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Introduction.?

I. The theory of wviscosity leads one to allow that motions of a viscous liquid are
governed by Navier’s equations. It is necessary to justify this hypothesis a posteriori by
establishing the following existence theorem: there is a solution of Navier’s equations which
corresponds to a state of velocity given arbitrarily at an initial instant. That is what Oseen
tried to prove3. He only succeeded in establishing the existence of such a solution for a
possibly very short time after the initial instant. One can also verify that the total kinetic
energy of the liquid remains bounded?* but it does not seem possible to deduce from this
fact that the motion itself remains regular*. I have indicated a reason which makes me
believe there are motions which become irregular in a finite time®. Unfortunately I have
not succeeded in creating an example of such a singularity.

! This paper has been summarized in a note which appeared in Comptes rendus de I’Academie
des Sciences, February 20 1933, vol. 196, p. 527.

2 Pages 59 63 of my Thesis (Journ. de Math. 12, 1933) announce this paper and complement
this introduction.

3 See Hydrodynamik (Leipzig, 1927), §7, p. 66. Acta mathematica vol. 34. Arkiv for
matematik, astronomi och fysik. Bd. 6, 1910. Nova aeta reg. soc. scient. Upsaliensis Ser. IV,
Vol. 4, 1917.

41 ¢. 2, p. 59 60.

51 c. 2, p. 60 61. I return to this subject in §20 of the present work (p. 224).

reset from: Acta mathematica. 63. Printed July 5, 1934.
* Translator’s note: “regular” is defined on p. 217.
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In fact it is not paradoxical to suppose that the thing which regularizes the motion
dissipation of energy—does not suffice to keep the second derivatives of the velocity compo-
nents bounded and continuous. Navier’s theory assumes the second derivatives bounded
and continuous. Oseen himself had already emphasised that this was not a natural hypoth-
esis. He showed at the same time how the fact that the motion obeys the laws of mechanics
could be expressed by means of integro-differential equations' which contain only the ve-
locity components and their first spatial derivatives. In the course of the present work I
consider a system of relations? equivalent to Oseen’s integro-differential equations comple-
mented by an inequality expressing dissipation of energy. Moreover, these relations may
be deduced from Navier’s equations, using an integration by parts which causes the higher
order derivatives to disappear. And, if I have not succeeded in establishing the existence
theorem stated above, I have nevertheless proved the following®: the relations in question
always have at least one solution corresponding to a given initial velocity and which is de-
fined for an unlimited time of which the origin is the initial instant. Perhaps that solution
is not sufficiently regular to have bounded second partial derivatives at each instant, so it
is not, in a proper sense of the term, a solution to Navier’s equations. I propose to say
that it constitutes “a turbulent solution”.

It is moreover quite remarkable that each turbulent solution actually satisfies Navier’s
equations, properly said, except at certain times of irregularity. These times constitute a
closed* set of measure zero. At these times alone must the continuity of the solution be
interpreted in a very generous sense.

1 Oseen, Hydrodynamik, §6, equation (1).

2 See relations (5.15), p. 240.

3 See p. 241.

4 1 allow myself to cite a passage from Oseen (Hydrodynamik): “From still another point of
view it seems worth the trouble to subject the singularities of the motion of a viscous liquid to
careful study. If singularities appear, then we must distinguish two types of motion of a viscous
liquid, regular motion, which is to say motion without singularity, and irregular motion, which is
to say motion with singularity. Now in other parts of Hydraulics one distinguishes two sorts of
motion, laminar and turbulent. One is tempted from now on to presume that laminar motions
furnished by experiment are identical to theoretical regular motions, and that experimental tur-
bulent motions are identified with irregular theoretical motion. Does this presumption correspond
with reality? Only further research will be able to decide.”

* [translator’s note: The set is compact, as is proved on p. 246.]
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A turbulent solution therefore has the following structure: it is composed of a succession
of reqular solutions.

If T succeed in constructing solutions to Navier’s equations which become irregular,
then I can say that there exist turbulent solutions which do not simply reduce to regular
solutions. Likewise if this proposition is false, the notion of turbulent solution, which from
then on plays no role in the study of viscous liquids, still does not lose interest: it serves to
present, problems of mathematical Physics for which the physical cause of regularity does
not suffice to justify the hypothesis of regularity made at the time of writing the equation;
to these problems then one can apply considerations similar to those which I introduce
here.

Finally let us point out the two following facts:

Nothing allows one to assert the uniqueness of a turbulent solution which corresponds
to a given initial state. (See however Supplementary information 1°, p. 245; §33).

A solution which corresponds to an initial state sufficiently near rest never becomes
irregular. (See the case of regularity pointed out in §21 and §22, p. 226 and 227.)

II. The present work concerns unlimited viscous liquids. The conclusions are quite
analogous to those of another paper? that I devoted to plane motion of a viscous liquid
enclosed within fixed convex walls; this leads to the belief that its conclusions extend to
the general case of a viscous liquid in two or three dimensions bounded by arbitrary walls.
(same variables(?))

The absence of walls indeed introduces some complications concerning the unknown
behavior of functions at infinity® but greatly simplifies the exposition and brings the essen-
tial difficulties more to light. The important role played by homogeneity of the formulas
is more evident (the equations in dimensions allow us to predict a priori nearly all the
inequalities that we write).

! In virtue of the existence theorem of §31 (p. 241) and of the uniqueness theorem of §18 (p.
222).

2 Journal de Mathématiques, T. 13, 1934.

3 The conditions at infinity by which we characterize those solutions of Navier’s equations
which we call regular, differ essentially from those of Oseen.
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Recall that we have already treated the case of unlimited motions in the plane'. These
are special® because the motion is regular.

Summary of the paper.

Chapter I recalls a series of propositions of analysis which are important, but which
are not entirely classical.

Chapter II establishes several preliminary inequalities easily deduced from properties
of Oseen’s fundamental solution.

Chapter 11T applies the inequalities to the study of regular solutions of Navier’s equa-
tion.

Chapter IV states several properties of regular solutions to be used in Chapter VI.

Chapter V establishes that for each initial state, there is at least one turbulent solution
defined for unlimited time. The proof of this existence theorem is based on the following
principle: one doesn’t directly approach the problem of solving Navier’s equations; in-
stead one treats a neighboring problem which can be proved to have a regular solution of
unlimited duration; we let the neighboring problem tend toward the original problem to
construct the limit (or limits) of these solutions. There is an elementary method to apply
this principle: it is the same one which I used in my study of planar motion of a viscous
liquid within walls, but it is intimately bound with the structure of turbulent solutions
which we have previously pointed out. Without this structure the method may not apply.
Here we proceed in another fashion whose range is very likely larger, and which justifies
the notion of turbulent solution, but which requires calling on some of the less ordinary
theorems of chapter I.

Chapter VI studies the structure of turbulent solutions.

! Thesis, Journal de Mathématiques 12, 1933; chapter IV p. 64-82. (One can give an
interesting variation on the process used there, by using the notion of semi-regular initial state
introduced in the present paper.)

2 In this case one can base the study on the property that the maximum swirl is a decreasing
function of time. (See: Comptes rendus de I’Académie des Sciences, T. 194; p. 1893; 30 mai
1932). — Wolibner has also made this remark.
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I. Preliminaries
1. Notation

We use the letter II' for an arbitrary domain of points in space. II’ may be the entire
space, denoted by Il. @ will be a bounded domain in IT which has as boundary a regular
surface 0. We represent an arbitrary point of II by x, which has cartesian coordinates x;
(i =1, 2, 3) and distance r( to the origin, and generates volume element dz and surface
element dx1, dxq, dx3. Similarly we use y for a second arbitrary point of II. r will always
represent the distance between points named z and y.

We use the “silent index” convention: a term containing the same index twice repre-
sents the sum of terms obtained by successively giving that index the values 1, 2, 3.

Beginning with chapter II the symbol A denotes constants for which we do not specify
the numerical value.

We systematically use capital letters for measurable functions and lower case letters
for functions which are continuous and have continuous first partial derivatives.

2. Recall the Schwarz inequality:

(1.1) {///,U(m)V(m) (5mr < /// U?(z) 0z x '///,V%:) o

The left side is defined whenever the right is finite.
This inequality is the foundation of all properties stated in this chapter.
First application:
If

\////,Ug(m)‘;”7< \//[/,Vf(m) 5m+\/'///IV22(37) S

then
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more generally for a constant ¢ if one has

then

12 I s < [fan [ [[] v

the left sides of these inequalities being finite when the right sides are.

Second application:

Consider n constants A, and n constant vectors a,. Write « + @, for the translation

of z by the vector &,. We have
ZM | « /// U2(x) 6z
I

[ rz"wmp

(this inequality is easily proved by expanding the two squares and using the Schwarz
inequality). From it, one deduces the following very useful one. Let H(z) be a function.
We denote by H(y — x) the function obtained by substituting for coordinates z; of z the
components y; — z; of the vector 2y. We have

wy ] [_///Hﬂ(ym)v(y)ayram< WHH(z)wzrx///HUZ(y)ay;

and the left side is finite when the two integrals on the right are finite.

ox <

3. Strong convergence in mean.!

Definition: One says that an infinity of functions U*(z) have function U(x) as strong
limit in mean on a domain II" when:

1 See: F. Riesz, Untersuchungen iiber Systeme integrierbarer Funktionen, Math. Ann. vol
69 (1910). Delsarte, Mémorial des Sciences mathématiques, fasicule 57, Les groupes de transfor-
mation linéaires dans ’espace de Hilbert.
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(1.4) lim///l[U*(m) ~U(z))? 6z = 0.

