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Abstract: We give a new upper bound on the Selberg zeta function for a convex co-
compact Schottky group acting on the hyperbolic space H"*!: in strips parallel to the
imaginary axis the zeta function is bounded by exp(C|s|®) where § is the dimension of
the limit set of the group. This bound is more precise than the optimal global bound
exp(C|s|"*1), and it gives new bounds on the number of resonances (scattering poles)
of T\H"*!. The proof of this result is based on the application of holomorphic L2-
techniques to the study of the determinants of the Ruelle transfer operators and on the
quasi-self-similarity of limit sets. We also study this problem numerically and provide
evidence that the bound may be optimal. Our motivation comes from molecular dynam-
ics and we consider I'\H"*! as the simplest model of quantum chaotic scattering.

1. Introduction

In this paper we give an upper bound for the Selberg zeta function of a convex co-com-
pact Schottky group in terms of the dimension of its limit set. This leads to a Weyl-type
upper bound for the number of zeros of the zeta function in a strip with the number of
degrees of freedom given by the dimension of the limit set plus one. We also report on
preliminary numerical computations which indicate that our upper bound may be sharp,
and close to a possible lower bound.

Our motivation comes from the study of the distribution of quantum resonances —
see [39] for a general introduction. Since the work of Sjostrand [33] on geometric upper
bounds for the number of resonances, it has been expected that for chaotic scattering
systems the density of resonances near the real axis can be approximately given by a
power law with the power equal to half of the dimension of the trapped set (see (1.1)
below). Upper bounds in geometric situations have been obtained in [36] and [38].

Recent numerical studies in the semi-classical and several convex obstacles settings,
[12, 13 and 14] respectively, have provided evidence that the density of resonances satis-
fies a lower bound related to the dimension of the trapped set. In complicated situations
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which were studied numerically, the dimension is a delicate concept and it may be that
different notions of dimension have to be used for upper and lower bounds — this point
has been emphasized in [14].

Generally, the zeros of dynamical zeta functions are interpreted as the classical cor-
relation spectrum [32]. In the case of convex co-compact hyperbolic quotients, X =
M\H"*+! quantum resonances also coincide with the singularities of the zeta function —
see [22]. The notion of the dimension of the trapped set is also clear as it is given by
2(1 4+ §). Here § = dim A(T") is the dimension of the limit set of I, that is the set of
accumulation points of any I'-orbit in H**!, A(I") c aH"*!.

Hence we may expect that

> mr(s) ~ ri??, (1.1)

| Im s|<r, Res>—C

where mr(s) is the multiplicity of the zero of the zeta function of I" at s.
Referring for definitions of Schottky groups and zeta functions to Sects. 2 and 3
respectively we have

Theorem. Suppose that I is a convex co-compact Schottky group and that Zr(s) is its
Selberg zeta function. Then for any Cy > 0 there exists Cy such that for |Re s| < Co,

[Zr(s)| < Cq exp(C1|s|8), § =dim A(I). (1.2)

The proof of this result is based on the quasi-self-similarity of limit sets of convex
co-compact Schottky groups and on the application of holomorphic L2-techniques to
the study of the determinants of the Ruelle transfer operators.

If we use the convergence of the product representation (3.1) of the zeta function for
Re s large and apply Jensen’s theorem we obtain the following

Corollary 1. Let mr(s) be the multiplicity of a zero of Zr at s. Then, for any C, there
exists some constant Cy such that forr > 1,

Z{mr(s) cr<|Ims|<r+1, Res>—Co}§C1r‘3, (1.3)

where § = dim A(I).

We can apply the preceding results to Schottky manifolds: a hyperbolic manifold is
called Schottky if its fundamental group is Schottky. The case of surfaces is of special
interest: any convex co-compact hyperbolic surface is Schottky. With the description of
the divisor of the zeta function through spectral data established by Patterson and Perry
[22] (using the results by Bunke and Olbrich [2] in odd dimension), we can reformulate
the preceding corollary nicely in the resonance setting. We do it only for surfaces (see
below for short comments on higher dimensions).

Corollary 2. Let X be a convex co-compact hyperbolic surface, Sx be the set of the
scattering resonances of the Laplace-Beltrami operator on X and mx (s) be the mul-
tiplicity of resonance s. Then, for any Cy, there exists some constant C1 such that for
r>1,

Z{mx(s) cseR,r<|Ims|<r+1, Res > —Cp} < Clr‘s, (1.4)

where 2(1 + §) is the Hausdorff dimension of the recurrent set for the geodesic flow on
T*X.
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This corollary is stronger than the result obtained in [38] where the upper bound of
the type (1.1) was given. In fact, the upper bound (1.4) is what we would obtain had we
had a Weyl law of the form ! with a remainder O(r?). That local upper bounds of
this type are expected despite the absence of a Weyl law has been known since [25]. F.
Naud [21] has proved the existence of ¢ > 0 such that the domain {Res > § — ¢} \ {4}
is resonance free.

Section 7 deals with numerical computations of the density of zeros. They show that
(1.1) may be true. In fact, in the range of Im s used in the computation we see that the
number of zeros grows fast. If the range of Re s is large (and fixed) we need very large
Im s to see the upper bound of Corollary 2. The computations also show that our bound
on the zeta function is optimal. For values of Zr(s) with Re s negative we see that we
need very large Im s to see the onset of the upper bound. That is not surprising since we
recall in Proposition 3.2 that log | Zr(s)| = O(|s|**!), and that this bound is optimal
(and of course § < n).

We refer to Sect. 7 for the details and present here two pictures only. We take for I'
a group generated by compositions of reflections in three symmetrically spaced circles
perpendicular to the unit circle, and cutting it at the angles 30° (see Fig.3 for the 110°
angle). Figure 1 shows the density of zeros of Zr in that case and Fig. 2 plots the values
of log|log|Zr||.
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Fig. 1. The plot of (log N(y) —C)/logy — 1, where N (y) is the number of zeros with | Im s| < y, fora

Schottky reflection group with § ~ 0.184. Different lines represent different strips | Re s| < C1, and the
thick blue line gives 6. The constant C is determined by least squares regression; see Sect. 7 for details
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Fig. 2. Density of values of log | log |Zr ||/ log |s| for a Schottky reflection group with § >~ 0.184

Finally, we stress that our main theorem is most likely to be a special case of a more
general statement relating the growth (and hence the density of zeros) of zeta functions to
the dimensions of natural measures appearing in the underlying dynamics. Finding this
general statement is an interesting problem. In that direction the methods of this paper
have been applied in [34] to give bounds on zeta functions associated to the dynamics
of z > z% + ¢, ¢ < —2. Unlike in this paper the numerical study in [34] was based on
the proof of the upper bound (1.2).

