A—2s5-1 i
Ro(s)(w, w') = = - n73F(S) cosh™%* [d(wéw )]
F(S : —2—) (2.5)
X F(Sw‘:‘ - g +1,25 —n +2;cosh™?2 [d(wéw):l)

where

F(a,b,c;u)y =1+

a-b  ala+Dbb+1) 5
T et T 2ot Iy ©

is the hypergeometric function.
It will be convenient to use a coordinate system (X, z = yz) on H", for which the relation

Apr (°F) = 2(n — 1 = 202°f + QO (2.6)

holds with @ a differential operator with smooth coefficient on RY .. This will be essential in the
construction for the parametrix of the resolvent on weighted spaces (see Proposition 3.1). The
choice of these coordinates amounts to fixing a differentiable structure D on R} x [0, c0).; taking
the usual differentiable structure with the function y smooth would not give a relation such as
(2.6) with a smooth @ up to the boundary. The expansion of the resolvent kernel adapted to the
structure D, where cosh d(w, w') = 2~ 1/22'"1/2g(w,w') /2 with g smooth, is given by the following
lemma.
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Lemma 2.1. The free resolvent is given by
Ro(s)(w, w") = cosh™ d(w, w')G(s. cosh d(w, w')), 2.7

where for T > 1

n—I o]

Gs,r)=m 2 275! Z 2% F(; + 27) 7,

(2.8)

Proof. If r = d(w,w’) then g(s,r) = Ry(s)(w,w’) solves

coshr
sinhr

(Df—i(n~ 1) Ber— st~ 1 —S))g(s,r)zo,

g(s,r) ~ei(s)e™, r— o0,

as can be seen from writing (2.2) in polar coordinates and from the requirement that the resolvent
Ro(s) is bounded on L*(H",dvolgr) for Res > (n — 1)/2.
Changing the variables 7 = cosh r we obtain an equation for 7 °G(s, 7) = g(s, r):

((7'2 — I)DE —inTD; —s(n—1 — s)) (T_SG(S, T)) =0 Tl

Substituting
G(s,7) =) aps)r™"
k=0

we obtain a;(s) = 0 and an iterative formula for the coefficients

(s+k)s+k+1) e
(k+2)2s—n+k+3) *

which shows that only even powers appear and that

aps+2(s) =

I(s - 2) (s + 25)

n—3 % A &
= +3)IG+1)

az;(s) =274 o(s).

I'(s)I'(s —

A comparison of the leading terms in the expansions in cosh d(w, w') in G(s, 7) and (2.5) gives (2.8).
O

As the expression (2.5), the expansion (2.8) immediately shows that Ry is entire for n odd and
meromorphic for n even. In the latter case the poles are simple and the residue at s = —k € —N
1S
_B=

2

- (= 1)k+2igk=2i~1

Res Ro(s)(w, wy= Y cosh* % d(w, w").

1 . ; n—3
o<zj<k TG+ DIk =25 + DI (j — == — k)

In view of (2.3) the rank is clearly finite, as we saw in Remark 1. For applications in Sections 3
and 5 we need a more general but less accurate approach.
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Lemma 2.2. If an operator A: Cy"(H") — C*(H") has the kernel of the form

Aw,w') = Z ap(w) cosh? d(w, w')b(w")

O<p<k
where ap,b e C(H"), 0 < p < k, then there exists a constant C) depending only on n such that

rankesemm) ey (A) < C1(2k)".

Proof. Using (2.32. we expand the kernel A in a sum of decomposed elements f® [ of the tensor
product C*°(H™)®* where f’ is of the form

f’('w’) _ yrfk (y!k:*pmf]m s ([X'\?' + ny)an b(w’))

n—1

with @) + ... + an < k. The number of such terms is less than then number of monomials of
degree less than or equal to 2k in n variables, that is less than or equal to

> Np.n)

0<p<L2k

where N(i,j) = (”52") is the number of integer solutions of n; + ... + n; = 7. The lemma
follows. [

3. Meromorphic continuation

As mentioned in the introduction we follow, with additional care, the parametrix construction
of [13]. That is greatly simplified by the constant curvature assumption and for that we need an
essentially well-known lemma which follows from the proof of Theorem 3.82 of [7] and Section III
of [12].

