
preliminary versionON THE MOTION OF A VISCOUS LIQUIDFILLING SPACE1byJEAN LERAYin RennesIntrodu
tion.2I. The theory of vis
osity leads one to allow that motions of a vis
ous liquid aregoverned by Navier's equations. It is ne
essary to justify this hypothesis a posteriori byestablishing the following existen
e theorem: there is a solution of Navier's equations whi
h
orresponds to a state of velo
ity given arbitrarily at an initial instant. That is what Oseentried to prove3. He only su

eeded in establishing the existen
e of su
h a solution for apossibly very short time after the initial instant. One 
an also verify that the total kineti
energy of the liquid remains bounded4 but it does not seem possible to dedu
e from thisfa
t that the motion itself remains regular�. I have indi
ated a reason whi
h makes mebelieve there are motions whi
h be
ome irregular in a �nite time5. Unfortunately I havenot su

eeded in 
reating an example of su
h a singularity.1 This paper has been summarized in a note whi
h appeared in Comptes rendus de l'A
ademiedes S
ien
es, February 20 1933, vol. 196, p. 527.2 Pages 59{63 of my Thesis (Journ. de Math. 12, 1933) announ
e this paper and 
omplementthis introdu
tion.3 See Hydrodynamik (Leipzig, 1927), x7, p. 66. A
ta mathemati
a vol. 34. Arkiv f�ormatematik, astronomi o
h fysik. Bd. 6, 1910. Nova aeta reg. so
. s
ient. Upsaliensis Ser. IV,Vol. 4, 1917.4 l. 
. 2, p. 59{60.5 l. 
. 2, p. 60{61. I return to this subje
t in x20 of the present work (p. 224).reset from: A
ta mathemati
a. 63. Printed July 5, 1934.� Translator's note: \regular" is de�ned on p. 217.



194 Jean Leray.In fa
t it is not paradoxi
al to suppose that the thing whi
h regularizes the motion{dissipation of energy{does not suÆ
e to keep the se
ond derivatives of the velo
ity 
ompo-nents bounded and 
ontinuous. Navier's theory assumes the se
ond derivatives boundedand 
ontinuous. Oseen himself had already emphasised that this was not a natural hypoth-esis. He showed at the same time how the fa
t that the motion obeys the laws of me
hani
s
ould be expressed by means of integro-di�erential equations1 whi
h 
ontain only the ve-lo
ity 
omponents and their �rst spatial derivatives. In the 
ourse of the present work I
onsider a system of relations2 equivalent to Oseen's integro-di�erential equations 
omple-mented by an inequality expressing dissipation of energy. Moreover, these relations maybe dedu
ed from Navier's equations, using an integration by parts whi
h 
auses the higherorder derivatives to disappear. And, if I have not su

eeded in establishing the existen
etheorem stated above, I have nevertheless proved the following3: the relations in questionalways have at least one solution 
orresponding to a given initial velo
ity and whi
h is de-�ned for an unlimited time of whi
h the origin is the initial instant. Perhaps that solutionis not suÆ
iently regular to have bounded se
ond partial derivatives at ea
h instant, so itis not, in a proper sense of the term, a solution to Navier's equations. I propose to saythat it 
onstitutes \a turbulent solution".It is moreover quite remarkable that ea
h turbulent solution a
tually satis�es Navier'sequations, properly said, ex
ept at 
ertain times of irregularity. These times 
onstitute a
losed� set of measure zero. At these times alone must the 
ontinuity of the solution beinterpreted in a very generous sense.1 Oseen, Hydrodynamik, x6, equation (1).2 See relations (5.15), p. 240.3 See p. 241.4 I allow myself to 
ite a passage from Oseen (Hydrodynamik): \From still another point ofview it seems worth the trouble to subje
t the singularities of the motion of a vis
ous liquid to
areful study. If singularities appear, then we must distinguish two types of motion of a vis
ousliquid, regular motion, whi
h is to say motion without singularity, and irregular motion, whi
h isto say motion with singularity. Now in other parts of Hydrauli
s one distinguishes two sorts ofmotion, laminar and turbulent. One is tempted from now on to presume that laminar motionsfurnished by experiment are identi
al to theoreti
al regular motions, and that experimental tur-bulent motions are identi�ed with irregular theoreti
al motion. Does this presumption 
orrespondwith reality? Only further resear
h will be able to de
ide."� [translator's note: The set is 
ompa
t, as is proved on p. 246.℄
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ous liquid �lling spa
e. 195A turbulent solution therefore has the following stru
ture: it is 
omposed of a su

essionof regular solutions.If I su

eed in 
onstru
ting solutions to Navier's equations whi
h be
ome irregular,then I 
an say that there exist turbulent solutions whi
h do not simply redu
e to regularsolutions. Likewise if this proposition is false, the notion of turbulent solution, whi
h fromthen on plays no role in the study of vis
ous liquids, still does not lose interest: it serves topresent problems of mathemati
al Physi
s for whi
h the physi
al 
ause of regularity doesnot suÆ
e to justify the hypothesis of regularity made at the time of writing the equation;to these problems then one 
an apply 
onsiderations similar to those whi
h I introdu
ehere.Finally let us point out the two following fa
ts:Nothing allows one to assert the uniqueness of a turbulent solution whi
h 
orrespondsto a given initial state. (See however Supplementary information 1o, p. 245; x33).A solution whi
h 
orresponds to an initial state suÆ
iently near rest never be
omesirregular. (See the 
ase of regularity pointed out in x21 and x22, p. 226 and 227.)II. The present work 
on
erns unlimited vis
ous liquids. The 
on
lusions are quiteanalogous to those of another paper2 that I devoted to plane motion of a vis
ous liquiden
losed within �xed 
onvex walls; this leads to the belief that its 
on
lusions extend tothe general 
ase of a vis
ous liquid in two or three dimensions bounded by arbitrary walls.(same variables(?))The absen
e of walls indeed introdu
es some 
ompli
ations 
on
erning the unknownbehavior of fun
tions at in�nity3 but greatly simpli�es the exposition and brings the essen-tial diÆ
ulties more to light. The important role played by homogeneity of the formulasis more evident (the equations in dimensions allow us to predi
t a priori nearly all theinequalities that we write).1 In virtue of the existen
e theorem of x31 (p. 241) and of the uniqueness theorem of x18 (p.222).2 Journal de Math�ematiques, T. 13, 1934.3 The 
onditions at in�nity by whi
h we 
hara
terize those solutions of Navier's equationswhi
h we 
all regular, di�er essentially from those of Oseen.



196 Jean Leray.Re
all that we have already treated the 
ase of unlimited motions in the plane1. Theseare spe
ial2 be
ause the motion is regular.Summary of the paper.Chapter I re
alls a series of propositions of analysis whi
h are important, but whi
hare not entirely 
lassi
al.Chapter II establishes several preliminary inequalities easily dedu
ed from propertiesof Oseen's fundamental solution.Chapter III applies the inequalities to the study of regular solutions of Navier's equa-tion.Chapter IV states several properties of regular solutions to be used in Chapter VI.Chapter V establishes that for ea
h initial state, there is at least one turbulent solutionde�ned for unlimited time. The proof of this existen
e theorem is based on the followingprin
iple: one doesn't dire
tly approa
h the problem of solving Navier's equations; in-stead one treats a neighboring problem whi
h 
an be proved to have a regular solution ofunlimited duration; we let the neighboring problem tend toward the original problem to
onstru
t the limit (or limits) of these solutions. There is an elementary method to applythis prin
iple: it is the same one whi
h I used in my study of planar motion of a vis
ousliquid within walls, but it is intimately bound with the stru
ture of turbulent solutionswhi
h we have previously pointed out. Without this stru
ture the method may not apply.Here we pro
eed in another fashion whose range is very likely larger, and whi
h justi�esthe notion of turbulent solution, but whi
h requires 
alling on some of the less ordinarytheorems of 
hapter I.Chapter VI studies the stru
ture of turbulent solutions.1 Thesis, Journal de Math�ematiques 12, 1933; 
hapter IV p. 64-82. (One 
an give aninteresting variation on the pro
ess used there, by using the notion of semi-regular initial stateintrodu
ed in the present paper.)2 In this 
ase one 
an base the study on the property that the maximum swirl is a de
reasingfun
tion of time. (See: Comptes rendus de l'A
ad�emie des S
ien
es, T. 194; p. 1893; 30 mai1932). { Wolibner has also made this remark.



On the motion of a vis
ous liquid �lling spa
e. 197I. Preliminaries1. NotationWe use the letter �' for an arbitrary domain of points in spa
e. �' may be the entirespa
e, denoted by �. $ will be a bounded domain in � whi
h has as boundary a regularsurfa
e �. We represent an arbitrary point of � by x, whi
h has 
artesian 
oordinates xi(i = 1, 2, 3) and distan
e r0 to the origin, and generates volume element Æx and surfa
eelement Æx1, Æx2, Æx3. Similarly we use y for a se
ond arbitrary point of �. r will alwaysrepresent the distan
e between points named x and y.We use the \silent index" 
onvention: a term 
ontaining the same index twi
e repre-sents the sum of terms obtained by su

essively giving that index the values 1, 2, 3.Beginning with 
hapter II the symbol A denotes 
onstants for whi
h we do not spe
ifythe numeri
al value.We systemati
ally use 
apital letters for measurable fun
tions and lower 
ase lettersfor fun
tions whi
h are 
ontinuous and have 
ontinuous �rst partial derivatives.2. Re
all the S
hwarz inequality:(1:1) �ZZZ�0 U(x)V (x) Æx�2 � ZZZ�0 U2(x) Æx� ZZZ�0 V 2(x) Æx{ The left side is de�ned whenever the right is �nite. {This inequality is the foundation of all properties stated in this 
hapter.First appli
ation:If U(x) = V1(x) + V2(x)then sZZZ�0 U2(x) Æx �sZZZ�0 V 21 (x) Æx+sZZZ�0 V 22 (x) Æx;