2. Schottky Groups

The hyperbolic geometry on the simply connected curvature —1 space H"*! and the
conformal geometry on its boundary at infinity dH"*! = S share the same automor-
phism group: the isometry group Isom(H"*!) and the conformal group Conf(S") (with
the conformal structure given by the standard metric on S” of curvature +1) are isomor-
phic. In particular any isometry g of H"*! induces on S a conformal map y, whose
conformal distortion at the point w € S" will be denoted by || Dy (w)]|. There is also a
correspondence between balls D and spheres C on S” (for n = 2, the original setting for
Kleinian groups, these are discs and circles) and half-spaces P and geodesic hyperplanes
Hin H'T!: D = P N dH"*! and C = H N dH"+!. Given a hyperplane  (a sphere
C resp.), its interior hyperplane (ball) will be given by the choice of a component of
H™ N\ H (S" \ C resp.)
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Let us review the definition of a Schottky group (see [16, 18, 30] and references given
there). Let k, € be integers with0 < k < ¢, k+{¢ >3andD;,i =1,... ,k+Lfbea
collection of mutually disjoint topological balls on the sphere S". We suppose that, for
eachi =1, ... , k, there exists a conformal map y; such that

Yi(S"\ D;) = Djte,

and, fori = k+1, ..., £, there exists a conformal symmetry y; such that y; (S" \ D;) =
D;. The Schottky marked group

F = F(D15 .. 7De+k7 yla LICICI ) VZ)7
is the group of conformal transformations generated by the yy, . .. , y,. Wetake k+¢ > 3

to exclude elementary groups. If in addition the closures D; are mutually disjoint, which
will be assumed here, the Schottky group is convex co-compact.

If,fori = 1,..., ¢, I'; denotes the cyclic group generated by y;, the group I is the
free product 'y * ... * 'y, with fundamental domain S" \ Uf:{‘D,- for its action on the
sphere S". If we introduce, for j = £+ 1,..., £ + k, the transformation y; = y j__le’
every non-trivial element y € I' isuniquely writtenasy = y(1)y(2) ... y(N) witheach
y)in{yr, ... ,yeqxtandy(Hy(I+1) # 1,1 =1,..., N —1.The uniquely defined
integer N is the word length |y | of y (with respect to the generators set {y, ... , y¢}).

Let us discuss some particular cases. We suppose that each D; is a geometric ball,
boundary at infinity of an hyperbolic half-space P; : the marked Schottky group is said
to belclassical and can be described as an isometry group of the interior hyperbolic space
Hr L

If k = 0, the group T is called a Schottky reflection group. Fori = 1, ..., ¢, the
symmetry y; is the conformal symmetry with respect to the sphere dD; and is omitted
in the marking : ' = ['(Dy, ..., D¢). The corresponding hyperbolic isometry group
is the Schottky marked reflection group I'(P1, ..., P¢), generated by the hyperbolic
symmetries s;,i = 1, ..., £ with respect to the hyperplane H; = 9P; (with infinite
boundary dD;). Figure 3 shows the fundamental domain of a reflection group in H?
with £ = 3.

If £ = ¢, the Schottky group contains only orientation preserving transformations.
If g; is the hyperbolic isometry of H"+! with action at infinity given by y;, then the
classical Schottky group has a hyperbolic marking

F=TP1, ..., P, 81,...,80).

The Schottky domain H"*! \ Ufi Pi is a fundamental domain for the action of I" on
H

A group is said to be a Schottky group if it admits a presentation induced by a
configuration of balls as described above. The subgroup I'"™ of orientation preserving
transformations of a Schottky group I' is Schottky: for the reflection Schottky group
r=r,...,Dy), we have

It =T(D1,... D=1, ¥¢D1s - s ¥eDo—1, VeV1s - » VeVi—1),

where y; denotes the conformal symmetry with respect to the sphere 9D;. Such a group
was called symmetrical by Poincaré [26].

An oriented hyperbolic manifold M is said to be (classical) Schottky if its fundamen-
tal group 71 (M) (realized as a discrete subgroup of Isom™ (H"t1)) admits a (classical)
Schottky marking.
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Fig. 3. Tessellation in H2 by the group, I'g, & = 110°, generated by symmetries in three symmetrically
placed lines each cutting the unit circle in an 110° angle, with the fundamental domain of its Schottky

subgroup of direct isometries, Fg’ , and the associated Riemann surface l";' \HZ. The dimension of the
limit set is § = 0.70055063 ...

Non-trivial elements of I" are either symmetries or hyperbolic. For a hyperbolic ele-
ment y € T, there exists « € Isom(H"t!) such that, in the Poincaré model H"t! ~
R =Ry x R,

o lyat,y) =V, 00y, (y) eRETL 0() € 0m), Ly)>0. 2.1)
If I C Isom™* (H"*!), the conjugacy classes of hyperbolic elements,

Ml=1[yl < IBel pnp ' =mn,

are in one-to-one correspondence with closed geodesics of X = I'\H"*!. The primitive
geodesics correspond to conjugacy classes of primitive elements of I" (that is, elements
which are not non-trivial powers). The magnification factor exp £(y) in (2.1) gives the
length £(y) of the closed geodesic.

The limit set, A(I") of a discrete subgroup, I', of Isom(H" ), is defined as the set
in Hr+! = H"+! U 9H"*! of accumulation points of any I'-orbit in H"*!: the limit set
A(I) is included in the boundary 9H"*!. In the convex co-compact case it has a par-
ticularly nice structure; furthermore, for Schottky groups, it is totally disconnected and
included in D = Uf:{‘Di. The aspects relevant to us come from the work of Patterson
and Sullivan — see [35] and references given there. As will be discussed in more detail
in Sect. 4, the limit set has a quasi-self-similar structure and a finite Hausdorff measure
at dimension § = §(I").