Lemma 3.1. If X is a conformally compact n-dimensional manifold with constant negative cur-
vature near infinity (Definition 1) then there exists a neighbourhood Y of X(o00), in X and an
open covering

M
yc | JY
j=1
such that each Y; is isometric to the set
U = {(x,y) e H": x> +4> <1} (3.1)

where we use the upper half-plane model (2.1).

Proof. We recall that the metric on X is of the form ﬁ_zh where p defines 9X and h is a smooth
metric on the manifold with boundary X. If my € 0X, we follow [12] and put

N = {dh(m, mo) = £: p(m) > 0} and M = {dh(m,mg) < e plm) > O},
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with £ > 0 small enough for N to be a complete embedded submanifold of X. If for p € N we
denote by n;, the g-unit normal vector at p pointing into M, then M ~ N xR, (p, s) expp(snp).

In tho;;e coordinates the metric takes the form g = ds® + k(s), where k(s) is a family of complete
metrics on N. We claim that k(s) is determined by the the metric g near N. In fact, for w € T, N,

k(s)p(w, w) = gexpp{snp}(l]w(s)a Jw(s)) )

where Jy,(s) is the Jacobi field on s — expp(snp) with initial conditions J,(0) = w, J,,(0) = Vin
(see Section III of [12]). But since the sectional curvature is equal to —1 for € sufficiently small,
J!l — Ju = 0 and consequently

Juw(s) = Uy(s) coshs + Uvﬁ,n(s) sinh s,

where U,(s) is the parallel transport of v along s — expp(snp). Hence

Gexp,,(snyp) (UU(S)a U"u(S)) = gp(v,v)
and we have
k(s)p(w, w) = cosh? s gp(w, w) + 2 sinh s cosh s g, (w, Vin) + sinh? s gp(Van, Vi),

and thus k(s) is determined by the metric near N.

Let now py € N be such that exp, (snp,) — mg as s — oco. By using the curvature assumption
and Jacobi fields again we conclude that there exists a neighbourhood {2 of py in X where the
metric is hyperbolic (see Theorem 3.82 of [7]). Hence My ~ (N N £2) x Ry is isometric to an
open cylinder in H" and consequently mg has a neighbourhood isometric to U; in (3.1). The
compactness of 39X now yields the final conclusion. [

Let +; denote the isometry from Y; to U;. We will denote . the induced pull-back operation
transforming operators acting on U} to operators acting on Y; and, for a function 6 on Yj, we will
denote by f its pull-back by ¢ on Uy

Using the covering of Lemma 3.1 (or possibly its refinement) we construct partitions of unity
in X (see Fig. 2). Thus let cp{ €C™(X(o0)), 1 €7 < M, 1=1,2, satisfy, for some & > 0,

M
disty, (supp ¢3.supp (1 — 7)) > e, suppe! C Y; N X (c0), Zcp‘% =1. (3.2)
j=1

Here hj is the metric induced by h on X (o0) = 90X . For 6 > 0 sufficiently small and for each
i, 1 € 7 < M, we also define functions vl:{o € C*™(X), i = 1,2, which through the isometry Lj
depend only on the variable y, such that

> 4, < 26, (3.3)

P ISUPpu—wfé)ﬂYj Plsupp YIony;

and

NELNELIA
Yy =y
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Fig. 2. The open set Y; and its associated cut-off functions.

Using the identifications given by Lemma 3.1 to extend functions on X(co) to functions on X
we also assume that xgé = cp{w;f"s, i = 1,2, satisfies
supp (x]*) C Y;. (3.4)
Furthermore we introduce p, a modified defining function for the boundary such that
Bl = {l ‘foersupp(l—mpfé), t= 1,2
p(w) if p(w) < 8/2.

Let x° be the function defined by
M ‘
X:S — Z ijcS
F=1

so that it satisfies the two inequalities of (3.3) and supp x’ C Y. We now drop the superscript 4,
although it will play a réle in the proof of Lemma 4.1.
The Mazzeo—Melrose construction will give us the proof of the following

Proposition 3.1. For every N € N there exists a family of operators
En(s): p" LX(X) — p VH*(X)

meromorphic in the half-plane {s: Res > —N + (n — 1)/2} and such that
(Ax — s(n— 1 — 8)) En(s) = x + Kn(s)

where Kn(s): ;")N LA(X) — pVL*(X) is meromorphic family of trace class operators. The singu-
larities of En(s) and Kn(s) are simple poles at s € —N, of ranks uniformly bounded by C(2s)".
For sy = N/C we have

| Kn(sn)

|I,NL2(X)_,,EN LX) < 1/4. (3.5)
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Assuming this we apply the simple argument from [23] (see also [9]) to obtain

Proposition 3.2. If (X, g) is a conformally compact manifold with constant negative curvature
near infinity and A is the Laplacian on X then the resolvent

R(s) = (A—s(n— | —s))_l: LZ(X) — Hz(X), Res > nT—l, s(n—1—s) ¢ spec(A),

extends meromorphically to C as an operator

R(s): Léomp(X) = Hpo(X).

