S3M02-Géométrie euclidienne - Série d'exercices 5

Exercice 1. Donner une équation réduite des coniques d'équations respectives :

$$2x^{2} + 2xy + 2y^{2} + 2x - 2y - 1 = 0, (1)$$

$$xy + 3x + 5y - 3 = 0, (2)$$

$$3x^{2} + 6xy + 3y^{2} - 8x + 8y + 4 = 0.$$
 (3)

Dessiner chacune de ces coniques en précisant axes de symétrie et centre éventuels.

Le sujet de l'examen de janvier 2006¹

1

Soit \mathbb{R}^2 le plan euclidien et, pour $a \in \mathbb{R}$, la fonction P_a définie sur \mathbb{R}^2 par

$$P_a(M) = x^2 + 2axy + y^2 + 4\sqrt{2}x, \quad M = (x, y) \in \mathbb{R}^2.$$

où (x,y) sont les coordonnées du point M dans le repère canonique du plan \mathbb{R}^2 .

On note par Q_a la forme quadratique constituée de ses termes de degré 2.

- (1) Discuter suivant les valeurs de a le rang et la signature de la forme Q_a .
- (2.a) Exprimer la forme quadratique Q_a dans des coordonnées relativement à la base (v_+, v_-) avec $v_{\pm} = (1/\sqrt{2}, \pm 1/\sqrt{2})$.
- (2.b) Déterminer le point C_a tel que P_a s'exprime relativement au repère cartésien centré en C_a et de directions (v_+, v_-) comme la somme de deux monômes non constants et d'une constante.
- (2.c) Tracer la partie du plan d'équation $P_1(M) = 0$.
- (2.d) Tracer la partie du plan d'équation $P_2(M) = 0$.

 \mathbf{II}

- Si \mathcal{F} est une partie de l'espace euclidien E, on note par $\Phi_{\mathcal{F}}$ l'ensemble des isométries φ affines de l'espace E telle que $\varphi(\mathcal{F}) = \mathcal{F}$, c'est à dire telle que $\varphi(e) \in \mathcal{F}$ pour tout $e \in \mathcal{F}$ et que pour tout $e' \in \mathcal{F}$ il existe $e \in \mathcal{F}$ vérifiant $\varphi(e) = e'$.
- (1) Soit K la partie du plan euclidien

$$\mathcal{K} = \{A = (1, 1), B = (1, -1), C = (-1, -1), D = (-1, 1)\}.$$

- (1.a) Soit O l'isobarycentre de A, B, C, D. Montrer que $\varphi(O) = O$ pour toute isométrie $\varphi \in \Phi_K$.
- (1.b) Montrer que $\Phi_{\mathcal{K}}$ contient 3 rotations non égales à l'identité. Donner pour chacune d'elle son centre et son angle.
- (1.c) Montrer que $\Phi_{\mathcal{K}}$ contient 4 symétries dont on précisera les éléments géométriques.
- (1.d) Donner la liste de tous les éléments de $\Phi_{\mathcal{K}}$.
- (2) Soit \mathcal{Z} la partie de l'espace euclidien \mathbb{R}^3 définie par

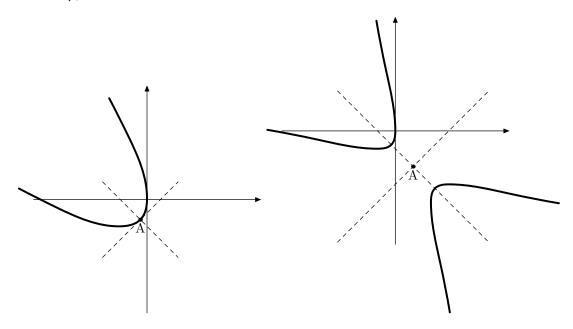
$$\mathcal{Z} = \{(0,0,z), z \in \mathbb{Z}\}.$$

(2.a) Décrire les éléments de $\Phi_{\mathcal{Z}}$ laissant fixe au moins un point de \mathcal{Z} .

¹Des indications sont données au verso.

Indications. Ex I. (2.c) C'est une parabole de sommet $A = (-\frac{1}{4}\sqrt{2}, -\frac{3}{4}\sqrt{2})$.

