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CHAPTER 1

Simplicial sets

1.1. Introduction

The primary goal of algebraic topology is to build algebraic probes for
topological spaces in order to distinguish them from one another. However
one can be more ambitious and ask for rebuilding the space out of these
algebraic entities. The most natural topological spaces that our intuition
can afford, are the topological spaces built out of geometric pieces such as
lines, triangles, tetrahedra etc. These are the spaces that we call triangu-
lated manifolds. Obviously this is too much to ask since such spaces are
rare. So the first step would be to try approximate and compare a general
topological space X with such geometric pieces. Thus we have to consider
all the continuous maps ∆n → X because there is no preferred one. Next we
have investigate how these rough images of simplexes fit together to fill the
target space X. This step gets us to singular singular complex (Sing∗(X), ∂)
where

Sing(X)n := {f : ∆n → X|f is continuous }

and ∆n := {(t0, t1, · · · tn)|
∑
ti = 1, 0 ≤ ti ≤ 1} is the geometric simplex.

The singular chains complex S∗(X) is the graded free abelian group whose
generators are the the element of Sing∗(X).

The only structural data which has so far manifested is the collec-
tion of face maps which are of geometric nature. Now we can start ask-
ing many natural questions such as: can we build back the space X out
of the singular complex (Sing∗(X), ∂). How about other (infinite dimen-
sional)topological space such loop spaces and paths spaces related to X?
The next layer of questions would be the functorial properties of the con-
struction (Sing∗(X), ∂). It turns out that a continuous map gives rise to a
map of simplcial sets and chain complexes and more; two continuous ho-
motopic maps give rise to two chain homotopic maps. The proof of the
last statement is quite interesting because it requires triangulating ∆n × I.
This process known as the prism operation relies on sending the simplices
of each factor to some degenenrate simplices (i.e.lower geometric dimen-
sion) in the product. For a similar reason, computing the homology of the
cartesian product of spaces uses the Eilenberg-Zilber map which also re-
quires the degeneracy maps. While trying to understand further more the
internal algebraic structure of the singular chain complex (S∗(X), ∂), one
has to look at the most important map in topology i.e. the diagonal map
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2 1. SIMPLICIAL SETS

X → X × X. The map induced by the diagonal on the singular chains
together with Alexander-Whiteny (the left inverse of Eilenberg-Zilber map)
equips S∗(X) with a remarkable coassociative product. This coproduct,
whose dual, the cup product, is better known) plays an essential role in
Adams’ cobar construction which computes the homology of the based loop
space of X. We have started to convince ourselves that if we are interested
in studying X, we should also consider the degeneracy maps as part of the
structure. The degeneracy maps correspond to the situations where two
vertices of a simplex are in fact geometrically identical therefore the geo-
metric dimension is lower. So our holy grail will be Sing∗(X) with its face
di and si degeneracy maps which is prototype of simplicial set. We have
task ourselves with distinguishing topological spaces among the simplicial
sets and rebuilding homotopy theory out of simplicial sets.

1.2. Basic notions

As explained in the introduction, we want the singular complex of a
space to be prototype of simplicial sets, so naturally the geometric simplices

∆n := {(t0, t1, · · · tn)|
∑

ti = 1, 0 ≤ ti ≤ 1} ⊂ Rn+1

should form an example of cosimilicial set.
Inspired by this example, we define the simplicial category ∆ whose ob-

jects are [n] := {0, · · ·n} for n = 0, 1, · · · . The set of morphism Hom∆([n], [m])) :=
{f : [n]→ [m]|f order preserving}

For instance, for each i we have the coface morphisms di : [n]→ [n+ 1]
and codegeneracy morphisms si : [n+ 1]→ [n] defined as follows:

di(j) =

{
j if 0 ≤ j < i

j + 1 if i ≤ j
and

si(j) =

{
j if j < i+ 1

j − 1 if i+ 1 ≤ j
for O ≥ i ≤ n.

Definition 1.1. A cosimplicial set is covariant functor X : ∆ → Set
where is Set is the category of sets. Similarly a simplicial set is covariant
functor X : ∆op → Set where is ∆op is the opposite category of ∆.

Notation 1.2. Let f ∈ Hom∆(−,−) be a morphism in the simplicial
category. For a cosimplicial (resp. simplicial) set X, f∗ := X(f) (reps.
f∗ := X(f)) denotes the corresponding morphism in the category Set.

Example 1.3. The geometric simplices , ∆∗ : n 7→ ∆n form a cosim-
plicial object. For a morphism f ∈ Hom∆([n], [m]) , ∆∗(f) : ∆n → ∆m is
defined by ∆∗(f)(t0, t1 · · · tn) := (s0 · · · sm) where si =

∑
tj∈f−1(si)

tj .
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In this example ∆∗(di) are precisely the inclusion ∆n ↪→ ∆n as the i-th
face.