198 Jean Leray.more generally for a 
onstant t if one hasU(x) = Z t0 V (x; t0) dtthen(1:2) sZZZ�0 U2(x) Æx � Z t0 dt0sZZZ�0 V 2(x; t0) Æxthe left sides of these inequalities being �nite when the right sides are.Se
ond appli
ation:Consider n 
onstants �p and n 
onstant ve
tors ~�p. Write x+ ~�p for the translationof x by the ve
tor ~�p. We haveZZZ� "p=nXp=1 �pU(x+ ~�p)#2 Æx � "p=nXp=1 j�pj#2 � ZZZ� U2(x) Æx;(this inequality is easily proved by expanding the two squares and using the S
hwarzinequality). From it, one dedu
es the following very useful one. Let H(z) be a fun
tion.We denote by H(y � x) the fun
tion obtained by substituting for 
oordinates zi of z the
omponents yi � xi of the ve
tor ~xy. We have(1:3) ZZZ� �ZZZ�H(y � x)U(y) Æy�2 Æx � �ZZZ� jH(z)j Æz�2 � ZZZ� U2(y) Æy;and the left side is �nite when the two integrals on the right are �nite.3. Strong 
onvergen
e in mean.1De�nition: One says that an in�nity of fun
tions U�(x) have fun
tion U(x) as stronglimit in mean on a domain �0 when:1 See: F. Riesz, Untersu
hungen �uber Systeme integrierbarer Funktionen, Math. Ann. vol69 (1910). Delsarte, M�emorial des S
ien
es math�ematiques, fasi
ule 57, Les groupes de transfor-mation lin�eaires dans l'espa
e de Hilbert.
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(1:4) limZZZ�0 [U�(x)� U(x)℄2 Æx = 0:One then has for any square summable fun
tion A(x) on �0(1:5) limZZZ�0 U�(x)A(x) Æx = ZZZ�0 U(x)A(x) Æx:From (1.4) and (1.5)(1:6) limZZZ�0 U�2(x) Æx = ZZZ�0 U2(x) Æx:Weak 
onvergen
e in mean:De�nition: An in�nity of fun
tions U�(x) has fun
tion U(x) as weak limit in mean ondomain �0 when the two following 
onditions hold.a) the set of numbers RRR�0 U�2(x) Æx is bounded;b) for all square summable fun
tions A(x) on �0limZZZ�0 U�(x)A(x) Æx = ZZZ�0 U(x)A(x) Æx:Example I. The sequen
e sinx1, sin 2x1, sin 3x1, : : : 
onverges weakly to zero on alldomains $.Example II. If an in�nity of fun
tions U�(x) have strong limit U(x) in mean onall domains $, then they admit a weak limit in mean on � when the set of quantitiesRRR�0 U�2(x) Æx is bounded.Example III. Let an in�nity of fun
tions U�(x) on a domain �0 
onverge almost ev-erywhere to a fun
tion U(x). That fun
tion is their weak limit in mean when the set ofquantities RRR�0 U�2(x) Æx is bounded.One has(1:7)limZZZ�10 ZZZ�20 A(x; y)U�(x)V �(x) Æx Æy = ZZZ�10 ZZZ�20 A(x; y)U(x)V (x) Æx Æy



200 Jean Leray.when the U�(x) 
onverge weakly in mean to U(x) on �10 and V �(x) to V (x) on �20 andthe integral ZZZ�10 ZZZ�20 A2(x) Æx Æyis �nite. One has(1:8) limZZZ�0 A(x)U�(x)V �(x) Æx = ZZZ�0 A(x)U(x)V (x) Æxwhen on �0, A(x) is bounded, U(x) is the strong limit of the U�(x) and V (x) is the weaklimit of the V �(x).It is also evident that, if the fun
tions U�(x) 
onverge weakly in mean to U(x) on adomain �10limfZZZ�0 [U�(x)� U(x)℄2 Æx� ZZZ�0 U�2(x) Æx+ ZZZ�0 U2(x) Æxg = 0from whi
h one gets the inequality(1:9) lim inf ZZZ�0 U�2(x) Æx � ZZZ�0 U2(x) Æxand the 
riteria for strong 
onvergen
e:The fun
tions U�(x) 
onverge strongly in mean on domain �0 to U(x) when they
onverge weakly in mean to U(x) on the domain and in addition(1:10) lim supZZZ�0 U�2(x) Æx � ZZZ�0 U2(x) Æx:Equivalently, the 
omponents U�i (x) of the ve
tor 
onverge strongly in mean on domain�0 to those of a ve
tor Ui(x) when they 
onverge weakly in mean to the 
omponents onthe domain and in addition11 Re
all that the symbol Ui(x)Ui(x) represents the expression Pi=3i=1 Ui(x)Ui(x).
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(1:100) lim supZZZ�0 U�i (x)U�i (x) Æx � ZZZ�0 Ui(x)Ui(x) Æx:The weak 
onvergen
e 
riteria applied in Example III gives the following.Lemma 1. If an in�nity of fun
tions U�(x) [or ve
tors U�i (x)℄ 
onverge almost every-where on domain �0 to a fun
tion U(x) [or a ve
tor U�i (x)℄ and satisfy inequality (1.10)[or (1.10')℄, then they 
onverge strongly in mean.Theorem of F. Riesz: An in�nity of fun
tions U�(x) have a weak limit in mean ondomain �0 if the two following 
onditions are satis�ed:a) the set of numbers RRR�0 U�2(x) Æx is bounded;b) for ea
h square summable fun
tion A(x) on �0 the quantities RRR�0 U�(x)A(x) Æxhave a single limiting value.Condition b) may be repla
ed by the following:b') for ea
h 
ube 
 with sides parallel to the 
oordinate axes and rational verti
es, thequantities RRR�0 U�(x) Æx have a single limiting value.The proof of this theorem makes use of the work of Lebesgue on summable fun
tions.4.Cantor's diagonal method.Consider a 
ountable in�nity of quantities ea
h dependent on integer indi
es n: an,bn, : : : (n = 1; 2; 3 : : :). Suppose the an are bounded, the bn are bounded, et
. Cantor'sdiagonal method allows us to �nd a sequen
e of integers m1, m2, : : :, su
h that ea
h of thesequen
es am1 , am2 , : : :; bm1 , bm2 , : : :; : : : 
onverge to a limit.Re
all this pro
ess brie
y: one 
onstru
ts a �rst sequen
e of integers n11, n12, n13 : : : su
hthat the quantities an11 , an12 , an13 , : : : 
onverge to a limit; one then 
onstru
ts using elements ofthe �rst sequen
e a se
ond sequen
e n21, n22, n23 : : :, su
h that the quantities bn21 , bn22 , bn23 , : : :
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onverge to a limit; et
. One then 
hooses mp equal to npp, whi
h is the p-th term of the diagonalof the in�nite table of nji .Appli
ation: The following results from the theorem of the pre
eeding paragraph.Fundamental theorem of F. Riesz Let an in�nity of fun
tions U�(x) on a domain �0 besu
h that the quantities RRR�0 U�2(x) Æx are bounded. Then one 
an always extra
t fromthem a sequen
e of fun
tions whi
h have a weak limit in mean.In fa
t 
ondition a) is satis�ed and Cantor's diagonal pro
ess allows 
onstru
tion of a sequen
eof fun
tions U�(x) whi
h satisfy 
ondition b).5.Various modes of 
ontinuity of a fun
tion with respe
t to a parameter.Let a fun
tion U(x; t) depend on a parameter t. We say it is uniformly 
ontinuous int when the following three 
onditions hold:a) it is 
ontinuous with respe
t to x1, x2, x3, t;b) for ea
h parti
ular value t0 of t the maximum of U(x; t0) is �nite;
) given a positive number �, one 
an �nd a positive � su
h that the inequality jt�t0j <� implies jU(x; t)� U(x; t0)j < �:The maximum of jU(x; t)j on � is then a 
ontinuous fun
tion of t.We say that U(x; t) is strongly 
ontinuous in t when, for ea
h parti
ular value t0 oft, RRR� U2(x; t0) Æx is �nite and for ea
h � there is � su
h that the inequality jt � t0j < �implies ZZZ�[U(x; t)� U(x; t0)℄2 Æx < �:The integral RRR� U2(x; t0) Æx is therefore a 
ontinuous fun
tion of t. Conversely we learnfrom lemma 1 that a fun
tion U(x; t) 
ontinuous with respe
t to variables x1, x2, x3, t isstrongly 
ontinuous in t when the pre
eeding integral is a 
ontinous fun
tion of t.



On the motion of a vis
ous liquid �lling spa
e. 2036. Relations between a fun
tion and its derivativesConsider two fun
tions u(x) and a(x) with 
ontinuous �rst derivatives, with the fun
-tions and the �rst derivatives square summable on �. s is the surfa
e of a sphere S with
enter at the origin and for whi
h the radius r0 may be
ome arbitrarily large. Let'(r0) = Z Zs u(x)a(x) Æxi;We have� '(r0) = ZZZS �u(y)�a(y)�yi + �u(y)�yi a(y)� Æy:The se
ond expression shows that '(r0) tends to a limit '(1) when r0 in
reases inde�-nitely. The �rst expression for '(r0) gives usj'(r0)j � Z Zs ju(x)a(x)jxi Æxir0from whi
h Z 10 j'(r0)j dr0 � ZZZ� ju(x)a(x)j Æx:As a result '(1) = 0. In other words(1:11) ZZZ� �u(y)�a(y)�yi + �u(y)�yi a(y)� Æy = 0and from this we have more generally(1:12) ZZZ��$ �u(y)�a(y)�yi + �u(y)�yi a(y)� Æy = � Z Z� u(x)a(x) Æyi:Choose as domain $ a sphere of in�nitely small radius and 
enter x and take1 in(1.12) a(y) = 14� �( 1r )�yi ; add the1 r is the distan
e between the points x and y.�translator's note: It seems that Æx1 means dx2dx3 et
.



204 Jean Leray.relations for values 1, 2, 3 of i to obtain the important indentity(1:13) u(x) = 14� ZZZ �(1r )�yi �u�yi Æy:We now take a(y) = yi�xir2 u(y) in (1.11) and add these relations for values 1, 2, 3 ofi, giving 2 ZZZ� yi � xir2 �u�yiu(y) Æy = � ZZZ� 1r2u2(y) Æy:By applying the S
hwarz inequality to the left side we get the useful inequality(1:14) ZZZ� 1r2u2(y) Æy � 4 ZZZ� �u�yi �u�yi Æy:7. Quasi-derivatives.Let u�(x) be an in�nity of square summable fun
tions with 
ontinuous square summ-able �rst derivatives on �. Suppose that the derivatives �u��x1 , �u��x2 , �u��x3 
onverge weakly inmean on � to fun
tions U;1, U;2, U;3. Let U(x) be the measurable fun
tion de�ned almosteverywhere by U(x) = 14� ZZZ� �(1r )�yi U;i Æy:We have(1:15)ZZZ$[u�(x)�U(x)℄2 Æx = � ZZZ� ZZZ�Kij(y; y0) ��u��yi � U;i(y)�� �u��yj 0 � U;j(y0)� Æy Æy0where11 r0 is the distan
e between the points x and y0.



On the motion of a vis
ous liquid �lling spa
e. 205Kij(y; y0) = 116�2 ZZZ$ �(1r )�yi �( 1r0 )�yi0 Æxi:This expression for K allows an easy proof that the integralZZZ� ZZZ�Kij(y; y0)Kij(y; y0) Æy Æy0is �nite, so the right side of (1.15) is de�ned. It tends to zero by (1.7). Therefore the u�(x)have U(x) as strong limit in mean on all domains $. And, if the integrals RRR� U�2(x) Æxare bounded, U(x) is the weak limit in mean of the u�(x) on � (Cf. x3. Example II, p.199). One then gets from (1.11) the equality(1:16) ZZZ� �U(y) �a�yi + U;i(y)a(y)� Æy = 0:We make the following de�nition:De�nition of quasi-derivatives: Consider two square summable fun
tions U(y) andU;i(y) on �. We say that U;i(y) is the quasi-derivative of U(x) with respe
t to yi when(1.16) holds. Re
all that in (1.16) a(y) is any square summable fun
tion with 
ontinuoussquare summable �rst derivatives on �.Let us summarize the results of pre
eeding paragraph.Lemme 2. Suppose we have an in�nity of 
ontinuous fun
tions u�(x) with 
ontinuous�rst derivatives. Suppose the integrals RRR� u�2(x) Æx are bounded and that ea
h of thederivatives �u�(x)�yi has a weak limit in mean U;i(x) on �. Then the u�(x) 
onverge inmean to a fun
tion U(x) for whi
h the U;i(x) are the quasi-derivatives. This 
onvergen
eis strong on all domains $. It is weak1 on �.1 Or strong.