One then has for any square summable function A(z) on IT’

(1.5) hm/// U*(2)A(z) 0z = /// U(x)A(z) 8z

From (1.4) and (1.5)

(1.6) nm///,U*Z(a;) 5x:///IU2(a:) 5.

Weak convergence in mean:

Definition: An infinity of functions U*(z) has function U (z) as weak limit in mean on
domain IT" when the two following conditions hold.

a) the set of numbers [[[;, U**(x) 0z is bounded;
b) for all square summable functions A(z) on I’

hm/// U*(2)A(z) 0z = /// U(x)A(z) 8z

Ezample I. The sequence sinxq, sin 2z, sin3xq, ... converges weakly to zero on all
domains .

Ezample II. If an infinity of functions U*(x) have strong limit U(z) in mean on
all domains w, then they admit a weak limit in mean on II when the set of quantities

fffn, U*?(z) §z is bounded.

Ezample III. Let an infinity of functions U*(x) on a domain II' converge almost ev-
erywhere to a function U(z). That function is their weak limit in mean when the set of
quantities [[[;;, U*?(x) dz is bounded.

One has

(1.7)
lim///rlll///mlA(a:,y)U*(x)V*(a:) 5x5y:///nll///mlA(a:,y)U(a:)V(a:) 5z 5y
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when the U*(x) converge weakly in mean to U(x) on IT;" and V*(z) to V(x) on IIy’ and

the integral
[ I, 00
JJ. Hl’ JJ. HZI

is finite. One has

(1.8) hm/// A(z)U*(2)V* (2) 62 = /// A(z)U(2)V (2) 6

when on IT'; A(z) is bounded, U(z) is the strong limit of the U*(x) and V(z) is the weak
limit of the V*(x).

It is also evident that, if the functions U*(x) converge weakly in mean to U(z) on a
domain IT,’

lim{///l[U*(m) U(m)]Zém///’U*2(m)5m+///lU2(m) 6x} =0

from which one gets the inequality

(1.9) liminf///lU”(m) Sz > /// U?(z) 0z

and the criteria for strong convergence:
The functions U*(z) converge strongly in mean on domain I’ to U(z) when they
converge weakly in mean to U(z) on the domain and in addition

(1.10) 1imsup///l U*?(x) 6z < '///IUQ(.T) o

Equivalently, the components U} (z) of the vector converge strongly in mean on domain
IT" to those of a vector U;(x) when they converge weakly in mean to the components on
the domain and in addition®

! Recall that the symbol U; (x)U; () represents the expression ZZ? Ui (x)U;(z).
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(1.10') nmsup///l U (2)UF (2) 62 < /// Ui (2)Ui(z) .

The weak convergence criteria applied in Example I1I gives the following.

Lemma 1. If an infinity of functions U*(z) [or vectors U;(x)] converge almost every-
where on domain IT' to a function U(x) [or a vector U (x)] and satisfy inequality (1.10)
[or (1.10%)], then they converge strongly in mean.

Theorem of F. Riesz: An infinity of functions U*(x) have a weak limit in mean on
domain IT’ if the two following conditions are satisfied:

a) the set of numbers [[[, U*?(x) d2 is bounded;

b) for each square summable function A(z) on II' the quantities ([, U*(x)A(x) o=
have a single limiting value.

Condition b) may be replaced by the following:

b’) for each cube ¢ with sides parallel to the coordinate axes and rational vertices, the
quantities [[[;;, U*(x) dz have a single limiting value.

The proof of this theorem makes use of the work of Lebesgue on summable functions.

4.Cantor’s diagonal method.

Consider a countable infinity of quantities each dependent on integer indices n: a,,,
bp, ...(n =1,2,3...). Suppose the a,, are bounded, the b, are bounded, etc. Cantor’s
diagonal method allows us to find a sequence of integers my, mas, ..., such that each of the
SeqUENCES Gy s gy - - -3 Omys Bmgs - - o3 - .. converge to a limit.

Recall this process briefly: one constructs a first sequence of integers nt, nl, nl ... such
p y q g 1, Tta, Tt3

that the quantities a1, a,1, a,1, ... converge to a limit; one then constructs using elements of
1 2 3

the first sequence a second sequence n%, n%, Tlg ..., such that the quantities bnf, bng, bng, -
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converge to a limit; etc. One then chooses m,, equal to ng, which is the p-th term of the diagonal
of the infinite table of ng

Application: The following results from the theorem of the preceeding paragraph.

Fundamental theorem of F. Riesz Let an infinity of functions U*(x) on a domain I’ be
such that the quantities ([, U*?(x) 6z are bounded. Then one can always extract from
them a sequence of functions which have a weak limit in mean.

In fact condition a) is satisfied and Cantor’s diagonal process allows construction of a sequence
of functions U* () which satisfy condition b).
5. Various modes of continuity of a function with respect to a parameter.

Let a function U(z,t) depend on a parameter t. We say it is uniformly continuous in
t when the following three conditions hold:

a) it is continuous with respect to z1, x9, x3, ;
b) for each particular value tq of ¢ the maximum of U(x, tg) is finite;

¢) given a positive number €, one can find a positive 1 such that the inequality |t —#g| <
n implies
U(z,t) — Uz, tg)| <e.
The maximum of |U(z,t)| on II is then a continuous function of ¢.

We say that U(x,t) is strongly continuous in ¢ when, for each particular value ty of
t, JJ; U?(x,to) 0« is finite and for each e there is 7 such that the inequality |t — to| < 7

implies
/// [U(z,t) — Uz, t0)]* 6z < e.
JJJn

The integral [[[,, U?(x,t) 6 is therefore a continuous function of ¢. Conversely we learn
from lemma 1 that a function U(x,t) continuous with respect to variables x1, x3, x3, t is
strongly continuous in ¢ when the preceeding integral is a continous function of ¢.
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6. Relations between a function and its derivatives

Consider two functions u(z) and a(z) with continuous first derivatives, with the func-
tions and the first derivatives square summable on II. s is the surface of a sphere S with
center at the origin and for which the radius ry may become arbitrarily large. Let

(o) //u T) 0T 4;

3a Ju(y)
(r U + “Zq dy.
0) ///[ v) 5yz y; W) o

The second expression shows that ¢(rg) tends to a limit p(oc) when rq increases indefi-
nitely. The first expression for ¢(rq) gives us

x, 5x,
o(ro |</ |u(x
/ lo(r0)| dro < // lu(z)a(x)|dx.
0

As a result ¢(00) = 0. In other words

(1.11) ///{ a” -I-a;?(j)a(y)} Sy =0

and from this we have more generally

e ff s ] == [ [ i

Choose as domain w a sphere of infinitely small radius and center x and take®

(1.12) a(y) = + 25): add the

47 9y, !

We have*

from which

1 v is the distance between the points  and y.

*translator’s note: It seems that dx; means dzodrs ete.
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relations for values 1, 2, 3 of ¢ to obtain the important indentity

(1.13) u(z) = ﬁ // 66(;) g; 5

We now take a(y) = ¥Z"u(y) in (1.11) and add these relations for values 1, 2, 3 of
1, giving

Jf] o= [l

By applying the Schwarz inequality to the left side we get the useful inequality

(1.14) // —u? 5y<4/// g;zg;z

7. Quasi-derivatives.

Let u*(z) be an infinity of square summable functions with continuous square summ-
able first derivatives on II. Suppose that the derivatives 2%, 94 94" ¢opyerge weakly in
6m1 ’ BCEQ ? 6{133

mean on II to functions U, U, Us. Let U(x) be the measurable function defined almost

everywhere by
l
=L

We have

(1.15)

1] v [ ] st [ 0] [25 - v] v

wherel!

1" is the distance between the points 2 and 3’
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1 0(+) 0(3)
Kii(y,y') = 6.2 ///w 9y: D ox;.

This expression for K allows an easy proof that the integral

///1‘[ ///H Kij(y,y) Kij(y. y) oy oy’

is finite, so the right side of (1.15) is defined. It tends to zero by (1.7). Therefore the u*(z)
have U(z) as strong limit in mean on all domains @. And, if the integrals [[[, U**(z) 6=
are bounded, U(z) is the weak limit in mean of the u*(z) on II (Cf. §3. Example II, p.
199). One then gets from (1.11) the equality

(1.16) /I [U(y) oo+ Uslwalw)| 3y =0,

We make the following definition:

Definition of quasi-derivatives: Consider two square summable functions U(y) and
Ui(y) on II. We say that U ;(y) is the quasi-derivative of U(z) with respect to y; when
(1.16) holds. Recall that in (1.16) a(y) is any square summable function with continuous
square summable first derivatives on II.

Let us summarize the results of preceeding paragraph.

Lemme 2. Suppose we have an infinity of continuous functions u*(x) with continuous

first derivatives. Suppose the integrals [[[; u*?(x)dz are bounded and that each of the

derivatives %y@) has a weak limit in mean U;(z) on II. Then the u*(z) converge in

mean to a function U(z) for which the U ;(z) are the quasi-derivatives. This convergence
is strong on all domains w. It is weak! on II.

L Or strong.
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Following our definition of quasi-derivatives we are going to define the quasi-divergence
O(z) of a vector U;(x) with square summable components on II. When it exists, it is a
square summable function with

(1.17) /I [ e @(u)a(yﬂ 5y = 0.

8. Approrimation of a measurable function by a sequence of reqular functions. Let
e > 0. We choose a positive continuous function A(s) defined for 0 < s, identically zero for
1 < s and having derivatives of all orders such that

1
47r/ Mo?)o?do = 1.
0

If U(z) is summable on all domains w, let

(1.18) Ux) = %///H)\ (g) Uly) oy

(r = distance between z and y)

U(z) has derivatives of all orders

l+m+n
al—{—m—{—nU 8 )\
019 do T 1 ),

ot 3:1:’2"3x3 Ozl 0z o}

If U(z) is bounded on II then we clearly have

(1.20) minU(z) < U(z) < max U (x).

