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Let X be a Riemannian surface of finite geometric type and with hyperbolic ends.
The resolvent (A4¥ —s(1—s))”', Res>1 of the Laplacian on X extends to a
meromorphic family of operators on C and its poles are called resonances. We
prove an optimal polynomial bound for their counting function. #1995 Academic

Press, Inc.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The purpose of this note is to provide upper bounds on the number of
poles of the meromorphic continuation of the resolvent of the Laplacian on
non-compact Riemann surfaces H?/I" with I" a discrete isometry group,
without torsion and of finite type. In fact we consider the slightly more
general class of two dimensional Riemannian manifolds (see Fig. 1) which
are obtained from the preceding Riemanmian surfaces by compactly sup-
ported perturbation of the metric and are similar to the ones studied in
[4, 11, 16]. Although the bound is rather far from the precise results in the
finite volume case [ 16, 25], it seems new when the volume is infinite.

The proof is based on Vodev’s impressive refinement of the Fredholm
determinant method which was used to obtain optimal polynomial bounds,
first by Melrose [15] for the obstacle problem and then by Zworski [34]
for the Schrédinger equation. It was applied in [30] to give a different
proof of the general bounds on the number of poles obtained by Sjéstrand
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Fic. 1. A Riemannian surface X.

and Zworski [27] in the Euclideans odd dimensional case and to extend
them to global bounds in the even dimensions [31, 32]—see [12] for the
first results in that direction. The facts about the spectral theory on infinite
volume Riemann surfaces come from [ 9, 11], see also [ 19], and we remark
that the crucial computation of the model scattering matrix was also
carried out by Epstein [5].

In higher dimensions {n>2) the meromorphic continuation of the
resolvent was studied with great success in [ 2, 6, 7, 13, 14, 20-22], but our
method applies at the moment to a limited class of examples (see
Remark 1) yielding, however, the optimal bound ¢(r").

Let (X, g) (see (Fig. 1)} be a complete two dimensional Riemannian
manifold (with a compact boundary) with a decomposition

X=ZuX U - uXyutY u--uUYy,, (L.1)

where Z is a compact manifold with boundary, Z=0XudX, U --- U
0XyyudY, U .- udY, and each X, is isometric to

X,~[a, ), x(R/M;ZL),, gly=dr*+e ¥d?a,>0h>0 (12)
and each Y, to
Y,~[b;, ), x(R/LZ),,  gly=>dr*+cosh’rd* b;>0,1,>0. (1.3)

We will denote the Laplacian on L*(X) by 4 with standard boundary
conditions (Dirichlet, Robin,...) on the boundary 0X. The following
theorem is essentially well known, with an easy proof obtained by adapting
the proof of Theorem 1.1 of [27] to this setting (see Section 5):

THeOREM 1. The resolvent

(4—s(1—=s))" " LX) - H¥{X)
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F1G. 2. A Riemann surface H?/I". The fundamental domain & of I" in the Poincaré Disc
D? has four geodescics as boundary and the group I is freely generated by y,z=
(2ijz — \/3),/(\/55 + 2ij*) (identifying @ and a’) and y,z = (z(1 — i)~ 1)/{(z — i — 1) (identifying
b and b').

H?/T

defined for Re s >3, s(1 —s) ¢ spec,(4) extends to a meromorphic family of
operators
R(s): L2

comp

(X)— HL (X) (1.4)

loc
with poles of finite rank.

By studying the model resolvents (see Sections 2, 3) more carefully we
can give a more precise mapping property than (1.4), but we do not need
it here. The poles of the operator (1.4) are called the resonances. When
N=0[16]or M=0[19, 20, 11] the resonances which do not correspond
to L? embedded eigenvalues (which appear in the case of N =0 case only)
are identified with the poles of the scattering matrix and, in the constant
curvature case (see Fig. 2), with the poles of the meromorphic continuation
of the logarithmic derivative of the Selberg zeta function.

THEOREM 2. If N(r) is the number of resonances counted with their
algebraic multiplicity in {s: |s| <r}, then, for some constant C,

N(r)y< Cr?, r>C. (1.5)

Remark 1. The proof of Theorem 2 applies in higher dimension n >3 as
long as analogues of (1.1) hold and the scattering matrices for X;, Y; are
well understood as meromorphic functions (see Section 3). For example, if
M =0 and each Y, is isometric to a neighbourhood of infinity of H"/{y),
y € Isom(H") hyperbolic, one obtains N(r)= ('(¢"), which is optimal. This
is not the exactly computable case since in the case of non-constant
curvature the compact part Z is quite arbitrary.
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Remark 2. 1f N=0, then the Selberg trace formula (see [25, p. 668]) in
the constant curvature case and the works of Miiller [ 16], Parnovski [ 18],
or Vodev [33] in general, give the asymptotics for N(r)

Vol X
2n

N(r) ~ r2, (1.6)

In the opposite extreme, M =0 and X=H?T, it is expected that the
Selberg zeta function is of finite order (see [23]). Assuming this, we can
apply Theorem 2 above and Corollary 2 of [28] to conclude that

N(r}y>Cr, r>C. (L.7)

In fact, the meromorphic continuation of the zeta function is provided by
[ 11]. the identification of its poles and zeros with resonances by [22], and
the order of the canonical Weierstrass product by Theorem 2. The conclu-
sion is sharper than (1.7) by giving a lower bound in any logarithmic
neighbourhood of the unitarity axis {s: —Res<plog{s)}: for every
d >0, a sufficiently small £ >0, and p > n/(d —&?)