Examples 1.4. For a topological space X, the singular complex Sing(X)
functor Sing(X) : ∆op → Set, given by the sets of singular simplices

Singn(X) := C0(∆n, X)

form a simplicial set. Therefore we have functor Sing : Top−Spaces→ sSet

Lemma 1.5. Any morphism in Hom([n], [m]) has a unique factorisation
of the form

f = dil · · · di1sj1 · · · sjk

where n− k = m− l

Proof. An order preserving map from [n] to [m] is determined by its

image (or its complement) and the equivalent classes of
f∼, where x

f∼ y
iff f(x) = f(y). Moreover f induces a bijection between these equivalence
classes and its image. Suppose that i1 < i2 · · · < il are the distinct elements
of [m] \ Im(f), and j1, · · · jk is a the maximal sequence for which f(jp) =
f(jp + 1). The equivalence described above has n − k element and the
image of f has m − l, therefore n − k = m − l. We also noticed that the
map dil · · · di1 does not have i1, i2 · · · , il in its image and the map sj1 · · · sjk

define an equivalence relation
φ∼ whose number of classes is smaller than

number of classes of f . In other words, if we set φ = dil · · · di1sj1 · · · sjk then
φ(jp) = φ(jp + 1) for all p and i1, i2 · · · , il are not in the image of φ. In fact
Im(φ) = Im(f). Since φ is also order preserving, it establishes a bijection
between its equivalence classes (which there are at most n−k) and its image
(which has exactly m − l elements). Since m − l = n − k, therefore φ has
exactly the same number of equivalence classes ( and the imgae) therefore
f = φ. �

Since di and si verify the relations

didj = dj+1di i ≤ j
sjsi = sisj+1 i ≤ j

sjdi =


disj−1 i < j

1 i = j, j + 1

di−1sj otherwise

(1.1)

By Lemma1.5 and relations (1.1) we have

Proposition 1.6. The morphisms of the simplicial category ∆ are gen-
erated by di and si subject to the relations (1.1).
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We call di’s and si’s respectively the coface and codegeneracy maps.
Similarly the the morphisms of the opposition category ∆op are generated
by the (dual) generators di : [n+1]→ [n] and si : [n]→ [n+1], for 0 ≤ i ≤ n
subject to relations,

djdi = didj+1 i ≤ j
sisj = sj+1si i ≤ j

disj =


sj−1di i < j

1 i = j, j + 1

sjdi−1 otherwise

(1.2)

Corollary 1.7. A simplicial set consists of a collections of sets {Xn}
together with maps di : Xn+1 → Xn and si : Xn → Xn+1 subject to relations
(1.2).

Proof. If X : ∆op → Set is a given simplicial set then above mentioned
morphism X(di) : Xn+1 → Xn and X(si) : Xn → Xn+1 are the above-
mentioned morphism. For simplicity we denote X(di) and X(si) by di and
si. �

We call X0 the set of vertices and Xn the set of n-simplices. We call di’s
and si’s respectively the face and degeneracy maps.

Definition 1.8. Simplcial sets form a category sSet. The morphism
sets HomsSet(X,Y ) from a simplicial set X to Y is defined to be the set of
natural transformation between X and Y as functors. This is equivalent
to have a collection of maps fn : Xn → Yn which commute with structural
maps di and si.

Definition 1.9. In a simplicial set simplex {Xn}n, an n-simplex x is
called degenerate if it belongs to the image of a degeneracy maps si.

Proposition 1.10. A n-simplex x in a simplicial set {Xn}, is either
nondegenerate or there is a presentation x = sj1sj2 · · · sjky with j1 ≤ j2 · · · ≤
jk where y is unique

Proof. Existence of the presentation: If x is degenerate then we
are done, if not then there is i1 and y1 such that x = si1y1. Continuing this
process and by finiteness of the dimension, we can write x = si1si2 · siky
where y is nondegenrate. Now using the relations (1.2) we can rewrite the
expression in the form x = sj1sj2 · · · sjky such that j1 < j2 · · · < jk.

Uniquness Suppose that sj1sj2 · · · sjky = si1sj2 · · · silz. Let D =
djkdjk−1

· · · dj1 . Then we have Dsj1sj2 · · · sjk = id, therefore

y = Dsi1si2 · · · silz.
Let S = si1si2 · · · sil , so we have y = DSz. Using the simplicial relations
(1.2) we can write DS = S′D′ where D′ is a product of some face maps and
S′ is a product of some degeneracy maps. This give y = S′D′z which would
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contradict y being nondegenerate unless S′ is void/nonexisting. Therefore
we have proved that y is a face of z and symmetrically y is face of z hence
y = z. �

1.3. Yoneda Lemma

As we know there are some topological space which are triangulate there-
fore they provide us a host of simplicial complexes. It turns ou that we can
turn them into simplicial sets as follows.