*

If U(x) is square summable on II the inequality (1.3) applied to (1.18) gives

e e

1
1 To fix ideas we take A(s) = Aes=7, A any suitable constant, 0 < s < 1.
* [translator’s note: The bar was extended too far in the original.]
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The same applied to (1.19) proves that the partial derivatives of U(z) are square summable
on II.
Finally note that we have, if U(z) and V (z) are square summable on II

o[l [

If V() is continuous V() tends uniformly to V(z) on all domains w when ¢ tends
to zero. One therefore has from (1.22)

1im///HWV(m)5m—///HUrvr o

From this one deduces that U(z) converges weakly in mean to U(z) on IT when e approaches
zero. Inequality (1.21) and the criteria for strong convergence on p. 200 similarly give a
more precise conclusion:

Lemma 3. Let U(x) be square summable on II. U(x) converges strongly in mean to
U(z) on II when € tends to zero.

Similarly one establishes the following proposition.

Generalization of lemma 3. Suppose a sequence of functions U,(z) converge strongly
(or weakly) in mean on II to a limit U(z) as € tends to zero. Then the functions U,(z)
converge strongly (or weakly) to the same limit.

9. Some lemmas on quasi-derivatives.

Let U(x) be square summable on II. Suppose that for all square summable functions
a(x) having square summable derivatives of all orders

///H U (x)a() bz = 0
[ff,veiesn =0

then
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from which one gets as € tends to zero

///H U (x) 6z =

The function U(z) is therefore zero almost everywhere.

That fact allows us to establish the following propositions. 1) When the quasi-
derivative of a function with respect to x; exists, it is unique. (We consider two func-
tions identical if they are equal almost everywhere.) 2) The quasi-divergence of a vector
is unique if it exists.

Lemma 4. Let U(x) have a quasiderivative U;(z). agf_”) = U;(z).

It suffices to prove that

1] i [ i

Because one easily deduces from (1.18) that

da(z)  Oda(x)

and this formula with (1.11), (1.16), and (1.22) justify the transformations

(] 5200 =~ [[[ 7% 50 = - [[[ v (% Jor -
/// uroe= [[[ v 556—/// . QED

Lemma 5. Suppose that two square summable functions U(z) and V(x) have quasi-
derivatives U;(z) and V;(z) on II. T claim that

(1.23) /// z) + Uy (2)V (z)] 6z = 0.

This is obtained by applying lemma 3 to the formula

///H[U(m)w(m) + Ui(x)V (2)] 62 = 0.

which follows from 1.16 and lemma 4.
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Lemma 6. If a vector U;(x) has quasi-divergence O(x) then the divergence of U;(z) =

(The proof is very much analogous to that of lemma 4.)

Lemme 7. Suppose a vector U;(x) has quasi-divergence 0, and that

///H Ui(w)ai(z) dx =0

for all square summable vectors a;(x) which have 0 divergence and square summable deriva-
tives of all orders on II. Then I claim that U;(x) = 0.

In fact lemma 4 allows us to choose a; (x) = U,(a:) because when € tends to 0 the relation

[ Ui(2)Us(2) 6z = 0 reduces to
[]] oo =0

Corollary. An infinity of vectors U (z), of quasi-divergence 0 has, on II, a unique
weak limit in mean if the two following conditions hold:

a) the numbers [[[; U (z)U}(z) 0z = 0 are bounded

b) for all square summable vectors a;(x) which have 0 divergence and square summable
derivatives of all orders on II, the quantities [[[; U;(«)a;(z) dz have a single limiting value.

If not, then the fundamental theorem of F. Riesz (p. 202) allows extraction from the sequence
U} () two subsequences having distinct limits. This contradicts lemma 7.

I1. Infinitely slow motion.

10. The “linearised Navier equations” are the following

dui(z,t) 10p(z.1)
ot p Ox;

(2.1) vAu;(z,t) — —Xi(nt) [A 872]

Ouj(x,t)

= 0.
6mj
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v and p are given constants, X;(z,t) is a vector which represents external forces, p(z,t) is
the pressure, and u;(z,t) the speed of the molecules of the liquid.

The problem posed by the theory of viscous liquids is the following: Construct for
t > 0 the solution of (2.1) which has given initial values wu;(x,0).
We recall the solution of this problem and some of its properties. Write

= /// wi(z, t)ui(z, t) 0x
JJ

/// 0" ui(x,t) 0™ u;(x,t) 5
aTka’I‘l a’l‘kaTl -

V(t) = Maximum of \/u;(z, t)u;(z,t) at time ¢.
0™ u;(x,t)
8:165181:’2“Bar:g,5

at time t (h+k+1=m).

D,, (t) = Maximum of the function ‘

We make the following assumptions: The functions w;(z,¢) and their first derivatives

are continuous, 8"’322’0) = 0, the quantities W (0) and V (0) are finite, | X;(z,t) — X;(y,t)| <

r2C(z,y,t), where C(x,y,t) is a continuous function, and M Xi(z,t) Xi(x, ) dx is a con-
tinuous function of ¢, or is less than a continuous function of ¢.

From now on the letters A and A,, denote constants and functions with index m for
which we do not specify the numerical value.

11. First case: X;(x,t) = 0.
The theory of heat gives the following solution to system (2.1):

(2.2) o 1) = 2\/_ /// (g, 0) Oy (w,1) = 0.

The integrals u}(z, t) are uniformly continuous in ¢ (cf. §5, p. 202) for 0 < ¢, and from
this one has
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(2.3) V(t) < V(0).

If J1(0) is finite, inequality (1.14) and the Schwarz inequality (1.1) applied to (2.2)
give a second bound on V(¢):

_x2
e 2ut

V3(t) < 4J3(0)

which is to say

(2.4) Vit) <

Inequality (1.3) applied to (2.2) proves:

(2.5) W(t) < W(0);
the integrals u(x, t) are strongly continuous in ¢ (cf. §5, p. 202) including ¢t = 0. Inequality

(1.3) applied to
Ous(x,t) ot
. i(y,0) 0
Oxy, 2f /// 3Tk[1/ %]U (y.0) 0y

(26) Jl(t) < Jl(O);

the first derivatives g:; are strongly continuous in ¢, including ¢ = 0 if J;(0) is finite.
For analogous reasons the derivatives of all orders of u}(x, t) are uniformly and strongly
continuous in ¢ for ¢ > 0 and more precisely

proves that

(2.7) D(t) < 2V WO,
(yt)T
A /W (0)

(2.8) I (t) < W)z

12.  Second particular case ui(z,0) = 0.

Oseen’s fundamental solution?, T;j(z,t), furnishes the following solution to system
(2.1):

1 See: Oseen: Hydrodynamik §5; Acta mathematica vol. 34.

[translator’s note: which gives on p. 41

r2

1 B(rt —t % 1 , 1wty
67k2u :(0) t ) + - fO _t) dO{ E(’f‘ t( ) t) = Fi_

Ox;0xy’ \/m
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t
(2.9) ul (z,t) —/ dt’ /// Tij(xz —y,t — ) X;(y, t') oy
0 m
"o, t) = ——— Xi(y,t)
p(w:t) 47r3:1:7//1—[7‘ (v,

We have
A
2.10 Tii(x —y,t—t =
(210 iy < G
0" Tij(x —y,t —1t') A, ,
' - ;o (T <1).
‘ outorkory |~ - <Y

We remark in the first place that integrals (1.2) and (1.3) applied with (2.10) to the
formula

oul(x,t) 0T ( ,f—f ,
(2.11) o /dt /// i y )X_,(y,t)(Sy

prove that the first derivatives gz; are strongly continuous in ¢ for ¢ > 0, and that

212) nr<a [ ] a0

This done, we add to previously stated hypotheses the assumption that the maximum
of /X;(z,t')X;(x,t') at time ¢ is a continuous function of ¢, or is less than a continuous

function of ¢. Then there is no difficulty in deducing from (2.9) that u} (z,t) and k are
uniformly continuous in ¢ for ¢ > 0, and more precisely for example

(2.13) max \/X;(x, ') X;(z,t').

t (]f,
Dyt <A/ _w
A N3

Inequality (2.13) may be complemented as follows. We have
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ouj(x.t)  Ouf(y,t OT;;(x — z,t —t') ,
7 ) X
s e K/} )52

/ dt /// aTz] — Z, t—1t )Xj(z’t’) 52
t OTsi(x — z,t —t')  OTy(y — z,t —t)
* dﬂ‘///‘ [ . ‘ - : };Y-z,ﬂ 0z,
/0 JJIn-w oxy OYr iz 1)

w being the domain of points at distance less than 2r to « or y. We apply the formula of
finite differences to the bracket

ITij(x — 2t = t') B oT;;(y — z,t —t')

and majorize the preceeding three integrals by replacing the various functions there by the
majorants of their absolute values. We easily verify

oul! (z,t oul (y,t
(214) ?17, (T7 ) _ “7, (y; ) <

Oy, oYk

t l
dt
< Ar? / ———— max /X, (2, ) X; (2, ).
Jo [v(t—1)]4
We say that a function U(x,t) satisfies condition H if an inequality analogous to the
preceeding holds:

(2.15) U(x,t) — Uy, t)| < r2C(t),

where C(t) is smaller than a continuous function of ¢. We call the weakest possible C(t),
the condition H coefficient. —

Now suppose that the functions X;(z,t) satisfy condition H with coefficient C(%).