Z e—(d—»c)(l/?fkex)

Imsj <r. —Res < plogds)

1
” <m 2y —oﬁ(l)> r,

mi(p)y=d
where y e I' is hyperbolic with displacement length /(y).

The idea of the proof can be described as follows. We treat the manifold
X as a compactly supported perturbation of a finite set of hyperbolic half-
cylinders and cusps. We also use the standard observation that only the
zero mode in the cusp Fourier expansion contributes to the continuous
spectrum. Hence, the Laplacian is made to act on a modified Hilbert space,
roughly, # = #,, @ LR, ,dr)@® L* Yy, dvol,), where Y, is the hyper-
bolic half-cylinder (R* x R/!Z, dr®+ cosh® r dr’) and we took N=M=1.
This is similar to the situation considered in [27, 30] with R* u Y, replac-
ing R"\B(0, R). Thus, to apply the Fredholm determinant method we need
precise information about the scattering theory on Y, with, say, a
Dirichlet boundary condition. The new difficulty is created by the presence
of poles in the resolvent R' of the free problem on Y,. But as the
scattering matrix Sy, can be computed explicitly (see Lemma A.2) we can
control their contribution. More precisely, the estimates for the generalized
eigenfunctions E,, (Lemma 4.3) and the resolvent R" (Lemma 4.1) in the
good half-plane Re s>} are essentially the same as in the Euclidean case.
To treat the bad half-plane Re s <3, we use the scattering matrix Sy, to
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relate the generalized eigenfunctions there to the ones in the good half-
plane. This gives an expression for the difference of the free resolvents
kernel R™ based on that in [11],

(R™(s)—R™ (1 —s))(y, ¥')
=(1 *2S)Ll Sofs) Eqy(1 =5, W& Eq (1 —5,&, y')dEé,  Res<li,

where all the singularities come from Sy, the scattering matrix. To apply
Melrose’s method [15] with an improvement obtained by reducing the
dimension from two ( Y,,) to one (S') [34], we use Vodev’s argument [29,
Lemma 4] (see Proposition 4.1 below). The blow-up in the resulting
estimates is then cancelled through a multiplication by an appropriately
chosen entire function.

For notational simplicity we will use below the letter C to denote a large,
but not necessarily the same, constant. For s € C we will denote by (s> the
shifted modulus 1 + [s].

2. THE MoDIFIED HILBERT SPACE

To apply the abstract approach to resonance counting [27,30] we
start by modifying the Hilbert space on which the Laplacian acts as an
unbounded self-adjoint operator. The need for that is dictated by the
presence of cusps X, .., X, and we proceed as in [4] and [11].

Thus we define

N

M
H =KD LAXy, dr)® @ LAY!, dvol,), (2.1)

i=1 J=1

where with the identifications (1.1)-(1.3)

X¢~[a, 0)xS', XcXifa>a, X~[a ), i=1.,M,
Y} ~[b 0)xS', Y'eXifb>b, j=1,.,N,

M
Hr=LHZ)® @ [LHX\XY, dvol,) ® (L X, d vol,)]
i=1
N

® @ LYY\Y?, dvol,).

j=1

The component of f in the i th term in (2.1) is the 0th Fourier coeflicient
Sary=h7"{i f(r, 1) dt, r>a along the cusp X?. The space (L*(X? dvol,)
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i/s\the space of functions f in L*(X¥, d vol,) with zero horocyclic integrals
firy), r>a.

We define the corresponding pseudo-Laplacian 4“? (see [4]): it is the
Friedrich extension of the symmetric Laplacian (4%, (X))~ #%7).

The proof of the lemma below i1s a modification of the proof in the case
N=0 (see [4]):

LEMMA 2.1.  The operator A“° is self-adjoint with compact resolvent. The
eigenvalues satisfy

VOIh( X) 2
27

#{p: pespec(4“”), lul <r} = r?+o(r?)

with

v N
Vol,(X)= Vol (X\\U Y;>.

J=1

We have two types of model problems. For the cusp ends, we take the
Euclidean half-line X3~ R™* and the shifted Dirichlet Laplacian

A=D2+} (2.3)

on L} XJ) with the domain HXX3)n Hi(XJ). Let 47 denote the corre-
sponding differential operator on the line X3, ~R™ corresponding in (2.1)
to the cusp X,;.

For the cylindrical ends Y;, the model depends on the length /; of
the closed geodesic in the cylinder, and we take the half-cylinder
Yo ~R* xR/IZ. Again it is convenient to use the Dirichlet problem

realization 4, of
AY"=Dp?— i tanh rD, + cosh 2 rD? (2.4)

on L*(Y,,dvol,) with the domain H*(Y,, dvol,)n Hy(Y,, dvol,). Let
4" denote the corresponding differential operator on the half-cylinder
Y]~ 7Y,

Let y be a smooth function on R with support in (—oc, 3], x(r)=1 for
r< % and let y, be the translate y(- — A). Using the identification (1.1} we
define the following linear cutoff operators acting on fe #:

xof A0 fel Xy, dr),
Xanf = N
« f if fexX @@ LAX:,dr)® @ L Yj[.’,dvolg),

ki j=1

580712929
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i if felL*Y}, dvoly,
XYI = M
@b f if feXsr®@® LAXE, dr)® @ LYY, dvoly),
i=1 k+j
and
f it fesws?