The limit set is related to the trapped set, K, of the usual scattering [33, 36], that is
the set of points in phase space such that the trajectory through that point does not escape
to infinity in either direction: if 77* is the projection from 7*H"*! on 7*(I"\H"*1), the
trapped set K is the union of the projections 7*(C¢,), where C¢, is the geodesic line
(&, n) with extremities £ and 7, distinct points of the limit set A(T"). In particular, we
have

dimK =28 + 1),

see [38].
To stress the connection to closed geodesics on I'\H"*! let us also mention that,
generalizing earlier results of Guillopé [7] and Lalley [10], Perry [23] showed that

eBr
#{ly] : y primitive, £(y) < r} ~ =
;
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e

Fig. 4. A typical limit set for a convex co-compact Schottky group, I' C Isom(H?), taken from [18]

3. Properties of the Selberg Zeta Function

For I', a discrete subgroup of Conf (H"*!), the Selberg zeta function is defined as fol-
lows:

zee =[] 1 (1__e—HWyLme—@+MDHw>' 3.1

{[y]) aeNg

Here, y € I are hyperbolic, exp(£(y) +i6;(y)) are the eigenvalues of the derivative of
the action of  on S" at the repelling fixed point f (y) (exp(i6; (y)) are the eigenvalues
of the isometry O(y) in the normal form (2.1)) and [y ] its conjugacy class in I". The first
product in (3.1) goes over the primitive conjugacy classes. The real exp £(y) is called the
dilation factor of y (we have always £(y) > 0 because we consider the fixed repelling
point). An element is called primitive if it is not a non-trivial power of another element.

In terms of hyperbolic geometry, the isometry y keeps invariant the geodesic line
(f+(y), f+(y™h) in its action on the hyperbolic space H"*!, whose projection on
I'\H"*!isaclosed geodesic of length £(y) and holonomy spectrum 0i(y),j=1,...,n.
The induced correspondence between conjugacy classes of I' and closed geodesics of
I'\H"*! is one to one. The word length |[]| of the conjugacy class [y ] is the minimum
of the word length of the elements in this conjugacy class.

For the Schottky group I' = I'(Dy, ..., Desk, V1, - - - » Ye), We define the following
mapT =TronD = Uf:{{ D;:
T:D — §", T(x)=yx), x€D;. (3.2)

We need to find an open neighbourhood of the limit set where T is strictly expanding in
the following sense : F defined on V is said to be (strictly) expanding on V C S” with
respect to the metric || || if there exists & > 1 (8 > 1) such that
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IDF)&l = 01§, veV.&el,V.

In the case when I is a symmetrical Schottky group, we can suppose that up to a
conformal identification 3Dy is a great circle of the sphere S”. For the metric on S"” we
can take the metric induced by its embedding in R"*! The inversion, oy, is the restric-
tion to S of the symmetry on R"*! with respect to the euclidean hyperplane containing
9Dy, hence an isometry. Each inversion o;,i = 1, ..., — 1 is expanding on the ball
D;. Hence, the map T is expanding on D = Uf;ll D; Uo¢D;, strictly expanding on any
open set precompact in D.

However, the map T is not expanding on D in general. To circumvent that we need
to consider refinements, DV, defined by recurrence:

D' =D, DN =1'DO""HnD !, N>1.
Each set DV is a disjoint union U?ﬁ 1DIN . The collection of sets {D{V }i coincides with
the collection

{Dylyery. Tn={r el : |y =N},

where
D, =y y@ D,y i y=yd)...y(N),

with D, = D;,i = 1,...,2¢. The iterated map, T, is defined on DV, and
TW‘\'DV =y.

The map T is strictly expanding on DV for N big enough as explained in the following
lemma (see Lemma 9.2 in Lalley [10] for a similar result).

Lemma 3.1. Let " be a Schottky group and D, T defined as in (3.2). There exist an inte-
ger N > 1, ametric || |, defined on DV, and a real B > 1 such that | DT (w)||r >
B, w € DN. The metric can be taken analytic on DV.

Proof. Let us recall that any Mabius transformation y of R which does not fix the
point at infinity, 0o, has an isometric sphere S,,, and that y is strictly contracting on any
compact subset of its exterior (the unbounded component of R¥ \ Sy). The sphere S, is
centered at y 0o and if ry is its radius, we have (see [30])

2
AT
llyx —yyll = —

x,y € RE\ {y~loo}. (3.3)
llx —y

ool| [ly — y~ooll’

Up to a conformal transformation, we can suppose that I" is a subset of Conf(R"),
with the point at infinity in its ordinary set. No non-trivial element in I" fixes oo and,
taking in (3.3) as x, y points in the upper half-plane H"*! (and the Poincaré extension
of y to R"*1), we deduce that the set of radii {ry, y € I'} accumulates only at 0.

Fory =y(1)...y(lyl), we have

_1 <
y (00) € Dy CDy@)..ptyh C -+ C Dyyi-nyUrD C Dyqyps

hence there exists Ny such that the isometric sphere S, is includedin D, (| if |y | > No.
For such a y, the interior of the isometric sphere S, -1 is included in D, (-1 its exterior
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contains all the D_yl vi # ()7L, hence y !

is strictly contracting on U,, ., (1)-1D;.
Asy(Dy) CU,, 4, 1y-1Di, themap y = T|V||ny is expanding on D), C DI7!. We have
just proved the existence of 79 > 1 such that || DTN (w)]|| > 5o, w € D0, hence there
exist constants C > 0,6 > 1 such that | DT?(w)| > COP,w € DP, p > 1.

Taking an integer N such that CO" > 1, we define on DV the metric (introduced by
Mather [17])

N—1
IVir= > IDT?w)V|. V eT,D",
p=0
which concludes the proof. O
Let us fix now an integer N as in Lemma 3.1. Let S" be a Grauert tube of S”, that is
a complex n-manifold containing S" as a totally real submanifold (that is all we need).

Let us then choose open neighbourhoods] D;,i=1,...,dyof DlN in S". By further
shrinking, we can suppose that the open sets D; are mutually disjoint, and that the real

analyticmaps T and | DT || extend holomorphically to D = Ufli’ 1 Di, with | DT ||Ir > E

for some E > 1. The open sets D; can be chosen to be a union D; = Ui": 1 Dik of open
sets, each one biholomorphic to the ball B« (0, 1) in C”.
With this formalism in place we define the Ruelle transfer operator

Lu@ = Y [DT@)] *u(w), z€ D,

Tw=z

u € H* (D), H*(D) = {u holomorphicin D : / / [u()|dm(z) < o0},  (3.4)
D

[DT (w)] is holomorphic in D, [DT (w)]ls: =|det DT|nl.