. . 8%u'! (x.t .
Then the second derivatives 2% (@t given by the formulas
Oxpdxy °
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O?ull (z,t) O?Tyj(x —y, t —t') ) ,
Xi(y,t') — X;(x,
Ozpdm / 4 /// Oz 0 Xy 1) = X, )]0y,

are then uniformly continuous in ¢ and

(2.16) Ds(#) <A/O%

More generally:

Suppose the m-th order derivatives of the X;(x,¢) with respect to z1, x9, 23 exist, are
continuous, and are smaller than some continuous functions ¢,,(t). Then the derivatives
of order m + 1 of the u (z,1) exist and are uniformly continuous in . We have

! Pm (t,) dt’

0 \/V(t—t')

and finally the derivatives of order m + 1 satisfy condition H with coefficient

(217) Dm+1(t) <A

(2.18) Cropa(t) < A /Ot [‘Pgn(ﬂ

vt —t)]7

If further

/ / / {g:;;«gaq«l] 0 < th (1),

where 1,,,(t) is a (positive) continuous function, then the derivatives of order m + 1 with
respect to x1, o, x3 of the u;(z,t) are strongly continuous in ¢ and satisfy the inequality

wm( " dt
Vvt —t)

Now suppose that the derivatives of order m of the functions X;(z,t) with respect to z1,
9, xg exist, are smaller in absolute value than a continuous function of ¢, and satisfy
condition H with coefficient 6,,(¢). Then the derivatives of order m+ 2 of the u;(x,t) exist,
are uniformly continuous, and satisfy the inequality

(2.19) Jmg1(t) < A



On the motion of a viscous liquid filling space. 215

(2.20) Dyis(t) < A /0 %

13. General case.

To obtain solutions wu;(z,t) of (2.1) corresponding to given initial values u;(z,0), it
suffices to superpose the two preceeding particular solutions, taking

wi(z,t) = u(z,t) + u; (z,t); p(z,t)=p"(z,t).

We propose to complete the information of the two preceeding paragraphs by establishing
that u;(z,t) is strongly continuous in ¢ and is majorised by W (t).

This strong continuity is evident in the case where X;(z,t) is zero outside of a domain
oul (z,t)
Tk

w. When z moves indefinitely far away, v (z,t) and p(z,t) approach zero as

3

3 _ - . . .
(wim;) "2, (w25) 2 and (z;2;) ! respectively, and it suffices to integrate

10 1 0
vu; Au; — = —(ugu;) — —uy; P _ —u; X;

20t p  O0x;

to obtain the the relation of dissipation of energy

t 1 1 t
(2.21) 1// le(t’)dt’+§W(t) — 5W(o) —/ dt’ /// ui(z,t") X;(z,t') 6z
J0 J0 JJJII

from which we get the inequality

%W(t) < %W(0)+ /t dt’\/W\//[/HXi(m,t’)Xi(m,t’) 0z.

J 0

W (t) is therefore less than or equal to the solution A(t) of the equation

%)\(t) = %W(O)+/Ot dt/m\////n Xi(z, ) Xi (@, 1) 0w

which is to say

(2.22) VW (1) < '/Ot \////H X (2, t) Xi(, t') 6z dt’ + /W (0).
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When X;(z,t) is not zero outside a domain w, one can approach the functions X;(z,t)
by a sequence of functions X (x,t) zero outside domains w*, and establish by the preceed-
ing that relations (2.21) and (2.22) still hold. Then (2.21) shows that W (t) is continuous.
The wu;(x,t) are therefore strongly continuous in ¢ for ¢ > 0.

14. wui(z,t) = ui(z,t)+u(z,t) is the only solution to the problem posed in paragraph
10, for which W (t) is less than a continuous function of ¢. This proposition results from
the following

Uniqueness theorem The system
Oui(z,t) 10p(z,t)  Ouj(z,t)

2.23 Az, 1) — —o 2B
( ) vAu(@,t) ot p Ox; O

has just one solution defined and continuous for ¢ > 0, zero for ¢ = 0, such that W (¢) is
less than a continuous function of ¢. This solution is u;(x,t) = 0.

In fact the functions

t t
vi(z,t) = / wi(z, t)dt', q(z,t) = / p(x,t)dt’
Jo Jo
are solutions to the same system (2.23). The derivatives
0" v (z, 1) O™, (z,t)
hg koLl O Rkl
Oxt0x50xy 0tox} 0xs0xy
exist and are continuous. One evidently has Ag = 0 and it follows that

vAAv; — %(Avi) =0.

The theory of heat allows us to deduce that Av; = 0. Further, inequalities (1.2) and (1.21) show
that the integral [[[; vi(«,t)vi(x,t) dx is finite. Therefore v;(z,t) = 0. And then u;(z,t) = 0.
We state a corollary to be used in the following paragraph.

Lemma 8. Suppose we have for © <t < T the system of relations

~ Oui(x,t) 10p(xt)  OXi(w,t) Ouj(w,i)

= 0.
ot P 87", aTk ’ 87"]

vAu;(z,t)

0% X1 (w,t)

Suppose the derivatives 57,001

are continuous and the integrals
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/// Xik(z,t) Xog(x, t) oz, /// wi(z, t)u;(z, t) ox
I I
less than some continuous functions of ¢ for © < ¢ < T. We have then
x,t) to) dy+
wiet) = o= [ / o) o
a ' / /
a./L‘k; . tO JJJ1 ’

p(Tf)—Ea—Tk/// —Xir(y,t) dy; (© <ty <t<T).

III. Regular motions.

15. Definitions: Motions of viscous liquids are governed by Navier’s equations

Oui(xz,t)  10p(z,t
(3.1) vAu;(z,t) — * é: ) 5 pﬁ(:z ) = ug(z,t

)811 i(z,t)  Oug(x,t)
6rk ’ 8’I‘k N

where v and p are constants, p is the pressure, u; the components of the velocity. We set

N ///H wi(z, t)u, (2, t) o,

V() = max v/u; (z, t)us(x, t).

We say that a solution u;(xz,t) of this system is regular in an interval of time' © < t <

T if in this interval the functions u;, the corresponding p and the derivatives
Ou,; Op
ot BCBZ

oOu; 8%u;

6mk ’ 6mk BCE[ ?
are continuous with respect to x1, x9, x3, t and if in addition the functions W (t)
t 3

and V() are less than some continuous functions of ¢ for © <t < T
We use the following conventions.

The function D,,(t) will be defined for each value of ¢ in a neighborhood in

I The case where T' = 400 is not excluded.

217
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which the derivatives exist and are uniformly continuous in ¢; it will be the upper bound
of their absolute values.

The function Cy(t) [or Cy,(t)] will be defined for all values of ¢ in a neighborhood in
O™ u,; (x,t)

BT ool | satisfy the same condition H;

which the functions u;(z,t) | or the derivatives

it will be the coefficient.
Finally the function J,,(t) will be defined for each value of ¢ in a neighborhood in

07ui(w:t) oyigt and are strongly continuous in t. We set

Bmhamkam
// 0" u;(x,t) 0™u;(x,t) 5
3$k3$l 3$k3$l -

Lemma 8 (p. 216) applies to regular solutions to system (3.1) and gives us the relations

(3.2) wi(w,t) = 2[ ///P iy, to) Oy

t
9 / dt’ /// Tir(x —y, t —t")u;(y, t)ur(y, t) oy;
3$k tO I1 ’

” T
47r3xkaa:7///n uk(y, t)u;(y,t)oy; (© <tg<t<T).

Paragraphs 11 and 12 allow us to conclude from (3.2) that the functions u;(x,t) are
uniformly and strongly continuous in t for © < t < T, Cy(t) is defined for © < t < T and
we have [cf. (2.7) and (2.18)]

Colt) < AW fg df’

t_tO Jtg f*fo

which the derivatives

(3.3) p(z,t) =

This result with (3.2) shows that D;(t) exists for © < ¢ < T and gives the inequality [cf.
(2.7) and (2.16)]

3
4

A to dt’
Duf) < Sy [ .
to t—to

[v(t —to)]7
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We proceed by recurrence:
The existence of Dq(t), ..., Dpy1(t) guarantees that of Cy,11(¢) and one has [cf. (2.7)
and (2.18)]

Cm+1( ) <

AT [V OD€) s Do)
[w(t — to)] =0, [w(t —1)]%

The existence of Dy(t),..., Dy11(t), Co(t),...,Cmyi(t) guarantees that of D, o(t)
and one can majorize this last function using the preceeding [cf. (2.7) and (2.20)].

The functions D,,(t) and Cy,(t) are therefore defined for © < t < T', however large m
may be.

Further, paragraphs 11 and 12 allow us to deduce from (3.2) the existence of .J;(¢) for
all values of ¢t and we have [cf. (2.8) and (2.19)]

J1(t) < AVIVI0) _ 4+ A P W) Dt WE)DAE)
[v (t—tO)] to Vvt —1)

More generally the existence of Dq(t),..., Dp(t), Ji(t),..., Jm—1(t) guarantees that of
I (t) [cf. (2.8) and (2.19)].

It is now easy for us to establish by the intermediary (3.3) that p(z,t) and its deriva-
gmka%"_s_)_ are uniformly and strongly continuous in ¢ for ® < ¢ < T'. By Navier’s

du; oMty
ot ’ OtdxyO0xj..."

