ELLIPTIC COHOMOLOGY AND MODULAR FORMS

by Peter S. Landweber

Rutgers University, New Brunswick, NJ 08903 Institute for Advanced Study, Princeton, NJ 08540

§1. <u>Introduction</u>. The homology and cohomology theories of the title, which have been found in joint work with Doug Ravenel and Bob Stong [14], are periodic complex-oriented multiplicative theories, with the cohomology of a point naturally interpreted as a ring of modular functions. The formal groups that occur for these theories are obtained from the formal group of the Jacobi quartic

(1)
$$y^2 = 1 - 2\delta x^2 + \varepsilon x^4$$

over the ring $\mathbf{Z}[\frac{1}{2}]$ $[\delta,\epsilon]$ by passing to suitable localizations of this ring, where δ and ϵ are viewed as indeterminates of degrees 4 and 8. We view these theories as belonging to a tower:

bordism and cobordism (MU, MSpin, MSO)

elliptic cohomology (Ell)

K-theory (KU, KO)

ordinary cohomology (H)

In the first part of this report, I want to provide an assurance that such theories exist. In the second part, I shall explore the connections with modular forms.

There are several prominent open questions in this subject, the main one being to give a geometric definition of the elliptic cohomology theories. A number of these problems will be collected at the end.

It is a pleasure to thank the many people with whom I have discussed these topics; by now the list is extremely long. Thanks are also due to the National

Science Foundation and the Institute for Advanced Study for financial support.

 $\S 2.$ Elliptic genera. By a genus in the sense of Hirzebruch [7], one means a ring homomorphism

$$\phi \ : \ \Omega_*^{SO} \to \Lambda$$

from the oriented bordism ring to a commutative $\, \mathbb{Q} \,$ - algebra with unit $\, (\phi(1) = 1) \,$. Each such genus has a $\, \underline{logarithm} \,$

$$g(x) = \int_0^x \int_{n>0} \varphi(\mathbb{C}p^{2n}) t^{2n} dt,$$

and a characteristic power series

$$u/g^{-1}(u)$$
 .

Following S. Ochanine [18], we call φ an elliptic genus if

(2)
$$g(x) = \int_0^x (1 - 2\delta t^2 + \varepsilon t^4)^{-\frac{1}{2}} dt$$

with elements δ , $\epsilon \in \Lambda$. In this case, the corresponding formal group

$$F(x,y) = g^{-1}(g(x) + g(y))$$

has the following form found by Euler:

(3)
$$F(x,y) = \frac{x\sqrt{R(y)} + y\sqrt{R(x)}}{1 - \varepsilon x^2 y^2}$$

where

(4)
$$R(x) = 1 - 2\delta x^2 + \varepsilon x^4$$
.

The <u>signature</u> (L-genus) and $\underline{\hat{A}}$ -genus are special cases. Namely, if δ = ϵ = 1 then one has

$$g(x) = \int_0^x \frac{1}{1-t^2} dt = \tanh^{-1}(x)$$

and so obtains the characteristic series u/tanh u of the L-genus of Hirzebruch. And if δ = -1/8 , ϵ = 0 then one finds

$$g(x) = \int_0^x (1 + \frac{1}{4}t^2)^{-\frac{1}{2}} dt$$

and the characteristic series $u/2 \sinh(u/2)$ of the Â-genus.

We remark that for any elliptic genus $\,\phi\,$ one has

(5)
$$\delta = \varphi(\mathbb{CP}^2) , \ \varepsilon = \varphi(\mathbb{HP}^2) .$$

Recalling that the Legendre polynomials $P_{n}(x)$ are defined by ([10])

one sees

(6)

It is a p

(7)

In view of f(x,y subring

For the discr

(8)

If 6, elliptic and §4). function

§3. previous put

Then cor

The homolog theorie

$$(1 - 2xt + t^2)^{-\frac{1}{2}} = \sum_{n \ge 0} P_n(x) t^n$$
,

one sees easily that

(6)
$$\varphi(\mathbb{C}P^{2n}) = P_n(\delta/\sqrt{\epsilon}) \epsilon^{n/2} =: P_n(\delta, \epsilon) .$$