" int?

M
xev=A x.f if fe@® LY XE,dr),

i=1
N

xS if fe® LY}, dvol,).
j=1

We then immediately have

M
A=Zf+l,b+l Au+2‘h+2Xf,b+ 2 _XaXi—l,b~l)Agl(l _XuX,'b)

i=1
- v
+ ) (=gl ) AT =1 25,). (2.5)
j=1

This representation, combined with Lemma 2.1 and detailed information
about the model resolvents (45 —s(1 —s)) ' (Lemma 2.2), (4¢,—s(1 —s)) ™"
(Section 3), give the meromorphy of (4 —s(1 —s))~' (see Section 5) and
then the estimates on the poles (see Section 6).

We conclude this section with

LEMMA 22. The resolvent in Re s>}
(49— s(1—s))~": LA XO) — HY(XY)
extends to an entire family of operators

RY(s): L2, X3) = HZ(X?)

comp loc
satsisfying the estimate
IxRe($) Xl g2 e < Ce™ %"+ C, 5€C,c>0,
SJor any ye €(R™).
Proof. We have an explicit expression
L (12)(r— 1)

2ie

Rg(s)(r,r')=~——-2-;~_T—

(e(l/Zfs)lr-r’l _6(1/275)!r+r’|)’

from which the conclusion is immediate. {
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3. SCATTERING THEORY FOR THE HYPERBOLIC CYLINDER

The purpose of this section is to present the relevant scattering theory for
the hyperbolic half-cylinder Y, We will use both the general approach
from [11] and [19] and a more direct one based on rotational symmetry
and a reduction to one dimensional problems.

The resolvent

RY(s)=(dy—s(1=5)) "' LA Yo) > H(Yo) nHY Vo), Res>1,
admits a meromorphic continuation (see Lemma 1.2 in [11])

RY(s): L% (Yo = HE (Yo, seC.

comp Joc

We will denote by Y, (oc) the boundary at infinity for Y, through the
Fermi coordinates based at the boundary &Y, Y(oc) is identified to
R/Z. If d(y, 8Y,) denotes the distance to the neck 0Y,, then the
generalized eigenfunctions or Eisenstein functions E(s, ¢, v), &€ Y (oc),
ye Yy, are defined for Res>1 as regularized boundary values of the
resolvent kernel

Eu(s, & y)= lim eI AV AL, —s(L—$) " (y, ¥, Res>1. (3.1
The Eisenstein functions, as well as the resolvent kernel, admit a
meromorphic extension to C and, by applying the Green formula at
infinity, it is proved in Proposition 2.1 of [11] that

R Yu((s’ )’, ,V' ) - R Ym( 1 — 35, ,V’ }")

—(1 —2s)j Eo (5, & ) Eof(1 —5, &, y') dE. (3.2)
Yor(oc)
The scattering matrix Syf{s) is now defined to describe the behaviour at
infinity of the Eisenstein functions:

EM(S’mxs (rs nc(‘))

(s—1)r e

e
= 25"— 1 6('"1 _no(‘) _2“3___[ SO[(S)(’no( ’ n[x‘) +0(€')

for Rese (0, 1), s not a resonance, and with convergence (o(e")) in the
sense of distributions. The scattering matrix S, extends to C as a
meromorphic function with polar parts of finite rank. We also have the
functional equation (see Corollary 2.6 in [11])

Ey (s, & y)=Su(s) Eg(l —s, - ¥)(&), seC. (3.3)
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In Section 4 we will need estimates given in the next two lemmas:

LemMMA 3.1. Let K be a compact subset of Yy and ¢>0. Then there
exists a constant C, depending only on K and ¢ such that

|04 Egi(s, &, p)l <kt CH e, EeYylw), yveK,Res>¢ keN.

Proof. Let t, be the coordinate on Yy (o0)~R/IZ induced by the
Fermi coordinates (r,t) on the cylinder C,=H?*/{y,>. If E, are the
Eisenstein functions for C, defined similarly to (3.1) and 7 is the symmetry
with respect to the collar geodesic on C,, by the method of images we have

Eo(s, & y)=E (s, & y)—E (s, & ),

where, in terms of Fermi coordinates and following the definition (3.1) (see
{11] and the formula (3.8) below),

I'(s cosh™'r
( ) Z [er— "+"’—2tanhr+e”~”’*"’] —.s-'

E s "Q '}y =
S =TT 2/n S

(3.5)

If re=sup,.k|r|, there exists a neighbourhood {[Im:z|<d} of R
(depending on r) where the series

Z [€:+n1“2tanhr+e—:—nl]<\-

nelt

defines an analytic function, periodic with period / for || <r, and Res>¢
and with bound

Z [e‘”’"’—2tanhr+e*"*"’]*"

nel

2ol +0) 18
<= e+ SUP [[1~2tanhre =+") 4 o 2=tnD] =5

S
where the sup is on the set {n >0, |r| <rg, |Rez| </, |Im:z| <}

Then, by the Cauchy formula

0%, Ey(s, 1, I <KL S™F sup [Ei(s, z, ¥,

IIm z| <3

which gives the estimate (3.4) for E,. The estimate for E,, follows. ]
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LemMMA 3.2. Let Q,e Dift"(Y,,) have coefficients of compact support in