Example 1.11. Let K = {si} be an oriented simplicial complex i.e.
with a partial ordering on V ert(K) such that the induced orientation on
each simplex is a linear ordering. We construct a simplicial set {Ks(n)}n by

Ks(n) := {[viO ≤ vi1 · · · ≤ vin ]|viO , vi1 · · · vin spans a simplex in K}.

Note that in a n-simplex, we allow repeated vertices. The structural
maps are given by

dk([viO ≤ vi1 · · · ≤ vin ]) = [viO ≤ vi1 · · · vik−1
≤ vik+1

· · · ≤ vin ]

and

sk(([viO ≤ vi1 · · · · · · ≤ vin ]) == [viO ≤ vi1 · · · vik ≤ vik · · · ≤ vin ]

We give an explicit example of the construction above. Let K be
the simplicial complex consisting of the standard geometric simplex ∆n =
[e0, e1 · · · en] ⊂ Rn and all of its faces. We have

Ks(m) = {[ei0 , ei1 · · · eim ]| i0 ≤ i1 ≤ · · · ≤ im & 0 ≤ ik ≤ n}

which as a set, it is in bijection with the set of order preserving maps from
{0, · · ·m} to {0, · · ·n}.

Examples 1.12. A point ∆0 = {0} as a simplicial set, has one n-simplex
for each, they are X0 = {[0]}, X1 = {[0, 0]}, X2 = {[0, 0, 0]} · · ·

Similarly the interval ∆1 has , as a simplcial set, n + 2 n-simplices for
each n, namely

X0 = {[0], [1]}
X1 = {[0, 0], [0, 1], [1, 1]}

X2 = {[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]}
etc.

So we define the simplicial set ∆n whose set of m-simplices is

∆n[m] := Hom∆([m], [n])

Lemma 1.13. (Yoneda lemma) There is a natural bijection

HomsSet(∆n, X) ' Xn
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Proof. The bijection ψ : HomsSet(∆n, X) → Xn is given by sending a
natural transformation T : ∆n → Xn to ψ(T ) := T (idn) ∈ Xn. Here we
think of idn as an element of ∆n[n] = Hom∆([n], [n]). The inverse Υ of ψ
is given by Υn(x) : ∆n → X defined by Υn(x)(f) = X(f)(x) ∈ Xm for an
element f : [m]→ [n] of ∆n[m]. This defines a natural transformation if the
diagram

(1.3) ∆n[m]
f 7→X(f)(x) //

f 7→g◦f
��

Xm

X(g)

��
∆n[p]

h7→X(h)(x)
// Xp

is commutative for all g : [p] → [m] ∈ Hom∆([p], [m]). The commuta-
tivity is indeed a consequence of X begin a functor from the the opposite
categor the identity

X(g)(X(f)(x) = (X(g) ◦X(f))(x) = X(g ◦ f)(x)

�

In order to be able to define the notion of homotopy between simplicials
maps we need to define the basis operation on the simplicial sets.

For a simplicial set X = {Xn}n≥0, the n-th skeleton Skn(X) is by defi-
nition the smallest simplicial subset of X containing all the nondegenerate
simplices of dimension at most n. We have a natural filtration

Sk0(X) ⊂ Sk1(X) · · ·
Now we can define a notion of dimension for a simplicial set. A simplicial

set is said to be finite dimensional if for some n, X = Skn(X). If X is finite
dimensional, the dimension of X is the smallest n for which X = Skn(X).
For instance, the simplicial ∆n is of dimension n. The boundary ∂∆n of ∆n

is the (n− 1)-skeleton of X. One should think of ∂∆n as a simplicial model
for the the sphere Sn−1. Intuitively we can notice that ∂∆n should a be
union of a other simplicial subsets ∂i∆n . The simplicial subset ∂i∆n is the
simplmicial subset generated by di ∈ Hom∆([n− 1], [n]) = ∆n[n− 1].

Proposition 1.14. If x is a nondegenerate n-simplex then any face dix
belongs to Skn−1(X). As a consequence we have a push out,

(1.4) ∪x∈en(X)∂∆n

Υn−1

��

incl. // ∪x∈en(X)∆n

Υn��

Skn−1(X)
incl.