It is a pleasant surprise that on quaternionic projective spaces one has ([5])

(7)
$$\varphi(\mathbb{HP}^n) = \begin{cases} \varepsilon^{n/2} & \text{, n even} \\ 0 & \text{, n odd} \end{cases}$$

In view of (3) and the binomial expansion, it is immediate that all coefficients of F(x,y) are in $\mathbf{Z}[\frac{1}{2}]$ [δ,ϵ], so by Quillen's theorem ϕ maps Ω_{\pm}^{SO} into the subring $\mathbf{Z}[\frac{1}{2}]$ [δ,ϵ] of Λ (see §5 for more precise results).

For a Jacobi quartic (1) or the corresponding elliptic genus, we introduce the discriminant

(8)
$$\Delta = \varepsilon (\delta^2 - \varepsilon)^2.$$

If δ , $\epsilon \in \mathbb{C}$ and $\Delta \neq 0$, then $g^{-1}(u)$ is the expansion at the origin of an elliptic function s(u), which is odd and of order 2 (a Jacobi sine; see [18] and §4). Note that the L-genus and Å-genus are "degenerate," i.e. $\Delta = 0$; the function s(u) becomes singly periodic in these cases.

§3. Elliptic homology and cohomology. Continuing with the notation of the previous section, take δ and ϵ to be algebraically independent over $\mathbb Q$, and put

$$M_{\nu} = Z[\frac{1}{2}] [\delta, \varepsilon] .$$

Then consider the rings:

$$M_{*}[\varepsilon^{-1}] \qquad M_{*}[(\delta^{2} - \varepsilon)^{-1}]$$

$$M_{*}[(\delta^{2} - \varepsilon)^{-1}]$$

Theorem 1 ([14]). There are homology theories with each of these rings as homology of a point. These are multiplicative theories, the corresponding cohomology theories being complex-oriented. The formal group of each of these theories has

logarithm given by (2), and the explicit form of (3) with R(x) as in (4).

Note: I am viewing homology and cohomology as two sides of the same coin. We write ${\rm Ell}_{\star}^*(X)$ and ${\rm Ell}^*(X)$ for such theories.

<u>First proof.</u> We produce a connective homology theory with $\text{Ell}_{\star}(\text{pt})\cong M_{\star}$, by using bordism with singularities (the Sullivan-Baas construction [1]). Thus start with oriented bordism theory with 2 inverted, Ω_{\star}^{SO} (X) $[\frac{1}{2}]$, a module over

$$\Omega_{*}^{SO}$$
 [$\frac{1}{2}$] = $\mathbf{z}[\frac{1}{2}]$ [x_4 , x_8 , x_{12} ,...].

We can take

$$x_4 = [\mathbb{CP}^2]$$
 , $x_8 = [\mathbb{HP}^2]$

and choose $x_{4n} = [M^{4n}]$ $(n \ge 3)$ so that the ideal

consists of all bordism classes killed by elliptic genera; for the latter we follow Ochanine [18], generators for the ideal having the form $[\mathfrak{CP}(\xi^{2m})]$ with ξ an even-dimensional complex vector bundle over a closed oriented manifold.

Now the Sullivan-Baas construction produces from the singularity set

$$\Sigma = \{x_{12}, x_{16}, \dots\}$$

a theory $\Omega_{\pm}^{SO,\Sigma}$ [$\frac{1}{2}$] (X) with $\Omega_{\pm}^{SO,\Sigma}$ [$\frac{1}{2}$] (pt) $\stackrel{\sim}{=}$ $\mathbf{Z}[\frac{1}{2}]$ [\mathbf{x}_4 , \mathbf{x}_8] $\stackrel{\sim}{\to}$ \mathbf{M}_{\pm} . Since 2 is inverted, one obtains a multiplicative homology theory, the obstructions to the existence of a good product all being 2-primary [16].

