WHAT IS AN ELLIPTIC OBJECT?

GRAEME SEGAL
ALL SOULS COLLEGE, OXFORD

1. ELLIPTIC COHOMOLOGY

A generalized cohomology theory is a sequence of contravariant functors
{h'};ez from spaces to abelian groups which are linked together in a well-
known way. The theories that arise in nature are of two types: K -theories,
and cobordism theories. (Classical cohomology can be approached in so many

different ways that I shall leave it aside for the moment.)

On a compact space X the isomorphism classes of complex vector bundles
form an abelian semigroup Vect(X) under the operation of direct sum, and
K9(X) is the abelian group got by formally adjoining inverses to the semi-
group Vect(X). Then K 0 is a homotopy functor, and the functors K —t for
i > 0, defined — roughly — by composing K 0 with the i-fold suspension
functor, have the properties of “half” a cohomology theory. That much is
true for any representable homotopy functor, but the functors K i are special
because of the Bott periodicity theorem, which gives a canonical equivalence
between K and K2 for ¢ < 0, and enables us to define K for all i € Z by

periodicity.

There is a completely different reason, however, unrelated to Bott periodic-
ity, why the functor K 0 forms part of a cohomology theory, and it applies in a
much more general context. For any (discrete) ring A we have a contravariant
functor X — Moda(X), where Mod4(X) is the semigroup of isomorphism
classes of bundles of finitely generated projective A-modules on X. Itis
a representable homotopy functor, though not a very interesting one, as it
sees only the fundamental group of X. But if, instead of making the semi-
group Mod4(X) into a group separately for each space X, we perform the
group-completion on the representing space, i.e. Wwe look for the universal
abelian-group-valued representable homotopy functor F with a transforma-
tion Mods — F, then we obtain a much more interesting functor K% In
fact

KY(X) = [X; QB|Pall
Here |Pal, the “space” of the category P4 of finitely generated projective
A-modules, which is the representing space for Moda(X), is a topological
semigroup under @, and (1B |Pa| is the loop-space of the classifying space O
|P4|. The remarkable thing is that for any category C with a composition 1aW
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308 Graeme Segal

Proposition 1.2.
h*(PE) = Allai]],

where A = h*(point).

Because P is an H-space (its composition-law representing the tensor
product of line bundles) the ring A[[c;]] is a Hopf algebra, and the diagonal
map ¢; — m(c; ® 1,1 ®c¢y) is a formal group-law associated to h*.

In a complex-oriented theory h* there is a canonical Thom class for any
complex vector bundle, and, in particular, a sequence of elements in h*™(MU,)
corresponding to a transformation MU* — h*. This means that complex
cobordism is universal among complex-oriented theories. Quillen proved that
its formal group law is also universal, in the sense that a law over any graded
ring R comes from that of MU* by a ring-homomorphism

AMU = J\/[U*(point) — R.

Alternatively expressed, a formal group-law over R is the same thing as a
genus for weakly almost-complex manifolds, for a genus is exactly such a
homomorphism.

Elliptic cohomology was conceived because of the discovery of the elliptic
genus — actually, of the remarkable rigidity properties (see [L],[S2]) of a
particular family of genera ®, : Ayy — C parametrized by elliptic curves
Y, = C/(Z + 7Z). The ®, can be assembled into ® : Ayy — R, where
R is a ring of modular forms. Landweber observed that if we take R =
Z[3,6,e,A7"], where A = (6% — €)%, and ¢ and ¢ are the functions of the
curve Y. which arise when its equation is written in the form