//
y

Skn(X)

where en(X) denotes the set of nondegenerate n-simplices and Υn is the map
provided by Yoneda lemma.
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Proof. If di(x) is nondenerate then by defining it belongs to Skn−1(X).
Otherwise it is of the form si1si2 · · · sik(y) where y is nondegenerate simpli-
cies of dimension less than n− 1 therefore y ∈ Skn−1(X). �

1.4. Basic operations on simplcial sets

The cartesian product. For simplicial sets X = {Xn}n and Y =
{Yn}n, the simplicial cartesian product is defined by

(X × Y ) = Xn × Yn.

The face and degeneracy maps are defined in a diagonal manner i.e.

(1.5) di(x, y) = (di(x), di(y))& si(x, y) = (si(x), si(y))

Remark 1.15. Note that that product of two degenerate simplices in X
and Y is not necessarily a degenerate simplex in X × Y . You can find the
importance of this observation in the following example.

Example 1.16. As explained earlier in Example 1.11, unit interval I =
[0, 1] can be enriched into a simplidcial set therefore we can consider the
simplicial cartesian product I×I. Note that the simplices of I = ∆1 are the
sequences of the form [0, · · · 0, 1, · · · 1]. So in the cartesian product, there
are 4 0-simplices are

([0], [0]), ([0], [1]), ([1], [0]), ([1], [1]).

We have 5 nondegenerate 1-simplices

α = ([0, 0], [0, 1])

β = ([0, 1], [0, 0])

γ = ([1, 1], [0, 1])

θ = ([0, 1], [1, 1])

λ = ([0, 1], [0, 1])

(1.6)

and two nondegenerate 2-simplices Ω1 = ([0, 0, 1] × [0, 1, 1]) and Ω2 =
([0, 1, 1]× [0, 0, 1]).
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(1.7) ([0], [1])
θ // ([1], [1]).

Ω1

Ω2

([0], [0])
β

//

α

OO

λ

<<

([1], [0])

γ

OO

Union For two simplicial sets X = {Xi} and Y = {Yi}, union X ∪ Y is
a simplicial set whose n-simplices are

(X ∪ Y )n := Xn ∪ Yn.

The faces maps and degeneracy maps are those of X or Y .
Wedge For two simplicials sets X and Y , the wedge product X ∧ Y is

simplicial subset of X × Y

X ∧ Y := (X × [∗y]) ∪ ([∗x] ∪ Y )

Here [∗x] and [∗y] are the (simplicial) base points of X and Y .

1.5. Simplicial object in a category

Definition 1.17. A simplicial object in a category C is covariant functor
F : ∆op → C. Similarly a cosimplicial object in C is a covariant functor
F : ∆→ C

For instance, a simplicial abelian group is a functor F : ∆op → Z −
Module i.e. it consists of a collection {Gn}n of abelian groups Gn with
group homomorphism di : Gn → Gn−1 and si : Gn−1 → Gn which satisfy
the usual simplicial relations

Definition 1.18. By a simplicial chain complex over a unital ring R,
we mean a simplicial object in the category of R-Modules. It consists of
a sequence R-module Cn together with maps di : Cn → Cn−1 and Si :
Cn−1 → Cn subject to the usual simplicial identities. It has an underlying
chain complex (C∗, ∂) where ∂ : Cn → Cn−1 given by ∂ =

∑
(−1)idi

1.5.1. Chain complex of a simplicial set. Let R be a unital ring.
We start with a simplicial set X = {Xn}. We set Cn(X) = ⊕x∈XnR〈x〉 to
be the free R-module generated by x ∈ Xn.
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The face and degeneracy maps induces the face and degeneracy maps of
C∗(X). s In other words the functor C∗(X) : ∆op → R −Module defined
by

C∗(X)[n] := Cn(X)

and

C∗(X)(f) : Cn(X)→ Cm(X) C∗(X)(f)(x) = f(x), ∀x ∈ Xn

for all f : [m] → [n] ∈ Hom∆, is a simplicial chain complex. Of course
C∗(X) has a underlying a chain complex whose differential is given by ∂ =∑

(−1)idi : Cn(X) → Cn−1(X). We recall the standard notation for the
group of cycles

Zi(C) = ker(∂ : Ci(K)→ Ci−1(K))

and boundary element

Bi(C) = Im(∂ : Ci+1(C)→ Ci(K))

Example 1.19. The simplicial chain complex of the simplicial set Singn(X)
is called the singular chain complex of X and is denoted {Sn(X)}n.

Proposition 1.20. The collection of simplicials sets {∆n}n form a
cosimplicial set in the category of simplicial sets.

Proof. For f : [m]→ [n], the f∗ : ∆m → ∆n on a k-simplex is defined
by

h ∈ ∆m = Hom∆([k], [m]) 7→ f ◦ h ∈ ∆n = Hom∆([k], [n]).