One can next simply invert $\,\Delta\,$ or its factors to obtain three further periodic theories.

Second proof. We shall follow a more insightful route, which yields the three periodic homology theories as a consequence of the exact functor theorem [12]. To explain the latter, let R be a commutative ring, and suppose given a formal group over R, i.e. a homomorphism from the complex bordism ring Ω_{x}^{U} to R (the formal group over Ω_{x}^{U} is universal). View R as a module over Ω_{x}^{U} . For each prime p and $n \geq 1$ define an element

$$u_n \in \Omega_{2(p^{n-1})}^{U}$$

as tl

for t

be a h

be a ro

Si

and app

With p \mathbb{F}_{p} [δ , (6), one

(9)

That u₁
We a

(10)

mod (p, $\delta^2 - \epsilon$ i u_2 then

as the coefficient of \mathbf{z}^{p^n} in the multiplication - by - p series

[p]
$$(z) = pz + ... + u_1 z^p + ... + u_2 z^{p^2} + ...$$

for the universal formal group over $\,\Omega_{\star}^{\mbox{\scriptsize U}}$.

Exact Functor Theorem ([12]). In order that

$$X \to \Omega^*_{\mathcal{U}}(X) \otimes_{\Omega^*_{\mathcal{U}}} R$$

be a homology theory, it suffices that for each prime p

be a regular sequence on the Ω_{\star}^{U} - module R . (I.e., multiplication by p on R and by each u_{n} on R/(pR +...+ u_{n-1} R) must be injective.)

Since we are inverting 2, it is the same to deal with

$$\Omega_{\star}^{SO}(X) \otimes_{\Omega_{\star}^{SO}} R$$

and apply the criterion for all odd primes. Here we take, say,

$$R = M_*[\Delta^{-1}] = Z[\frac{1}{2}] [\delta, \epsilon, \Delta^{-1}]$$
.

With p an odd prime, multiplication by p on R is injective, and we pass to $\mathbb{F}_p[\delta,\epsilon][\Delta^{-1}]$. In terms of the homogeneous Legendre polynomials of formula (6), one sees easily ([13]) that

(9)
$$u_1 \stackrel{\text{d}}{=} P_{(p-1)/2} (\delta, \epsilon) \mod p.$$

That $u_1 \not\equiv 0 \mod p$ follows from the fact that $P_n(1) = 1$ for all n .

We are next obligated to examine $\,\mathbf{u}_{2}\,$ mod $\,(\mathbf{p}$, $\,\mathbf{u}_{1})$, and here the principal facts are that

(10)
$$\begin{cases} u_2 = (-1)^{(p-1)/2} \varepsilon^{(p^2-1)/4}, \\ (\delta^2 - \varepsilon)^{(p^2-1)/4} = \varepsilon^{(p^2-1)/4} \end{cases}$$

mod (p , u₁) in the ring $\mathbf{Z}[\frac{1}{2}]$ [δ , ϵ] . The point is that mod (p , u₁) , inverting δ^2 - ϵ is equivalent to inverting ϵ , and so also to inverting Δ ; and that u₂ then becomes a unit. This ends the argument for R = M_{*}[Δ^{-1}] , and also in

case just one factor of Δ is inverted. \square

 $\underline{\text{Note}}$. The congruences (10) can be better appreciated if ϵ = 1 , and then read

(11)
$$\begin{cases} u_2 = (-1)^{(p-1)/2} \\ (\delta^2 - 1)^{(p^2-1)/4} = 1 \end{cases}$$

mod (p , u) in the ring $\mathbf{Z}[\frac{1}{2}]$ [δ] . In this form, they were first pointed out by David and Gregory Chudnovsky [4]; the most direct proof is based on two papers of Igusa [8, 9]. Details will appear in [13], which also includes the following related result of Dick Gross.