Proof. Let x( be a function which as x satisfies (3.3) while supp(xg) C Y, so that xox = xo. To
continue R(s) to the half-plane {s: Res > —N} we take sy with Re sy > (n — 1)/2 and define

Pn(s,s50) = (1 — x0)R(s0)(1 — x) + En(s).
Hence
(A—s(n—1—15))Pn(s,s0) = I+ Kp(s,sq)

where by Proposition 3.1
Kn(s,s0) = —[A x0lR(so)(1 — x) 36
+ (s0(n =1 = 50) = s(n — 1 = 9))(1 = x0)R(s0)(1 =) + Kn(s).

Proposition 3.1 also shows that Ky (sg, sp): ,BN FAX) =% ad L*(X) is meromorphic and compact

and that

“KN(SOa 80)”,—)1\: LAX)=pN LHX) 0

as |sp| — oo, |Imsg| < CRe sp. Then by the analytic Fredholm theory
-1, _N _

(I+ Kn(s,s0) ¢ p" LX) = VLX)

is meromorphic for Res > —N + (n — 1)/2 and consequently
=) . o

R(s) = Py(s,50) (I + Kn(s,50) "+ Leomp(X) C pY LA(X) = 5V H*(X) C Hige(X)
enjoys a meromorphic continuation in the same half-plane. Since N can be taken to be arbitrarily
large this concludes the proof. [J

To motivate the rest of this section we now state the simple lemma which is the basis of
Section 5.

Lemma 3.2. Let Ky(s,sq) be the operator defined in the proof of Proposition 3.2. There exists
a constant C such that the set of resonances of the Laplacian in {s: Res > —N + (n—1)/2} is
included in the set of zeros of

Dn(s) = detzn 2 x, d={~ KN(S’SO))H)

with multiplicities and —N with multiplicity of k € —N bounded by vi.(Dyn) + C(2k)™ where v.(f)
denotes the valuation of the meromorphic function f at z.
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Proof. The proof is based on two general lemmas we present in the appendix at the end of the
paper. Let us write

R(s) =[Pn(s,50)(1 = Kn(s,50) + ...+ (= Kn(s,50)" )]

x (1= (—Kn(s,50)") "

(3.7)

Outside of —IN, resonances are in the set of the poles of (1 —(—K (s, sO))”)". Their multiplicities
are at most the orders of zeros of determinant Dy . This is because of Lemma A.2, where we take
B, B; holomorphic.

For k € —N, by Lemma 2.2, we have, for m < n,

rankpr (1 — (= Kn(,80))™") < C(2k)",
hence, by Lemma A.2, the multiplicity of & as resonance is at most vg(Dy) + C(2k)". O

We will now prove Proposition 3.1 noting that in Sections 4 and 5 we will need some more
specific aspects of the construction. All functions of w, z, ..., except of course the powers z°,
¢ ¢ N, will be, if not otherwise stated, smooth with respect to the differentiable structure D
introduced before Lemma 2.1.

We proceed by iteration and start by defining

M

EX(s) = x1¢; (Ro()xd- (3.8)
j=1
So that
(A —s(n—1— s))ER:(S =x+ Z AH" R(}(S)Xé)
(3.9)
-0 0
= x + Kn(s) + Ln(s),
where
Mo ‘ .
Ky (s) = D03 (4] [Awn, #1] Ro(9)3),
j=1
M . i _
LY(s) =Y 45 (] [Aun, 9] Ro()%)). (3.10)
j=l1
To simplify the notation we will now drop the sums and the pull-back operators ¢} and write

o= = Pn =1
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Since x2[Agn,¥1] = 0 and [Agr, ¢ ] has compactly supported coefficients we immediately see
that

Edtsy: BV — £ (0,

so that we have the desired mapping property for this term (see Proposition 3.1).
To study K?J(s) we use Lemma 2.1 and (2.3) and write