The only difference from the standard definition lies in choosing L2 spaces of holo-
morphic functions instead of Banach spaces. However we still obtain the analogue of a
(special case of a) result of Ruelle [31] and Fried [5]:

Proposition 3.2. Suppose that L(s) : H*(D) — H?*(D) is defined by (3.4). Then for
all s € C L(s) is a trace class operator and

|det(I — L(s))| < exp(C|s|"*1). (3.5)

Proof. The proof is based on estimates of the characteristic values, g (L(s)). We will
show that there exists C > 0 such that

Be(L(s)) < CeCHI=ET/C. (3.6)

To see how that is obtained and how it implies (3.5) let us first recall some basic
properties of characteristic values of a compact operator A : H; — Hp, where H;’s
are Hilbert spaces. We define ||A| = no(A) > pni1(A) > -+ > ue(A) — 0, to be

the eigenvalues of (A*A)% : Hi — Hj, or equivalently of (AA*)% : Hy — Hj. The
min-max principle shows that

ue(A) = min max ||Av| a,. 3.7
VCH veV

codim V=¢ |lvllm, =1

' We drop the index N in the open sets DiN for the purpose of notational simplicity.
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The following rough estimate will be enough for us here: suppose that {x J} 2o is an
orthonormal basis of Hj, then

1e(A) < Y 1Ax - (3.8)
j=t

To see this we will use V;, = span {x]}oo ¢ 1n (3.7): for v € V, we have,

e ¢]

o0 o0
AV = | Y (v xp)mAx | <Y Wxpml [Ax ], < 1ol Y 1A a,,
j=t

J ={ H> J =t

from which (3.7) gives (3.8).

We will also need some real results about characteristic values. The first is the Wey!
inequality (see [6], and also [33, Appendix A]). It says that if H; = H> and A ;(A) are
the eigenvalues of A, |[Ag(A)| = |A1(A)| = --- > | (A)| — O, then for any N,

N N
[T+ 1D < [T + pe(A)).

=0 £=0

In particular if the operator A is of trace class, that is if, Ze ue(A) < oo, then the
determinant

det( + 4) & ]_[(1 + 1e(A)),
=0

is well defined and

| det(Z + A)| < [T+ pe(A)). (3.9)
=0

We also need to recall the following standard inequality about characteristic values
(see [6]):
Wt +6, (A + B) < g, (A) + e, (B). (3.10)

We finish the review, as we started, with an obvious equality: suppose that A; : Hy; —
H,; and we form @,J':l A @11‘21 Hij — @;:1 H,;, as usual, @/J‘:1 A @@
vy) =Av ®---® Ayvy. Then

0 J J oo
Doue (DA =D neA). (3.11)
=0 j=1 j=1£=0

With these preliminary facts taken care of, we see that (3.6) implies (3.5). In fact,
(3.9) shows that

- l n
|det(I — L(s))| < H(l 4 Clsl=tn/Cy < LCrlsl o
=0
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Hence it remains to establish (3.6). For that we will write
dn
H*(D) = P H*(Dy),
i=1

and introduce, fori, j = 1, ..., d", the operator Lij(s): H*(D;) — H2(Dj), nonzero
only when T(D;) and D; are not disjoint, where

Lij(s)u(z) o [Dfij(@u(fij(z), z€ Dj, fij= (T[D,-)_ITD,-, (3.12)
where [ Df] is defined as in (3.4). From (3.10) and a version of (3.11) we then have
we(L(s)) < max 2upe/c1(Lij(s)).
1<i,j<dy

To estimate wy(L;;(s)), let us recall that D; was taken as a union of open sets
Djx,k =1, ..., biholomorphic to B¢x (0, 1): as f;;(D;) is relatively compact in D;,
we can find p € (0, 1) (independent of 7, j = 1,... ,dy) such that f;;(D;) C Dl'.o,
where leo = Uii: lDlp © With Di’;{ C Djy the pullback of the ball Bcn (0, p) through the
biholomorphism of D;; onto Bcx (0, 1). The map £;; (s) is the composition

P 14

R , DR, . o ij s
HX(D;) — @) H*(Dyy) —> &)_ H*(D,) —— H*(D!) —— H*(D)) .

where R and Rip « are the natural restrictions, 77 is the orthogonal projection on the space
H 2(Df ) immersed in @Ii’: H 2(Dﬁ() by the natural restrictions and Efj (s) is defined by
the same formula (3.12) as £;;(s). The maps R and 7 are bounded, while the norm of
Efj (s) is bounded by Ce€ls!. The bounds on the singular values of Rﬁ(, given up to a
bounded factor by the following lemma, give the bound

1e(Lij(s)) < CeClI=e/C,
for some C, which completes the proof of (3.6). O

Lemma 3.3. Let p € (0,1) and R® : H*(Bca(0,1)) — H?*(Bcx (0, p)) induced by
the restriction map of Ben (0, 1) to Ben (0, p). Then, for any p € (p, 1) there exits a
constant C such that

we(R?) < cpt".
Proof. We use (3.8) with the standard basis (x4)gene Of H2(B@n O, 1):

T =’ al / e (@)Pdm(z) = 1, @ € N, (3.13)
Bcn (0,1)
for which we have
IRP (xe) 1> = / Ixe () [2dm(w) = pXlel+m)
Bcn (0,p)

The number of «’s with |«| < m is approximately m" and hence by (3.8) we have

wRH=C Yy k=t o

Ck>¢l/n
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The next proposition is a modification of standard zeta function arguments — see [27
and 28] for the discussion of the hyperbolic case.

Proposition 3.4. Let L(s) be defined by (3.4). Then, if Zr is the zeta function (3.1)
corresponding to the group T,

Zr(s) = det( — L()).

Proof. For s fixed and z € C,

h(z) ¥ det(1 — z£(s5))

is, in view of (3.6) and (3.9), an entire function of order 0. For |z| sufficiently small
log(I — zL(s)) is well defined and we have

det(I — zL(s)) = exp (— > % tr(/;(s)m)> . (3.14)

m=1

The correspondence between the conjugacy classes of hyperbolic elements and the
periodic orbits of T is particularly simple for Schottky groups and we recall it in the form
given in [28] (where it is given in the more complicated setting of co-compact groups):

Conjugacy classes of I' with contraction factor exp £(y) and word length |[y]|
are in one to one correspondence with periodic orbits {x, Tx, -- -, Tm_lx} such
that [DT"™ (x)] = exp£(y), and m = |[y]|. For prime closed geodesics we have
the same correspondence with primitive periodic orbits of T'.

Itis not needed for us to recall the precise definition of the word length. Roughly speaking
it is the number of generators of I" needed to write down y.
To evaluate tr(L(s)™) we write

w (L") = Y w(Lins) oo Liyi(s),

(15 sim)

where in the notation of (3.12) we have

Liiy(s) 00 L, ($)u(@) = [D(fiyiy 00 fini)@Vulfiyi o0 finiy (@),
Jiniz 00 finiy © Diy — Djj.