Theorem ([6]). Let E be a supersingular elliptic curve given by a Weierstrass equation over a field of characteristic $p \ge 5$, so that for its formal group one has [p] $(z) = u_2 z^{p^2} + \dots$ with $u_2 \ne 0$, where z = -x/yis the standard uniformizing parameter. Then $u_2 = (-1)^{(p-1)/2} \cdot \Delta^{(p^2-1)/12}$

where Δ is the discriminant (expressed in terms of the coefficients of the Weierstrass equation).

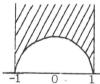
§4. $\underline{Z[\frac{1}{2}]}$ [δ , ϵ] as a ring of modular forms. Let Γ denote the modular group $\operatorname{SL}_2(\mathbf{Z})/\{\pm 1\}$, acting as usual on the upper half-plane H . Whereas T is generated by

$$\tau \mapsto \tau + 1$$
 , $\tau \mapsto -\tau^{-1}$,

it will be convenient here to deal with the subgroup $\,\Gamma_{\!\scriptscriptstyle \, \!\!\! A}$ generated by

$$\tau \mapsto \tau + 2$$
, $\tau \mapsto -\tau^{-1}$.

 $\Gamma_{\mbox{\scriptsize θ}}$, the "theta group," has index 3 in $\mbox{\scriptsize Γ}$, and the standard fundamental domain with two cusps:



Moreover, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_{\Theta}$ if and only if $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is congruent to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ mod 2.

The appe Chudnovs

ε € ℂ

is an el s(u) , o

The func Hence one lattice 1 well as obtained

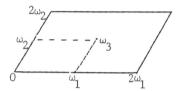
Moreover, in terms from the

The appearance of level 2 modular forms was first noticed by David and Gregory Chudnovsky [3].

In [13] I have found the following classical picture helpful. Assume $\,\delta$, ϵ (C and $\Delta \neq 0$, so

$$y^2 = 1 - 2\delta x^2 + \epsilon x^4$$

is an elliptic curve over $\,{\mathbb C}$. This curve is uniformized by an elliptic function s(u) , odd and of order 2, with period lattice generated by $\,2\omega_1^{}$ and $\,2\omega_2^{}$.



The function s(u) has poles at ω_1 and ω_2 , and zeros at 0 and ω_3 = ω_1 + ω_2 . Hence one of the half-periods ω_3 is distinguished; assume τ = ω_2/ω_1 \in H . The lattice has the usual Weierstrass function p(u) and invariants g_2 , g_3 , as well as the half-period values e_i = $p(\omega_i)$. The following formulas are now easily obtained:

$$s(u) = -2 (p(u) - e_3)/p'(u)$$

$$\begin{cases} g_2 = (\delta^2 + 3\epsilon)/3 \\ g_3 = \delta(\delta^2 - 9\epsilon)/27 \end{cases}$$

$$\begin{cases} \delta = 3e_3 \\ \epsilon = (e_1 - e_2)^2 \\ \delta^2 - \epsilon = 4(e_1 - e_3)(e_2 - e_3) \end{cases}$$

Moreover, one can as a further exercise (see [2]) express all these quantities in terms of τ via theta functions. Taking ω_1 = π to remove powers of π/ω_1 from the expressions, one has

$$\begin{cases} \delta = \theta_1^4 - \theta_2^4 \\ \epsilon = (\theta_1^4 + \theta_2^4)^2 = \theta_3^8 \end{cases}$$

Here the "theta-constants" are given by $(q = e^{\pi i \tau})$

$$\theta_{1}(\tau) = 2q^{\frac{1}{4}} \sum_{n=0}^{\infty} q^{n(n+1)}$$

$$\theta_{2}(\tau) = 1 + 2 \sum_{n=1}^{\infty} (-1)^{n} q^{n^{2}}$$

$$\theta_{3}(\tau) = 1 + 2 \sum_{n=1}^{\infty} q^{n^{2}}.$$

One then finds easily that δ and ϵ are modular forms of weights 2 and 4 for Γ_{θ} , and indeed that every modular form for Γ_{θ} is a polynomial in δ and ϵ . Recall that a modular form of weight k for Γ_{θ} is a holomorphic function $f(\tau)$ on H so that

$$f\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^k f(\tau)$$

for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \boldsymbol{\xi}$ and so that

$$f(\tau) = \sum_{n\geq 0} a_n q^n$$
 $(q = e^{\pi i \tau})$

with a similar holomorphicity condition at the other cusp. We see that

$$\delta(i\infty) = -1$$
, $\epsilon(i\infty) = 1$;

for the cusp at $~\tau$ = 1 , we use $~\tau \mapsto 1$ - $1\!/\!\tau~$ sending $~\infty~$ to ~1~ and find that

$$\delta(1) = 2$$
 , $\epsilon(1) = 0$.