Y3, and assume that the union of the supports of coefficients of Q, is disjoint
Jrom the union of the supports of coefficients of Q,. Then

10, R™(s) O, < Coi . LSO, Re S>%+£, e>0,7=0,1. (3.6)

Proof. When Re s> 1+¢, we have the standard resolvent estimate

1
sy’

Since for y,, x2€ €™ (Yy) N L™(Yy,) with supp y, nsupp x,=J

1(0r =51 =) "M 120y = 220700 < (3.7)

AYUI;(I(ADI_S(I “‘S))7112
=47 0 1 do—s(1=5)) " o+ 5(1 =5) x(doy— 51 —5)) " 124

the estimate (3.6) follows from (3.7) by iteration and interpolation—see for
instance the proof of Lemma 3 in [34].

The case 7=0 is more complicated: Let Q(d,,,7,,) be a differential
operator with support in a compact subset of C,x C,\4, of total order g,
0(2.,, 0.,) be the covering operator on H? x H? If the projection of (=, z,)
is in the support of Q, o(z,,z,)=sinh?d(z,, z,) < e**=  Then, for
tef0,1]

|Q(a:|* azg)(t +J(:|3 :2)) Y|

< Clllc.v<s>q(t+o.(:l, :2))7Rcs< C§e5672 Rcsd(:|,:3i.
As the kernel of (4 —s(1 —s)) " 'is

(A —s(1—5))" "(m,, my)

1

1
= EL (K1 =) " Nt+o(zy, yiz,)) *dt (3.8)

neZ

we have, for Re s > ¢,

|Q(am|’ am:)(ACI_S(I _S))il(rnl’ n12)|

R CcRex
SCYr Y et dnin =<8y, e<Res<C
2 —

nel?

Applying the Laplace operator as in the case of t=1 gives (3.6) with
=0. §



374 GUILLOPE AND ZWORSKI

To compute Sy (s) and to find the resonances of Y, we use the rota-
tional symmetry and thus reduce the problem to one dimension. Through
the conjugation by cosh'/? r, the Laplacian

RIZ
A" =D?+ itanh rD, + ———

cosh?r

is equivalent to the differential operator D2+ (A®'%+ })cosh?r+ 4 on
L*R* xR/IZ, drdt). Taking a Fourier expansion in the ¢ variable, we get

<2nm>2 . 1

! 4 1
AN~ Dl +—t5—+-
”'(‘EBZ ! cosh” r 4
on LYYy, dvol Yo = {(Z, LR, dr)). The Dirichlet Laplacian 4, is then
unitarily equivalent to a direct sum of one dimensional Schrodinger

operators H, ,,v= —1—i2nm/l, me Z defined in the Appendix. Hence

(3.9)

_ . .
R™s)= P (Hy 12 2mn./‘1-k ) S:%_’k* Res>%.
melZ

Since the Eisenstein functions can also be decomposed into Fourier series
we obtain that

Sols)= C‘D -5'(H0, —1/2 72iﬂnn‘,’l)(k)w §= %— ik,

meZ

where s( I-_IOJ,)(k) is the scattering matrix for the Poschl-Teller potential
Vo... We note that the poles of s(H, (k) in Im k <0 correspond to the
poles of (H,,—k?) ' but s(H, )(k) has non-physical poles in the upper
half-plane, which is a well known phenomenon for potentials with exact
exponential decay (see [17, p.420]).

Combining this with Lemma A.2 we obtain

LemMa 3.3, For the Dirichlet Laplacian on the hyperbolic half-
cylinder Yy,

Sols)= D s4.(5),

melZ

(e B E))

where
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This immediately allows us to find the exact resonance set for the model
problem:

LEMMA 34. The resonance set of the Dirichlet Laplacian on the hyper-
bolic half-cylinder Y, is given by the half-lattice ¥}:

2
,%:{im—lﬁ—n:mel,neZN——l}.

4. ESTIMATES ON THE CHARACTERISTIC VALUES

If 4 is a trace class operator with eigenvalues {1,(4)},.,,
[A4(A)| = --- =2|4,(A4)] =0, the Fredholm determinant is defined by
det(1 +4)=TT;Z, (1+4,(4)). For a compact operator 4, its characteristic

values u(4)= --- 2pu,(A4) > 0 are defined as the eigenvalues of the self-
adjoint operator |A| =./A*A4. Weyl'’s classical inequality (see [8, p.35])

N N
[TA+1AAD<TT (1 +p,4) (4.1)

j=1 j=1

applied to the determinant
(det[ 1+ A]| <det[1+[A4]] (4.2)

has been crucial in the pole counting estimates [ 15, 34, 30] and, using a
more local approach developed by Sjostrand [26], in [27].

To study the determinants arising here, we need to estimate the charac-
teristic values of the cutoff free resolvent. We start with the good half-plane,
Re s> ¢, where the situation is essentially the same as in the Euclidean case
{see {34, Lemma 3; 30, inequality (2.5)]).

LEMMA 4.1. Under the assumption of Lemma 3.2 and for any me N

HAQIR™($) Q) < C,p j sy me R,
(4.3)

Res>%+s,£>0,r=0, 1.