The funtoriality (f ◦ g)∗ = f∗ ◦ g∗ is obvious. �

Definition 1.21. Similarly we can define the maps between simplicial
objets X,Y : ∆op → C in a category C. These are the natural transformation

X
F→ Y . More explicitly, a map f between two simplicial R-modules {Xn}

and {Yn}n consists of a sequence of R-linear maps fn : Xn → Yn which
commute with the (simplicial) structural maps di and si.

In particular f induces a map of chain complexes C∗(f) : C∗(X) →
C∗(Y ) which on generator is given by x ∈ Xn 7→ f(xn) ∈ Yn

Definition 1.22. A simplicial chain homotopy between two simplcial
chain maps g, f : (C∗, ∂C =

∑
(−1)idi) → (D∗, ∂D =

∑
(−1)idi) is a se-

quence of hi : Cn → Dn+1, for 0 ≤ i ≤ n such



10 1. SIMPLICIAL SETS

d0h0 = f

dn+1hn = h

dihj = hj−1di i < j

dj+1hj = dj+1hj+1

dihj = hjdi−1 i > j + 1

sihj = hj+1si i ≤ j
sihj = hjsi−1 i > j

(1.8)

If these relations above holds then h =
∑

i=0(−1)ihi is a chain homotopy
in the usual sense i.e

∂Dh+ h∂C = f − g

1.6. Simplicial homotopy

Definition 1.23. Two simplicial maps f, g : X → Y are said to be
homotopic, we write f ∼ g, if there is a simplicial map h : X×∆1 → Y such
that h|X×[0] = f and h|X×[1] = f . Here [0] and [1] are singleton as simplicial
sets (see Example 1.12) In other words we have a commutative diagram

(1.9) X ×∆0

1×d1

��

f

##
X ×∆1

h // X

X ×∆0

g

;;

1×d0

OO

Here d0, d1 : ∆0 = Hom∆(−, [0])→ ∆1 = Hom∆(−, [1]) are induced are
induced by d0, d1 : [0]→ [1].

Proposition 1.24. For composable the simplicial maps f1 and f2, If
f1 ∼ g1 and f2 ∼ g2 the f1 ◦ f2 ∼ g1 ◦ g2

Proof. it is worth to detail �

Proposition 1.25. Let X and Y be two simplicial abelian groups. A
simplicial homotopy h : X × ∆1 → Y between maps of simplicial abelian
groups f, g : X → Y , induces a simplicial chain homotopy between induced
maps C∗(f) and C∗(g) on the the Moore complexes.

Proof. For each n and 0 ≤ i ≤ n, Let ηni : [n] → [1] be simplicial
morphism defined ηni (j) = 0 if and only if j ≤ i. One should. think of ηni as
a n-simplex in ∆1. We observe that

(1.10) di(η
n
j ) =

{
ηn−1
j−1 i ≤ j
ηn−1
j i > j
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and

(1.11) si(η
n
j ) =

{
ηn+1
j+1 i ≤ j
ηn+1
j i > j

Let hi : Xn → Yn+1, 0 ≤ i ≤ n, be the map defined by

(1.12) hi(a) := h((si(a), ηn+1
i ))

Now one can check easy that relations (1.13) hold. For instance,

d0h0(a) = d0h((s0(a), ηn+1
0 )) = h0((d0s0(a), d0η

n+1
0 ) = h0(a, ([1, 1 · · · 1]) = f(a)

For i < j

dihj(a) := dih((sj(a), ηn+1
j )) = h(disj(a), diη

n+1
j ) = h(sj−1di(a), ηn−1

j−1 ) = hj−1(di(a))

�

Corollary 1.26. Let X and Y be two simplicial sets. A simplicial
homotopy. H : X ×∆1 → Y between simplicial maps f, g : X → Y , induces
a chain homotopy between C∗(f) and C∗(g) : C∗(X)→ C∗(Y ).

Proof. Apply Proposition1.25 to the simplicial groups C∗(X) and C∗(Y )
�

The proof of the following result is identical to that of Proposition 1.25.