y? =1— 202 +ex?,

then
El"(X) = MU*(X) ®a,, R

satisfies conditions that he had previously found which ensure that the functor
MU*( ) ®a,,, R is a cohomology theory. This was the original definition of
elliptic cohomology. Since its proposal a great deal of work — especially by
Hopkins [H] and his collaborators — has been devoted to finding an improved
version, which ought not to require inverting the prime 2. It is now believed
that the “correct” theory, which Hopkins calls tmf*, is not, in fact, quite
complex-orientable, but that a tmf*-orientation of a manifold M should be
a string structure on M in the sense described below. The coefficient ring
tmf*(point) maps to the ring Mz of integral modular forms (i.e. modular
forms whose expansion in terms of ¢ = ¢*™7 lies in Z[[q]]). If we tensor with
the rational numbers Q then tmf*(point) — Mgz becomes an isomorphism,
but tmf*(point) is a much more subtle and complicated ring than Mg, with
a great deal of torsion. An n-manifold with a string structure has a genus
in tmf~"(point) — the image of the fundamental class [M] under the map
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310 Graeme Segal

Among the cobordisms from S; to Sy there is a sub-semigroup formed by

the annuli
A;={z€C:ql <2 <1}

for 0 < |q| < 1, with the boundary circles parametrized by

0 — e 01— qe
Its action on the Hilbert space H of a chiral theory gives H a grading H =
@®r>0Hy by finite dimensional subspaces.

Proposition 2.2. If £, is the torus C*/q”, then

quygq — Eqkdlm(’Hk)
for any chiral theory of level m, where &, is the canonical element 4 of Dets,
coming from the annulus A,.

This is easily proved by regarding the cobordism X, as the composite of
two annuli A,,, Ag, With gigo = ¢, but I shall not give the details here .

As chiral conformal field theories give us modular forms so naturally, we
might first guess that elliptic cohomology is a K-theory made from bundles
of field theories. The crudest approximation to an elliptic class is simply a
graded complex vector bundle, and there is indeed a forgetful transformation

tmf*(X) — K*(X){[q]]

corresponding to the g-expansion of a modular form. Nevertheless, to get
further we must remember that the elliptic genus is the index of an operator
not on X but on £X. We need the notion of a conformal field theory over

X. There is no loss in assuming that X is a smooth manifold.

Definition 2.3. A conformal field theory over X is a rule which assigns a
vector space H~, to each smooth loop 7 : St — X, and an operator

Uf,é 3 7‘[71 ®...H7p —*H%H_l ® ...H7p+q

to each Riemann surface ¥ which is a cobordism from the “incoming” loops
Y1, .-y Yp to the “outgoing” loops Ypi1,- - -, Yp+qe, and is equipped with a map
[': Y — X. As before, £ € Dety, and Ur¢ must have the properties (i) and
(11) of Definition 2.1.

The basic example which motivates Definition 2.2 is the bundle of spinors
on the loop space of an oriented Riemannian n-manifold M. The tangent
bundle of LM has structure group £SO, and this group has a projective
unitary representation (see [PS] Chap.12) which is naturally regarded as its

4Gee [S3] §6. The element &, differs from the “more canonical” element of Dets, which

is unique only up to a 12" root of unity by multiplication by the square of the Dedekind

n-function.
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“spin” representation.’ The condition that we can make a Hilbert space bun-
dle on LM associated to its tangent bundle by this projective representation
is the vanishing of the characteristic classes wy and %pl of M. The choice
of such a spinor bundle on LM is called a string structure on M. A string
structure automatically extends — using the Riemannian metric of M — to
a conformal field theory of level n over M. The propagation operators Ur ¢
form a kind of connection in the spinor bundle, though it should be remem-
bered that even when ¥ is a cylinder, i.e. ' : ¥ — M is a path in LM, the
operator Ur is a contraction operator, not a unitary isomorphism.

In my talk [S2] I speculated whether a conformal field theory over X of level
m defines a class in EII™™(X). As far as I know, the question is still open.
If something of the kind really is true then it seems to me quite remarkable,
for, apart from cobordism theories, the only situations I know where we have
geometric representatives for cohomology classes of all dimensions are real
and complex K-theory (in virtue of Bott periodicity), and classical de Rham
theory for smooth manifolds. The main evidence in support of the idea is that
a level m theory over a compact 2n-manifold X with a string structure can be
“Integrated” to give a virtual conformal field theory of level m+2n, and hence
a modular form in EII=™~2"(point): the integration process is tensoring the
theory with the Dirac operator on £X and forming the index of the resulting
coupled operator.