Proof. We follow the simple argument from [15]: let Q< Y, be an
open set with £ compact and 92 smooth. If the coefficients of Q, are sup-
ported in Q then, denoting by 4, the Dirichlet realization of the Laplacian
on £,

Q\R™(5) 0, =4,™ 450, R™(5) 0,
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and hence
1 (Q RY(s) Q,) Sp(A,") 1450, RY(s) Qs

. N2 2 —
gcm‘cj m<é> m+ p1+p r,

where we used Lemma 3.2 with Q, replaced by 45,0, and the standard
Weyl estimates on the eigenvalues of the Dirichlet Laplacian. |

As indicated already in the Introduction, the estimates in the bad half-
plane Re s <1 are based on the representation of the spectral measure in
terms of the resolvent. The new phenomenon comes from the presence of
poles already in the free case and for sufficiently precise estimates we will
need the detailed information from Section 3.

LEMMA 4.2, If Res<i—g, then

dﬂz(s5 Z)e('«‘-) 10g<s>’ ‘I= 1’ 2’

| ‘ , (44)
#,(S(5)) < exp[c<s>+2Re (;—s> log (%Zﬂ’ j>2

Proof. By Lemma 3.3, the characteristic values of Sy, (s) are

T(s=3)sinx(3-5)r(3-s)

. m .
x[51n§(s+irnw+l)smz(s—ima)—l—l)

[$mls)] =

—1
xF(-—s+imw+1)1"(—s—imco+l)} \, meZ, (4.5)

where we introduced w = 27/l and we used the complement formula

Y3
ryr{l—:z)=-
sin 7z
and the duplication formula
4: 1
r2:)= F(:)F<:+—>.
2/ 2

We start with the following estimate: for Re 2> ¢, |Im 2| < w/2, ke Z*

—1
sin g (z—ike) I'(z— ikw)i

<Cexp[CRe :—%(Re:—%) log((Re:)2+w2k2)]. (4.6)



NON-COMPACT RIEMANN SURFACES 377

In fact, if 4 = B means that there exists C independent of z and & such that
A/C< B< CA, we have from Stirling’s formula

) ) i
[Tz — iwk)| = |\/2m e >+ k(2 — jewk)!=— @k —1/2)| <1 +0, <m>>

—Rez z— 1y z+ I —iwk
=¢ Re e(Re 1/2) logt| +1wk|)ewk Arg( nul\]’

where |Arg(z — iwk)| <. Since for ke Z*

-1
< zemu/4 e*(n/Z)w |k|(1 _evwn(|k|~ l,c’2))-l

sing(:—iwk)

and

=~ = — E 7 <_I1>
Arg(z — ikw) sgn(k)2+C k)"

(4.6) follows.

To estimate (4.5) we consider two cases, |Im s| > w/2 and [Im s| < w/2.
For xeR let [x] denote the integer closest to x when x¢ Z/2 and
sgn(x)[ |x|] if xe Z/2. With =1 —s+ iw][Im s/w] and k =m + [Im s/w],

sinE(s+z'mw+l)F(—s—imw+1)=sing(:—ikw)F(:—ikw)

2

and the assumptions of (4.6) are satisfied.
Hence for m # — [Im s/w] we obtain from (4.6) that

—1
sin—g(s+imw+1)F(~s—imw+1)1

1 1
sCexp[CRe(l—s)—ERe (—-—s)

1 o o[ 2]

|(S— %) sin n(%_s) F(%—S)zl < eC(s) €2 Re(l/2—s)log<s>.

Also,

580:129:2-10
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Thus when [Im 5| > w/2, that is [Im s/w] #0,

[$,,(5)] <e“” exp { Re <%—s>{ log{s)? —%log( Re <%—s>‘-
, Im sT\? 1 1P
+w (m-{—[[—(;{ﬂ> >—§log< Re <5—3>

R ) P B

When |Im §| > w/2 and m = + [Im s/w], then

. 1
s, <d (s, &) e exp [Re <§ —s)[ log{s>?

ol
R ]

When |Im s| < w/2, that is [Im s/w] =0, we easily see that (4.7) still holds.
The estimate (4.8), however, needs to be modified to

|sio(5)| <d~3(s, —2N+ 1) e,

It is now convenient to write Sy, =S¢ +S5, So = Pz0Sm Su =
@m<0slm 50 that

/lm+nf— l(SU/) gll'lnl(“g[;;(s)) +)un(S()_[(S))

and thus it suffices to estimate p,(Sg; (s)). Since 1 ASe (D) <ISq (D <
max ., .o |5 (s), (44), j=1,2 follows. To obtain the case j>2 we make
the following elementary observation: if a,> - - za;>.., b= .- =
b, >..., are sequences of positive numbers and if for some bijection of
k— j, of N, a, <b,, then a;<b;, Assume now that Ims>0 and that

0<m# [Im s/w]. We obtain from (4.7) that

(s)? H
(m+ [Im s/w]))(m— [Ims/w])| ]

Reordering the sequence on the right hand side according to size we obtain
a decreasing sequence k; satisfying

2
k; <e“* exp [ Re G — s) log { <j2> H

[$,(85)] < e exp {Re <%—s> log [
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and that gives the desired estimate on characteristic values. The other
cases, Im s <0 or m <0 are considered similarly. J

To estimate the characteristic values of the difference of the resolvents it
is instructive to estimate the characteristic values of operators with
Eisenstein functions as kernels:

Lemma 4.3, If E§(s): LA(Y,, dvol,) - L¥(Yy(o0), d&) is defined by

Ef(s)16) = | Eu(s &5 2y uy)dvol,.  xe#§ (Yo,
of
then for Res>¢

HAEg(s)) <exp[ C(s> —j/C].