Corollary 1.27. A simplicial homotopy h : X × ∆1 → Y between.
simplicial maps f, g : X → Y is equivalent to a collection of maps hi :
Xn → Yn+i which satisfies the identites

d0h0 = f

dn+1hn = h

dihj = hj−1di i < j

dj+1hj = dj+1hj+1

dihj = hjdi−1 i > j + 1

sihj = hj+1si i ≤ j
sihj = hjsi−1 i > j

(1.13)

1.7. Adjunction

Let T : C → D and S : D → C be two covariant functors and

φA,B : HomC(A,S(B))→ HomD(T (A), B)

and

ψA,B : HomD(T (A), B)→ HomC(A,S(B))
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be two natural transformations between bi-functors Hom(A,S(B)) and Hom(T (A), B)
on the category Cop×D. Being natural transformation amount to the iden-
tity

f ◦ φ(g) = φ(s(f) ◦ g)

ψ(f ◦ h) = s(f) ◦ ψ(h)
(1.14)

for g ∈ HomC(A,S(B) and h ∈ HomC(A,S(B)) and f : B → B′ and

(1.15) HomC(A,S(B))

φA,B
++

S(f)◦−

��

HomD(T (A), B)

f◦−

��

ψA,B

kk

HomD(A,S(B′))

φA,B′
++

HomC(T (A), B′)

ψA,B′

kk

Similarly, for k : A′ → A, g : A→ S(B), h : T (A)→ B

φ(g ◦ k) = φ(g)T (k)

ψ(h ◦ T (k)) = ψ(h) ◦ k
(1.16)

(1.17) HomC(A,S(B))

φA,B
++

−◦k

��

HomD(T (A), B)

−◦T (k)

��

ψA,B

kk

HomD(A′, S(B))

φA′,B
++

HomC(T (A′), B)

ψA′,B

kk

Remark 1.28. Using theidentities (1.14) and (1.16) we can prove that
the natural transfor mation φ and ψ are natural with respect S and T . In
other words two natural τ : S → S′ and σ : T → T ′ gives rises to a ma
natural transformation φ′ and ψ′ .

Definition 1.29. We say that the functors T and S for an adjunction
if φA,B ◦ ψA,B = id and ψA,B ◦ φA,B = id.

We call T a left adjoint of S and S is a right adjoint of T .

The natural transformations φ and ψ provide us two natural transfor-
mations Ψ : 1 → ST and Φ : TS → 1 called respectively unit and counit
called .
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They are defined by

ΦB := φS(B),B(idS(B)) ∈ Hom(TS(B), B)

and

ΨA = ψ(1T (A)) ∈ Hom(A,ST (A)).

The natural transformations φ and ψ provide us two natural transfor-
mations Ψ : 1 → ST and Φ : TS → 1 called respectively unit and counit
called .

Notice that the defining the natural transformations Ψ and Φ does not
require the idnentity φ ◦ ψ = id and φ ◦ ψ = id.

Proposition 1.30. ψ ◦ φ = 1 if and only if the composition S
ΨS−→

STS
SΦ−→ S is the identity natural transformation.

Similarly, φ ◦ ψ = 1 if and only the composition T
ΨS−→ TST

SΦ−→ T is
the identity natural transformation.

Proof. It follows from the commutative diagram below.

(1.18) A

f

��

ΨA //

ψφ(f)

$$
ST (A)

ST (f)

��

Sφ(f) // S(B)

S(B)
ΨS(B) // STS(B)

SΦB

;;

�

Definition 1.31. The adjunction given by φ and ψ is called an equiv-
alence if φ ◦ ψ = id and ψ ◦ φ = id

Proposition 1.32. The equivalence adjunctions are natural with respect
to the natural transformation τ : T ′ → T and σ : S → S′. More precisely if
τ : T ′ → T exists then σ : S → S′ making the diagram below commutative,
and vice versa.
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(1.19) HomC(A,S(B))

φA,B
++

σ(B)◦−

��

HomD(T (A), B)

ψA,B

kk

−◦τ(A)

��
HomD(A,S′(B))

φ′A,B
++

HomC(T
′(A), B)

ψ′A,Bx

kk

Proof. If τ is given, in order to find σ : S(B) → S′(B), one should
chase digram from upper-left corner for A := S(B)S. we will get

σ(B) = ψ′S(B),B(φS(B),B(idS(B))τ(S(B))),

One can then check that σ makes the diagram commutative for all A and
B. Similarly τ can be defined in terms of σ by

τ(A) = φ′(σ(T (A)) ◦ ψA,T (A)).

�

1.8. Geometric realization and adjunction

We already know that there is a functor S : TopSpace → sSet which is
given by the singular simplices Singn(X) = C0(∆n, X) of X. Now we intend
to introduce a left adjoint for S.

Definition 1.33. Geometric realization of a simplicial set K = {Kn}n
is the set of equivalence relation

T (K) = |K| := tn≥0Kn ×∆n/ ∼

where the equivalence relation is generated by the relations (dix, p) ∼ (x, dip)
and (six, p) ∼ (x, sip).