We conclude that, up to inessential multiples, one finds the L-genus at $\tau=i\infty$ and the Â-genus (better, the A-genus) at $\tau=1$.

Furthermore, in addition to

$$M_{\star}(\Gamma_{\Theta}) = \mathbb{C}[\delta, \epsilon]$$

we can identify $M_{\star} = \mathbf{Z}[\frac{1}{2}]$ [\$\delta\$, \$\epsilon\$] with the ring of modular forms for \$\Gamma_{\theta}\$ with q-expansion coefficients in \$\mathbb{Z}[\frac{1}{2}]\$. In addition, we go on to identify \$M_{\star}[\Delta^{-1}]\$ with those modular functions for \$\Gamma_{\theta}\$ which are holomorphic on \$H\$ (poles at cusps only) and have q-expansion coefficients in \$\mathbb{Z}[\frac{1}{2}]\$. The rings \$M_{\star}[\epsilon^{-1}]\$ and \$M_{\star}[(\delta^2 - \epsilon)^{-1}]\$ are given similar interpretations, allowing a pole at one or the

other cusp.

Thus w

as assigning

to each oriengeometric processmine a for constructions

§5. Interpretation \S , ε \in Λ .

Theorem 2

with $\gamma = (\delta^2)$

Corollary

Corollary divisible by 16

For the second of ${\displaystyle \mathop{\varphi \Omega_{\star}^{Spin}}}$.

We shall sk

other cusp.

Thus we are to view $\,\delta\,\,$ and $\,\epsilon\,\,$ as modular forms, and so we should regard the elliptic genus

$$\varphi: \Omega_{*}^{SO} \rightarrow \mathbf{Z}[\frac{1}{2}] [\delta, \epsilon] = M_{*}$$

as assigning a modular form

$$\varphi(M^{4n}) = P_{M}(\delta, \epsilon)$$

to each oriented (or Spin) manifold. I leave it to Ed Witten [19] to explain a geometric procedure to produce such modular forms for Spin manifolds; we shall examine a formula for the resulting modular form in §6, given in terms of familiar constructions on vector bundles. In the next section, we answer the question: Which modular forms arise from oriented or from Spin manifolds?

§5. Integrality and divisibility of elliptic genera. The results stated here are taken from [5]. Let $\varphi \colon \ \Omega_{\pm}^{SO} \to \Lambda$ be an elliptic genus, with parameters δ , $\varepsilon \in \Lambda$.

Theorem 2 ([5]). For an elliptic genus, one has

$$\varphi \Omega_{\star}^{SO} = \mathbf{Z}[\delta, 2\gamma, 2\gamma^2, \dots, 2\gamma^2^s, \dots]$$

with $\gamma = (\delta^2 - \epsilon)/4$, and

$$φΩ_{\pm}^{\text{Spin}} = \mathbf{Z}[16\delta, (8\delta)^2, ε]$$
.

Corollary 1. For an elliptic genus $\phi: \Omega_*^{SO} \to \mathbb{Q}$ one has

$$\varphi\Omega_{\star}^{SO} = \mathbf{Z}[\delta, \gamma]$$
,

$$φΩ_*^{\text{Spin}} = \mathbf{Z}[8δ, ε]$$
.

Corollary 2 (Ochanine [17]). The signature of a Spin manifold M^{8k+4} is divisible by 16.