Ex I. (2.d) C'est une hyperbole de centre $A = \frac{\sqrt{2}}{3}(2, -4)$, qui, <u>dans le repère orthonormé</u> $(A, \overrightarrow{v_+}, \overrightarrow{v_-})$ a pour sommets $(0, \pm \frac{2\sqrt{2}}{\sqrt{3}})$, et pour asymptotes les droites d'équation $Y = \pm \sqrt{3}X$.



Ex II. (1.a) Toute isométrie φ de $\Phi_{\mathcal{F}}$ transforme les sommets du carré en sommets du carré : si M est un sommet, alors on doit avoir $\|\overrightarrow{O\varphi(M)}\| = \|\overrightarrow{\varphi(O)\varphi(M)}\| = \|\overrightarrow{OM}\| = \sqrt{2}$, donc $\varphi(M)$ est aussi un sommet. Il suffit alors de remarquer qu'une application affine conserve les barycentres...

(1.d) Soit φ une isométrie de $\Phi_{\mathcal{F}}$ distincte de l'identité. Si φ a un seul point fixe, alors φ est une rotation de centre O (pourquoi?) et elle envoie le sommet A sur B, C ou D: c'est donc l'une des rotations décrites en (1.b). Si φ a plus d'un point fixe alors c'est une symétrie (pourquoi?). Si le sommet A reste fixe, l'axe de cette symétrie est la droite (OA). Si A est envoyé sur B, l'axe de la symétrie est la médiatrice des points A et B, etc...On retrouve ainsi les symétries décrites en (1.c).

(2.a) Remarquer d'abord que \mathcal{Z} est une droite vectorielle. Sa direction $\overrightarrow{\mathcal{Z}}$ est donc elle-même! Soit φ une isométrie de $\Phi_{\mathcal{Z}}$ différente de l'identité et soit $A \in \mathcal{Z}$ un point fixe de φ . Pour tout point M de l'espace, on a donc $\varphi(M) = A + \overrightarrow{\varphi}(\overrightarrow{AM})$, où $\overrightarrow{\varphi}$ l'application linéaire associée à φ . Il suffit donc de d'étudier cette isométrie vectorielle $\overrightarrow{\varphi}$. Le vecteur $\overrightarrow{v} = (0,0,1)$ est un vecteur directeur de la droite vectorielle \mathcal{Z} . Puisque φ laisse globalement invariante la droite \mathcal{Z} , on a $\overrightarrow{\varphi}(\overrightarrow{v}) = \pm \overrightarrow{v}$ (le point $A + \overrightarrow{v} \in \mathcal{Z}$, donc $\varphi(A + \overrightarrow{v}) = A + \overrightarrow{\varphi}(\overrightarrow{v})$ appartient aussi à la droite et s'écrit donc $A + \lambda \overrightarrow{v}$, de sorte que $\overrightarrow{\varphi}(\overrightarrow{v}) = \lambda \overrightarrow{v}$, et comme $\overrightarrow{\varphi}$ est une isométrie...). Si $\overrightarrow{\varphi}(\overrightarrow{v}) = \overrightarrow{v}$, alors $\overrightarrow{\varphi}$ est ou bien une rotation vectorielle d'axe \mathcal{Z} ou bien une symétrie par rapport à un plan \mathcal{P} contenant la droite vectorielle \mathcal{Z} (considérer la matrice de $\overrightarrow{\varphi}$ dans une base orthonormée dont le premier vecteur est \overrightarrow{v}). Dans le premier cas la transformation φ est alors une rotation affine d'axe $A + \mathcal{Z} = \mathcal{Z}$, dans le second cas, c'est la symétrie par rapport au plan $A + \mathcal{P} = \mathcal{P}$. Si $\overrightarrow{\varphi}(\overrightarrow{v}) = -\overrightarrow{v}$, alors ou bien $\overrightarrow{\varphi}$ est une symétrie-rotation d'axe \mathcal{Z} et alors φ est une symétrie-rotation d'axe \mathcal{Z} , le plan de la symétrie étant $A + \mathcal{Z}^{\perp}$, ou bien $\overrightarrow{\varphi}$ est un retournement (rotation d'angle π) donc l'axe \overrightarrow{D} est orthogonal à \mathcal{Z} et dans ce cas φ est le retournement d'axe $A + \overrightarrow{D}$.