More generally, equations (3.1) and (3.3) allow us to reduce the study of the order
n + 1 derivatives with respect to ¢ to the study of the order n derivatives with respect to
t. So finally we achieve the following theorem.

tives

equations it is the same for the functions

If the functions u;(x,t) are a reqular solution of Navier’s equations for © <t < T, then
all their partial derivatives exist, and the derivatives as well as the u;(x,t) are uniformly
and strongly continuous int for © <t <T.
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16. The preceeding paragraph teaches us more: we learn that it is possible to bound
the functions wu;(z,t) and their partial derivatives of all orders by means of just W (t) and
V(t). The result is:

Lemma 9. Let u}(x,t) be an infinity of solutions to Navier’s equations, all regular in
the same interval (©,T). Suppose the various V*(¢) and W*(¢) all less than one function of
t, continuous in (0, 7). Then one can extract a subsequence such that the u}(z,¢) and each
of their derivatives converge respectively to certain functions wu;(z,t) and their derivatives.
Each of the convergences is uniform on all domains w for © +n <t <T —n (n > 0). The
functions u;(z,t) are a regular solution of Navier’s equations in (0,T).

In fact, Cantor’s diagonal method (§4, p. 201) allows the extraction of a sequence of functions
uy (T t) which, with their derivatives, converge for any given rational values of x1, T2, 3, t. This
subsequence has the properties stated in the lemma.

17. The quantities W(t) and J;(¢)  which from now on we write simply as J(t)
— are linked by an important relation. It is obtained by replacing X; in (2.21) by uy 3 6“’
and remarking that

///H iz, ) uk (z, )a“a(xk dx = /// ug (x 611 i, 8;:(.77,75’) Sz = 0;

It is the “energy dissipation relation”

(3.4) /ﬂ( Yt + W() ;W(to).

to

This relation and the two paragraphs above show that the functions W (t), V(t), and .J(t)
play an essential role. We will especially point out, of all the inequalities one can deduce
from chapter II, some which involve these three functions without any longer occupying
ourselves with the quantities Cy, (t), Dy, (2), ...

Before writing the fundamental inequalities, we make the definition:

A solution u;(xz,t) of Navier’s equations will be called reqular for © <t <T when it
is regular for © <t < T and if in addition the following conditions
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Ou; (xz,t)
o1,

are satisfied: The functions wu;(z,t) and are continuous with respect to zy, 2, x3,

t also for t = ©, they are strongly continuous in ¢ also for ¢ = ©, and the u;(z,t) remain
bounded when ¢ approaches O.

In these conditions the relation (3.2) holds for © <ty < t < T (the value ©® was not
allowed to be ty until now). Chapter IT allows us to deduce two fundamental inequalities.
In these, the symbol {B;C} is the smaller of B and C, and A’, A", A" are numerical
constants. The inequalities are

VEW) W)

/ A/”J(to)
(3.5) V()< A { T )v Wt — )2

[v(t — )]

pat' +{V(to); }

P N0G)

to Vvt —1)

(3.6) J(t) < A" dt' + J(to) O <ty<t<T).

18. Comparison of two regular solutions.

We consider two solutions of Navier’s equations, u; and u; + v;, regular for © <t < T.
We have

Qi vk
aa:k’ aa:k

Qv (2, t) v (x, ¢
w( /// vi(z, t)vi(z, t) ox; /// Ua; ?)82; ) ox
We apply (2.21) which has already given us the fundamental relation (3.4). Here it gives
1 dw ou; 0v;
.2 7
iU —=—— 0 ; dx.
vj“(t) 2dt ///kaf)a:k $+///1—[U'(uk+vk)3a:k x
Now we have
/// vi(ug + vg) Vi g — /// (ug + vg) (vivi) dr =0
I 833k 2 11 axk

/// g 8% 0= // —vku 5z < j(t)\/w®)V (1)

: +(Uk+1)k) = 0.

Let

and
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Therefore

vi2(t) + %cf]_z;) < j(t)\/w(t)V ()

from which

dw
20— HOV2(t
v=r <u(t)V2(0)

and finally

1 t 241 ]
ftOV(t)dt

(3.7) w(t) < w(tg)e™ O<ty<t<T).

From this important relation we get in particular
A uniqueness theorem: Two regular solutions of Navier’'s equations for © < ¢ < T
are necessarily identical for these t if their initial velocities are the same for t = ©.

19. Suppose we are given a reqular initial state, which is to say a continuous vector
u;(z,t) with continuous first derivatives, having zero divergence and such that the quan-
tities W (0), V(0), J(0) are finite. The goal of this paragraph is to establish the following
proposition.

Ezistence theorem: To each regular initial state u;(x,0) there corresponds a solution
u;(x,t) to Navier’s equations, defined for 0 <t < T and which reduces to u;(x,0) fort = 0.

We form successive approximations

Wl (z,1) = (2\/})3 ///H %m(%o) 0y,

First we write inequalities which follow from (2.3) and (2.13):
V() < V(0)

LRI,

0 \/l/(t—t’)

vty < A dt’ + V(0).
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These show that we have for all n
V() <o)  for0<t<r,

if () is a continuous function satisfying

dt' + Vv (0).

o(t) = A//ol /—;p(t(i)t/)

We choose ¢(t) = (1 + A)V(0) which gives 7 the value

(3.8) = AvV ~%(0).

Then let

?)(")(t) = max \/[ugn)(m, t) — ?1,7(;n'+1)(m, t)][ugn)(m, t) — ufn+1)(m, t)]

at time ¢.
We have V2( )
T 0
(1) 1 !’
v\ ()< A —2 _dt' = AV(0
(t) Jo T (0)
T t (n) t T (n) t
’U(n+1)(t) < A QO( ),U ( ) dt’ = AV(O) v ( ) dt’

Jo vt —t)

(x,t) converge uniformly to continuous limits

Jo vt —1t)

(n)

From this we get that the functions u;

ui(x,t) for 0 <t < 7.
One shows without difficulty that in the interior of the interval, each of the derivatives

of the 11,7(:") (x,t) converges uniformly to the corresponding derivative of the wu;(z,t); the
reasoning is too close to that of paragraph 15 to repeat it. The functions w;(z,t) therefore
satisfy Navier’s equations for 0 <t < 7.

We verify that the integral W (t) = [[[; wi(2,t)ui(x,t) dx is less than a continuous
function of ¢. Inequalities (2.5) and (2.12) give the following, where Ay is a constant

WO (t) < VW (0)

\/ WD (1) < A Ot w(?yi V(twi(:,))(t) dt' + /W (0).
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By the theory of linear equations there is a positive function 6(t) satisfying

N GG
0(t) = Ao : V(tit,)dt+ W (0).

We have W (™) (1) < 62(t), so W (t) < 02(t).

It rests upon us to make precise how the u;(x,t) behave when ¢ tends to zero. We
already know that they reduce to the given u;(x,0), remaining continuous for ¢ = 0. To
show that they remain strongly continuous in ¢ when ¢ approaches zero, it suffices by
lemma 1 to prove

limsup W (t) < W(0).

t—0

Ou; (z,t)
oxy

This inequality is clear since 62(0) = W (0). One shows in the same way that the
are strongly continuous in ¢, even for ¢t = 0.

At this point the proof of the existence theorem announced above is complete.

But formula (3.8) furnishes a second result: Let us say that a a solution of Navier’s
equations, regular in a interval (©,T), becomes irreqular at time T when T is finite and it
is impossible to extend the regular solution to any larger interval (©,7”). Formula (3.8)
reveals

A first characterization of irreqularities If a solution of Navier’s equations becomes
irregular at time 7', then V (¢) becomes arbitrarily large as ¢ tends to T', and more precisely

v
Tt

(3.9) V(t)> A

20. It will be important to know whether there are solutions which become irreqular.
If these cannot be found to exist, then the regular solution corresponding to a regular
initial state u;(x,0) will exist for all positive values of t.

No solution can become irregular if inequality (3.9) is incompatible with the funda-
mental relations (3.4), (3.5) and (3.6), but this is not an issue as one sees by choosing
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B0 Vi) = AT - 0] B W) = A(r - )0 = Y - o)

I

and from this check that for all sufficiently large values of the constants A and Aj in-
equality (3.9) and relation (3.4) are satisfied, as well as the following two inequalities which
are stronger than (3.5) and (3.6)

Cf VR W)
V(t) <A ./to{ /7V(T — t’)’ [V(T _ t’)]2

PV
J(t) < A" V) dt' + J(to) (to <t <T).
to V(T —1t')

A" ] (1)

dt’ V(to); ———
s )

}

Navier’'s equations certainly have a solution which becomes irregular and for which
W (t), V(t) and J(t) are of the type (3.10) if the system

oU;(x) 10P(x) oU;(z)
(3.11) vAU;(z) — « [Uz(m) + xg 9 } T om Uk (z) D
8mk -

where « is a positive constant, has a nonzero solution with the U;(x,¢) bounded and the
integrals [[[; Ui(z, t)U;(x,t) 6 finite. It is

(3.12) wi(z, t) = 2a(T — )] 2U[2c(T — £))"22] (< T)

(Az is the point with coordinates Az, Az, Azg.)
Unfortunately I have not made a successful study of system (3.11). We therefore leave
in suspense the matter of knowing whether irregularities occur or not.

21. Various consequences of the fundamental relations (3.4), (3.5) and (3.6). Suppose
we have a solution to Navier’s equations, regular for ® < ¢t < T and which becomes
irregular as ¢ tends to 7', where T' is not +oo. From the fundamental relations (3.4) and
(3.5) we get the inequality
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t

VE() w(t')

Jean Leray.

A”/J(to)

(3.13) V() < A {

5 }dt" + {V(to); }

V1) (= 1)) [v(t —to)]3

O<ty<t<T).

We suppose there is a continuous function ¢(t) in 0 < ¢ < 7, satisfying the inequality

rvuq A" ] (t)

(3.14)

We then have

(3.15)

t) > A
/ v t—t’

2}dt+{V( 0); }.

[t~ t0)]

V(t) < o(t —to)

for values of ¢ common to the two intervals (¢o, T') and (g, to + 7). Then the first charac-
terisation of irregularity implies

(3.16)

t0+T<T.