K%(s) = p1 KR) + ... + o1 KW (s) + Khi(s) (3.11)

where, for 0 < j < N,

KY (s)(w,w)) = 2/ gy ()[As, 01 1q(w, w') 5 222y (w),
_n-1
2 271 P(s 4 25)

n—3 . ; ’
S )TG+

a2;(s) = F;_

g(w,w') = |x — x’\z +z+2.
The iteration is now a refinement of that from [13] and is based on

A (2° F(%,2)) = 2¢(n — 1 — 20)2° f(x, 2) + 2T QO f(x, 2),

(3.12)
Q(¢) = 2(n— 3 — 40)iD; + 42D? + A,.
At the first step we set
EN(s) = EX(s) + [22s — n+3)] "1 EN(s)
so that
(A=s(n—1—8))En(s) = x + Kn(s) + Li(s)
with
KN(s) = Y1 KN (s) + Y1 KN () + ... + 01 KN (s) + K (s),
KN(s) = KR (s) + [22s —n+3)] ' Q(s/2+ DKN(s),
(3.13)

KN(s) = KN(s), 2<k<N,

Li(s) = L(s) + [22s — n+ 3)] ' [Aun, 911K X (s).

We observe that E}V(s), K ;’V(s), L}V(s) are meromorphic with simple poles at

seﬁNo\(ﬁNw";S)
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of rank O({s)"), since

n—1

ap(s) _m 22771

n-3

=3 -5
S_T F(S—nz)

and we apply Lemma 2.2 to estimate the rank. We also observe that the kernels of K }V"’(s),
| < k < N, are of the form

zs/2+k+lfjlvk(s)(w’wf)z.fs/Z
while K% (s) is of the form

zs/2+N+2fK{(s)(w’ w:)zm/z_

We now go on to obtain

En(s) = EN(s) = EN () + [2NQ@s+2N —n+ )] ' KN 1N=1(s) (3.15)
with

(A—s(n—1-38)Exn(s) = x+ KN(s)+ LN(s) = x + Kn(s)
where

KN (s) = 0 KNV (s) + Kfi(s),

_n—]
2

- 9~2N-1 N-1 s
KN (s)(w, w') = . 2NTUNT P(s +25)2%
I(s——+N)I'(N+1) =0
2 (3.16)
N—j . ,
< | T @s/2+ 5 + mhw[[As, erlg(w, w')™*~#] 2" * xa (') |,
m=1
LN(s) = LN Us) + 2N@2s + 2N —n+ )] '[Agn, ¢ 1KY N 1(s). (3.17)

To conclude the proof of Proposition 3.1 we recall the following easy

Lemma 3.3. Let X be a conformally compact n-dimensional manifold with constant negative
curvature near infinity and p the associated function of Definition 1. If A: C§°(X) — D'(X) has
a kernel of the form p"(m)F(m,m)p*(m’), with r,s € C and F € L=(X x X) then

-1

I |
pL > —Res — % Py < Rer — ”T = A e L(P LX), PLA(X)).

If F e C®(X x X) then

P12 —Res— 2, py SRer — 2 = A€ Ly (P LX), LX),

where L*(X) = LR .dvoly), and L and L, denote the spaces of bounded and trace class
operators, respectively.
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From this the desired boundedness of Exn(s) = EN (s) and the trace class property of Ky(s) =
K (s) + LY(s) easily follow. Except for (3.5) which will be proved in Section 4, the proof
of Proposition 3.1 is now completed, with the finite rank statement following from (3.16) and
Lemma 2.2.

Remark 3. To obtain finite rank of the poles we use detailed information about the model resolvent
(see Lemma 2.1 above). As was pointed out to us by Melrose [17] that can be avoided by using
the method of Section 5.19 of [18]. But since the continuation proceeds then through narrow
strips, it is not as useful for estimating the number of poles.

4. Estimates on the characteristic values

To apply Lemma 3.2 we need to estimate the characteristic values of Kn(s,sp) away from
its poles. That amounts in estimating the characteristic values of K& (s) and Lﬁ(q) acting on
‘NL (X). Thus we denote by pr(A), k > 1, the eigenvalues of [AATY*%: P LX) = ‘]‘L (X)
where A: p™VL*(X) — p™ L?(X) is a compact operator. We recall that the wei ight functions p and
consequently the characteristic values depend on the small parameter 6.