206 Jean Leray.Following our de�nition of quasi-derivatives we are going to de�ne the quasi-divergen
e�(x) of a ve
tor Ui(x) with square summable 
omponents on �. When it exists, it is asquare summable fun
tion with(1:17) ZZZ� �Ui(y) �a�yi +�(y)a(y)� Æy = 0:8. Approximation of a measurable fun
tion by a sequen
e of regular fun
tions. Let� > 0. We 
hoose a positive 
ontinuous fun
tion �(s) de�ned for 0 � s, identi
ally zero for1 � s and having derivatives of all orders su
h that4� Z 10 �(�2)�2 d� = 1:If U(x) is summable on all domains $, let(1:18) U(x) = 1�3 ZZZ� ��r2�2�U(y) Æy(r = distan
e between x and y)U(x) has derivatives of all orders(1:19) �l+m+nU(x)�xl1�xm2 �xn3 = 1�3 ZZZ� �l+m+n�� r2�2 ��xl1�xm2 �xn3 U(y) Æy:If U(x) is bounded on � then we 
learly have(1:20) minU(x) � U(x) � maxU(x):If U(x) is square summable on � the inequality (1.3) applied to (1.18) gives�(1:21) ZZZ� U(x)2 Æx � ZZZ� U2(x) Æx:1 To �x ideas we take �(s) = Ae 1s�1 , A any suitable 
onstant, 0 < s < 1.� [translator's note: The bar was extended too far in the original.℄



On the motion of a vis
ous liquid �lling spa
e. 207The same applied to (1.19) proves that the partial derivatives of U(x) are square summableon �.Finally note that we have, if U(x) and V (x) are square summable on �(1:22) ZZZ� U(x)V (x) Æx = ZZZ� U(x)V (x) Æx:If V (x) is 
ontinuous V (x) tends uniformly to V (x) on all domains $ when � tendsto zero. One therefore has from (1.22)limZZZ� U(x)V (x) Æx = ZZZ� U(x)V (x) Æx:From this one dedu
es that U(x) 
onverges weakly in mean to U(x) on � when � approa
heszero. Inequality (1.21) and the 
riteria for strong 
onvergen
e on p. 200 similarly give amore pre
ise 
on
lusion:Lemma 3. Let U(x) be square summable on �. U(x) 
onverges strongly in mean toU(x) on � when � tends to zero.Similarly one establishes the following proposition.Generalization of lemma 3. Suppose a sequen
e of fun
tions U�(x) 
onverge strongly(or weakly) in mean on � to a limit U(x) as � tends to zero. Then the fun
tions U�(x)
onverge strongly (or weakly) to the same limit.9. Some lemmas on quasi-derivatives.Let U(x) be square summable on �. Suppose that for all square summable fun
tionsa(x) having square summable derivatives of all ordersZZZ� U(x)a(x) Æx = 0then ZZZ� U(x)U(x) Æx = 0
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h one gets as � tends to zeroZZZ� U2(x) Æx = 0:The fun
tion U(x) is therefore zero almost everywhere.That fa
t allows us to establish the following propositions. 1) When the quasi-derivative of a fun
tion with respe
t to xi exists, it is unique. (We 
onsider two fun
-tions identi
al if they are equal almost everywhere.) 2) The quasi-divergen
e of a ve
toris unique if it exists.Lemma 4. Let U(x) have a quasiderivative Ui(x). Then I 
laim that �U(x)�xi = Ui(x):It suÆ
es to prove thatZZZ� �U(x)�xi a(x) Æx = ZZZ� Ui(x)a(x) Æx:Be
ause one easily dedu
es from (1.18) that�a(x)�xi = �a(x)�xiand this formula with (1.11), (1.16), and (1.22) justify the transformationsZZZ� �U(x)�xi a(x) Æx = � ZZZ� U(x)�a(x)�xi Æx = � ZZZ� U(x)��a(x)�xi � Æx =� ZZZ� U(x)�a(x)�xi Æx = ZZZ� Ui(x)a(x) Æx = ZZZ� Ui(x)a(x) Æx: Q:E:D:Lemma 5. Suppose that two square summable fun
tions U(x) and V (x) have quasi-derivatives Ui(x) and Vi(x) on �. I 
laim that(1:23) ZZZ�[U(x)Vi(x) + Ui(x)V (x)℄ Æx = 0:This is obtained by applying lemma 3 to the formulaZZZ�[U(x)Vi(x) + Ui(x)V (x)℄ Æx = 0:whi
h follows from 1.16 and lemma 4.
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e. 209Lemma 6. If a ve
tor Ui(x) has quasi-divergen
e �(x) then the divergen
e of Ui(x) =�(x).(The proof is very mu
h analogous to that of lemma 4.)Lemme 7. Suppose a ve
tor Ui(x) has quasi-divergen
e 0, and thatZZZ� Ui(x)ai(x) Æx = 0for all square summable ve
tors ai(x) whi
h have 0 divergen
e and square summable deriva-tives of all orders on �. Then I 
laim that Ui(x) = 0.In fa
t lemma 4 allows us to 
hoose ai(x) = Ui(x) be
ause when � tends to 0 the relationRRR� Ui(x)Ui(x) Æx = 0 redu
es toZZZ� Ui(x)Ui(x) Æx = 0:Corollary. An in�nity of ve
tors U�i (x), of quasi-divergen
e 0 has, on �, a uniqueweak limit in mean if the two following 
onditions hold:a) the numbers RRR� U�i (x)U�i (x) Æx = 0 are boundedb) for all square summable ve
tors ai(x) whi
h have 0 divergen
e and square summablederivatives of all orders on �, the quantities RRR� U�i (x)ai(x) Æx have a single limiting value.If not, then the fundamental theorem of F. Riesz (p. 202) allows extra
tion from the sequen
eU�i (x) two subsequen
es having distin
t limits. This 
ontradi
ts lemma 7.II. In�nitely slow motion.10. The \linearised Navier equations" are the following(2:1) ��ui(x; t)� �ui(x; t)�t � 1� �p(x; t)�xi = �Xi(x; t) �� = �2�xk�xk ��uj(x; t)�xj = 0:



210 Jean Leray.� and � are given 
onstants, Xi(x; t) is a ve
tor whi
h represents external for
es, p(x; t) isthe pressure, and ui(x; t) the speed of the mole
ules of the liquid.The problem posed by the theory of vis
ous liquids is the following: Constru
t fort > 0 the solution of (2.1) whi
h has given initial values ui(x; 0).We re
all the solution of this problem and some of its properties. WriteW (t) = ZZZ� ui(x; t)ui(x; t) ÆxJ2m(t) = ZZZ� �mui(x; t)�xk�xl : : : �mui(x; t)�xk�xl : : : Æx:V (t) = Maximum of pui(x; t)ui(x; t) at time t.Dm(t) = Maximum of the fun
tion ��� �mui(x;t)�xh1�xk2�xl3 ��� at time t (h+ k + l = m).We make the following assumptions: The fun
tions ui(x; t) and their �rst derivativesare 
ontinuous, �uj(x;0)�xj = 0, the quantitiesW (0) and V (0) are �nite, jXi(x; t)�Xi(y; t)j <r 12C(x; y; t), where C(x; y; t) is a 
ontinuous fun
tion, and RRR�Xi(x; t)Xi(x; t) Æx is a 
on-tinuous fun
tion of t, or is less than a 
ontinuous fun
tion of t.From now on the letters A and Am denote 
onstants and fun
tions with index m forwhi
h we do not spe
ify the numeri
al value.11. First 
ase: Xi(x; t) = 0.The theory of heat gives the following solution to system (2.1):(2:2) u0i(x; t) = 1(2p�)3 ZZZ� e� r24�t(�t) 32 ui(y; 0) Æy; p0(x; t) = 0:The integrals u0i(x; t) are uniformly 
ontinuous in t (
f. x5, p. 202) for 0 < t, and fromthis one has
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e. 211(2:3) V (t) < V (0):If J1(0) is �nite, inequality (1.14) and the S
hwarz inequality (1.1) applied to (2.2)give a se
ond bound on V (t):V 2(t) < 4J21 (0) 1(4�)3 ZZZ� e� r22�t(�t)3 r2 Æy;whi
h is to say(2:4) V (t) < AJ1(0)(�t) 14 :Inequality (1.3) applied to (2.2) proves:(2:5) W (t) < W (0);the integrals u0i(x; t) are strongly 
ontinuous in t (
f. x5, p. 202) in
luding t = 0. Inequality(1.3) applied to �u0i(x; t)�xk = 1(2p�)3 ZZZ� ��xk "e� r24�t(�t) 32 #ui(y; 0) Æyproves that(2:6) J1(t) < J1(0);the �rst derivatives �u0i�xk are strongly 
ontinuous in t, in
luding t = 0 if J1(0) is �nite.For analogous reasons the derivatives of all orders of u0i(x; t) are uniformly and strongly
ontinuous in t for t > 0 and more pre
isely(2:7) Dm(t) < AmpW (0)(�t) 2m+34 ;(2:8) Jm(t) < AmpW (0)(�t)m2 :12. Se
ond parti
ular 
ase u0i(x; 0) = 0.Oseen's fundamental solution1, Tij(x; t), furnishes the following solution to system(2.1):1 See: Oseen: Hydrodynamik x5; A
ta mathemati
a vol. 34.[translator's note: whi
h gives on p. 41tjk = Æjk 12� E(r;t(0)�t)t(0)�t + �2��xj�xk , � = 1r R r0 E(�; t(0) � t) d�, E(r; t(0) � t) = e� r24�(t(0)�t)pt(0)�t) .℄
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(2:9) u00i (x; t) = Z t0 dt0 ZZZ� Tij(x� y; t� t0)Xj(y; t0) Æyp00(x; t) = � �4� ��xj ZZZ� 1rXj(y; t) ÆyWe have(2:10) jTij(x� y; t� t0)j < A[r2 + �(t� t0)℄ 32�����mTij(x� y; t� t0)�xh1�xk2�xl3 ���� < Am[r2 + �(t� t0)℄m+32 ; (t0 < t):We remark in the �rst pla
e that integrals (1.2) and (1.3) applied with (2.10) to theformula(2:11) �u00i (x; t)�xk = Z t0 dt0 ZZZ� �Tij(x� y; t� t0)�xk Xj(y; t0) Æyprove that the �rst derivatives �u00i�xk are strongly 
ontinuous in t for t � 0, and that(2:12) J1(t) < A Z t0 dt0p�(t� t0)sZZZ�Xi(x; t0)Xi(x; t0) Æx:This done, we add to previously stated hypotheses the assumption that the maximumof pXi(x; t0)Xi(x; t0) at time t is a 
ontinuous fun
tion of t, or is less than a 
ontinuousfun
tion of t. Then there is no diÆ
ulty in dedu
ing from (2.9) that u00i (x; t) and �u00i�xk areuniformly 
ontinuous in t for t � 0, and more pre
isely for example(2:13) D1(t) < A Z t0 dt0p�(t� t0) maxpXi(x; t0)Xi(x; t0):Inequality (2.13) may be 
omplemented as follows. We have
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e. 213�u00i (x; t)�xk � �u00i (y; t)�yk = Z t0 dt0 ZZZ$ �Tij(x� z; t� t0)�xk Xj(z; t0) Æz� Z t0 dt0 ZZZ$ �Tij(y � z; t� t0)�yk Xj(z; t0) Æz+ Z t0 dt0 ZZZ��$ ��Tij(x� z; t� t0)�xk � �Tij(y � z; t� t0)�yk �Xj(z; t0) Æz;$ being the domain of points at distan
e less than 2r to x or y. We apply the formula of�nite di�eren
es to the bra
ket��Tij(x� z; t� t0)�xk � �Tij(y � z; t� t0)�yk �and majorize the pre
eeding three integrals by repla
ing the various fun
tions there by themajorants of their absolute values. We easily verify(2:14) �����u00i (x; t)�xk � �u00i (y; t)�yk ���� << Ar 12 Z t0 dt0[�(t� t0)℄ 34 maxpXi(x; t0)Xi(x; t0):| We say that a fun
tion U(x; t) satis�es 
ondition H if an inequality analogous to thepre
eeding holds:(2:15) jU(x; t)� U(y; t)j < r 12C(t);where C(t) is smaller than a 
ontinuous fun
tion of t. We 
all the weakest possible C(t),the 
ondition H 
oeÆ
ient. |Now suppose that the fun
tions Xi(x; t) satisfy 
ondition H with 
oeÆ
ient C(t).Then the se
ond derivatives �2u00i (x;t)�xk�xl , given by the formulas