Further suppose we know a function (t) such that

(3.17)

Then inequality (3.6) gives

=

/
D i) (0<t<n)

(3.18) J(t) <Pt —tg) pour tg<t<ty+T.

The first characterisation of irreqularities follows from (3.16) if we choose

p(t) =

(14+ AV (tg) and 7= AvV "?(to).

The choice ¢(t) = (1 4+ A)V (tp) and 7 = +oc satisfies (3.14) if

+dt’

/ {AV2 to) AW (tg)
’ (vt')?

i.e. when v 3W (t)V (to) < A. So:

First case of reqularity:

v3W (t)V(t) is less than a

A regular solution never becomes irregular if the quantity
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certain constant A either initially or at any other instant at which the solution has not
become irregular.
One can satisfy (3.14) and (3.17) by a choice of the type

N

(3.19) p(t) = AJ(to)[w(t —t0)]™7; (1) = (14 A)J(to); 7= Av’T ™ (ty).

This gives

A second characterisation of irreqularities: If a solution of Navier’s equations becomes
irregular at time T, then .J(¢) grows indefinitely as ¢ tends to T'; and more precisely

Y

Av

J(t) > m

Inequalities (3.15) and (3.19) show that a solution regular at ¢ remains regular until
to + 7 and that one has

V(to + T) < Al/71J2(t0).
The fundamental relation (3.4) further gives
Therefore
l/_3W(t0 + T)V(to + T) < Al/_4W(t0)J2(t0).
An application of the first case of regularity to the time ¢ty + 7 now gives

A second case of reqularity: A regular solution never becomes irregular if
vAW (1) J3(t)
is less than a certain constant A either initially or at all other previous instants at which

the solution has not become irregular.

22, One similarly establishes the following results, of which the preceeding are
particular cases.
Characterisation of irreqularities: 1If a solution becomes irregular at time 7', one has

P 1 A(l o §)V%(1+%)
(][ st s % iy > TogRen >
I —t)2V r

Case of reqularity: A regular solution never becomes irregular if at some time
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[AW ()]P~3 ///H[ui(m,t)ui(m,t)]g dr} < A(l — %)31/3(73_2) (p>3).

The case of regularity which we are pointing out shows how a solution always remains regular
if its initial velocity state is sufficiently near rest. More generally, consider a velocity state to which
corresponds a solution which never becomes irregular. For all initial states sufficiently near there
corresponds a solution which also never becomes irregular. The proof makes use of those results
of paragraph 34 which concern behavior of solutions to Navier’s equations for large values of ¢.

IV. Semi-regular initial states.

23. We will be led by the current of Chapter VI to consider initial states which
are not regular in the sense of paragraph 17. We begin their study with the remark, that
inequality (3.7) allows a uniqueness theorem which is more general than that of paragraph
18. To this end we make a definition.

We say that a solution of Nawvier’s equations is semi-reqular for © <t < T if it is
regular for © < ¢ < T and the two following conditions hold.

The integral f(f) V2(t") dt' is finite when © < t < T.
The wu;(x,t) have u;(x, ©) as strong limit in mean as ¢ tends to ©.

— We call “initial velocity state” any vector u;(z, ©), with quasi-divergence zero. —
The theorem given by inequality (3.7) is the following.

Uniqueness theorem: 'Two solutions of Navier’s equations which are semi-regular for
O <t < T, are necessarily identical for all values of ¢ if their initial velocity states at time
© are equal almost everywhere.

We say that an initial velocity state wu;(x,0) is semi-regular if there corresponds a
semi-regular solution u;(xz,t) on an interval 0 <t < 7.

24. Suppose a vector U;(z) has quasi-divergence zero, components square summable
on II, and quasi-derivatives square summable on II. We are going to establish that the
velocity field U;(x) is a semi-regular initial state.
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W(O)—'///HUz-(m)Ui(m)ém ot JZ(O)—Q///HUi,j(x)Uivj(x)(?m.

The functions U;(x) constitute a regular initial state, as shown by lemma 6 and paragraph
8 (p. 209 et 206). Let u!(x,t) be the regular solution which corresponds to the initial state

Let

U;(x). We have, in virtue of inequality (1.21) and the energy dissipation relation (3.4) that

(4.1) W*(t) < W(0).

Lemma 4 shows us that % = U, j(x). Thus we have from (1.21)
; .

J*(0) < J(0).
Relations (3.15), (3.18), and (3.19) allow us to deduce from this that in some interval (0, 7)

3

the various solutions u}(z,t) are regular and satisfy inequalities

PN

(4.2) VEE) < AJ(0)(wt)"T; () < (1 + A)J(0).

We have further

(4.3) = Av3J40).

Inequalities (4.1) and (4.2) let us apply lemma 9 (p. 220). There is a length € in the
definition (1.18) of U(z). It is possible to make this tend to zero in such a way that for
0 < t < 7 the functions u}(z,t) and all their derivatives converge respectively to certain
functions u,(z,t) and to their derivatives. These u;(z,t) are a regular solution to Navier’s

equations for 0 <t < 7. By (4.1) and (4.2) this solution satisfies the three inequalities

PN

(4.4) W) <W(0); V() <AJO)wt) % J() < (1+ A)J(0).

The integral fof V2(#') dt' is therefore finite for 0 < ¢t < 7. Now we must specify how the
u;(z,t) behave as ¢ tends to zero.
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Let a;(x) be any vector of divergence zero, for which the components as well as all
their derivatives are square summable on II. From Navier’s equations we get

/// ul (z,t)a;(x) dx = /// Ur(z)a;(x) dx+
JJJn JJ
' / * / ! / * A / 3a,(x)
v [ dit u; (z,t")Aa;(x) dx + dt uy(z, tug(z,t) ox.
Jo  JJJn Jo JJJn Oy,

Then passing to the limit

///nui(x’t)ai(‘”) 533:///1] U (7)ai(z) oo+
V./ot 4 ///n ui(w, 1) Aai () 0z + '/Ot dt' ///n uZ(x,t')UZ(x,t’)agiZ) .

This last relation shows that

/// ui(x, t)a; () ox tends to /// U (z)a;(x) ox
JJJn JJJn

when ¢ tends to zero. In these conditions w;(x,t) has a unique weak limit in mean, which
is U;(x) (cf. Corollary to lemma 7, p. 209). But the inequality W (t) < W(0) allows us
to use the criteria for strong convergence announced on p. 200, and we also note that the
u;(x,t) converge strongly in mean to the U;(x) as ¢ tends to zero.

ui(x,t) is therefore a semi-regular solution' for 0 < ¢+ < 7 and it corresponds to the
initial state U;(z).

25. By analogous reasoning one can treat the two other cases pointed out in the
theorem below.

Ezistence theorem: Let the vector U;(z) have quasi-divergence zero, with

converge strongly in mean to the

1 One can similarly check that the functions %
J

Ui,m(a:) as ¢ tends to zero.
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the components are square summable on II. One can verify that the initial velocity state
which it defines is semi-regular

a) if the functions U;(x) have square summable quasi-derivative on II;

b) if the functions U;(z) are bounded;

c) or finally if the integral [[[;;[Ui(2)U;(x)]* éz is finite for some value of p larger than

N. B. This theorem and the existence theorem of paragraph 19 evidently do not let
us study the behavior at infinity for a solution with initial state in the neighborhood of a
given initial state.

V. Turbulent solutions.
26. Let u;(x,0) be a regular initial state. We have not succeeded in proving that
the corresponding regular solution to Navier’s equations is defined for all values of ¢ after
the initial instant ¢ = 0. But consider the system

~ Oui(z,t)  10p(a,t)
ot p Ox;

Oui(z,t) duj(x,t)

3

(5.1) vAu;(x,t) = ug(z, 1) = 0.

This system is very near Navier’s equations when the length® € is very short. All we
have said in Chapter III on Navier’'s equations is applicable without modification, other
than the inconclusive considerations of paragraph 20. Thus we know many properties of
system (5.1) which are independent of e. Further, the Schwarz inequality (1.1) gives us

Ue(z,t) < Age 2 /W (1),

Ag being a numerical constant. This new inequality and the energy dissipation relation
(3.4) allows us to write the following beside inequality (3.5) if a solution to system (5.1) is
regular for 0 < ¢ < T, then

! Recall this length was introduced in §8 (p, 206), when we defined the symbol U ().
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V(t) < A Age=t /W /\/ti—di V) (0<t<T)

From this we get that on all intervals of regularity (0,7'), V(¢) remains less than the
continuous function ¢(t) on 0 < ¢, which satisfies the Volterra linear integral equation

o0 A,,AO;%\/*/ t_dtt', +V(0).

V(t) therefore remains bounded when, T being finite, ¢ tends to 7. That contradicts
the first caracterization of irregularity (p. 224). In other words, the unique solution to

equations (5.1) corresponding to a given reqular initial state is defined for all time after
the initial instant.

27.  Given a motion which satisfies equations (5.1), we will need results on its
repartition of kinetic energy: %m (x,t)u;(z,t). These must be independent! of e.

Consider two constant lengths Ry and Rs (R; < Rs) and introduce the following
function f(x)

f(x)=0 for ry< Ry;

- R
flz) = H for Ry <19 < Ry; (18 = m3m;)

f(x)=1 for Ry <.