The trace of this operator is non-zero only if f;;, o --- o f;, i has a fixed point in D;,.
Since this transformation corresponds to an element of I" that fixed point is unique.
Let us call this element y ~!. Since it corresponds to a given periodic point, x, of 7"
(corresponding to a fixed point of fi,;, o--- o f;, i), v is determined uniquely by x and
n:

y=y(x,n), T'x =x.
By conjugation and a choice of coordinates z = (z1, ... , Z,) it can be put into the form

y(@) = el(y)(em'(y)zl, . ’eiGn(V)Zn)’
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and the trace can be evaluated on the Hilbert space H?(Bcn (0, 1)). Using the basis (3.13)
we can write the kernel of £;,;, o --- 0 L;

Im— llm

Liiy 00 Liyyin (& w) = [ O Y caly™ )7
aeNj
= Z cye” ST —i(O(y).a) jazpe
aeNj

The evaluation of the trace is now clear.
Returning to (3.14), we obtain for Re s sufficiently large (using {[y]}’s to denote the
conjugacy classes of primitive elements of I'),

o0
det(I — 2£(s)) = exp | — Z ' 3T et =i Oy e

Thx=x DtEN”

— exp i i o e~ K(sHaD L) =i O().a)
k

=nn<l—z'

{[¥1} 2N}

—i(0(y).) —(s+|a\)e<y))

which in view of (3.1) proves the proposition once weputz = 1. O

Remark. The proof above is inspired by the work on the distribution of resonances in
Euclidean scattering - see [37, Prop. 2]. The Fredholm determinant method and the use
of Weyl inequalities in the study of resonances were introduced by Melrose [20] and
developed further by many authors — see [33, 39], and references given there. That was
done at about the same time as David Fried (across the Charles River from Melrose) was
applying the Grothendieck-Fredholm theory to multidimensional zeta-functions [5]. In
both situation the enemy is the exponential growth for complex energies s, which is
eliminated thanks to analyticity properties of the kernel of the operator.

Finally, we remark that in view of the lower bounds on the number of zeros of Zr
obtained in [8] in dimension two, and in [24] in general, we see from Proposition 3.4
that the upper bound (3.5) is optimal for any I".

4. Applications of Quasi-Self-Similarity of A(I')

In this section we will review the results on convex co-compact Schottky groups (coming
essentially from [35]) and apply them to refine the domain D used in the definition of
the transfer operator (3.4).

We start with a more general definition of convex co-compact subgroups of
Isom(H"*1). A discrete subgroup is called convex co-compact if

'\C(A(T')) is compact, C(A()) def convex hull(A(T")). “4.1)

Here, the convex hull is meant in the sense of the hyperbolic metric on H"*!: A(I") C
dH"*! and I acts on it in the usual way. In particular this implies that I'\C (A (")) has
a compact fundamental domain in H" .

The first result gives a quasi-self-similarity for arbitrary convex co-compact groups:
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Proposition 4.1. Suppose that T C Isom(H"*1) is convex co-compact in the sense of
(4.1). Then there exist ¢ > 0 and ro > 0 such that for any xo € A(T") and r < rg there
exists amap g : Bsn(xqg, r) — S" with the properties

g(A(") N Bsn(xo, 1)) C A(T),

. L 4.2)
crdsn (x,y) <dsn(g(x),g(y)) <c r dsn(x,y), x,y € Bsn(xo,7).

Proof. We proceed following the argument in [35, Sect.3]. Let us fix zg € C(A(I')). If
L is the geodesic ray through z¢ and xg, then

3C>0VzeLIyel diy'z0,2) <C.

This follows from the compactness of I'\C(A(I")): for any point on the ray, z, there
exists an element of the orbit of z¢ within a finite distance from z. We can now choose
z = z(r) on the ray L so that d(z, zg) = log(1/r), and then y such that d(y ~'z¢, z9) =
log(1/r) + O(1).

If x,, is the end point of the geodesic ray through zo and ¥ ~'z0, then for a fixed Cy,
the ball Bs» (x,,, C1r) covers Bsy (xq, r). The action of y on Bsn (x,,, C1r) satisfies (4.2):
A(T) is T'-invariant, and the other property follows by putting y into the normal form
(2.1). Since zp was fixed and we have no dependence on y, the proof is completed. O

Using the self-similarity we will obtain neighbourhoods of A(I"), D = D(h), which
can be used in place of the fixed domain D of Sect. 3. We will use the upper half space
model for H"*!, and assume (as we may) that A(T") € R” c C". When talking about
the expanding property of T near A(I") we will use the metric obtained in Lemma 3.1.
The distance we use below is given in terms of that (analytic) metric.

Proposition 4.2. For any h > 0, sufficiently small we can find D(h) = U;D;(h), an
open neighbourhood of A(T") in C", with D;(h) its connected components, and such
that

T(Di(W) N Dj(h) # B = den(T1p;a)~ (D)), dDi(h) > h/C.  (4.3)
In addition there exists K independent of h such that
D;(h) is a union of at most K balls of radius h. 4.4)
Proof. We start by considering
D(h) ={z : den(A(D),2) < (1= mh},

where 0 < 1 < 1 will be chosen later. -

Let & be small enough, so that D(h) C D, where D is as in (3.4). Let D (h) be the
connected components of 5(h). Then (4.3) holds due to the expanding property of T
on D and the fact that T preserves A(I"), A(I') N D;(h) # .

The self-similarity provided in Proposition 4.1 shows that each connected component
is contained in a ball of radius bounded by K14, and that the distances between D (h)’s
are bounded from below by 4/K>, with K1, K> fixed.

In fact, A(T") is totally disconnected and for a sufficiently small €, the e-neighbour-
hood of A(I") has more than one connected components, each contained in a ball, of
radius at most K, and separated from the others by the distance at least 1/ K. By apply-
ing the self-similarity transformation with » = h(ce) ™!, we see that the diameter of each
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connected component of 5(h) is bounded by 2Kk, K| = Ko(c?e)~ L. Similarly we
obtain a separation condition. _
We now modify D(h) so that (4.4) holds. That is done by modifying each D;(h).
Observe that
Diy= |J Ber.(l—mh), Aj)E AT)ND;h).
z€Aj(h)

Choose zg € Aj(h). Since for z in B¢r (2o, nh), Ben(z, (1 — n)h) C Ben (2o, h), we
have

Ben (20, 1) U U Beo (2. (1 = mh) D Dj(h).
ZeAj(h)\BC)l (Z(),T]h)
If zg, - - - , 2k, are chosen, we then find
k
2kt € Aj\ | Ber G, b,
m=0
so that now
k+1
U Ber@m. ) U U Ben(z, (1= m)h) D Dj(h).
m=0 zeA;(\USEY Ben (2

This process has to terminate in a uniformly bounded number of steps, as the number of
points separated by An in a set of diameter K14 is uniformly bounded (independently
of h, by C"(K /n)*", where C depends on the metric; this can be seen, for instance, by
volume comparisons). Hence

K
Djn U BerGm. h) > Dj(h).

m=0

We now choose 1 small enough depending on the expansion constant of 7 and the
separation constant, so that (4.3) holds and that D;(h)’s are mutually disjoint. O

5. Estimates in Terms of the Dimension of A(T")

In the definition (3.4) and Proposition 3.4 we used the neighbourhood D of A(T") given
by Lemma 3.1.