In the language of quantum field theory the Dirac operator in the spinor
bundle on £M is a supersymmetry operator. To explain what this means we
must first recall two more aspects of the formalism of conformal field theory.
First, the group Diff(S') of diffeomorphisms of S* acts on the Hilbert space
‘H of a conformal theory, and the action of annuli extends the action of its
Lie algebra Vect(S') to the complexification, giving us a map

L : Vectc(S') — End(H).

In the case of a chiral theory the map L is complex-linear, but in general we
write L = Lt + L™, where L* is C-linear and L~ -antilinear. The maps L*
and L~ define commuting (projective) actions of Vectc(S?!) on H.

The second point is that Vectc(S?) is the even part of a Lie superalgebra
V(S") whose odd part is the space 272 (S?) of (—3)-forms on S* (two of which
can be multiplied pointwise to give a vector field). The class of conformal field
theories which are “half-supersymmetric” in the sense that there is given a C-
antilinear action on V(S') extending the L™-action of Vecte(S*') is important
for elliptic cohomology, for the action of the odd element (dG)‘% of V(S') on

5More precisely, there is a positive energy and a negative energy spin representation,
differing by changing the orientation of the circle. We actually want the negative energy
choice, which makes the theory antichiral, in the sense that the operators depend antiholo-
morphically on the complex structure of the surface.
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‘H has an index which is a virtual chiral conformal field theory. Indeed the

space of these half-supersymmetric theories seems to be the correct model of
the space of virtual chiral conformal theories, just as the space of Fredholm
operators is the best model of the space of virtual finite-dimensional vector

spaces.

When we have a string structure {H,} on a manifold M the Dirac operator
acts — in principle — on the Hilbert space H of sections of the spinor bundle
{H,} over LM which are square-summable for a measure on LM which forces
them to be concentrated in an extremely small neighbourhood of the point
loops. The group Diff(S?) acts on LM, and the bundle {H,} is equivariant
with respect to it, so we expect Diff(S?) to act on H. One would like to say
that this action is part of a conformal field theory structure on ‘H which is half-
supersymmetric in the above sense: the Dirac operator should be the action
on H on the element (d9)‘% of the superalgebra. In fact that is too much to
hope for; but as far as homotopy theory is concerned one can proceed much
more formally, replacing the space of sections of the bundle {H,} on LM by

he subspace M of point loops.® On this

the space H of jets of sections along t
Hilbert space H one can much more plausibly define the half-supersymmetric
[S2]. We

conformal field theory structure, as I have attempted to sketch in
can do this even after tensoring the spinor bundle with an arbitrary chiral
conformal field theory over M as defined in 2.3. This is the “integration”
operation referred to above. The Dirac operator itself is mapped to the Witten
genus, while the original elliptic genus is the image of the Dirac operator
tensored with the chiral — rather than antichiral — spinor bundle. If we
could do this for a family of manifolds M rather than just a single one then
we should have related the space of level m + n conformal field theories to

the n-fold loop space of the space of level m theories.

Unfortunately, one could not expect to use conformal field theories over X
by themselves to define ElI*(X). The essential reason is that, like the loop
space L£X, they are not defined locally on X, and so do not have the basic
Mayer-Vietoris property of a cohomology theory. Another disconcerting fact
is that a chiral conformal field theory is a rigid object which is not determined
up to isomorphism by its modular form (e.g. an even unimodular lattice of
rank k gives rise to a conformal field theory of level k, and non-isomorphic
lattices with the same modular form give non-isomorphic theories). It is plau-
sible, however, that chiral theories with the same modular form are connected
in the space of half-supersymmetric theories.