A calculation analogous to that giving the energy dissipationn relation (2.21) here gives

/dt///f a“axk )a“ ///f Yui(w, t)u; (2, t) 0x =
Y] st omte s [ [[] 2500,

1 They will apply equally to solutions of Navier’s equations.
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dt’ i

/ /// &rk plx, t)u;(z,t') dz+
1t T)——

+= / dt’ /// 0f () ug(x, t)u; (z, t Yu;(z, ') 6.
2 Jo JJJ1 a'I,'k

From this we get the inequality

1 1
— /// wi(z, ug(z,t) dr < = /// wi (2, 0)u;(x,0) dz+
2 79> Ro 2 ro>R1
5.2 vV Vi) ar+ LYWO [, /// (s, /) G+
( ) R2*R1. ) p Ry — Ry, \/

AT dtW// wto ) s

We majorize the last three terms. By the Schwarz inequality

(5.3) /Ot T dt! < /Ot T2 i < \/@ﬁ.

Further (cf. (3.3)):

(5.4) ; () = o /// ar] a“ayk Do )8y,

from which

ey U I R e T il

Relation (1.14) and the Schwarz inequality (1.1) give

([ e ] < e

Further
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W/ u (2, ¥ auéfkt) ) < W (') J(¢);

%/://HpQ(:p,t/) ba < %\/W:I?’(t’)

therefore

and it follows?!

5.5) /dtW// R L Ol p% /ﬁ<y>dt/<%ta

From (1.13) we get

1 , 8u,(y t')
—u: (x, t y,t .
) = [ Gimtn0 250

This formula is analogous to (5.4). By calculations like the preceeding it leads to

(5.6) /Ot dt’\////n [%ui(m,t’)ui(m,t’)r dr < %t :

Using the majorants (5.3), (5.5), and (5.6) in (5.2) we obtain

1 1
- /// wi(z, tu;(x, ') dr < = /// wi (2, 0)u;(x,0) dz+
2 JJ Jrg>Rs 2 JJJrg >Ry

W (0)Vvt N w

ENE

(5.7)

1 'We use the inequality

N

: :
/J%(t’)dt’< [/ J2(t )df} t
J0 J0

which is a particular case of “Hdélder’s inequality”

t 5 ¢ L
< [/0 oP(t) dt’} VO wq(t’)dt’} (% + 3 =1;1<p,1<q).

/0 () (t) di’
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This inequality shows how kinetic energy remains localized at finite distance.

28. Suppose we have given at t = 0 an arbitrary initial vector U;(z), with components
square summable on IT and quasi-divergence zero. The vector U;(z) is a regular initial state
(cf. lemma 6 and paragraph 8). Write u}(z,t) for the corresponding regular solution to
equations (5.1). It is defined for all t. The object of this chapter is to study the limits
which this reqular solution may have as € tends to zero.

We will use the following three properties of the u}(x,1).

1°) Let a}(z,t) be an arbitrary vector of divergence zero, of which all components and
all their derivatives are uniformly and strongly continuous in ¢. By (5.1):

/// u; (z,t)a;(z,t) dr = /// Uf(x,t)a;(x,0)ox+
JJ JJJn

(5.8) / dt’ /// (1) [VAU (o) + 3a7€(;;,t)} -
+/0t dt’///nmu;f(a:,t)%;:w(gx_

2°) The energy dissipation relation and (1.21) give

¢ 1 1 1
(5.9) 1// T2 dt’ + S (1) = 5W (ko) < 5W(0).
Jtg

By definition

(5.10) W(0) = ///H U;(x)U;(x) ox.

3°) Inequality (5.7) and the inequality W*(0) < W(0) justify the following proposition
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Le 1 be an arbitrarily small constant with (0 < n < W(0)). We let Ry(n) be the

length for which
_n
/// Us(2)Us(2) 6z =
J S Sro>Ri(n) 2

and write s(n,t) for the sphere with center at the origin with radius

W(O)Vvt = Wats

+
\/5 2Z7r%1/%

Ry(n,t) = .1L21(77,)+77

We have

(5.11) lim sup /// ul (z, t)ul(z,t) oz <.
=0 ) In—sqp

29. Let € tend to zero through a countable sequence of values €7, €3, ... Consider the
corresponding functions W*(¢). This is a bounded set of functions and each is decreasing.
Cantor’s diagonal method (§4) allows us to extract from the sequence €1, €, ... a subse-
quence €, ,€,,... such that the W*(t) converge for all rational values of t. The W*(¢)
therefore converge to a decreasing function, except maybe at points of discontinuity of the
limit. The points discontinuity of a decreasing function are countable. A second applica-
tion of Cantor’s method allows us to extract from ¢, ,€,,... a subsequence €, €m,, - - -
such that the corresponding W*(¢) converge' for all t. We write W (t) for the de(‘reaqmg
function which is their limit. (This definition does not contradict (5.10).)

The inequality W*(t) < W(0) shows that each of the integrals

tg t2
/ df///u z, 1) / df///uka’u (x,t") 0x
t] tl

is less than a bound independent of €. By a third use of Cantor’s diagonal method we can
therefore extract from the sequence €,,, , €, . a subsequence €, , €, . such that each
of these integrals has a unique

m2s

! In other words we use Helly’s theorem.
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limit when ¢; and t5 are rational and w is a cube with sides parallel to the axes and with
vertices having rational coordinates. The inequality W*(¢) < W (0) and the hypotheses
made on the a;(z,t) imply that the integrals

/dt /// (.t {mm(m) a”{(w O 5
/ dt’ /// i (z, 1) uka)aagfkt)(;m

have a unique limit. This result, with (5.8) shows that

J[[ witatasta by o

converges to a unique limit, for all a;(z,t) and ¢. Therefore (cf. Corollary to lemma 7) the
uf(x,t) converge weakly in mean to some limit U, (z,t) for each value of t.

Also, given a sequence of values of € which tend to zero, one can extract from them
a subsequence such that the W*(t) converge to a unique limit W (t) and that the u}(x,t)
have for each value of t a unique weak limit in mean: U;(x,t). We suppose from here on
that e tends to zero through a sequence of values €* such that these two conditions hold.

Remark I By (1.9)
t) > /// Ui(xz,t)U;(z,t) dx.
JJ

! In fact these hypotheses imply the following. Given ¢, a number 7 (> 0) and a function

d(z,t) equal to one of the derivatives of the a;(z,t), one can find an integer N and two discon-
tinuous functions ((x,t) and ~y(z,t) with the following properties. [3(z,t) and 7(x,t) remain
constant when x1, £9, T3, t vary without hitting(?) any multiple of i, and each of them is zero
outside of a domain o, and(?)

t
/ dt’ /// [6(z, ") — Bz, t))? 0z <m;  [§(x,t") — y(z,t)] <n for 0<t <t
0 m
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Remark II. The vector U;(z,t) clearly has quasi-divergence zero.

30. Inequality (5.9) gives us
> : : * (11\12 / 1
z// liminf J*(¢')]" dt’ < §W(O)
0

Thus the liminf J*(#) can only be +o00 for a set of values of ¢ of measure zero. Suppose #;
is in the complement of this set. One can extract from the sequence of values €* considered

such that on II the corresponding functions W converge
J

k%

here a subsequence! e

weakly in mean to a limit U; j(z,t1) (cf. Fundamental Theorem of F. Riesz, p. 202).
Lemma 2 allows us to conclude that the U;(x,t1) have quasi-derivatives which are the
Ui j(z,t1). We set

J(tl) == /// Ui’j(.’I,‘,tl)Ui’j(Ji,tl) ox.
JJJII
We have (cf. (1.9))

Using this inequality in (5.9) we obtain
W (to) <

(5.12) u/t J2(t') dt" + %W(t) < W) (0<ty<t).

1
to 2

Lemma 2 teaches us finally that on all domains w the u}*(z, 1) converge strongly in
mean to the U;(x,t);

lim /// wt (z, t)u; (2, t1) 0 = /// Ui(x,t1)U; (2, t1) 0.
e*—0 /) /)o ) JJJ

Choosing w to be s(n,t1) and taking account of (5.11) we get

1 The subsequence we choose is a function of ¢7.
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lim sup /// wt (z, t)ul " (z,t) o < /// Ui(x,t1)U;(x,t1) 0x + 1.
JJJJn S Ss(nyt)

From this, since 7 is arbitrarily small and since W*(#;) has a limit

(5.13) ELiLnO///I_qu(x,tl)uf(x,tl)5x§///H Us(w, 11)Us (2 £1) 0.

We apply the strong convergence criterion from p. 200. Note that on II the u}(z,t)
converge strongly in mean to the U;(xz,t) for all values t1 of t not belonging to the set of
measure zero on which iminf J*(t) = +ooc.

For all these values of ¢ the two sides of (5.13) are equal, i.e.

(5.14) W(t) = ///H Us(, 11)Us (x, £1) 0.

The functions u}(x,t;) also converge strongly in mean to U;(x,t1) (cf. Generalisation
of lemma 3, p. 207). The integral which figures in (5.8)

(][ T2,
[/ iy,

for almost all values of ¢’ (cf. (1.8)). Further, this integral is less than

therefore converges to

da;(x,t)

3W(0) max | 3
T

Lebesgue’s theorem concerning passage to the limit under the [ sign gives
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) 7 dai(x,t') .
51*1310 dt///uka:t o, b)) ———= . oz =
da;(z,t")
/ dt’ /// Uk (z, U (2, ') ——— . oz,

By lemma 5 the right hand side of this can be put into the form

_/Ot dt’ ///H U (a2, ) Uy 1 (2, )i (1, ) .

From the beginning of this paragraph we can claim that the other terms in (5.8)
similarly converge. We obtain the limits by substituting U;(x, t) for u}(x,t) and U;(x) for

U; (). This gives
///H Ui(z, t)ai(z,t) 0z = ///H Ui(z, t)ai(z,0) bz

(5.15) / dt’ /// () [ma (z.¢) + a”éf, )} 5z
—/Ot ' ///H Us (2, ) Us g (2, ¢ )ag(, ) 5.