For the second corollary, take $~\delta=\epsilon=1~$ and note the degrees of the generators of $~\phi\Omega_{\rm w}^{\rm Spin}$.

nd 4 and tion

.t

i∞

with [1] cusps

: the

Proof for Ω_*^{Spin} .

- i) $\varphi(\mathbb{HP}^2) = \varepsilon$.
- ii) There is a Spin manifold V^4 with signature 16, i.e. $\phi(V^4) = 16\delta$.
- iii) Kervaire and Milnor [11] constructed an almost parallelizable $\,w^{\!8}\,$ with $\hat{A}(w^{\!8})=1$; if

$$\varphi(W^8) = a\delta^2 + b\varepsilon$$

then a=64; by i), we have $\phi(M^8)=\left(8\delta\right)^2$ for a suitable Spin manifold.

- iv) Hence $\mathbf{Z}[16\delta\,,\,\left(8\delta\right)^2,\,\,\epsilon\,]\subset\phi(\Omega_{\star}^{\mbox{Spin}})$.
- v) In [15] we constructed a sequence ρ_k , $k \ge 0$, of KO-theory characteristic classes of oriented bundles such that

$$\rho_k[M^{4n}] = \hat{A}(M) \operatorname{ch}(\rho_k TM) [M^{4n}]$$

has the properties

- a) $\rho_0[M^{4n}] = \hat{A}(M^{4n})$
- b) $\rho_1[M^{4n}] = \hat{A}(M) \text{ ch}(TM 4nR) [M^{4n}]$
- c) $\rho_k[\text{M}^{4n}]$ is integral on Spin manifolds, and is even when $\,n\,$ is odd .
- d) $\rho_t \colon \ \Omega_*^{SO} \to \mathbb{Q}[[t]]$ given by $\rho_t(M) = \sum\limits_{k \geq 0} \rho_k[M] \ t^k$ is an elliptic genus,

for which

- e) $\delta(t) \equiv -\frac{1}{8} + 3t \mod t^2 \mathbf{Z}[[t]]$
- f) $\epsilon(t) \equiv -t \mod t^2 \mathbf{Z}[[t]]$

(for the integrality in e) and f), see [3], [20] and the next section).

vi) Returning to the argument, if $\,{\,{\rm M}}^{8k}\,$ is a Spin manifold and

$$\varphi(M^{8k}) = a_0(8\delta)^{2k} + a_1(8\delta)^{2k-2}\epsilon + ... + a_k \epsilon^k$$

for an arbitrary elliptic genus $\,\phi$, take $\,\phi$ = $\rho^{}_{\mbox{\scriptsize t}}\,$ so that

$$\rho_{\mathsf{t}}(\mathtt{M}^{8k}) \in \mathbf{Z}[[\mathtt{t}]]$$

to

and

then

lies

lies

under:

where additi

Eviden

in part

to conclude easily that each $\, a_{ { {\bf i}} } \, \epsilon \, \, { {\bf Z} } \, \, . \,$ And if $\, M^{8k+4} \,$ is a Spin manifold, write

$$\varphi(\texttt{M}^{8k+4}) = 16\delta \sum_{j=0}^{k} \texttt{b}_{j}(8\delta)^{2k-2j} \epsilon^{j}$$

and argue that each $\,{\bf b}_{\,\dot{\bf j}}\, {\bf \xi}\,\, {\bf Z}$. As an illustration of the simple method, if

$$\varphi(M^k) = 16\delta (b_0(8\delta)^2 + b_1 \epsilon)$$

then

$$16(-\frac{1}{8} + 3t + ...) [b_0(1 - 24t + ...)^2 + b_1(-t + ...)]$$

lies in $2\mathbf{Z}[[t]]$, so

$$b_0(1 - 24t +...)^2 + b_1(1 - 24t +...) (-t +...)$$

lies in $\mathbf{Z}[[t]]$, whence

 $b_0 \in \mathbf{Z}$ (constant term),

 $b_1 \in Z$ (coefficient of t).