Before describing the recent progress in understanding elliptic objects it
seems worth mentioning one other hin
ge body of work by Gorbounov, Malikov, Schecht-

6 should mention at this point a larg
man, and Vaintrob, e.g. [MSV],[GMS], who have developed a notion of ”chiral de Rham

complex” defined on the formal neighbourhood of M in LM.
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may be on the right track. This is

k" question of G-equivariant elliptic cohomology for a compact group G: we
OW that the definition of equivariant K -theory in terms of G—vector-bundles
' ne of the things that makes K-theory such & useful tool. Thereis a general

tion of a G-equivariant quantum field theory — In physicists’ language, a
iheory with gauged G-symmetry” — which in the present situation reduces
fo the following.
ition 2.4. A two-dimensional G -equivariant chira
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projective representation of the loop group £G. The attractive idea that
Ell%, (point) should be some kind of representation ring of LG has been pur-
sued further by Devoto [Dv1] and Ando [An], but for lack of a satisfactory
on of Landweber’s theorem there 1s still no real candidate for
\liptic theory Ellf;,. For finite groups G the field theory point
fit with what is known ([HKR],[DVZ]) about EllI*(BG), but

definite theorem.
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[ST] has moved the idea of an elliptic object

forward in several important ways. One is their focus on the space of the half-
supersymmetric theories already mentioned. But their main contribution
concerns the Mayer-Vietoris property. The problem with the definition 2.1
of a conformal field theory is that it does not incorporate any sense in which
the Hilbert space H associated to the circle g1 is local with respect to gt If
‘H could be reconstructed from objects Hr associated to small subintervals I
of S! then we might be able to think of & conformal field theory OVer X asa
homology theory.

local object on X, and could hope to construct a co
The simplest sense in W local would be if one could associate

hich H could be

a Hilbert space Hy to each closed subinterval I of the circle so that H =

@H;, when the circle is the union of intervals I; meeting only at their ends.

Locality of this simple kind — which would hold, for example, if H were the

symmetric Or exterior algebra on L2(SY) —1is casily seen to be impossible

in conformal field theory. In the simplest conformal field theories, the space
tric or exterior alg

His a “renormalized” symme cbra on a space of functions
such as L?(S'), where the renormalization depends on 2 polarization

The work of Stolz and Teichner

LQ(Sl) = L2(51)+ @ LQ(SI)—
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of L%(S") into positive and negative frequency parts. The projection oper-
ators defining the polarization need to be given only up to Hilbert-Schmidt
perturbations: they are singular integral operators on S1 with kernels whose
supports can be chosen in an arbitrarily small neighbourhood of the diagonal
in S' x S', but which cannot be supported exactly on the diagonal. The
effect for the locality of H is that if S* = I U J, where I and J are open
intervals, then H can be reconstructed from Hilbert spaces ‘H;, H, and a von
Neumann algebra Arns associated to I NJ which acts on both H; and Hy.
The reconstruction is by means of Coonnes’s notion of the tensor product of
bimodules over von Neumann algebras. If A, B, C are von Neumann algebras,
M is an (4, B)-bimodule, and N is a (B, C)-bimodule, then Connes defines
a (A, C)-bimodule M x5 N. Two important features of his theory are the
existence of a neutral B-bimodule Bg with the property that Mxg By =M
and Bo*g N = N, and the fact that a (B, B)-bimodule gives us a Hilbert

space NI*B =M *(B°P®B) Bg.7

The relevance of the Connes tensor product to the locality of loop group
representations, and hence to two-dimensional conformal field theory, was first
realized by Wassermann [W]. In the light of his work the following definition
_ essentially that of Stolz and Teichner — seems appropriate.