Proof. In view of the analytic estimates in Lemma 3.1, we can apply the
method of Melrose as in the proof of Proposition 2 in [34]. For the
convenience of the reader we briefly recall the argument:

#AEL () = p,((DF+ 1) DI+ D Eg(5)
<#,((D§+ 1);1\') ”(D% + ])"E{”(S)H LY Yo) — LY Yot oc))”

By Lemma 3.1 and using u,((DI+1)"%)<C*j~%, this is bounded by
C*j~*(2k)! e“<*>. The lemma follows from optimization in k. ||

We recall that the gain in the estimates above comes from reducing the
dimension from 2 in Yy to 1 in Yy(o0). To combine Lemmas 4.2 and 4.3
in order to estimate the free resolvent we now use an argument similar to
that of Vodev:

ProposITION 4.1. If Res<i—eand ye €5 (Yy,) then

i (Z(RM(s) — R™(1 —5)) x)

d7 (s, L) exp[ C{s) logds> ], j<2,
<exp[C{sy +2 Re s(3—s)log(s) /], 2<j<C{s),
exp[ —Jj/C], j>C{s).

Proof. We start with formula (3.2) which we rewrite using (3.3)
JONRY™M )y, ¥ — R —5)(y, ¥)) x(")

= (1=25) [ Su(s) Eal1 =5, 9)E) 10} Eqi(1 =5, & ¥') 2(3") d

Yor



380 GUILLOPE AND ZWORSKI

so that
X(RM(s) = RT™(1 —5))x = (1 = 25) E(1 — )" Sg,(5) E,(1 —5)
and consequently
# (X (R™(s) — R™(1 —5))x)
S = 2s) g, (EG (1 = 5)) p(Sor(5)) e (EF, (1= 5)),
J=h+i2+Ji—2
where we use the standard property of characteristic values (see [8, p.297)
Bosn— (A1 A) <p,(A)) p(Ay). (4.9)
Hence as in the proof of Lemma 4.3 we have for all & and j> C{s)
(X (RT(s) — R™™(1~5)) 1) < C*j2(2Kk) e,

where we applied Lemma 4.2. The conclusion for large j follows as in the
proof of Lemma 4.3 while for small j from Lemma 4.2. |

We note that the smoothness of E, in y implies that the same estimates
are true for Qy(R"™(s) — R¥(1 —s))y, where Q is a differential operator.

We conclude this section by including estimates on the characteristic
values for the cusp end (see Lemma 2.2). Although stronger results are
easily available we content ourselves with the following consequence of the
proofs of Lemma 4.1 above and of Lemma 4 of [34]:

PROPOSITION 4.2. Let P, and P, be differential operators on X3, of
orders p, and p,, respectively, and with coefficients of compact support. Then

HAP{RY($) — Ry(1 — ) Py) <exp[ C<s) — j/C].

If the support of the coefficients of P, are disjoint from the supports of coef-
ficients of P, and Re s> — C then

HAP RYS)P) S C, j syt mrrm

5. MEROMORPHIC CONTINUATION

Since the resolvents R}(s)=(4¥—s(1—5))"" and RY(s)= (4% —
s(1 —s))~! are holomorphic and meromorphic in se C, respectively, the
meromorphic continuation of

R(s)=(d—s(1—s))"': L2 _(X)— H?

comp loc

(X)

follows as in the proof in [27] which we will now briefly recall.
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For s,e C with Re 5, > % to be chosen later we define, with the notation
of (2.5) and a, b large,

Qol50) =Xaz+2,b+2R(S0)Xf+l,h+l’

M

Q(s)=13 (1 _X'a",'b) R(s)(1 —Xf+1,b+1)

i=1
< y
+ z (I—be)R i(s)(1 "X:ﬁ,l,bu)-

i=1

Since
M N
Xipt+ 2 (L=x2)+ X (1 —Xaw) =1,
i=1 j=1
we obtain
(4 —5(1~s)HQo(5p) + Q(s5)) =T+ L(s, 5),
where

L{sy, 5)= [A’ Xf+2,h+2] R(SO)X5+1.I)+1 + (SO(I _50)_S(1 —)) Qo(so)

M
= 2 D45 X T R — ¢ i)

i=1

N
= 3[4 xRSO =1l ) (5.1)

Jj=1

If Re s> and (1 —s5)s¢ spec(4) we conclude that
Qol50) + Q(s5) = R(s)I + L(so, 5))
and consequently that
(Qol$0) + QN XZ s34 3= ROV AZ 55 a sl T+ LUSos $) XE 1 35 13)