For each integer N, to construct the operator En in Section 3, we use functions ¢, (where
following the notation adopted there we drop the superscript j) which satisfy:

for C independent of N, || D%p|| < clINlel al < 4N. 4.1)

The existence of functions satisfying (4.1) and the conditions required in Section 3 is guaranteed
by Theorem 1.4.2 of [10].

Lemma 4.1. For |s| < N/C, d(s,—N) > n > 0, § small enough and 0 < j < N — 1
k(A7 (9)) < e MOk, (42)
where the operator A;-V (s) has the kernel

_n-l

w2 2‘2N+2j_lf(s+2j)¢ (2)2°/2F N+
1
P(s—"2+N)I(N +1)

A‘;‘V(s)(w.w') =

N—j
x [ Q/2 + i + mu [[Ax. @1 ]gw, w') 12" > o ().
m=1

Proof. We start with an elementary estimate: for |s| < N/C, C large, d(s,—N) > n > 0,
0<j<N-1

2—2.M+2]'—1F(S+2j)
r(s—" 3 + N)I(N + 1)

< &N p-AN=} (4.3)

which follows from the Stirling formula applied after using, when Re (s+2j) < 0, the complement
formula I'(u) = TESIH_](H’U,)F 11— ).
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The decay on the right of (4.3) will be used to cancel the growth in the next estimate: for
|s| < N/C, x € supp Vi, X' € supp s, j < N, any fixed p € N, and if N is large enough

N—j
max D2DX (/24 7+ m)w|[Ax, w5 (w, )
max ,EIQ /2+ [[Ax, ¢1]g(w It )

< N NN,

~

To obtain this we use the assumptions on w, w' to note that
C 2 |q(w,w")| > €

and that g(w,w’)™*~% is holomorphic as a function of X, z,X, 2’ in some complex neighbourhood
of

{(x,2,X.,2): X €suppys, x €supp Ve, 0<z <% 0<2 <6},
depending on & but not on § and is bounded by e“" there. We obtain from this
| D2 DEg(w, w)~277| < C1*HH (|a| + k)16, (4.5)

On the other hand, the quasi-analytic estimates on ¢y, (4.1), give that

IDEVe| < CPINIAL 18] < 2N, (4.6)
Since
|Q(s/2+j+mw| < C max |D2D%v| + Cls + 2j + 2m| | Dyv|
a|+k<
and since

N—j
I Us+25+2m|N¥7) < NN NN — 25 — |8))t <OV NN,

m=1

the estimate (4.4) follows from (4.5) and (4.6). Thus we have the following estimate on the
reduced kernel

TAQ‘Z(E-NA};_V(S)?JNN < Came_s—lp sup Z?}?es/2+N/2+!—peCN
supp vy (47)
< CaN(172/C)—4peCN

By taking & small enough the left hand side is bounded by e */“. A comparison with the eigen-

values of the Dirichlet Laplacian on a domain containing U (see the proof of Lemma 4.1 in [9])
gives (4.2) by using (4.7) with p 2 n. 0O
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To estimate the characteristic values of Lﬁ(s) we follow the argument of [15] and [16] since the
exponential growth is no longer cancelled by the powers of y obtained in the iteration. However

at this stage we do not achieve the dimension reduction [24, 25] and consequently the estimates
are not optimal.

Lemma 4.2. For |s| < N/C, d(s,—-N) > nand 0 < j < p < N, a constant C independent of §
and a constant Cs depending on §,

eCN52(5Res—l)‘

pr (Biy(s)) < { (4.8)

e k™2, k> CsN™,
where the operator Bﬁ(s) has the kernel

_p-l
w2 27'0(s+25)

I(s-"2+p)Ip+1)

Bi(s)(w,w) = [Ann, 1112%/2+P

p—j _ ‘
x [T Qs/2 + 5 + m)u [[Ax. w1lq(w, w)) "> ]2y, (u),
m=1

where the product H?n:l Q(s/2+ 7+ m) is reduced to 1 if j = p.

Proof. Since on the left of the support of the kernel of Bﬁ,(s) we have p = 1, the reduced kernel
is equivalent to Bﬁ,(s)ﬁN . We now let 1,0# € C3°(R) satisfy an analogue of (4.1):

| D*w*|| < C*N*, k< 2N, (4.9)

and *(y) = 0 for |y| > 2¢, v¥(y) =1 for ly| < ¢, where c is fixed so that supp ¢, x supp ¢* C Uj.