Definition 2.5. A three-tier conformal field theory over X consists of the

data of Definition 2.2 together with
i) a bundle of von Neumann algebras {Ag}zex 01 X, and
(ii) an (Aq, Ay)—bimodule H., for each path v from z to y.
The properties the bimodules must have are that
Hy = Hy ¥4, Hon

if the path «y from T to y is the concatenation of y1 from © to z and 7o from

2 to y, and that
Hyp = Ho*a,

if the path vy from T to « is regarded as a closed path Yo-

One can presumably construct a cohomology theory based on 3-tier con-
formal field theories of any chosen level, but, as far as I know, little has yet
been proved, especially about why the theories at different levels should be

related by suspension.

Apart from the Stolz-Teichner programme there is another quantum field

theory approach to elliptic cohomology which has been proposed by Baas,

Dundas, and Rognes [BDR]. In one important sense it is much less ambi-

tious: it aims only to construct elliptic objects of degree zero, relying on the

from Quillen, who uses it in an algebraic setting for
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duce the theory in other dimensions.
1 philosophy of this talk.

1 quantum field theory

y of algebraic K -theory to pro
briefly how it fits in to the genera
We can give & definition of a general d-dimensiona
; ong the lines of 2.1, but using manifolds equipped with a Riemannian rather
pan just & conformal structure. (Of course we shall have a Hilbert space Hs
assigned tO each compact oriented Riemannian (d— 1)-manifold S, subject to
5, ® Hs; =~ Hg us,-) Among these theories are the conformal ones, and —
uch more specially still — the so-called topological field theories, for which

o vector spaces and the operators depend only on the smooth structure of
1e manifolds, without any metric at all. On the space of all quantum field
heories we have the renormalization group flow: a theory is a functor from a
cobordism category to ve or any ¢t > 0 we can compose the

ctor spaces, and fi
theory with the functor from the cobordism category t0 itself which multiplies
the metric of every

manifold by t.

When d = 1 a quantum field theory is precisely a semigroup of trace-class

operators in a Hilbert space — self-adjoint operators if the theory is unitary.
The renormalization group flow ret

racts the space of 1-dimensional theories
(with its natural topology) to the subspace of topological theories, which is
simply the space of finite-dimensional complex vector spaces.

We can also define supersymmetric unitary 1-dimensional theories. Such a
theory is a mod 2 graded Hilbert space with a trace-class semigroup whose
generator 18 given as the square of a self-adjoint operator of degree 1. Up to
homotopy, this is the space of Fredholm operators 7, x BU, i.e. the repre-
senting space for K-theory.

When d = 2 we can not assume that the space of quantum field theories

1 theories. It nevertheless

is homotopy equivalent to the space of topologica

seems interesting to consider the space of 2-dimensional topological theories,
and better, in the light of the discussion above, the space of “3-tier” unitary
topological theories. The general definition of a 3-tier d-dimensional quantum

field theory — of which Definition 2.5 is 2 specialization — is as a structure

that assigns

(i) a linear category
(i) a functor Fy : Cz

from Zo to Z1, and
(i) a transformation of functors Uy : Fy, — v t0 each d-dimensional
cobordism X between cobordisms Yo and Y; from Zo to Z1.

These data must satisfy natural conditions which I shall not spell out. (There
is a discussion of the 3_dimensional case in Lecture 3 of [S4].) In Definition
2.5 the category associated to a point T is the category of modules for the
von Neumann algebra A,, and the functors are defined in the usual way by
bimodules. Now in the topological 9-dimensional case we expect the whole
structure to be determined by the category assigned to a point, sO that a
theory reduces to a semisimple C-linear category, ie. a “module” over the

achiner
" haﬂ try to say

-manifold Z,

C, to each closed (d—2)
)—dimensional cobordism

— Cz, to each (d — 1
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category of finite dimensional vector spaces, or, in the language of [BDR] a
“two vector space”. These objects define module spectra over the complex
K-theory spectrum, and the K-theory of that ring-spectrum is the elliptic
theory proposed in [BDR].
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