214 Jean Leray.�2u00i (x; t)�xk�xl = Z t0 dt0 ZZZ� �2Tij(x� y; t� t0)�xk�xl [Xj(y; t0)�Xj(x; t0)℄ Æy;are then uniformly 
ontinuous in t and(2:16) D2(t) < A Z t0 C(t0) dt0[�(t� t0)℄ 34 :More generally:Suppose the m-th order derivatives of the Xi(x; t) with respe
t to x1, x2, x3 exist, are
ontinuous, and are smaller than some 
ontinuous fun
tions 'm(t). Then the derivativesof order m+ 1 of the u00i (x; t) exist and are uniformly 
ontinuous in t. We have(2:17) Dm+1(t) < A Z t0 'm(t0) dt0p�(t� t0)and �nally the derivatives of order m+ 1 satisfy 
ondition H with 
oeÆ
ient(2:18) Cm+1(t) < A Z t0 'm(t0) dt0[�(t� t0)℄ 34 :If further ZZZ� � �mXi(x; t)�xh1�xk2�xl3 �2 Æx <  2m(t);where  m(t) is a (positive) 
ontinuous fun
tion, then the derivatives of order m + 1 withrespe
t to x1, x2, x3 of the ui(x; t) are strongly 
ontinuous in t and satisfy the inequality(2:19) Jm+1(t) < A Z t0  m(t0) dt0p�(t� t0)Now suppose that the derivatives of order m of the fun
tions Xi(x; t) with respe
t to x1,x2, x3 exist, are smaller in absolute value than a 
ontinuous fun
tion of t, and satisfy
ondition H with 
oeÆ
ient �m(t). Then the derivatives of order m+2 of the ui(x; t) exist,are uniformly 
ontinuous, and satisfy the inequality
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(2:20) Dm+2(t) < A Z t0 �m(t0) dt0[�(t� t0)℄ 34 :13. General 
ase.To obtain solutions ui(x; t) of (2.1) 
orresponding to given initial values ui(x; 0), itsuÆ
es to superpose the two pre
eeding parti
ular solutions, takingui(x; t) = u0i(x; t) + u00i (x; t); p(x; t) = p00(x; t):We propose to 
omplete the information of the two pre
eeding paragraphs by establishingthat ui(x; t) is strongly 
ontinuous in t and is majorised by W (t).This strong 
ontinuity is evident in the 
ase where Xi(x; t) is zero outside of a domain$. When x moves inde�nitely far away, u00i (x; t), �u00i (x;t)xk and p(x; t) approa
h zero as(xixi)� 32 , (xixi)�2 and (xixi)�1 respe
tively, and it suÆ
es to integrate�ui�ui � 12 ��t(uiui)� 1�ui �p�xi = �uiXito obtain the the relation of dissipation of energy(2:21) � Z t0 J21 (t0) dt0 + 12W (t)� 12W (0) = Z t0 dt0 ZZZ� ui(x; t0)Xi(x; t0) Æxfrom whi
h we get the inequality12W (t) � 12W (0) + Z t0 dt0pW (t0)sZZZ�Xi(x; t0)Xi(x; t0) Æx:W (t) is therefore less than or equal to the solution �(t) of the equation12�(t) = 12W (0) + Z t0 dt0p�(t0)sZZZ�Xi(x; t0)Xi(x; t0) Æxwhi
h is to say(2:22) pW (t) � Z t0 sZZZ�Xi(x; t0)Xi(x; t0) Æx dt0 +pW (0):
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an approa
h the fun
tions Xi(x; t)by a sequen
e of fun
tions X�i (x; t) zero outside domains $�, and establish by the pre
eed-ing that relations (2.21) and (2.22) still hold. Then (2.21) shows that W (t) is 
ontinuous.The ui(x; t) are therefore strongly 
ontinuous in t for t � 0.14. ui(x; t) = u0i(x; t)+u00i (x; t) is the only solution to the problem posed in paragraph10, for whi
h W (t) is less than a 
ontinuous fun
tion of t. This proposition results fromthe followingUniqueness theorem The system(2:23) ��ui(x; t)� �ui(x; t)�t � 1� �p(x; t)�xi = 0; �uj(x; t)�xj = 0has just one solution de�ned and 
ontinuous for t � 0, zero for t = 0, su
h that W (t) isless than a 
ontinuous fun
tion of t. This solution is ui(x; t) = 0.In fa
t the fun
tionsvi(x; t) = Z t0 ui(x; t) dt0; q(x; t) = Z t0 p(x; t)dt0are solutions to the same system (2.23). The derivatives�mvi(x; t)�xh1�xk2�xl3 and �m+1vi(x; t)�t�xh1�xk2�xl3exist and are 
ontinuous. One evidently has �q = 0 and it follows that���vi � ��t(�vi) = 0:The theory of heat allows us to dedu
e that �vi = 0. Further, inequalities (1.2) and (1.21) showthat the integral RRR� vi(x; t)vi(x; t) Æx is �nite. Therefore vi(x; t) = 0. And then ui(x; t) = 0.We state a 
orollary to be used in the following paragraph.Lemma 8. Suppose we have for � � t < T the system of relations��ui(x; t)� �ui(x; t)�t � 1� �p(x; t)�xi = ��Xik(x; t)�xk ; �uj(x; t)�xj = 0:Suppose the derivatives �2Xik(x;t)�xj�xl are 
ontinuous and the integrals
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e. 217ZZZ�Xik(x; t)Xik(x; t) Æx; ZZZ� ui(x; t)ui(x; t) Æxless than some 
ontinuous fun
tions of t for � � t < T . We have thenui(x; t) = 1(2p�)3 ZZZ� e� r24�t(�t) 32 ui(y; t0) Æy+��xk Z tt0 dt0 ZZZ� Tik(x� y; t� t0)Xjk(y; t) Æy;p(x; t) = � �4� ��xk ZZZ� 1rXik(y; t) Æy; (� � t0 < t < T ):III. Regular motions.15. De�nitions: Motions of vis
ous liquids are governed by Navier's equations(3:1) ��ui(x; t)� �ui(x; t)�t � 1� �p(x; t)�xi = uk(x; t)�ui(x; t)�xk ; �uk(x; t)�xk = 0;where � and � are 
onstants, p is the pressure, ui the 
omponents of the velo
ity. We setW (t) = ZZZ� ui(x; t)ui(x; t) Æx;V (t) = maxpui(x; t)ui(x; t):We say that a solution ui(x; t) of this system is regular in an interval of time1 � < t <T if in this interval the fun
tions ui, the 
orresponding p and the derivatives �ui�xk , �2ui�xk�xl ,�ui�t , �p�xi are 
ontinuous with respe
t to x1, x2, x3, t and if in addition the fun
tions W (t)and V (t) are less than some 
ontinuous fun
tions of t for � < t < T .We use the following 
onventions.The fun
tion Dm(t) will be de�ned for ea
h value of t in a neighborhood in1 The 
ase where T = +1 is not ex
luded.
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h the derivatives exist and are uniformly 
ontinuous in t; it will be the upper boundof their absolute values.The fun
tion C0(t) [or Cm(t)℄ will be de�ned for all values of t in a neighborhood inwhi
h the fun
tions ui(x; t) [ or the derivatives �mui(x;t)�xh1 �xk2�xl3 ℄ satisfy the same 
ondition H;it will be the 
oeÆ
ient.Finally the fun
tion Jm(t) will be de�ned for ea
h value of t in a neighborhood inwhi
h the derivatives �mui(x;t)�xh1�xk2�xl3 exist and are strongly 
ontinuous in t. We setJ2m(t) = ZZZ� �mui(x; t)�xk�xl : : : �mui(x; t)�xk�xl : : : Æx:Lemma 8 (p. 216) applies to regular solutions to system (3.1) and gives us the relations(3:2) ui(x; t) = 1(2p�)3 ZZZ� e� r24�t(�t) 32 ui(y; t0) Æy+��xk Z tt0 dt0 ZZZ� Tik(x� y; t� t0)uj(y; t)uk(y; t) Æy;(3:3) p(x; t) = � �4� �2�xk�xj ZZZ� 1r uk(y; t)uj(y; t) Æy; (� < t0 < t < T ):Paragraphs 11 and 12 allow us to 
on
lude from (3.2) that the fun
tions ui(x; t) areuniformly and strongly 
ontinuous in t for � < t < T , C0(t) is de�ned for � < t < T andwe have [
f. (2.7) and (2.18)℄C0(t) < ApW (t0)�(t� t0) +A Z tt0 V 2(t0) dt0[�(t� t0)℄ 34 :This result with (3.2) shows that D1(t) exists for � < t < T and gives the inequality [
f.(2.7) and (2.16)℄ D1(t) < ApW (t0)[�(t� t0)℄ 34 + A Z tt0 V (t0)C0(t0) dt0[�(t� t0)℄ 34 :
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eed by re
urren
e:The existen
e of D1(t); : : : ; Dm+1(t) guarantees that of Cm+1(t) and one has [
f. (2.7)and (2.18)℄Cm+1(t) < AmpW (t0)[�(t� t0)℄m+32 + Am Z tt0 V (t0)Dm+1(t0) +P�+�=m+1D�(t0)D�(t0)[�(t� t0)℄ 34 dt0:The existen
e of D1(t); : : : ; Dm+1(t); C0(t); : : : ; Cm+1(t) guarantees that of Dm+2(t)and one 
an majorize this last fun
tion using the pre
eeding [
f. (2.7) and (2.20)℄.The fun
tions Dm(t) and Cm(t) are therefore de�ned for � < t < T , however large mmay be.Further, paragraphs 11 and 12 allow us to dedu
e from (3.2) the existen
e of J1(t) forall values of t and we have [
f. (2.8) and (2.19)℄J1(t) < ApW (0)[�(t� t0)℄ 12 +A Z tt0 W (t0)D1(t0)p�(t� t0) dt0:More generally the existen
e of D1(t); : : : ; Dm(t), J1(t); : : : ; Jm�1(t) guarantees that ofJm(t) [
f. (2.8) and (2.19)℄.It is now easy for us to establish by the intermediary (3.3) that p(x; t) and its deriva-tives �mp(x;t)�xk�xj ::: are uniformly and strongly 
ontinuous in t for � < t < T . By Navier'sequations it is the same for the fun
tions �ui�t , �m+1u�t�xk�xj ::: .More generally, equations (3.1) and (3.3) allow us to redu
e the study of the ordern+ 1 derivatives with respe
t to t to the study of the order n derivatives with respe
t tot. So �nally we a
hieve the following theorem.If the fun
tions ui(x; t) are a regular solution of Navier's equations for � < t < T , thenall their partial derivatives exist, and the derivatives as well as the ui(x; t) are uniformlyand strongly 
ontinuous in t for � < t < T .
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eeding paragraph tea
hes us more: we learn that it is possible to boundthe fun
tions ui(x; t) and their partial derivatives of all orders by means of just W (t) andV (t). The result is:Lemma 9. Let u�i (x; t) be an in�nity of solutions to Navier's equations, all regular inthe same interval (�; T ). Suppose the various V �(t) andW �(t) all less than one fun
tion oft, 
ontinuous in (�; T ). Then one 
an extra
t a subsequen
e su
h that the u�i (x; t) and ea
hof their derivatives 
onverge respe
tively to 
ertain fun
tions ui(x; t) and their derivatives.Ea
h of the 
onvergen
es is uniform on all domains $ for �+ � < t < T � � (� > 0). Thefun
tions ui(x; t) are a regular solution of Navier's equations in (�; T ).In fa
t, Cantor's diagonal method (x4, p. 201) allows the extra
tion of a sequen
e of fun
tionsu�i (x; t) whi
h, with their derivatives, 
onverge for any given rational values of x1, x2, x3, t. Thissubsequen
e has the properties stated in the lemma.17. The quantities W (t) and J1(t) | whi
h from now on we write simply as J(t)| are linked by an important relation. It is obtained by repla
ing Xi in (2.21) by uk �ui�xkand remarking thatZZZ� ui(x; t0)uk(x; t0)�ui(x; t0)�xk Æx = 12 ZZZ� uk(x; t0)�ui(x; t0)ui(x; t0)�xk Æx = 0;It is the \energy dissipation relation"(3:4) � Z tt0 J2(t0) dt0 + 12W (t) = 12W (t0):This relation and the two paragraphs above show that the fun
tions W (t), V (t), and J(t)play an essential role. We will espe
ially point out, of all the inequalities one 
an dedu
efrom 
hapter II, some whi
h involve these three fun
tions without any longer o