It is clear from the proof that we can, in place of D use any neighbourhood for which
(4.3) holds. For the proof of the Theorem stated in Sect. 1 we will modify D;’s in the
definition of L(s) in a way dependent on the size of s: we will use Proposition 4.2
with & = 1/|s|. The self-similarity structure of A(I") will show that we can choose
Dj = Dj(h) to be a union of Oh=?) disjoint balls of radii ~ 4. A modification of the
argument used in the proof of Proposition 3.2 will then give (1.2).

We start with the following lemma which is a more precise version of the argument
already used in the proof of Proposition 3.2:
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Lemma 5.1. Suppose that Q; CC", j=1, 2, are open sets, and Q| = U,{il Ben (zg, 1i).
Let g be a holomorphic mapping defined on a neighbourhood, 21 of 21 with values in
Q», satisfying

den(8(R), 32) > 1/Co = 0, 0 < [Dg@)] < 1.z €.
If
A HXQ) — HX(Q). Au) ¥ u(g@).z e,

then for some C1 depending only onry’s, K, dcn (g(S21), 0€22), and mingZl IDgllcn—scn,
we have

He(A) < Cre=en,
where ¢ (A)’s are the characteristic values of A.
Proof. We define a new Hilbert space
def X
H'= P H*(Br), B = Ben(zk 1),
k=1
and a natural operator
J o HX(Q) — H, (Ju) =ulp, .

We easily check that J*J : H 2(Q1) — H?%($)) is invertible with constants depending
only on K. Hence

1e(A) = (XN THT*FTA) < 1Dl me (I A).
We then notice that

ure(JA) <k 1Islf}(aSXK we(Ag),

where
Ap  HX Q) — H*(By), Awu(2) = u(gr(2)), g =gls, -

To estimate the charactgristic values of A; we observe that we can extend gy to a larger
ball, By (contained in €21) and such that the image of its closure still lies in €2, (since
we know that ming || Dgllcn—cn is strictly less than 1). That gives us the operators

Ry : H*(By) — H?*(By), Ryu = ulp,, and Ay defined as A; but with By replaced by
Bi. We now have Ay = Ry Ak and consequently,

fe(Ar) < | Axllee(Re).

Lemma 3.3 gives ¢ (Rx) < Coexp(—£'/"/Cy) completing the proof. O
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Proof of Theorem. As outlined in the beginning of the section we put 4 = 1/|s|, where
|s] is large but | Re s| is uniformly bounded. In Proposition 4.2 each D (h) is given as
a union of (a fixed number of) balls with respect to some fixed metric for which T is
uniformly expanding. For & small each ball in the family can be replaced by a linearly
distorted ball with all the constants uniform. Hence we can apply Lemma 5.1 with g
given by rescaled f;; (defined in (3.12)).

The now classical results of Patterson and Sullivan [35] on the dimension of the limit
set show that the total number of the balls is @ (h~%): what we are using here is the fact
that the Hausdorff measure of A (T") is finite.

We can now apply the same procedure as in the proof of Proposition 3.2 using Lemma
5.1. What we have gained is a bound on the weight: since |Re s| < C and [Df;;] is real
on the real S”,

IIDfij (1’| < Cexp(ls||arg[Dfij(2)1)) < Cexp(Cils||Imz|) < C2, z € Dj(h).

We write L(s) as a sum of fixed number of operators £;; (s) each of which is a direct sum
of O(h~?%) operators. The balls and contractions are uniform after rescaling by / and

hence the characteristic values of each of these operators satisfy the bound p; < C yl,
0 < y < 1. Using (3.9) and (3.11) we obtain the bound

log|det(I — L(s))] < CP(h) = Oh™?),
and this is (1.2). O

Proof of Corollary 1. The definition of Z(s) (3.1) shows that for Res > C| we have
|Zr(s)| > 1/2.The Jensen formula then shows that the left-hand side of (1.3) is bounded
by

D fmr(s) : |s —ir —Ci| < Co} <2 max log|Zr(s)| + Ca,
[s|<r+Cs3
[Res|<Co

and (1.3) follows from (1.2). 0O

6. Schottky Manifolds and Resonances

We recall that a complete Riemannian manifold of constant curvature —1 is said to be
Schottky if its fundamental group is Schottky. In low dimensions Schottky manifolds
can be described geometrically.

Proposition 6.1. Any convex co-compact hyperbolic surface is Schottky.

This result is proved by Button [3] and for the reader’s convenience we sketch the
proof.

Proof. Any convex co-compact, non-elementary surface X is topologically described by
two integers (g, f) : its numbers g of holes and f of funnels, with the conditions g > 0,
f = 1land f > 3if g = 0. For any such pair (g, f), there does exist a Schottky surface
of this type and we choose for each type (g, f) such a surface X, r. The projection onto
X, s of the boundary of the Schottky domain is a collection Ly, ... , £¢, of mutually
disjoint geodesic lines.

Let X be any hyperbolic convex co-compact surface . The surface X is homeomorphic
tosome X r.Pushing back on X the geodesiclines £;,i =1, ..., £of X r and cutting
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X along these curves, we obtain in the hyperbolic plane a domain whose boundary is the
union of paired mutually disjoint curves C;, Cp4i,i = 1, ... , £, each one with a pair of
points at infinity. These point pairs determine intervals, which are mutually disjoint (the
curves Cj, j = 1,...,2¢ don’t intersect). The intervals are paired with an hyperbolic
transformation, so give a Schottky group, which coincide with the fundamental group
of the surface X. O

Proof of Corollary 2. For a Schottky manifold, the fundamental group is Schottky, and
hence, X = I\H"*!, I ¢ Isom™ (H"*"). We then introduce its zeta function Zy as the
zeta function Zr of the group I'. Following Patterson and Perry [22] we introduce the
spectral sets Px and Sy defined by the Laplace-Beltrami operator Ax on X:

Px ={s : Res >n/2,s(n—s)isa L? eigenvalue of Ax},
Sx = {s : Res < n/2,s is a singularity of the scattering matrix Sy }.