Hence for 4 small enough [AHn,wl]w,b# = [Aun, ¥ ]. For £ < N, the proof of Lemma 4.1 shows,
thanks to (4.9), that

n—1
Af-ml: 2 27'F(5+2j) w#
C e -2 +p)re+1n

p=J .
x [T QGs/2+ i+ m)w[[Ax, 1 1g(w, w') > ~4) " ZHXz(w’)ﬁN(w')}

m=1

\<\ CEszeC'Né'ERPE.

Hence a comparison with the eigenvalues of the Dirichlet Laplacian, Ag,, on a bounded domain
2,U; C 2 C R", shows that

)'—Lk(B_;\I’;(S)) -.<_, ”[AHﬂ!w]]zS/ZA;?l/2H(sm(:’Sk—zk—ZE/nCIENZEeClN

\<‘ 52(R€ S— l)kuk_fZl?/nchZ.E‘e(‘] N
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Taking £ = N, as we may, we get
k_Zf/n'f\er < e—(Z/n log B)N if k> BN™. (4.10)
Choosing B sufficiently large depending on é and | we obtain the lemma. O

The arguments in the proof immediately give

Proposition 4.1. If Ky = K;Q.[—f-L% is given by (3.16) and (3.17), then for |s| < N/C, d(s, —N) >
n and & small enough
eCN §2Re s—1)

e (Kn(s)) < {e_N/Ck:‘z ‘k . G (4.11)

Proof. The first term, K is a sum of N terms of the form 4N and the term K. Thus the proof

of Lemma 4.1 apphes with the analyticity of the kernel Rg(s)(w w') away from the diagonal used
for the last term in place of that of g(w,w') *~%/. In fact

KN (s)(w, w') = g1 (w)z" TN 2[A 0]
X (q(w, wh) TN =2t (s, cosh d(w, w')) ) 2N 3o (),

where
n—1 oo
G?\T(S,T} =mq 2 27%1 ZZ“ZJ*zN*Z
3=0
I'(s+27+2N+2) 2
)G +2+N)

: I(:

The coefficients are holomorphic in s for |s| < N/C and uniformly bounded by Ce“" there and
thus we get a uniform bounds on g(w,w’)™ "2V _EGfV in the same complex neighbourhood as in
the prooi of Lemma 4.1.

The LY part is a sum of terms Bn}’ 0< p < N, and LY given by (3.10). The proof of
Lemma 4.2 applies to the sum of BJf.\ s whrle for LQ‘ we use the same argument as for K *{ with
uniform bounds away from the poles of Ry. [J

A simple consequence of the estimates on characteristic values is a norm estimate which for
Re s large and positive completes the proof of Proposition 3.1.
5. Proof of the main theorem

The meromorphic continuation and the characteristic values estimate allow us to follow the
same method as in [9]. Thus we start by defining

P2t 3 P(2wp
gp(s)=s"~ H (E(;,n—l—l)) . (5.1)

well+19-No
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where U, denotes the set of the mth roots of the unity and as usual
E(z,p) =(1 —2)exp(z+... -A-p_]zp).

As in [9] we use Lindelof’s theorem but now we also need some lower bounds.

Lemma 5.1. The function gp(s) given by (5.1) satisfies |gp(s)| < e“E™™ For each ¢ > 0, there
exists a constant C. such that for s with d(s, Uypi1y- N) > &,
lgp(s)| > exp (= Ces)™ ). (5.2)

Proof. The first part follows immediately from Lindelof’s theorem (see, for instance, [2, Theo-
rem 2.10.1]) since for each k € N

> P e I (5.3)

welamink

and the second part from a slight modification of the standard proof of the minimum modulus
theorem:

log|gp(s)| = P2" log |s| + P2" Z lw|™ log

|w|<2]s|

n+l
+pP2" 3 ;w|"§ReB+...+(n+i)"<5) }

jwl<2]s|

1—ﬁ\
W

n S
+P2" ) log E(;,n“)‘
|w|>2|s]
> Pzﬂ.l n i o i
> ogls|+ P2" D |w|"log|l w}
lw|<2]s]
. . |Sl n+2
—C > s"=C > || ol
|| <2)s] Jw|>2]s|

> P2"logs| + P2" ) |w|"log

lw|<2s|

- 2|0

Here the w’s are taken in U,y - Ng and we used (5.3) to obtain the second inequality. Since
s is assumed to lie away from the zeros of gp, the lower bound (5.2) follows. [