The topology of T (k) is quotient topology of tKn × ∆n which itself
is equipped with the thweak topology (on the union). This means that
U ⊂ tn≥0Kn ×∆ni is open if and only if for each n, U ∩Kn ×∆ni is open
in Kn ×∆ni. Here Kn ×∆n has product topology.

Definition 1.34. A pair (k,w) ∈ |K| is called an ideal point if k is
nondegenerate n-simplex and w is in the interior of the geometric n-simplex.

Proposition 1.35. Each class in |K| has a unique representative (x, p)

which is an ideal point. where x is nondegenerate and p in the interior ∆̇n

of the geometric simplex ∆n.
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Proof. Let a be a class in |K|, starting with a representative (z, q′) we
can assume that q′ is interior otherwise it can be wirtten q′ = di1 · · · dilq
where q is in the interior of a geometric simplex. Then

a = [(z, q′)] = [(z, di1 · · · dilq)] = [(dil · · · di1z, q)]

So we can suppose that a has a representative (y, q) where q is in the in-
terior. By Proposition 1.10, either y is non degenerate or y = si1si2 · · · sik(x)
where z is nondegenerate. In either case, a has (y, q) or (x, sik · · · si2si1(q))
as representative. In either case the first coordinate is nondegenerate. Also
note that if q is interior then sik · · · si2si1(q) is also in interior. This is
because the codegeneracy maps of the geometric simplices are of the form
(t0, · · · , tn) 7→ (t0, · · · , ti + ti+1, ·, tn), so if all ti > 0 the same is true for its
image. �

Corollary 1.36. |K| is a CW-complex.

Proof. By Proposition 1.35 K is a union of open cell whose boundaries
are included in lower dimension cells. The topology of |K| is the weak
topology which is the topology of CW-complexes. �

Theorem 1.37. For all simplicial sets K and L, there is a natural bi-
jection. |K×L| and |K|× |L|. Moreover this bijection is a homeomorphism
if |K| or |L| is locally finite or if they are both countable.

Proof. We introduce π1×π2 : |K×L| → |K|×|L| as follows: For a class
x ∈ |K×L| we choose a representative (k, l, w) where (k, l) is nondegenerate
n-simplex and w is in interior of a simplex ∆n. Note that this does not mean
that k or l are nondegenerate. Nonetheless the pairs (k,w) (l, w), which are
not necessarily ideal points, represent respectively two classes in π1(x) ∈ |K|
and π2(x) ∈ |L|.

Now we construct the inverse of π1×π2. Let (k, u) and (l, v) be two ideal
points representing two classes in x ∈ |k| and y ∈ |l| and u = (t0, · · · tm) and
v = (t′0 · · · t′n). We set

up :=

p∑
1

ti & vq :=

q∑
1

t′i.

up’s and vq’s are strictly increasing sequence out of which we can reconstruct
the sequences ti’s and t′i’s by subtracting consecutive terms. Being strictly
increasing is a consequence of having ideal points as representative.

We can consider the set {up}p ∪ {vq}q and write its elements in a in-
creasing sequence r0 < r1 · · · < ra. Note that the sequence t′′i := ri − ri−1

is very unlikely to be on the nose tp = up − up−1 and t′q = vq − vq−1 but
this can be corrected by taking carefully their consecutive sums. The latter
corresponds to the codegeneracy maps for geometric simplicials. More ac-
curately, let i1 < · · · < ia−m where rik /∈ {up}p and j1 < · · · < ia−n where
rjk /∈ {vq}q. Notice that we have

∑
t′′i = 1 so w := (t′′1, · · · t′′a) ∈ ∆a and we
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have
u = si1 · · · sia−mw

and

v = sj1 · · · sja−nw.
The inverse η of (π1 × π2) is given by

η(x, y) := [sia−m · · · si1k, sij1 · · · sia−n l, w)].

The identity (π1 × π2)η = id is pretty clear. The identity η(π1 × π2) = id is
also easily verifiable. For the ideal point (k, l, w) ∈ |K ×L|, k and l are not
necessarily nondegenerate. In that case k = sim · · · si1k′ and l = sjn · · · sj1 l′.
We have

π1([(k, l, w)]) = [(k,w)] = [(k′, si1 · · · simw)]

and
π2([(k, l, w)]) = [((l′, sj1 · · · sjnw)]

Note that both k′, si1 · · · simw) and ((l′, sj1 · · · sjnw) are ideal points be-
cause the codegeneracy maps of the geometric simplex send the interiors
to the interiors. Applying the algorithm defining η to (k′, si1 · · · simw) and
(l′, sj1 · · · sjnw) gives us back (sim · · · si1k′, sjn · · · sj1 l′, w) because the w is
common preimage (under codegeneracy maps) of si1 · · · simw and sj1 · · · sjnw.
This proves the identity.