Moreover, each complex s in Px has a multiplicity denoted by mx (s), each s in Sy a
pole multiplicity denoted by m (s). In the case of surfaces, the divisor of the Selberg
zeta function Zy is given by the following formula:

—Xx §(2k+ D=k +mx (3)[5]+ 2 mx@lsi+ Y my)lsl

SEPX SESX

where yx is the Euler characteristic of X, see [22, Theorem 1.2]. The zeta function, Zx,
is entire and in any half-plane {Re s > —Cjy}, the formula above shows that the bounds
on the number of its zeros provide bounds on the number of resonances. The dimen-
sion of the limit set, § depends only on I" and, as shown in [35], it gives the Hausdorff
dimension of the recurrent set for the geodesic flow on 7*X by the formula 2(1 + §).
m]

For a convex co-compact hyperbolic manifold X, Patterson and Perry give a formula
for the divisor of the zeta function Zx in any (even) dimension, but it does not imply (in
the non-Schottky case) that the zeta function is entire. In the case of Schottky groups,
the zeta function Zy is entire, as it was shown in Proposition 3.4. Hence we concluded
that Corollary 2 holds also for Schottky manifolds.

We conclude with some remarks about Kleinian groups in dimension n + 1 = 3.
Schottky 3-manifolds are geometrically described by Maskit [15]:

Proposition 6.2. A hyperbolic convex co-compact, non compact 3-manifold is Schottky
if and only if its fundamental group is a free group of finite type.

While non-compact surfaces of finite geometric type always have a free fundamental
group, that is not true for the 3-manifold. For instance, if I' is a co-compact surface
group, the 3-manifold H>/ I" is convex co-compact with a non-free fundamental group.
Quasi-fuchsian groups (that is, deformation of sucha I' in Isom(H3)) give similar exam-
ples.

Finally, we note that the bound on the number of zeros of Z established here for
Schottky groups is valid for any group I', for which an expanding Markov partition can
be built. Anderson and Rocha [1] construct such a Markov partition for any function
group. This class of groups does not exhaust all convex co-compact groups (the com-
plement in the 3-sphere of a regular neighbourhood of a graph is not in this class) and
it is not known if all convex co-compact Kleinian groups admit an expanding Markov
partition.



The Selberg Zeta Function for Convex Co-Compact Schottky Groups 167

7. Numerical Results

7.1. Discussion. In this section, we present empirical numerical results on the distribu-
tion of zeros of the zeta function Z (s) for the simple case of the group I'y. As a hyperbolic
geometry group, [y is generated by reflections sg, 51, s2 in three symmetrically placed
geodesics in the Poincaré disc, which intersect its boundary, the unit circle, at angles 6
—see Fig. 3 where 8 = 110°. The corresponding conformal symmetries are denoted by
b0, 1, 2.

Numerical computations of the zeta function in that case have been already per-
formed by Jenkinson-Pollicott [9]. Their goal was to find an efficient way of computing
the dimension of limit sets (see also the earlier work of McMullen [19]). Table 1 gives

Table 1. Dimensions of the limit set for relevant values of 6

0 8 =dim A(Ty)
10° | 0.116009447786
20° | 0.151183682038
30° | 0.183983061248
40° | 0.217765810254

0.25-7%
0.2 S

0.15¢

©
—

0.05f

-0.05¢
-0.1
-0.15
-0.2

(log(#(zeros))—const)/log(y)-1
<

-0.25¢

200 400 600 800 1000
y

Fig. 5. This plot shows log(l[SE[XO’XI]To[égif]zz(s)zo}‘)_c — 1 as a function of y, for different values of
x0: The thin blue line is for xg = —0.2, the red line for xo = —0.1, and the black line for xo = +0.1.
The thick horizontal line indicates the dimension of the corresponding limit set. In this plot, 6 = 10°.
The constant C is determined by least squares regression, as explained in this section
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0.25¢
0.2
0.15
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-0.05

—-0.1

(log(#(zeros))—const)/log(y)—1
o

-0.15¢
027
-0.25¢
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y

Fig. 6. This plot shows IOg(‘{Se[xo‘xl]To[g?v’)y LZ©O)=00=C _ | a5 4 function of v, for different values of

x0: The thin blue line is for xg = —0.2, the red line for xo = —0.1, and the black line for xo = +0.1.
The thick horizontal line indicates the dimension of the corresponding limit set. In this plot, § = 20°.
The constant C is determined by least squares regression, as explained in this section

the (approximate) dimensions of the limit sets for the relevant angles, calculated as the
largest real zero of Z(s) [9] using Newton’s method.
Figures 1 and 5-7 show

log(l{s € [x0, x1] X [yo, ¥]: Z(s) =0}]) = C
log(y)

-1 (7.1)

as a function of y, where the constant C is chosen to minimize the usual mean square
error

N

err(C', €)= Y (Ifs € [xo0. 1] x [yo. il : Z(s) = 0}] — C"log(y) — C)°,
k=1

defined using the numerically computed data {(yx, |{s € [x0, x1] X [yo, y&] : Z(s) =
0}]) : k =1, ..., N}. In each plot, the value of x( is varied to test the dependence of the
distribution on the region in which we count: The blue line corresponds to xg = —0.2, the
red line xo = —0.1, and the black line xg = 40.1. The data show that most of the zeros
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Fig. 7. This plot shows IOg(l{Se[xo’xl]To[’gV?V‘f LZ®O=00=C _ 1 a5 a function of vy, for different values of

xo: The thin blue line is for xg = —0.2, the red line for xy = —0.1, and the black line for xy = +0.1.
The thick horizontal line indicates the dimension of the corresponding limit set. In this plot, § = 40°.
The constant C is determined by least squares regression, as explained in this section

lie in the left half plane. Based on the theorems proved in earlier sections, we expect the
curves to be bounded above by the dimension (the thick blue line) asymptotically. This is
not the case, except for the black line, which represents zeros with Re(s) > xo = +0.1.
Note that the value of x is not very important because Z(s) — 1 decays very rapidly for
large Re(s). Thus, we set x; = 10 throughout. The value of yy is fixed at —0.1, to avoid
integrating over any zeros.

Similarly, Fig. 2 and 8-10 show mgf)gg(# as a function of |s|, for a large number

of points in the rectangle [—0.2, 1.0] x [0, 10]. In this case, we also expect the curves
to be asymptotically bounded by the dimension. This is also not the case. The only rea-
sonable explanation, barring errors in the numerical calculations, is that the asymptotic
upper bound is accurate only for very large values of Im(s), and we were not able to
calculate Z(s) reliably for such values. These results also show that Z(s) has plenty of
zeros in regions of interest.