The meromorphy of R(s)xZ,;,,; for seC now follows from the
meromorphy of (I+ L{(sq, s) xZ,35,3) " As L($0,8) 27,34, 1s a com-
pact operator, meromorphic in s with poles of finite rank, the analytic
Fredholm theory applies as long as 7+ L(so, 5) xZ, 5, 5 is invertible for
some s € C. By taking s =54 and by choosing Re s, large enough so that the
norm of (5.1) is small we conclude the proof of the meromorphic continua-
tion of R(s) and thus obtain Theorem | of Section 1 above.
We conclude this section with the observation
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LEMMA S5.1.  The set of poles of R(s) with multiplicities is included in the
union of | }":l &, and the set of zeroes of D(s)=det(l + K{s,, s, where
K(s0, 8)=L{50, 8) X7, 14 1 2

Proof. Llet us recall that, for an n-dimensional manifold M", an
operator in ¥ ! (M”") is in the Schatten class S, , (see [8, p.91] for the

definitions). Sincg for s¢ U,N:] £, K(s,, 5) is built with such operators on
X and on the real line, K(s,, s)" is a trace class operator and hence we can
define the determinant D(s) which is a meromorphic function in C. The
agreement of multiplicities follows as in the Appendix of {31]. Strictly
speaking we characterized only the poles of R(s)xZ7,,,, s, but the
independence of the cutoff function can be seen as in the proof of

Proposition 3.6 of [27] or in Section 3 of [30]. |

6. PROOF OF THE MAIN ESTIMATE

The argument of this section is based on Lemma 5.1 above. In com-
parison with the previous determinant estimates [ 15, 34, 30-32] we now
need to control the contributions from the poles of K(s,, s). To remove
these poies we introduce an entire function g, given as a Weierstrass
product

gis)= H E<;, 2>, (6.1)
le Py v

where as usual E(z,2)=(1—z)exp(z +2%/2) and the set :7’, 1s the minimal
subset of C containing ¥, and invariant under the multiplication by the
square roots of +1.

Since the number of elements of .Z, in a disk of radius r grows like * and
since Y ;. 7 14<,A 7 =0 we conclude from Lindel6f’s theorem (see [3,
Thm. 2.10.1]) that

lg/(s)] < e, (6.2)

We shall need some inequalities on determinants

LeMMA 6.1, Let A, B be compact operators in the Schatten class &, and
S, T trace class operators. Then

|det(1 + (A + B)")| < det(l + |4 + B|?)”?
<det(1 4277 |A|7)¥> det(1 +27 "1 |B|")¥, (6.3)
|det(1 4+ ST)| < det(1+|S])> det(1 + |T'|)%
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Proof. By (49) we have, for k=21, j= 1,
M1+ k(AN Sp AV ((AY <y (A)
Then, according to (4.2) and the additive analogue of (4.9) we have

|det(1+ (A + B)7)]

P x
S I—[ H l+lup(j7l)+k((A+B)p)

r

x

oL I
<| T 1+ () 4408V T] 1+(y,,<A>+p,-(B>>ﬂ}

=1 j=1

x 2p
<[ [T +27" (M1 +2"‘ﬂj(3)p)}
=det(1+27" |A]7) det(1 +27 " |B|")¥.

The proof of the other inequality is similar. |

We now have the crucial

LEMMA 6.2. For |Res— %l >g, some PeN, and a constant C,

< el

H g,(s ¥ D(s)

J=1

Proof. Let us introduce the operator K,(s) defined by

K(SO*‘ -[‘A Xu+2b+7]R S‘O u+|h+l
+ (so(1 —856) = $(1 —5)) Qolse) + Ky(s).

Since, for each compact X, the characteristic values 4, of the imbedding of
H*(K) in L* X) are such that p;=C(j~*?), we have

[Aﬂ1u+‘)h+7] R(‘SO "+lf+l) (("(j*h'z);
A Qols0)) = ().
From this it easily follows that

det(1+4 |s(1 —s) —s5o(1 —50)|7 [Qo(50)]7) e, (6.6)
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Hence, by (6.3) with p =3 and (6.4),
|D(s)} < e (e’ det(1 44 |Ky(s)|H)® e’ det(1 +4 K, (). (6.7)

For Res>{+¢ we have by Lemma 4.1 applied with m=2, p, =1,
p.=0, Proposition 4.2, and the additive analogue of (4.9)

1 (Ky(8)) < Cinf({s)* 72 1),
from which we immediately have
|D(s)] < e, Res>1+e

To estimate det[1+2|Ky(s)|] in the bad half-plane Res<i—e, it
suffices, by (6.3) with p =1, to estimate the determinants coming from each
term of the sum

M
Ky(s)=Ky(1—s)+ 3, [45, 22 1(REH(s)

i=1
- Rg'(l ’_S))(XaZ+3.b+3*X§'+1.b+1)
N
+ Y [47, x5 URY(s) = RV =N Z 1 pes =201 per) (68)
j=1

Since Re(l —s)>1+¢ the first one is bounded by exp C{s>? Let us
introduce

Gi(s)=det[1+4][45, x X, J(RGUs) = RE(N =N xZ 3pes— X 1n DI
Hy(s)=det[ 1 +4 04", x5, JRY(8) = RV =)(xZ 500 2= 225 102 DI]
Proposition 4.2 easily gives G,(s) <e<<*’. The function H . is singular, but

for s¢ ¥ we have by Proposition 4.1 (or rather by the remark following
the proof)

Hj(S) <d72(s’ D%’) e(‘(s) log<s)> l_[ e('](s) + Cls) logl{s>i))
J<Cls>

x [T (1+e)<d (s, £) e,

P> sy
Since |g, (s)| <d(s, &) e*”’, the lemma follows for P big enough. |

The second part of Lemma 4.1 applied with a fixed m >0 gives

LEMMA 6.3. For Res>¢

|D(s5)] < e, (69)
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Proof. This is immediate from (4.3) with 1 =0 and the good half-plane
part of the proof of Lemma 6.2. §

The proof of Theorem 2 is now easily completed: the function
[T/~ 8,(s)" D(s) is entire. Lemma62 and 6.3 together with the
Phragmeén-LindelS{ principle show that it is bounded by exp C{s)? from
which the conclusion follows from Jensen’s inequality.