31. These results lead to the following definition. We say that a vector U;(z,1t)
defined for ¢t > 0 constitutes a turbulent solution to Navier’s equations when the following
conditions are realised, where values of ¢ that we call singular form a set of measure zero.

For each positive ¢ the functions U;(x,t) are square summable on Il and the vector
U;(x,t) has quasi-divergence zero.

The function
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[t [[] o) [osontory + 2550 50 [ vttty 50
_/Ot dt’ ///H Uk (z,t")U; (2, t")a;(x,t") ox

is constant (£ > 0). (Equivalently, (5.15) holds.) For all positive values of ¢ except possibly
for certain singular values, the functions U;(z,t) have quasi-derivatives U; j(z,t) which are

square summable on II.
= /// Ui j(x. t)U; j(x,t) ox,
JJJn

Set
J(t) is thus defined for almost all positive ¢.
There exists a function W (t) defined for ¢ > 0 which has the two following properties.

1
the function 1// J2(t') dt’ — 2W(t) is nonincreasing
0

and [[[ Ui (z,t) 6x < W (t), the inequality holding except for certain singular times,
but ¢ =0 is not a qmgular time.

We say that such a solution corresponds to initial state U;(x) when we have U;(z,0) =
The conclusion of this chapter can then be formulated as follows.

Ezistence theorem: Suppose an initial state U;(x) is given such that the functions
U;(x) are square summable on I1 and that the vector having components U;(x) has quasi-
divergence zero. There corresponds to this initial state at least one turbulent solution,
which is defined for all values of t > 0.

VI. Structure of a turbulent solution.

32. It remains to establish what connections exist between regular solutions and
turbulent solutions to Navier’s equations. It is entirely
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clear that any regular solution is a fortiori a turbulent solution. We are going to look for
those cases in which a turbulent solution is regular. To this end we generalize the reasoning
of paragraph 18 (p. 221).

Comparison of a reqular solution and a turbulent solution: Let a;(x,t) be a solution to
Navier’s equations, defined and semi-regular for ® < ¢t < T. We suppose that it becomes
irregular when ¢ tends to T, at least in the case when T is not equal to +oo. Consider a
turbulent solution U;(z,t) defined for © < ¢, where © is not a singular time. The symbols
W (t) and J(t) correspond to the turbulent solution. Set

w(t)—W(t)Z///H Uy (2, t)ai(z, 1) 5$+///1]ai(m,t)ai(m,t) 5
IHOEE —2///77“5”% ///3”6T’;’5”a;j>5x.

Recall that
t (. / ; / 1
l// dt' /// 3a7,(x,t ) 5a,(:13,t ) or + _/// (],Z'(.T,t)(],i(l',t) St
0 Ini 6337 a.T7 2 I

is constant in ¢t and that

is nonincreasing. Consequently

o fraegeo s [ fff e
///HUi(~”U=t>a1:(:c,t)5x

is nonincreasing. Taking account of relation (5.15) and of that for a;(z,t)
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is a semi-regular solution to Navier’s equations. Note that the nonincreasing function (6.1)
is up to a constant(?) nearly equal to

(6.2) y/@t P2 dt’ + %w(t) +2V'/®t ' /[/H[a,ﬁ(g;,t') — Un(a, )]U; (0, #)as (. ) 5o

Now we have for each nonsingular value of ¢

J[[ artot) O P D ) s

1 N o 0ai(z,ta;(z,t') B
2///11[0,1@(37,” Up(z,t)] T 51— 0.

///H[ak(.ﬂ?,t,) — Up (2, )|U; (2, )i (2, t') b

may therefore be written

///H[ak(m,t’) — Ug(z,t")] [Uivk(m,t’) _ Oaiz, 1) a;(w, 1') 61

aa:k

The integral

and so it is less in absolute value than

WiV (E).

where V(') is the greatest length of the vector a;(z,t) at time #. Since (6.2) is not
increasing, it is a fortiori the same for the function

y/t ()dt+ w / w(t)jE" YV (t")dt'.

J O

Now

/ dt—/\/Ty dt+—/ dt’

manifestly cannot decrease. It follows that the function



244 Jean Leray.

%@-%A@mwmw

is nonincreasing. From this we get the inequality generalizing (3.7)

L

2 /
(6.3) w(t) < w(©)ew Jo VM g ot <),

Suppose in particular that the solutions U;(z,t) and a;(x,t) correspond to the same
initial state. Then w(©) = 0 and by (6.3) w(t) = 0. therefore U;(x,t) = a;(x,t) for
© <t < T. The uniqueness theorems of paragraphs 18 and 23 (p. 222 and 228) are special
cases of this result.

33. Regularity of turbulent solutions in certain time intervals.

Consider a turbulent solution U;(x,t) defined for £ > 0. For each nonsingular time the
vector U;(x,t) is a semi-regular initial state (cf. p.231 existence theorem, case a)). The
uniqueness theorem that we are going to establish will have the following consequence.
Consider a nonsingular time, i.e. a time chosen outside of a certain set of measure zero.
Then this is the origin of an interval of time in the interior of which the turbulent solution
coincides with a regular solution, and this coincidence does not end as long as the regular
solution remains so. This result, complemented by some other easy ones, gives us the next
theorem.

Structure theorem.

For a vector U;(x,t) to be a turbulent solution to Navier’s equations for ¢ > 0, it is
necessary and sufficient that it have the following three properties.

a) By an interval of regularity we mean any interval ©;T; of time in the interior of
which the vector U;(z,t) is a regular solution to Navier’s equations, and such that this
is true for no interval containing ©;7;. Let O be the open set which is the union of the
intervals of regularity

1T have not been able to establish a uniqueness theorem stating that to a given initial state,
there corresponds a unique turbulent solution.
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(no two of which have a point in common). O differs from the half axis ¢ > 0 only by a set
of measure zero.

b) The function [[[; U;(z,t)U;(z,t) dx is decreasing on the set consisting of O and
t=0.

c) As t’ tends to t the U;(z,t') must converge weakly in mean to the U;(x,t).

Supplementary information

1) A turbulent solution corresponding to a semi-regular initial state coincides with
the semi-regular solution having that initial state, for as long a time as the semi-regular
solution exists.

2) Make t increase to 7} in an interval of regularity. Then the solution U;(x,t) which
is regular for ©; < t < T; becomes irregular.

This structure theorem allows us to summarize our work in these terms: We have
tried to establish the existence of a solution to Navier’s equations corresponding to a given
initial state. We have had to give up regularity of the solution at a set of times of measure
zero. At these times the solution is only subject to a very weak continuity condition (c)
and to condition (b) expressing the nonincrease of kinetic energy.

Remark: If system (3.11) has a nonzero solution U;(x) then we can very simply con-
struct a turbulent solution U;(z,t) equal to

[20(T — )] 2U; |[2a(T = t)] 22| fort <T

and to 0 for ¢ > T'. This has a single irregular time 7.

34. Supplementary information on intervals of reqularity and behavior of solutions to
Nawvier’s equations for large time.

Chapter IV gives inequality (4.3) in addition to the existence theorem used in the
previous paragraph. This results in the following proposition. Consider
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a turbulent solution U;(z,t). Let ¢t be a nonsingular time and 7} a later time. We have
J(t') > A (T, — t')"7,
A1 being a certain numerical constant. Using this lower bound for J(¢') in the inequality
T, 1
,,/ () dt' < ~w(0)
Jo 2
we get
5 1 1
2A1V§le < §W(0)
All singular times occur prior to

_ W2(0)
164

(6.4) 0

In other words, there is an interval of regularity that contains 8 and which extends to +oc.
A motion which is regular up to time 6 never becomes irregular.

It is easy to make this more precise.

Let ©;7; be an interval of regularity of finite length. All times ¢ interior to this interval
are nonsingular. By (4.3)

J(t') > Awi (T, — ')~ for ©, < t' <T.
(cf. Second characterisation of irregularity, p. 227.)

Using this lower bound on J(¢') in

1
v J2(t) dt' < W (0).
3 hor :

Summing over all the intervals of finite length we get

(6.5) QA%I/gZ,\/(Tl —0)) < %W(o).
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In Chapter IV we found the pair of inequalities (4.3) (4.4). These imply the following.
Consider a turbulent solution, a nonsingular time ¢', and a later time ¢. We have

either t —t' > A2 T 4(t)), or J(t) < (1 4+ A)J(t)

in other words!

Using this lower bound for J(¢') in

t
1
y/ J2(t) dt' < 5W(O);
0

we get

(6.6) y/o'{Afy%(t—t')%; ﬁjz(t)}dt’ < W),

This gives an upper bound for J(t) for values of ¢ larger than 6. However this bound has
a rather complicated analytic expression.
We content ourselves by remarking that (6.6) gives the less precise

t
1 1 1
A2St T —— () dt < =W(0).
v [t b s POyl < W)
This can most simply be expressed as

1+ A)2 W(0) W2(0)
6.7 J2(t ( for t > ———2.
(6.7) () < 2 vt ort > 4 AP

Complementing this result on asymptotic behavior of J(t) there is another on V(#).
Inequalities (4.3) and (4.4) give

V(t) < AJ()[w(t —t)]77 for t — ' < AL T~4(¢).

! Recall that the symbol {B;C} denotes the smaller of B and C.
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By (6.7) this last inequality is satisfied for ¢ = 1¢ if one takes ¢ > A%. One therefore
has for these ¢

V(t) < AW (0)(vt)~ 7.
In summary there exist some constants A such that

J(t) < AYW(0)(vt) 7 and V(t) < AW (0)(vt) T for t > AW;(O).

N. B. T am ignoring the case in which W(#) necessarily tends to 0 as ¢ becomes
indefinitely large.