Lemma 5.2. Let Dy be given by Lemma 3.2. Then assuming (4.1) and for |s| < N/C, d(s,—N) >

|Dn(s)| < eV (5.4)
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Proof. The estimate is immediate from Proposition 4.1 above and Lemma 6.1 of [9]. [
To remove the poles we will use gp(s) and Lemma A.l to get the crucial

Lemma 5.3. If P is large enough (independently of N), the function gpDy is holomorphic on
{s: Res > —N + (n — 1)/2} and satisfies, for |s| < N/C,

n+l
lgp(s)Dn(s)] < N7,

with the constant C' independent of N.

Proof. By Proposition 3.1 and Lemma A.l, the function Dy is meromorphic with poles at
s € —Np of multiplicities bounded by C'(2s)™. Thus by taking P > C we get the holomorphy
while the estimate follows from Lemmas 5.1 and 5.2 and the maximum principle. The terms
coming from R(sp) are estimated as in the proof of Lemma 6.2 in [9] using again Lemma 6.1
from that paper. Using the resolvent identity we see that the estimates on the characteristic values
of (1 — x)R(sp)(1 — x) are independent of sy once Resg > C > (n— 1)/2, [Smsy| < Resg/C.
O

To apply Jensen’s inequality we still need another lemma.

Lemma 5.4. If in the construction of Ky (s, sp), 6 > 0 is small enough and we put sy = s = 1/2+
[N/(4C)] with C large enough independently of N, then for some other constant C' independent
of N we have

|Dn(sy)| > 1/C,
and consequently
gp(sy)Dn(sy)| > exp(~CN™), (5.5)

Proof. We easily see from Proposition 4.1 that with the sy given in the lemma, || Kn(sy,sy)| <
1/2 so that I — (—KN(sN,sN))"‘+1 is invertible and

<]
[Di(sy)| = |det [(1 — (—Entsps)" ) | 2 det (14 2Ky sy 7

The conclusion now follows from estimates of Section 4 and the proof of Lemma 5.3 while (5.5)
from Lemma 5.1. 0

The proof of the theorem of Section 1 is now immediate. We use Jensen’s formula for the disc
D(sy, N/2C), with the estimates provided by Lemmas 5.3 and 5.4: let ny(t) be the number of
zeros of gpDy in D(sy,t). Then

N/2C p (f)
N n+1
L dt £ ] D —1 D <CN™ .
fo ; |s—smi§v/zc og |(gpDn)(s)| — log [(grDn)(sy)|

Thus a uniform bound CN™*!" is given for the number of resonances in D(0, N/5C) (see Fig. 3).
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Ysuy

Res.

Fig. 3. The meromorphic continuation to Re s > —N + (n — 1)/2, a uniform estimate in D(0, N/C), Jensen's formula
in D(sy, N/(2C)) and the final estimate in D(0, N/(5C)).

Appendix: analytic properties of determinants

Let us consider germs at w = 0 of meromorphic functions with values in the space of bounded
linear operators on a Hilbert space H, with polar parts of finite rank. For such A we will denote
by vo(A) its valuation at v = 0, so that its Laurent expansion takes the form

> A
p=up(A)
with A, 4y # 0 and all the Ay, p <0, of finite rank. We will denote by rank,(A) the dimension
of the range of the polar part
A= > A
vo(A)<p<0

of A: there exists a projection m with a range of dimension rank,o(A) such that 7TA_ = A_.
Moreover, the total rank of the polar part of A is defined as

Rankpp(A) = Z rank Ay
vp(A)<p<l

and the inequality rank,p(A) < Rankpo(A) holds trivially. Let us write m— = sup(—m,0) for an
integer m.

Lemma A.1. Let T be a meromorphic germ at O valued in trace class operators, of valuation
vo(T') and with polar part of finite rank rank,o(T"). Then, if not zero, det(1 + T) defines a germ of
a meromorphic function with valuation greater than or equal to —rankpo(T') (vo(T))-.
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Proof. For some projection 7 of rank rank,o(7") and in a small disk D(0, ) centered at u = 0 we
can write T'(u) = 77— (w)u®") 4+ Ty(w) with T_ () and Ty(w) holomorphic in D(0, ). Then