upyingourselves with the quantities Cm(t), Dm(t), : : :Before writing the fundamental inequalities, we make the de�nition:A solution ui(x; t) of Navier's equations will be 
alled regular for � � t < T when itis regular for � < t < T and if in addition the following 
onditions
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tions ui(x; t) and �ui(x;t)�xj are 
ontinuous with respe
t to x1, x2, x3,t also for t = �, they are strongly 
ontinuous in t also for t = �, and the ui(x; t) remainbounded when t approa
hes �.In these 
onditions the relation (3.2) holds for � � t0 < t < T (the value � was notallowed to be t0 until now). Chapter II allows us to dedu
e two fundamental inequalities.In these, the symbol fB;Cg is the smaller of B and C, and A0, A00, A000 are numeri
al
onstants. The inequalities are(3:5) V (t) < A0 Z tt0 f V 2(t0)p�(t� t0) ; W (t0)[�(t� t0)℄2 g dt0 + fV (t0); A000J(t0)[�(t� t0)℄ 14 g(3:6) J(t) < A00 Z tt0 J(t0)V (t0)p�(t� t0) dt0 + J(t0) (� � t0 < t < T ):18. Comparison of two regular solutions.We 
onsider two solutions of Navier's equations, ui and ui+vi, regular for � < t < T .We have ��vi � �vi�t � 1� �q�xi = vk �ui�xk + (uk + vk) �vi�xk ; �vk�xk = 0:Let w(t) = ZZZ� vi(x; t)vi(x; t) Æx; j2(t) = ZZZ� �vi(x; t)�xk �vi(x; t)�xk Æx:We apply (2.21) whi
h has already given us the fundamental relation (3.4). Here it gives�j2(t) + 12 dwdt = ZZZ� vivk �ui�xk Æx+ ZZZ� vi(uk + vk) �vi�xk Æx:Now we have ZZZ� vi(uk + vk) �vi�xk Æx = 12 ZZZ�(uk + vk)�(vivi)�xk Æx = 0and ZZZ� vivk �ui�xk Æx = � ZZZ� �vi�xk vkui Æx < j(t)pw(t)V (t):



222 Jean Leray.Therefore �j2(t) + 12 dwdt < j(t)pw(t)V (t)from whi
h 2� dwdt < v(t)V 2(t)and �nally(3:7) w(t) < w(t0)e 12� R tt0 V 2(t0) dt0 (� < t0 < t < T ):From this important relation we get in parti
ularA uniqueness theorem: Two regular solutions of Navier's equations for � � t < Tare ne
essarily identi
al for these t if their initial velo
ities are the same for t = �.19. Suppose we are given a regular initial state, whi
h is to say a 
ontinuous ve
torui(x; t) with 
ontinuous �rst derivatives, having zero divergen
e and su
h that the quan-tities W (0), V (0), J(0) are �nite. The goal of this paragraph is to establish the followingproposition.Existen
e theorem: To ea
h regular initial state ui(x; 0) there 
orresponds a solutionui(x; t) to Navier's equations, de�ned for 0 � t < � and whi
h redu
es to ui(x; 0) for t = 0.We form su

essive approximationsu(0)i (x; t) = 1(2p�)3 ZZZ� e� r24�t(�t) 32 ui(x; 0) Æy;: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :u(n+1)i (x; t) = ��xk Z t0 dt0 ZZZ� Tij(x� y; t� t0)u(n)k (y; t0)u(n)j (y; t0) Æy + u(0)i (x; t);: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :First we write inequalities whi
h follow from (2.3) and (2.13):V 0(t) � V (0)V (n+1)(t) � A0 Z t0 [V (n)(t0)℄2p�(t� t0) dt0 + V (0):
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ontinuous fun
tion satisfying'(t) � A0 Z t0 '2(t)p�(t� t0) dt0 + V (0):We 
hoose '(t) = (1 +A)V (0) whi
h gives � the value(3:8) � = A�V �2(0):Then letv(n)(t) = maxq[u(n)i (x; t)� u(n+1)i (x; t)℄[u(n)i (x; t)� u(n+1)i (x; t)℄at time t.We have v(1)(t) < A0 Z �0 V 2(0)p�(t� t0) dt0 = AV (0)v(n+1)(t) < A Z �0 '(t0)v(n)(t0)p�(t� t0) dt0 = AV (0) Z �0 v(n)(t0)p�(t� t0) dt0From this we get that the fun
tions u(n)i (x; t) 
onverge uniformly to 
ontinuous limitsui(x; t) for 0 � t � � .One shows without diÆ
ulty that in the interior of the interval, ea
h of the derivativesof the u(n)i (x; t) 
onverges uniformly to the 
orresponding derivative of the ui(x; t); thereasoning is too 
lose to that of paragraph 15 to repeat it. The fun
tions ui(x; t) thereforesatisfy Navier's equations for 0 < t < � .We verify that the integral W (t) = RRR� ui(x; t)ui(x; t) Æx is less than a 
ontinuousfun
tion of t. Inequalities (2.5) and (2.12) give the following, where A0 is a 
onstantqW (0)(t) �pW (0)qW (n+1)(t) � A0 Z t0 '(t0)pW (n)(t)p�(t� t0) dt0 +pW (0):



224 Jean Leray.By the theory of linear equations there is a positive fun
tion �(t) satisfying�(t) = A0 Z t0 '(t0)�(t)p�(t� t0) dt0 +pW (0):We have W (n)(t) � �2(t), so W (t) � �2(t).It rests upon us to make pre
ise how the ui(x; t) behave when t tends to zero. Wealready know that they redu
e to the given ui(x; 0), remaining 
ontinuous for t = 0. Toshow that they remain strongly 
ontinuous in t when t approa
hes zero, it suÆ
es bylemma 1 to prove lim supt!0 W (t) �W (0):This inequality is 
lear sin
e �2(0) = W (0). One shows in the same way that the �ui(x;t)�xkare strongly 
ontinuous in t, even for t = 0.At this point the proof of the existen
e theorem announ
ed above is 
omplete.But formula (3.8) furnishes a se
ond result: Let us say that a a solution of Navier'sequations, regular in a interval (�; T ), be
omes irregular at time T when T is �nite and itis impossible to extend the regular solution to any larger interval (�; T 0). Formula (3.8)revealsA �rst 
hara
terization of irregularities If a solution of Navier's equations be
omesirregular at time T , then V (t) be
omes arbitrarily large as t tends to T , and more pre
isely(3:9) V (t) > Ar �T � t :20. It will be important to know whether there are solutions whi
h be
ome irregular.If these 
annot be found to exist, then the regular solution 
orresponding to a regularinitial state ui(x; 0) will exist for all positive values of t.No solution 
an be
ome irregular if inequality (3.9) is in
ompatible with the funda-mental relations (3.4), (3.5) and (3.6), but this is not an issue as one sees by 
hoosing
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(3:10) V (t) = A00[�(T � t)℄� 12 ;W (t) = A000 [�(T � t)℄ 12 ; J(t) = pA0002 [�(T � t)℄� 14and from this 
he
k that for all suÆ
iently large values of the 
onstants A00 and A000 in-equality (3.9) and relation (3.4) are satis�ed, as well as the following two inequalities whi
hare stronger than (3.5) and (3.6)V (t) < A0 Z tt0 f V 2(t0)p�(T � t0) ; W (t0)[�(T � t0)℄2 g dt0 + fV (t0); A000J(t0)[�(t� t0)℄ 14 gJ(t) < A00 Z tt0 J(t0)V (t0)p�(T � t0) dt0 + J(t0) (t0 < t < T ):Navier's equations 
ertainly have a solution whi
h be
omes irregular and for whi
hW (t), V (t) and J(t) are of the type (3.10) if the system(3:11) ��Ui(x)� � �Ui(x) + xk �Ui(x)�xk �� 1� �P (x)�xi = Uk(x)�Ui(x)�xk ;�Uk(x)�xk = 0;where � is a positive 
onstant, has a nonzero solution with the Ui(x; t) bounded and theintegrals RRR� Ui(x; t)Ui(x; t) Æx �nite. It is(3:12) ui(x; t) = [2�(T � t)℄� 12Ui[(2�(T � t))� 12x℄ (t < T )(�x is the point with 
oordinates �x1, �x2, �x3.)Unfortunately I have not made a su

essful study of system (3.11). We therefore leavein suspense the matter of knowing whether irregularities o

ur or not.21. Various 
onsequen
es of the fundamental relations (3.4), (3.5) and (3.6). Supposewe have a solution to Navier's equations, regular for � � t < T and whi
h be
omesirregular as t tends to T , where T is not +1. From the fundamental relations (3.4) and(3.5) we get the inequality