 $\S 6.$ Witten's formula for the elliptic genus. We refer to [19] for the geometry underlying the following considerations. For a real or complex vector bundle E , put

$$\lambda_{t}(E) = \sum_{k \geq 0} \lambda^{k}(E) t^{k}, S_{t}(E) = \sum_{k > 0} S^{k}(E) t^{k}$$

where $\lambda^k(E)$ and $S^k(E)$ denote the exterior and symmetric powers of E . In addition, put

$$\Theta_{t}(E) = \bigotimes_{n=1}^{\infty} [\lambda_{t^{2n-1}}(E) \otimes S_{t^{2n}}(E)].$$

Evidently, Θ_{t} (E \oplus F) = Θ_{t} (E) \cdot Θ_{t} (F) . For a complex line bundle L we have

$$\Theta_{t}(L) = \prod_{n=1}^{\infty} \frac{1 + t^{2n-1}L}{1 - t^{2n}L}$$

in particular

$$\Theta_{t}(1) = \prod_{n=1}^{\infty} \frac{1 + t^{2n-1}}{1 - t^{2n}}$$
.

with

eristic

One computes:

$$\Theta_{t}(E) = 1 + tE + t^{2}(\lambda^{2}E + E) + t^{3}(\lambda^{3}E + E \otimes E + E) + \dots$$

and immediately sees a connection with results of [15], indeed a step toward an explanation of these results.

Using this characteristic class, we obtain a genus

$$\Theta_{\mathsf{t}} \colon \Omega_{*}^{\mathsf{SO}} \to \mathbb{Q}[[\mathsf{t}]]$$

by putting

$$\Theta_{t}(M^{4n}) = \hat{A}(M) \operatorname{ch} \frac{\Theta_{t}(TM)}{\Theta_{t}(1)^{4n}} [M^{4n}]$$

Theorem 3. The genus Θ_t is an elliptic genus, coinciding with the natural choice for the elliptic genus ρ_t .

After some clarifying remarks, one will see that this is really an easy observation. The analysis of elliptic genera ρ_{t} (see §5) in [15, 3] led to a formula for the

$$\frac{x/2}{\sinh(x/2)}$$
 $f_t(e^x + e^{-x} - 2)$.

Here

$$t \equiv -q \mod q^2 \mathbf{z}[[q]]$$
,

the natural parameter being $\,q\,$ and the most natural choice of $\,t\,$ being simply $\,t\,$ = -q . In [3] (see also [20]) it is shown that, in terms of $\,q\,$,

$$f_{t}(y) = \prod_{n=1}^{\infty} \frac{1 - y q^{2n-1}/(1 - q^{2n-1})^{2}}{1 - y q^{2n}/(1 - q^{2n})^{2}}.$$

Now the genus Θ_t is given in a form which permits one to easily find its characteristic power series. Indeed, with t=-q as suggested above, one finds that for a complex line bundle L with $c_1(L)=x$ one has

$$ch \Theta_{t}(L \oplus \overline{L} - 2)$$

$$= \prod_{n=1}^{\infty} \frac{(1+t^{2n-1}e^x)(1+t^{2n-1}e^{-x})/(1+t^{2n-1})^2}{(1-t^{2n}e^x)(1-t^{2n}e^{-x})/(1-t^{2n})^2}$$

with y

whence the

Note. genus of a is a conjuga

that deserv A) Gi

7. <u>sc</u>

- B) Cor
- C) Fir With ellipti
- D) Sin fundamental:
- E) Spir orientation, Clifford alge
- F) Seek for modular for with p = 2).
 - G) Devel

$$= \prod_{n=1}^{\infty} \left[(1 - q^n e^x)(1 - q^n e^{-x})/(1 - q^n)^2 \right]^{(-1)^{n-1}}$$

$$= \prod_{n=1}^{\infty} \left[1 - y q^n/(1 - q^n)^2 \right]^{(-1)^{n-1}},$$

with $y = e^{X} + e^{-X} - 2$. We have therefore verified that

ch
$$\Theta_{+}(L \oplus \overline{L} - 2) = f_{+}(y)$$
,

whence the genera Θ_t and ρ_t (with t=-q) have identical characteristic series, the latter being an elliptic genus. The theorem is proved. \square

Note. We refer to [20] for the interpretation of δ , ϵ , and so the elliptic genus of any oriented manifold, as modular forms for the group $\Gamma_0(2)$. This group is a conjugate of Γ_θ in Γ , consisting of all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \notin \Gamma$ with c even.