7.2. Implementation notes. To count the number of zeros of Z(s) in a given region Q2
in the complex plane, we rely on the Argument Principle:
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oot

o8f

log(log(1Z(s)1))/1og(lsl)

sl

Fig. 8. This plot shows log(log(|Z(s)]))/ log(|s|) for alarge number of points in the rectangle [—0.2, 1] x
[0, 103]. The horizontal line indicates dimension. Here, 8 = 10°

Z'(s)
Q Z(s)

To evaluate Z(s), our main technical tool comes from Jenkinson and Pollicott [9], though
we note that the essential ideas were used in Eckhardt, et. al. [4] and date back to Ruelle
[31].

First, some notation: Let us denote symbolic sequences on the three characters 0, 1, 2
of length |0| = n by . Thatis, 0 = (¢(0),0(1),...,0(n)), o(k) € {0, 1,2}, and
0(0) = o(n). Symbolic sequences represent periodic orbits : to each sequence o we
associate a composition of reflections ¢p5 = P n) © ... 0 P (1) : Do) = Do (0)- AS Po
is a contraction of Dy (o) into itself, it has a unique fixed point z,.

It is shown in Jenkinson and Pollicott [9] that Z(s) = limy; oo Z(s), where

s € 2:Z(s) =0} = 5— 1 f
d

2mi (7.2

A& (- l)r 185 @)l
Zu(s) =1+ Z > ]_[ Z (7.3)
F =Tk

neP(N.r) k=1 K o= l_d)”( o)

where P(N,r) is the set of all r-tuples of positive integers (ny, ..., n,) such that

n1 + ... + n, = N. The series (in N) converges absolutely in {s : Re(s) > —a} for
some positive a.
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Fig.9. This plotshows log(log(|Z(s)]))/ log(|s|) for alarge number of points in the rectangle [—0.2, 1] x
[0, 103]. The horizontal line indicates dimension. Here, § = 20°

Equation (7.3) lets us evaluate Z(s) for reasonable values of s in a straightforward
manner. In addition, we found two simple and useful observations during the course of
this calculation:

(1) Define
R A
an(s) = ”g::n—l— oo (7.4)
and
1 r
By == >, [[an®. (7.5)
neP(N,r) k=1

Then the recursion relation
N—r+1

1
B,(s) =~ D BNonr-1(s) an(s), (7.6)
n=1

with initial conditions By 1(s) = ay(s), provides an efficient way to evaluate the
sum in (7.3). A similar relation can be derived for Z’(s) by differentiation.
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Fig. 10. This plot shows log(log(|Z(s)]))/log(|s|) for a large number of points in the rectangle
[—0.2, 1] x [0, 103]. The horizontal line indicates dimension. Here, = 40°

(2) Recall that the maps ¢, are compositions of linear fractional transformations. Iden-
tifying these transformations with elements of GL(2, R) in the usual way, we can
compute the numbers ¢, (z,) via matrix multiplications. However, long matrix prod-
ucts can become numerically unstable for larger values of |0 |. An alternative involves
the observation that the matrices A; = As(y) - ... - Ag(1) corresponding to the maps
¢, have distinct nonzero real eigenvalues. Let us denote these eigenvalues by A
and A_ so that |Ay| > |A_|. Then a simple calculation shows that ¢ (z5) = A— /A 4.
This becomes simply (—1)°1/ )»1 if we normalize the determinants of the genera-
tors Ag, A1, and A>. The larger eigenvalue A can be easily computed using a naive
power method:

(a) Choose a random vyg.
(b) Foreach k > 0, set viy1 = Ao vi/||Agvill and 2 = (Agvr, vg).

(c) Iterate until the sequence (Agf)) converges, up to some prespecified error toler-
ance.

The resulting algorithm is slightly less efficient than direct matrix multiplication,
but it is much less susceptible to the effects of round-off error.

Note that it is certainly possible, even desirable, to apply to this problem modern
linear algebraic techniques, such as those implemented in ARPACK [11]. But, we
found that the power method suffices in these calculations.
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Fig. 11. Logarithmic plot (base 10) of the modified relative error % along the line

Re(s) = —0.2, where Ry (s) = Z}V (s)/Zn (s). The blue curve is 6 = 10°, the red curve 6 = 20°, the
green curve 6 = 30°, and the black curve 6 = 40°

These two simple observations let us calculate the values of Z(s) for a wide range of val-
ues in an efficient manner. When combined with adaptive gaussian quadrature, Eq. (7.3)
allows us to evaluate the relevant contour integrals.

Note that:

(1) To calculate the Selberg zeta function Z,(s) for closed geodesics on the quotient
space I'\H?, we simply sum over periodic orbits of even length, and additionally use
ax(n,s) = 2a(n, s) instead of a(n, s) in the recursion relations above. This counts
the number of equivalence classes of orbits correctly.

(2) The work of Pollicott and Rocha [29] revolves around a closely-related trace
formula:

=S, L1, Go)l
N=1r=1 {lo1], ..., [o1} € Pr(N, r) k=1 ok Ok

where Pr(N,r) = {{[o1], ..., [o+]} : lo1| + ... + |or| = N, o} primitive}, and [o] is
the equivalence class of o under shifts. The primary difference between (7.3) and
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Fig. 12. Logarithmic plot (base 10) of the modified relative error % along the line

Re(s) = —0.1, where Ry (s) = Z}V(s)/ZN (s). The blue curve is & = 10°, the red curve 6 = 20°, the
green curve 6 = 30°, and the black curve 6 = 40°

(7.7) is that the latter sums over sets of equivalence classes of primitive periodic
orbits (equivalent up to shifts), whereas the former sums over all periodic orbits.
While it is possible to enumerate primitive periodic orbits efficiently, for example
by a simple sieve method, Eq. (7.3) still provides a better numerical algorithm, as it
is easier to implement and results in faster and more stable code.

7.3. Error analysis. Figures 11-13 show the logarithms (base 10) of the modified rela-
tive errors
|R12(s) — R13(s)|
L+ [Ri2(s) + [Ri3(s)|

onthe lines xo+i[0, 10°], for xo € {-0.2, —0.1, 0.1} and where Ry (s) = Z}\,(s)/ZN (s).
This formula interpolates between the absolute and the relative errors, and measures the
convergence of the integrand in (7.2). These results lend some weight to the reliability
(i.e. convergence) of the values of Z, (s)/Zy (s) used in the calculations above.

(7.8)

Note added in proof. Using some of the techniques of this paper, H. Christianson has recently generalized
the theoretical results of [34] (where only quadradic functions with real Julia sets were treated) to the
case any hyperbolic rational function.
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Fig. 13. Logarithmic plot (base 10) of the modified relative error % along the line

Re(s) = 40.1, where Ry (s) = Z}V(s)/ZN(s), The blue curve is & = 10°, the red curve 6 = 20°, the
green curve 6 = 30°, and the black curve 6 = 40°
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