226 Jean Leray.(3:13) V (t) < A0 Z tt0 f V 2(t0)p�(t� t0) ; W (t0)[�(t� t0)℄2 g dt0 + fV (t0); A000J(t0)[�(t� t0)℄ 14 g(� � t0 < t < T ):We suppose there is a 
ontinuous fun
tion '(t) in 0 < t � � , satisfying the inequality(3:14) '(t) � A0 Z t0 f '2(t0)p�(t� t0) ; W (t0)[�(t� t0)℄2 g dt0 + fV (t0); A000J(t0)[�(t� t0)℄ 14 g:We then have(3:15) V (t) < '(t� t0)for values of t 
ommon to the two intervals (t0; T ) and (t0; t0 + �). Then the �rst 
hara
-terisation of irregularity implies(3:16) t0 + � < T:Further suppose we know a fun
tion  (t) su
h that(3:17)  (t) � A00 Z t0 '(t0) (t0)p�(T � t0) dt0 + J(t0) (0 < t � �):Then inequality (3.6) gives(3:18) J(t) <  (t� t0) pour t0 < t � t0 + �:The �rst 
hara
terisation of irregularities follows from (3.16) if we 
hoose'(t) = (1 + A)V (t0) and � = A�V �2(t0):The 
hoi
e '(t) = (1 + A)V (t0) and � = +1 satis�es (3.14) ifV (t0)) > Z 10 fAV 2(t0)p�t0 ; AW (t0)(�t0)2 g dt0i.e. when ��3W (t0)V (t0) < A. So:First 
ase of regularity: A regular solution never be
omes irregular if the quantity��3W (t)V (t) is less than a
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ertain 
onstant A either initially or at any other instant at whi
h the solution has notbe
ome irregular.One 
an satisfy (3.14) and (3.17) by a 
hoi
e of the type(3:19) '(t) = AJ(t0)[�(t� t0)℄� 14 ;  (t) = (1 + A)J(t0); � = A�3J�4(t0):This givesA se
ond 
hara
terisation of irregularities: If a solution of Navier's equations be
omesirregular at time T , then J(t) grows inde�nitely as t tends to T ; and more pre
iselyJ(t) > A� 34(T � t) 14 :Inequalities (3.15) and (3.19) show that a solution regular at t remains regular untilt0 + � and that one has V (t0 + �) < A��1J2(t0):The fundamental relation (3.4) further givesW (t0 + �) < W (t0):Therefore ��3W (t0 + �)V (t0 + �) < A��4W (t0)J2(t0):An appli
ation of the �rst 
ase of regularity to the time t0 + � now givesA se
ond 
ase of regularity: A regular solution never be
omes irregular if��4W (t)J2(t)is less than a 
ertain 
onstant A either initially or at all other previous instants at whi
hthe solution has not be
ome irregular.22. One similarly establishes the following results, of whi
h the pre
eeding areparti
ular 
ases.Chara
terisation of irregularities: If a solution be
omes irregular at time T , one hasfZZZ�[ui(x; t)ui(x; t)℄ p2 Æxg 1p > A(1� 3p )� 12 (1+ 3p )(T � t) 12 (1� 3p ) (p > 3):Case of regularity: A regular solution never be
omes irregular if at some time



228 Jean Leray.[AW (t)℄p�3 ZZZ�[ui(x; t)ui(x; t)℄ p2 Æxg < A(1� 3p )3�3(p�2) (p > 3):The 
ase of regularity whi
h we are pointing out shows how a solution always remains regularif its initial velo
ity state is suÆ
iently near rest. More generally, 
onsider a velo
ity state to whi
h
orresponds a solution whi
h never be
omes irregular. For all initial states suÆ
iently near there
orresponds a solution whi
h also never be
omes irregular. The proof makes use of those resultsof paragraph 34 whi
h 
on
ern behavior of solutions to Navier's equations for large values of t.IV. Semi-regular initial states.23. We will be led by the 
urrent of Chapter VI to 
onsider initial states whi
hare not regular in the sense of paragraph 17. We begin their study with the remark, thatinequality (3.7) allows a uniqueness theorem whi
h is more general than that of paragraph18. To this end we make a de�nition.We say that a solution of Navier's equations is semi-regular for � � t < T if it isregular for � < t < T and the two following 
onditions hold.The integral R t� V 2(t0) dt0 is �nite when � < t < T .The ui(x; t) have ui(x;�) as strong limit in mean as t tends to �.| We 
all \initial velo
ity state" any ve
tor ui(x;�), with quasi-divergen
e zero. |The theorem given by inequality (3.7) is the following.Uniqueness theorem: Two solutions of Navier's equations whi
h are semi-regular for� � t < T , are ne
essarily identi
al for all values of t if their initial velo
ity states at time� are equal almost everywhere.We say that an initial velo
ity state ui(x; 0) is semi-regular if there 
orresponds asemi-regular solution ui(x; t) on an interval 0 � t < � .24. Suppose a ve
tor Ui(x) has quasi-divergen
e zero, 
omponents square summableon �, and quasi-derivatives square summable on �. We are going to establish that thevelo
ity �eld Ui(x) is a semi-regular initial state.
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e. 229Let W (0) = ZZZ� Ui(x)Ui(x) Æx et J2(0) = ZZZ� Ui;j(x)Ui;j(x) Æx:The fun
tions Ui(x) 
onstitute a regular initial state, as shown by lemma 6 and paragraph8 (p. 209 et 206). Let u�i (x; t) be the regular solution whi
h 
orresponds to the initial stateUi(x). We have, in virtue of inequality (1.21) and the energy dissipation relation (3.4) that(4:1) W �(t) < W (0):Lemma 4 shows us that �Ui(x)�xj = Ui;j(x). Thus we have from (1.21)J�(0) < J(0):Relations (3.15), (3.18), and (3.19) allow us to dedu
e from this that in some interval (0; �)the various solutions u�i (x; t) are regular and satisfy inequalities(4:2) V �(t) < AJ(0)(�t)� 14 ; J�(t) < (1 +A)J(0):We have further(4:3) � = A�3J�4(0):Inequalities (4.1) and (4.2) let us apply lemma 9 (p. 220). There is a length � in thede�nition (1.18) of U(x). It is possible to make this tend to zero in su
h a way that for0 < t < � the fun
tions u�i (x; t) and all their derivatives 
onverge respe
tively to 
ertainfun
tions ui(x; t) and to their derivatives. These ui(x; t) are a regular solution to Navier'sequations for 0 < t < � . By (4.1) and (4.2) this solution satis�es the three inequalities(4:4) W (t) �W (0); V (t) � AJ(0)(�t)� 14 ; J(t) � (1 + A)J(0):The integral R t0 V 2(t0) dt0 is therefore �nite for 0 < t < � . Now we must spe
ify how theui(x; t) behave as t tends to zero.



230 Jean Leray.Let ai(x) be any ve
tor of divergen
e zero, for whi
h the 
omponents as well as alltheir derivatives are square summable on �. From Navier's equations we getZZZ� u�i (x; t)ai(x) Æx = ZZZ� U�i (x)ai(x) Æx+� Z t0 dt0 ZZZ� u�i (x; t0)�ai(x) Æx+ Z t0 dt0 ZZZ� u�k(x; t0)u�k(x; t0)�ai(x)�xk Æx:Then passing to the limitZZZ� ui(x; t)ai(x) Æx = ZZZ� U�i (x)ai(x) Æx+� Z t0 dt0 ZZZ� ui(x; t0)�ai(x) Æx+ Z t0 dt0 ZZZ� u�k(x; t0)u�k(x; t0)�ai(x)�xk Æx:This last relation shows thatZZZ� ui(x; t)ai(x) Æx tends to ZZZ� U�i (x)ai(x) Æxwhen t tends to zero. In these 
onditions ui(x; t) has a unique weak limit in mean, whi
his Ui(x) (
f. Corollary to lemma 7, p. 209). But the inequality W (t) � W (0) allows usto use the 
riteria for strong 
onvergen
e announ
ed on p. 200, and we also note that theui(x; t) 
onverge strongly in mean to the Ui(x) as t tends to zero.ui(x; t) is therefore a semi-regular solution1 for 0 � t < � and it 
orresponds to theinitial state Ui(x).25. By analogous reasoning one 
an treat the two other 
ases pointed out in thetheorem below.Existen
e theorem: Let the ve
tor Ui(x) have quasi-divergen
e zero, with1 One 
an similarly 
he
k that the fun
tions �uj(x;t)�xj 
onverge strongly in mean to theUi;m(x) as t tends to zero.
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omponents are square summable on �. One 
an verify that the initial velo
ity statewhi
h it de�nes is semi-regulara) if the fun
tions Ui(x) have square summable quasi-derivative on �;b) if the fun
tions Ui(x) are bounded;
) or �nally if the integral RRR�[Ui(x)Ui(x)℄ p2 Æx is �nite for some value of p larger than3. N. B. This theorem and the existen
e theorem of paragraph 19 evidently do not letus study the behavior at in�nity for a solution with initial state in the neighborhood of agiven initial state. V. Turbulent solutions.26. Let ui(x; 0) be a regular initial state. We have not su

eeded in proving thatthe 
orresponding regular solution to Navier's equations is de�ned for all values of t afterthe initial instant t = 0. But 
onsider the system(5:1) ��ui(x; t)� �ui(x; t)�t � 1� �p(x; t)�xi = uk(x; t)�ui(x; t)�xk ; �uj(x; t)�xj = 0:This system is very near Navier's equations when the length1 � is very short. All wehave said in Chapter III on Navier's equations is appli
able without modi�
ation, otherthan the in
on
lusive 
onsiderations of paragraph 20. Thus we know many properties ofsystem (5.1) whi
h are independent of �. Further, the S
hwarz inequality (1.1) gives usUk(x; t) < A0�� 32pW (t);A0 being a numeri
al 
onstant. This new inequality and the energy dissipation relation(3.4) allows us to write the following beside inequality (3.5) if a solution to system (5.1) isregular for 0 � t < T , then1 Re
all this length was introdu
ed in x8 (p, 206), when we de�ned the symbol U(x).



232 Jean Leray.V (t) < A0A0�� 32pW (0)Z t0 V (t0) dt0p�(t� t0) + V (0) (0 < t < T ):From this we get that on all intervals of regularity (0; T ), V (t) remains less than the
ontinuous fun
tion '(t) on 0 � t, whi
h satis�es the Volterra linear integral equation'(t) = A00A0�� 32pW (0)Z t0 '(t0) dt0p�(t� t0) + V (0):V (t) therefore remains bounded when, T being �nite, t tends to T . That 
ontradi
tsthe �rst 
ara
terization of irregularity (p. 224). In other words, the unique solution toequations (5.1) 
orresponding to a given regular initial state is de�ned for all time afterthe initial instant.27. Given a motion whi
h satis�es equations (5.1), we will need results on itsrepartition of kineti
 energy: 12ui(x; t)ui(x; t). These must be independent1 of �.Consider two 
onstant lengths R1 and R2 (R1 < R2) and introdu
e the followingfun
tion f(x) f(x) = 0 for r0 � R1;f(x) = r0 �R1R2 � R1 for R1 � r0 � R2; (r20 = xixi)f(x) = 1 for R2 � r0:A 
al
ulation analogous to that giving the energy dissipationn relation (2.21) here gives� Z t0 dt0 ZZZ� f(x)�ui(x; t0)�xk �ui(x; t0)�xk Æx+ 12 ZZZ� f(x)ui(x; t)ui(x; t) Æx == 12 ZZZ� f(x)ui(x; 0)ui(x; 0) Æx� � Z t0 dt0 ZZZ� �f(x)�xk ui(x; t)�ui(x; t)�xk Æx+1 They will apply equally to solutions of Navier's equations.
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e. 233+1� Z t0 dt0 ZZZ� �f(x)�xk p(x; t0)ui(x; t0) Æx++12 Z t0 dt0 ZZZ� �f(x)�xk uk(x; t0)ui(x; t0)ui(x; t0) Æx:From this we get the inequality12 ZZZr0>R2 ui(x; t)ui(x; t) Æx < 12 ZZZr0>R1 ui(x; 0)ui(x; 0) Æx+(5:2) +�pW (0)R2 � R1 Z t0 J(t0) dt0 + 1� pW (0)R2 �R1 Z t0 dt0sZZZ� p2(x; t0) Æx++pW (0)R2 � R1 Z t0 dt0sZZZ� �12ui(x; t0)ui(x; t0)�2 Æx:We majorize the last three terms. By the S
hwarz inequality(5:3) Z t0 J(t0) dt0 <sZ t0 J2(t0) dt0pt <rW (0)2� pt:Further (
f. (3.3)):(5:4) 1�p(x; t0) = 14� ZZZ� �(1r )�xj �ui(y; t0)�yk uk(y; t0) Æy;from whi
h1�2 ZZZ� p2(x; t0) Æx = 14� ZZZ� ZZZ� uk(x; t0)�ui(x; t0)�xk 1r uj(y; t0)�ui(y; t0)�yj Æx Æy:Relation (1.14) and the S
hwarz inequality (1.1) giveXi �ZZZ� 1r uj(y; t0)�ui(y; t0)�yj �y�2 < 4J4(t0):Further