. vo(T) B T Wfﬁlul(u) T
1 +T(u) = (1 +7u™"") |1 =y + 5 o + (1= R To(w)

where the second factor on the right hand side is holomorphic in D(0, ) if v(T") < 0. The lemma
follows immediately. [

Before giving another lemma, we need to state a useful normal form for some operator valued
meromorphic function. Let @) be the local ring of germs of holomorphic scalar functions in one
variable, M its fraction field (the field of germs of the meromorphic functions) and A in the matrix
ring M (d, M). By the theory of invariant factors for matrices over principal rings (see VII, 4.5 in
[3]), there exist U, U; in GL(d, O)), a resolution of the identity (Tp)pezufoo} (€., Zpez T = 1)
with projections mp, non-zero for a finite number of integers p only and with mm, = 0, p # q,
such that, for u in some neighbourhood of u = 0,

Aw) = Uj(u) [prup] Us(w). (A.1)
pel

The projection 7 is zero if and only if the germ of meromorphic function det A is not zero and
in this case the valuation of det A at v = 0 is given by

vo(det A) = wy (A) — wy (A) (A.2)
with the weights wy (A) defined by

wOi(A) = Z |p| rank mp.

+p>0
Using the Taylor expansions of U; and U, we have, for p < 0
Ap = Uyomplypg + Z UrimqUy;
i+q+j=p
1,720, p<g<0

hence

rank m, < rank A, + Z rank 7,
i+q+j=p
1,20, p<q<0

and there exists a constant C'y depending only on the integer k such that w; (A4) < Clyyca) Rankpg(A).

The preceding discussion applies to compact perturbations of the identity in any Hilbert space.
Let 7" be a germ of meromorphic function valued in the space of compact operators on a Hilbert
space H and with polar parts of finite rank. There exists a projection 7 of finite rank, a holomorphic
germ H and a meromorphic germ M such that

l1+T=14+naM+H
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with 1 4+ H(0) invertible. Then there exist #', H', M’ with the same properties as 7, H, M and
such that

14+T7=(1+xM1+H) )1+ H)
=(1+a'Mx"+2"H1 —=))(1 + H)
=(1+7H(1 -1+~ M=)+ H).

Hence, by applying the preceding finite dimensional result to the central term in the last product,
we can assert the existence of germs Uy, U, in O1(GL(#H)), a resolution (mp),ez1(} With a finite
number of non zero m, and all of finite rank except possibly my such that (A.1) is valid for
A=1+T.If T is trace class, the Uy, U, are trace class perturbations of the identity and det(A)
has valuation at © = 0 given by (A.2) with wa—L(A) defined as in the finite dimensional case.

Lemma A.2. Let 2 be a complex connected neighbourhood of 0, By, B, and T meromorphic
functions on 2 with values in the space of bounded operators on a Hilbert space H. If 1 4+ T'(ug)
is invertible for one ug in §2 and the function T' is trace class operator valued, then we have for
the rank of the residue of By(1 +T)"'B, at 0

rank resg Bi(1 +T)™' By < vg(det(1 + T)) + CjyyayRankyo(1 + T)

2

+ Y (vo(Bi)) _Rankyo(B;).
i=1

Proof. Let us introduce the resolution (mp),czu(s), the germs of holomorphic functions U,
i = 1,2, with U;(0) invertible such that A = 1 + 7" is reduced to the normal form (A.1). Because
det(1 + T'(ug)) is non-zero, the projection m is zero and (1 + T)_l is invertible as a germ of
meromorphic function with polar parts of finite rank. Let us write B} = Ble‘l and B, =U I’IBQ
with Laurent expansions

E.j(u) = Z Eipup.

pzvg(B;)
Then
_l -~ =
reso Bi(1 +7) By = Z Bip, mpBap,
pi—p+p=—1
= Y B (X mBu)
vp(B1)<p1 <0 p
+ Z Bip, Ti4p,+p, Bop,
120, p220

+ Z (Zél.pkpzlﬂp) 321)2,

vp(Balspp<0 P
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hence

rankresy Bi(1 + T)_le & Z rank Elp, + Z prank m, + Z rank ész-
vp(By)<p; <0 p>0 Up(B2)<pa<0

The middle term in the right side is exactly vp(det(1 +T)) 4w, (1 +T') while the extreme terms
are Rankpofél and RankpoB;. The lemma follows from the upper bounds

wy (14 T) < Cyaet1+1yRankpo(1 + T),  RankyoB; < (vo(Bi)) _RankyoB;.

]
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