APPENDIX: HYPERBOLIC LAPLACIANS
AND POSCHL-TELLER POTENTIALS

We recall the following definition coming essentially from [24]: the
Poschl-Teller potential ¥, , is defined on R by
%

Hv

(r)=p(u+1)sinh 2 r—v(v+1)cosh ?r, reR,

and for a real potential ¥, , the parameters y, v are taken in —3+/R* U
[—3 +0)

The motivation is provided by the following lemma, the proof of which
we omit:

LemMMA A.1. (i) The Laplacian on L*(H", d voly,,) is unitarily equivalent
to

(n—Dn—-3) o,
———+4 (n—1)?

D? - +
Pt sinh? r 4

on L*(R*, LAS" ™', dvolgn ), dr).
(it) Let X be the cylinder H"/{y>, where y is the hyperbolic isometry

with displacement length | and acting trivially on the orthogonal of its axis.
Then the Laplacian on L*(X, d voly) is unitarily equivalent to

(n—=2)(n—-4) o
+4 1+4%% (n—1)?

sinh? r cosh?r 4

DI+

on LAR*, LA S" *x R/IZ, dvol g _g,z), dr).

The properties of the Péschl-Teller Hamiltonians useful to describe the
resonances of the hyperbolic spaces of the preceding lemma are stated in
the following assertion
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Lemma A2, Let V, , be a real Poschi-Teller potential with u> —31. Let
H,, (resp. L)) be the symmetric Hamiltonian D} +V, , (resp. D} +V, )
with domain €5 (R™") (resp. €5 (R) and H, _,, L, their Friedrich extension.

The Hamiltonian H, , (resp. L,) has R* as continuous spectrum which is
purely absolutely continuous of multiplicity one (resp. two). The determinant
of the scattering matrix is given for H, , by the reflection coefficient

(k) T4 v— )2+ 1) T —v— ik + 1)/2) 2%

T(—ikyC((u+v+ik)2 4+ 1) T{(p— v+ ik +1)/2)2%° (AD)

s(H,, k)= —

and for L, by

o _ T(ik)’ Ty —ik+ 1) I'(—v—ik)
J(L")U()‘I“(—ik)z Fiv+ik+ 1) T'(~v+ik)

The Hamiltonian H, , (resp. L,) has non-empty discrete spectrum if and
only if v—u>1 (resp. v>0). When it is non-empty the discrete spectrum is
given by

o H, )={—(v—pu—1-2n 2, neN,2n<v—pu—1},

Hv

oo(L,y={—(v—n), neN,n<v}.

Proof. Through a conjugation by sinb* *' r cosh** ' r and the change of
variable «= —sinh? r, the Schrodinger equation

DI+ V, b —k* =0 (A2)
1s reduced to the hypergeometric equation
u(l —u) F"(u) + [ (g +3/2) —(u+ v+ 3)u] F'(u)
— [l +v+2)/2)* + (k/2)*1F =0.

The Schrédinger equation (A2) has the following independent solutions
([1,1551]) (if e # — 1)

E, (k) r)=sin'*#rcosh'*"r

x oF (gt +v—ik +2)/2, (u+v+ik+2)/2, u+3; —sinh?r),
(A3)

F, k)(r)=sinh *rcosh'*"r

X F (e +v—ik +1)/2, (~p + v+ ik + 1)/2, 3-p; —sinh?r).
(Ad4)
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The functions generating the spectral resolution of the continuous part of

H, , are the functions (A3). The asymptotic expansion at infinity is given,

v

if ik 1s not an integer [1, 15.3.7], by

E;z.v(k)(r)=1_(('u+ 1r+ikr—il;;23)/i“)(::lf)v+ik+ A coth**!'rsinh*r
X F (g +v—ik+1)/2, (—pu+v—ik+1)2,1—ik; —sinh?r)
N Flp+3/2) I'(—ik)
F{u+v—ik+2)/2)I'(u—v—ik+1)/2)
X SF ((u+v+ik+1)/2, (—p+v+ik+1)/2, 1+ik; —sinh ~7r),
(AS5)

coth”* ! sinh ~*r

which gives the reflection coefficient (Al), defined as usual for potential
scattering (see p. 350 in (17]).

The potential V, , is smooth on R, the symmetric operator L, is essen-
tially self-adjoint, and its closure L, = H @ H ! is the sum of the Dirichlet
(H,,) and Neumann (H ) extensions of H,,. The eigenfunctions of the
spectral resolution of A} are the F, (k) from (A4) and a similar expansion
to (AS) gives the reflection coefficient of AF. The scattering determinant
s(L,) of L, is the product s(H, ) s(H} ), simplified with the duplication
formula.

The asymptotic properties of the eigenfunctions (A3) and (A4) determine
the discrete spectra. |
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