234 Jean Leray.Xi �ZZZ� uk(x; t0)�ui(x; t0)�xk Æx�2 < W (t0)J(t0);therefore 1�2 ZZZ� p2(x; t0) Æx < 12�pW (t0)J3(t0);and it follows1(5:5) 1� Z t0 dt0sZZZ� p2(x; t0) Æx < [W (0)℄ 14p2� Z t0 J 32 (t0) dt0 < W (0)p2�(2�) 34 t 14 :From (1.13) we get12ui(x; t0)ui(x; t0) = � 14� ZZZ� �(1r )�xk ui(y; t0)�ui(y; t0)�yk Æy:This formula is analogous to (5.4). By 
al
ulations like the pre
eeding it leads to(5:6) Z t0 dt0sZZZ� �12ui(x; t0)ui(x; t0)�2 Æx < W (0)p2�(2�) 34 t 14 :Using the majorants (5.3), (5.5), and (5.6) in (5.2) we obtain12 ZZZr0>R2 ui(x; t0)ui(x; t0) Æx < 12 ZZZr0>R1 ui(x; 0)ui(x; 0) Æx+(5:7) + W (0)p�tp2(R2 � R1) + W 32 (0)t 142 14� 12 � 34 (R2 � R1) :1 We use the inequality Z t0 J 32 (t0) dt0 < �Z t0 J2(t0) dt0� 34 t 14whi
h is a parti
ular 
ase of \H�older's inequality"����Z t0 '(t0) (t0) dt0���� < �Z t0 'p(t0) dt0� 1p �Z t0  q(t0) dt0� 1q (1p + 1q = 1; 1 < p; 1 < q):
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 energy remains lo
alized at �nite distan
e.28. Suppose we have given at t = 0 an arbitrary initial ve
tor Ui(x), with 
omponentssquare summable on � and quasi-divergen
e zero. The ve
tor Ui(x) is a regular initial state(
f. lemma 6 and paragraph 8). Write u�i (x; t) for the 
orresponding regular solution toequations (5.1). It is de�ned for all t. The obje
t of this 
hapter is to study the limitswhi
h this regular solution may have as � tends to zero.We will use the following three properties of the u�i (x; t).1o) Let a�i (x; t) be an arbitrary ve
tor of divergen
e zero, of whi
h all 
omponents andall their derivatives are uniformly and strongly 
ontinuous in t. By (5.1):ZZZ� u�i (x; t)ai(x; t) Æx = ZZZ� U�i (x; t)ai(x; 0) Æx+(5:8) + Z t0 dt0 ZZZ� u�i (x; t) ���ai(x; t0) + �ai(x; t0)�t0 � Æx++ Z t0 dt0 ZZZ� u�i (x; t)u�i (x; t)�ai(x; t0)�xk Æx:2o) The energy dissipation relation and (1.21) give(5:9) � Z tt0 J�2(t0) dt0 + 12W �(t) = 12W �(t0) < 12W (0):By de�nition(5:10) W (0) = ZZZ� Ui(x)Ui(x) Æx:3o) Inequality (5.7) and the inequalityW �(0) < W (0) justify the following proposition



236 Jean Leray.Le � be an arbitrarily small 
onstant with (0 < � < W (0)). We let R1(�) be thelength for whi
h ZZZr0>R1(�) Ui(x)Ui(x) Æx = �2and write s(�; t) for the sphere with 
enter at the origin with radiusR2(�; t) = R1(�; t) + 4� "W (0)p�tp2 + W 32 t 142 14� 12 � 34 # :We have(5:11) lim sups!0 ZZZ��s(�;t) u�i (x; t)u�i (x; t) Æx � �:29. Let � tend to zero through a 
ountable sequen
e of values �1; �2; : : : Consider the
orresponding fun
tions W �(t). This is a bounded set of fun
tions and ea
h is de
reasing.Cantor's diagonal method (x4) allows us to extra
t from the sequen
e �1; �2; : : : a subse-quen
e �l1 ; �l2 ; : : : su
h that the W �(t) 
onverge for all rational values of t. The W �(t)therefore 
onverge to a de
reasing fun
tion, ex
ept maybe at points of dis
ontinuity of thelimit. The points dis
ontinuity of a de
reasing fun
tion are 
ountable. A se
ond appli
a-tion of Cantor's method allows us to extra
t from �l1 ; �l2 ; : : : a subsequen
e �m1 ; �m2 ; : : :su
h that the 
orresponding W �(t) 
onverge1 for all t. We write W (t) for the de
reasingfun
tion whi
h is their limit. (This de�nition does not 
ontradi
t (5.10).)The inequality W �(t) < W (0) shows that ea
h of the integralsZ t2t1 dt0 ZZZ$ u�i (x; t0) Æx; Z t2t1 dt0 ZZZ$ u�k(x; t0)u�i (x; t0) Æxis less than a bound independent of �. By a third use of Cantor's diagonal method we 
antherefore extra
t from the sequen
e �m1 ; �m2 ; : : : a subsequen
e �n1 ; �n2 ; : : : su
h that ea
hof these integrals has a unique1 In other words we use Helly's theorem.
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ube with sides parallel to the axes and withverti
es having rational 
oordinates. The inequality W �(t) < W (0) and the hypothesesmade on the ai(x; t) imply that the integralsZ t0 dt0 ZZZ� u�i (x; t0) ���ai(x; t0) + �ai(x; t0)�t0 � Æx;Z t0 dt0 ZZZ� u�k(x; t0)u�k(x; t0)�ai(x; t0)�xk Æxhave a unique limit. This result, with (5.8) shows thatZZZ� u�i (x; t)ai(x; t) Æx
onverges to a unique limit, for all ai(x; t) and t. Therefore (
f. Corollary to lemma 7) theu�i (x; t) 
onverge weakly in mean to some limit Ui(x; t) for ea
h value of t.Also, given a sequen
e of values of � whi
h tend to zero, one 
an extra
t from thema subsequen
e su
h that the W �(t) 
onverge to a unique limit W (t) and that the u�i (x; t)have for ea
h value of t a unique weak limit in mean: Ui(x; t). We suppose from here onthat � tends to zero through a sequen
e of values �� su
h that these two 
onditions hold.Remark I By (1.9) W (t) � ZZZ� Ui(x; t)Ui(x; t) Æx:1 In fa
t these hypotheses imply the following. Given t, a number � (> 0) and a fun
tionÆ(x; t) equal to one of the derivatives of the ai(x; t), one 
an �nd an integer N and two dis
on-tinuous fun
tions �(x; t) and 
(x; t) with the following properties. �(x; t) and 
(x; t) remain
onstant when x1, x2, x3, t vary without hitting(?) any multiple of 1N , and ea
h of them is zerooutside of a domain $, and(?)Z t0 dt0 ZZZ�[Æ(x; t0)� �(x; t0)℄2 Æx < �; [Æ(x; t0)� 
(x; t0)℄ < � for 0 < t0 < t:
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tor Ui(x; t) 
learly has quasi-divergen
e zero.30. Inequality (5.9) gives us� Z 10 [lim inf J�(t0)℄2 dt0 < 12W (0):Thus the lim inf J�(t) 
an only be +1 for a set of values of t of measure zero. Suppose t1is in the 
omplement of this set. One 
an extra
t from the sequen
e of values �� 
onsideredhere a subsequen
e1 ��� su
h that on � the 
orresponding fun
tions �u��i (x;t1)�xj 
onvergeweakly in mean to a limit Ui;j(x; t1) (
f. Fundamental Theorem of F. Riesz, p. 202).Lemma 2 allows us to 
on
lude that the Ui(x; t1) have quasi-derivatives whi
h are theUi;j(x; t1). We set J(t1) = ZZZ� Ui;j(x; t1)Ui;j(x; t1) Æx:We have (
f. (1.9)) J(t1) � lim inf J�(t1):Using this inequality in (5.9) we obtain(5:12) � Z tt0 J2(t0) dt0 + 12W (t) � 12W (t0) � 12W (0) (0 � t0 � t):Lemma 2 tea
hes us �nally that on all domains $ the u��i (x; t1) 
onverge strongly inmean to the Ui(x; t);lim���!0 ZZZ$ u��i (x; t1)u��i (x; t1) Æx = ZZZ� Ui(x; t1)Ui(x; t1) Æx:Choosing $ to be s(�; t1) and taking a

ount of (5.11) we get1 The subsequen
e we 
hoose is a fun
tion of t1.
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lim supZZZ� u��i (x; t1)u��i (x; t1) Æx � ZZZs(�;t1) Ui(x; t1)Ui(x; t1) Æx+ �:From this, sin
e � is arbitrarily small and sin
e W �(t1) has a limit(5:13) lim��!0 ZZZ� u�i (x; t1)u�i (x; t1) Æx � ZZZ� Ui(x; t1)Ui(x; t1) Æx:We apply the strong 
onvergen
e 
riterion from p. 200. Note that on � the u�i (x; t)
onverge strongly in mean to the Ui(x; t) for all values t1 of t not belonging to the set ofmeasure zero on whi
h lim inf J�(t) = +1.For all these values of t the two sides of (5.13) are equal, i.e.(5:14) W (t1) = ZZZ� Ui(x; t1)Ui(x; t1) Æx:The fun
tions u�i (x; t1) also 
onverge strongly in mean to Ui(x; t1) (
f. Generalisationof lemma 3, p. 207). The integral whi
h �gures in (5.8)ZZZ� u�k(x; t0)u�i (x; t0)�ai(x; t0)�xk Æxtherefore 
onverges to ZZZ� Uk(x; t0)Ui(x; t0)�ai(x; t0)�xk Æxfor almost all values of t0 (
f. (1.8)). Further, this integral is less than3W (0)max j�ai(x; t0)�xk jLebesgue's theorem 
on
erning passage to the limit under the R sign gives