- 7. <u>Some open problems</u>. As of October 1986, here are some rather naive questions that deserve study.
 - A) Give an intrinsic geometric construction for an elliptic cohomology theory.
 - B) Construct such a theory in which it is not necessary to invert 2.
- C) Find appropriate versions of representation theory and index theory fitting with elliptic cohomology.
- D) Since we are producing periodic cohomology theories, one might seek a fundamental result analogous to Bott periodicity, in an appropriate setting.
- E) Spin bundles are orientable for elliptic cohomology. Construct such an orientation, compatibly with the KO-theory orientation constructed by means of Clifford algebras.
- F) Seek related invariants in dimensions not divisible by 4. This may call for modular forms of half-integral weight, or mod $\,p\,$ modular forms (especially with $\,p\,=\,2)$.
 - G) Develop a variant in which modular forms of level 1 occur.

1 an

ıtural

7 observation.
or the

nply

its finds

REFERENCES

- 1. N.A. Baas: On bordism theories of manifolds with singularities, Math. Scand. 33 (1973), 279-302.
- 2. K. Chandrasekharan: Elliptic Functions, Springer-Verlag, 1985.
- 3. D.V. Chudnovsky and G.V. Chudnovsky: Elliptic modular functions and elliptic genera, Topology, to appear.
- 4. D.V. Chudnovsky and G.V. Chudnovsky: letter dated February 6, 1986.
- 5. D.V. Chudnovsky, G.V. Chudnovsky, P.S. Landweber, S. Ochanine and R.E. Stong: Integrality and divisibility of elliptic genera, in preparation.
- 6. B.H. Gross: letter dated April 7, 1986.
- 7. F. Hirzebruch: Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.
- 8. J. Igusa: On the transformation theory of elliptic functions, Amer. J. Math. 81 (1959), 436-452.
- 9. J. Igusa: On the algebraic theory of elliptic modular functions, J. Math. Soc. Japan 20 (1968), 96-106.
- 10. D. Jackson: Fourier Series and Orthogonal Polynomials, Math. Assoc. Amer., 1941.
- 11. M. Kervaire and J. Milnor: Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proc. Int. Cong. Math., Edinburgh (1958), 454-458.
- 12. P.S. Landweber: Homological properties of comodules over $\,{\rm MU_{*}MU}\,$ and $\,{\rm BP_{*}BP}$, Amer. J. Math. 98 (1976), 591-610.
- 13. P.S. Landweber: Supersingular elliptic curves and congruences for Legendre polynomials, in this volume.
- 14. P.S. Landweber, D.C. Ravenel and R.E. Stong: Periodic cohomology theories defined by elliptic curves, in preparation.
- 15. P.S. Landweber and R.E. Stong: Circle actions on Spin manifolds and characteristic numbers, Topology, to appear.

f

Μŧ

OI

fr

The

the

(1.

whe: F_E()

- 16. O.K. Mironov: Multiplications in cobordism theories with singularities, and Steenrod tom Dieck operations, Izv. Akad. Nauk SSSR, Ser. Mat. 42 (1978), 789-806 Math. USSR Izvestija 13 (1979), 89-106.
- 17. S. Ochanine: Signature modulo 16, invariants de Kervaire généralisés, et nombres caractéristiques dans la K-théorie réelle, Supplément au Bull. Soc. Math. France 109 (1981), Mémoire n° 5.
- S. Ochanine: Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), 143 - 151.
- 19. E. Witten: Elliptic genera and quantum field theory, Communications in Mathematical Physics 109 (1987), 525 -536.
- 20. D. Zagier: Note on the Landweber Stong elliptic genus, in this volume.