240 Jean Leray.lim��!0 Z t0 dt0 ZZZ� u�k(x; t0)u�i (x; t0)�ai(x; t0)�xk Æx =Z t0 dt0 ZZZ� Uk(x; t0)Ui(x; t0)�ai(x; t0)�xk Æx;By lemma 5 the right hand side of this 
an be put into the form� Z t0 dt0 ZZZ� Uk(x; t0)Ui;k(x; t0)ai(x; t0) Æx:From the beginning of this paragraph we 
an 
laim that the other terms in (5.8)similarly 
onverge. We obtain the limits by substituting Ui(x; t) for u�i (x; t) and Ui(x) forUi(x). This gives ZZZ� Ui(x; t)ai(x; t) Æx = ZZZ� Ui(x; t)ai(x; 0) Æx(5:15) + Z t0 dt0 ZZZ� Ui(x; t) ���ai(x; t0) + �ai(x; t0)�t0 � Æx� Z t0 dt0 ZZZ� Ui(x; t)Ui;k(x; t0)ai(x; t0) Æx:31. These results lead to the following de�nition. We say that a ve
tor Ui(x; t)de�ned for t � 0 
onstitutes a turbulent solution to Navier's equations when the following
onditions are realised, where values of t that we 
all singular form a set of measure zero.For ea
h positive t the fun
tions Ui(x; t) are square summable on � and the ve
torUi(x; t) has quasi-divergen
e zero.The fun
tion
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e. 241Z t0 dt0 ZZZ� Ui(x; t) ���ai(x; t0) + �ai(x; t0)�t0 � Æx� ZZZ� Ui(x; t)ai(x; t) Æx� Z t0 dt0 ZZZ� Uk(x; t0)Ui;k(x; t0)ai(x; t0) Æxis 
onstant (t � 0). (Equivalently, (5.15) holds.) For all positive values of t ex
ept possiblyfor 
ertain singular values, the fun
tions Ui(x; t) have quasi-derivatives Ui;j(x; t) whi
h aresquare summable on �.Set J2(t) = ZZZ� Ui;j(x; t)Ui;j(x; t) Æx;J(t) is thus de�ned for almost all positive t.There exists a fun
tion W (t) de�ned for t � 0 whi
h has the two following properties.the fun
tion � Z t0 J2(t0) dt0 � 12W (t) is nonin
reasingand RRR� Ui(x; t)Ui(x; t) Æx � W (t), the inequality holding ex
ept for 
ertain singular times,but t = 0 is not a singular time.We say that su
h a solution 
orresponds to initial state Ui(x) when we have Ui(x; 0) =Ui(x).The 
on
lusion of this 
hapter 
an then be formulated as follows.Existen
e theorem: Suppose an initial state Ui(x) is given su
h that the fun
tionsUi(x) are square summable on � and that the ve
tor having 
omponents Ui(x) has quasi-divergen
e zero. There 
orresponds to this initial state at least one turbulent solution,whi
h is de�ned for all values of t > 0.VI. Stru
ture of a turbulent solution.32. It remains to establish what 
onne
tions exist between regular solutions andturbulent solutions to Navier's equations. It is entirely
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lear that any regular solution is a fortiori a turbulent solution. We are going to look forthose 
ases in whi
h a turbulent solution is regular. To this end we generalize the reasoningof paragraph 18 (p. 221).Comparison of a regular solution and a turbulent solution: Let ai(x; t) be a solution toNavier's equations, de�ned and semi-regular for � � t < T . We suppose that it be
omesirregular when t tends to T , at least in the 
ase when T is not equal to +1. Consider aturbulent solution Ui(x; t) de�ned for � � t, where � is not a singular time. The symbolsW (t) and J(t) 
orrespond to the turbulent solution. Setw(t) = W (t)� 2 ZZZ� Ui(x; t)ai(x; t) Æx+ ZZZ� ai(x; t)ai(x; t) Æxj2(t) = J2(t)� 2 ZZZ Ui;j(x; t)�ai(x; t)�xj Æx+ ZZZ� �ai(x; t)�xj �ai(x; t)�xj Æx:Re
all that � Z t0 dt0 ZZZ� �ai(x; t0)�xj �ai(x; t0)�xj Æx+ 12 ZZZ� ai(x; t)ai(x; t) Æxis 
onstant in t and that � Z t� J2(t0) dt0 + 12W (t)is nonin
reasing. Consequently(6:1) � Z t� j2(t0) dt0 + 12w(t) + 2� Z t� dt0 ZZZ� Ui;j(x; t)�ai(x; t)�xj Æx+ZZZ� Ui(x; t)ai(x; t) Æxis nonin
reasing. Taking a

ount of relation (5.15) and of that for ai(x; t)
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reasing fun
tion (6.1)is up to a 
onstant(?) nearly equal to(6:2) � Z t� j2(t0) dt0 + 12w(t) + 2� Z t� dt0 ZZZ�[ak(x; t0)� Uk(x; t0)℄Ui;j(x; t0)ai(x; t0) Æx:Now we have for ea
h nonsingular value of tZZZ�[ak(x; t0)� Uk(x; t0)℄�ai(x; t0)�xk ai(x; t0) Æx =12 ZZZ�[ak(x; t0)� Uk(x; t0)℄�ai(x; t0)ai(x; t0)�xk Æx = 0:The integral ZZZ�[ak(x; t0)� Uk(x; t0)℄Ui;k(x; t0)ai(x; t0) Æxmay therefore be writtenZZZ�[ak(x; t0)� Uk(x; t0)℄ �Ui;k(x; t0)� �ai(x; t0)�xk � ai(x; t0) Æxand so it is less in absolute value thanpw(t0)j(t0)V (t0);where V (t0) is the greatest length of the ve
tor ai(x; t) at time t0. Sin
e (6.2) is notin
reasing, it is a fortiori the same for the fun
tion� Z t� j2(t0) dt0 + 12w(t)� Z t� pw(t0)j(t0)V (t0) dt0:Now � Z t� j2(t0) dt0 � Z t� pw(t0)j(t0)V (t0) dt0 + 14� Z t� w(t0)V 2(t0) dt0manifestly 
annot de
rease. It follows that the fun
tion



244 Jean Leray.12w(t)� 14� Z t� w(t0)V 2(t0) dt0is nonin
reasing. From this we get the inequality generalizing (3.7)(6:3) w(t) � w(�)e 12� R t� V 2(t0) dt0 (� < t < T ):Suppose in parti
ular that the solutions Ui(x; t) and ai(x; t) 
orrespond to the sameinitial state. Then w(�) = 0 and by (6.3) w(t) = 0. therefore Ui(x; t) = ai(x; t) for� � t < T . The uniqueness theorems of paragraphs 18 and 23 (p. 222 and 228) are spe
ial
ases of this result.33. Regularity of turbulent solutions in 
ertain time intervals.Consider a turbulent solution Ui(x; t) de�ned for t � 0. For ea
h nonsingular time theve
tor Ui(x; t) is a semi-regular initial state (
f. p.231 existen
e theorem, 
ase a)). Theuniqueness theorem that we are going to establish will have the following 
onsequen
e.Consider a nonsingular time, i.e. a time 
hosen outside of a 
ertain set of measure zero.Then this is the origin of an interval of time in the interior of whi
h the turbulent solution
oin
ides with a regular solution, and this 
oin
iden
e does not end as long as the regularsolution remains so. This result, 
omplemented by some other easy ones, gives us the nexttheorem.Stru
ture theorem.For a ve
tor Ui(x; t) to be a turbulent solution to Navier's equations for t � 0, it isne
essary and suÆ
ient that it have the following three properties.a) By an interval of regularity we mean any interval �lTl of time in the interior ofwhi
h the ve
tor Ui(x; t) is a regular solution to Navier's equations, and su
h that thisis true for no interval 
ontaining �lTl. Let O be the open set whi
h is the union of theintervals of regularity1 I have not been able to establish a uniqueness theorem stating that to a given initial state,there 
orresponds a unique turbulent solution.
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h have a point in 
ommon). O di�ers from the half axis t � 0 only by a setof measure zero.b) The fun
tion RRR� Ui(x; t)Ui(x; t) Æx is de
reasing on the set 
onsisting of O andt = 0.
) As t0 tends to t the Ui(x; t0) must 
onverge weakly in mean to the Ui(x; t).Supplementary information1) A turbulent solution 
orresponding to a semi-regular initial state 
oin
ides withthe semi-regular solution having that initial state, for as long a time as the semi-regularsolution exists.2) Make t in
rease to Tl in an interval of regularity. Then the solution Ui(x; t) whi
his regular for �l < t < Tl be
omes irregular.This stru
ture theorem allows us to summarize our work in these terms: We havetried to establish the existen
e of a solution to Navier's equations 
orresponding to a giveninitial state. We have had to give up regularity of the solution at a set of times of measurezero. At these times the solution is only subje
t to a very weak 
ontinuity 
ondition (
)and to 
ondition (b) expressing the nonin
rease of kineti
 energy.Remark: If system (3.11) has a nonzero solution Ui(x) then we 
an very simply 
on-stru
t a turbulent solution Ui(x; t) equal to[2�(T � t)℄� 12Ui h[2�(T � t)℄� 12xi for t < Tand to 0 for t > T . This has a single irregular time T .34. Supplementary information on intervals of regularity and behavior of solutions toNavier's equations for large time.Chapter IV gives inequality (4.3) in addition to the existen
e theorem used in theprevious paragraph. This results in the following proposition. Consider



246 Jean Leray.a turbulent solution Ui(x; t). Let t be a nonsingular time and Tl a later time. We haveJ(t0) > A1� 34 (Tl � t0)� 14 ;A1 being a 
ertain numeri
al 
onstant. Using this lower bound for J(t0) in the inequality� Z Tl0 J2(t0) dt0 < 12W (0)we get 2A1� 52T 12l < 12W (0):All singular times o

ur prior to(6:4) � = W 2(0)16A41�5 :In other words, there is an interval of regularity that 
ontains � and whi
h extends to +1.A motion whi
h is regular up to time � never be
omes irregular.It is easy to make this more pre
ise.Let �lTl be an interval of regularity of �nite length. All times t interior to this intervalare nonsingular. By (4.3)J(t0) > A1� 34 (Tl � t0)� 14 for �l < t0 < Tl:(
f. Se
ond 
hara
terisation of irregularity, p. 227.)Using this lower bound on J(t0) in�Xl Z�lTl J2(t0) dt0 � 12W (0):Summing over all the intervals of �nite length we get(6:5) 2A21� 52Xl 0p(Tl ��l) < 12W (0):
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e. 247In Chapter IV we found the pair of inequalities (4.3) (4.4). These imply the following.Consider a turbulent solution, a nonsingular time t0, and a later time t. We haveeither t� t0 > A41�3J�4(t0); or J(t) < (1 + A)J(t0)in other words1 J(t0) > fA1� 34 (t� t0)� 14 ; 11 + AJ(t)g:Using this lower bound for J(t0) in� Z t0 J2(t0) dt0 � 12W (0);we get(6:6) � Z t0 fA21� 32 (t� t0)� 12 ; 1(1 +A)2J2(t)g dt0 � 12W (0):This gives an upper bound for J(t) for values of t larger than �. However this bound hasa rather 
ompli
ated analyti
 expression.We 
ontent ourselves by remarking that (6.6) gives the less pre
ise� Z t0 fA21� 32 t� 12 ; 1(1 + A)2J2(t)g dt0 � 12W (0):This 
an most simply be expressed as(6:7) J2(t) < (1 +A)22 W (0)�t for t > W 2(0)4A41�5 :Complementing this result on asymptoti
 behavior of J(t) there is another on V (t).Inequalities (4.3) and (4.4) giveV (t) < AJ(t0)[�(t� t0)℄� 14 for t� t0 < A41�3J�4(t0):1 Re
all that the symbol fB;Cg denotes the smaller of B and C.



248 Jean Leray.By (6.7) this last inequality is satis�ed for t0 = 12 t if one takes t > AW 2(0)�5 . One thereforehas for these t V (t) < ApW (0)(�t)� 34 :In summary there exist some 
onstants A su
h thatJ(t) < ApW (0)(�t)� 12 and V (t) < ApW (0)(�t)� 34 for t > AW 2(0)�5 :N. B. I am ignoring the 
ase in whi
h W (t) ne
essarily tends to 0 as t be
omesinde�nitely large. ||||||||||||-