Note that we can equip |K|×|L| with the topology of of CW-complex(weak
topology) because the product of two open cell is cell and with respect CW-
topology η (and its inverse π1 × π2) is a homeomorphism because it is true
cell by cell. Therefore if the product (weak) topology of ( CW-complexes)
on |K| × |L| coincides weak topology (of CW-complexes) on |K| × |L| then
we have a homeomorphism in that sense too. This happens under the as-
sumptions of the theorem. �

Corollary 1.38. If h : K ×∆1 → L is the homotopy between simpli-
cial map f, g : K → L then the continuous maps |f |, |g| : |K| → |L| are
homotopic.

Proof. By apply the geometric realization to H we obtain a continuous
map |H| : |K| ×∆1 → |L| which is homotopy between |f | = |H||K|×{0} and
|g| = |H||K|×{1}. �

Corollary 1.39. If C is category has a initial (or terminal) element
then |NC| is contractible topological space.

Proof. This is a consequence of the previous result and Proposition
1.55. �

As mentioned earlier there the functors S : Top − Space → sSet whose
n-simplices are the s continuous maps σ : ∆n → X with integer coefficients.
We have also the geometric realization functor T : sSet→ Top− Space.
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We define adjunction natural transformations

φ : HomsSet(K,S(X))→ HomTop(|K|, X)

and

ψ : HomTop(|K|, X)→ HomsSet(K,S(X))

by:

(a) For f : K∗ → S∗(X), the continuous φ(f) : |K| → X is given by

φ(f)([k, u]) = f(k)(u) ∀[k, u] ∈ |K|
which is well-defined because f is a map of simplicial sets.

(b) For g ∈ HomTop(|K|, X), the simplicial map is given by ψ(g) : K →
S(X)

∀k ∈ Kn ψ(g)(k)(u) := g([k, u]) ∀u ∈∆n.

One can see that for all f , ψ(φ(f))(k)(u) = φ(f)([k, u]) =
f(k)(u) implying that ψ(φ(f)) = f , and similarly φ ◦ ψ = id.

The associated the counit natural transformation ΦX : |S(X)| = TS(X)→
X is given by

ΦX([k, u]) = φ(1S(X)([k, u]) = k(u)

where k is a singular chain and u ∈∆n. The unit natural transformation
ΨK : K → ST (K) is

ΨK(k)(u) = ψ(1TK) = id([k, u]).

Proposition 1.40. For all simplicial set K, the unit ΨK : K → ST (K)
is injective. Similarly, for all topological space X, ΦX : TS(X) → X is
surjective.

Proof. TO come soon �

The following results would be useful for comparing the model categories
of simplicial sets and topological spaces.

Proposition 1.41. The maps φ and ψ preserves homotopies.

Proof. If F : K × ∆1 → S(X) a simplicial homotopy then T (F ) :
TK ×∆1 → TS(X) is homotopy of continuous maps, so is the composition

ΦX ◦ TF : TK ×∆1 → TS(X)→ X.

Note that ΦX ◦ TF = φ(1S(X)) ◦ T (F )
by (1.14)

= φ(1.F ) = φ(F ) and φ(F ) is
homotopy between φ(F )|TK×[0] and φ(F )|TK×[1].

Similarly if H : T (K) × ∆1 → X is homotopy of continuous maps
then SH : ST (K ×∆1) = ST (K)× ST (∆1)→ S(X) is a simplcial map (a
homotopy) so is its precomposition with a simplicial map ΨK×∆1 . Therefore
we have a simplicial map

SH ◦ΨK×I : K ×∆1 → S(X)
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which is a simplicial homotopy. Moreover SH◦ΨK×I = SH◦ψ(1K×I)
by (1.14)

=
ψ(H), therefore ψ(H) is a homotopy between ψ|K×d1(∆0) and ψ|K×d0(∆0) �

Theorem 1.42. The unit and counit natural transformations induce an
isomorphism in homologies.

Proof. We have H∗(K) := H∗(C∗(K)) where is C∗(K) is the simplicial
complex ofK. We will in Section 1.9) that H∗(C∗(K)) ' H∗(C∗(K)/D∗(K))
where D∗(K) is teh subcomplex generated by the degenerate simplices. On
the other hand the generators of C∗(K)/D∗(K) are precisellt the cells of CW-
complex T (K) therefore H∗(C∗(K)/D∗(K)) is precesly the cellular homol-
ogy of TK which isomorphic to the singular homology H∗(ST (K)), we con-
clude that ΨK (an inclusion) induces an isomorphism H∗(K) ' H∗(ST (K)).

As for (SΦX)∗ : H∗(TS(X)) = H∗(STS(X)) → H∗(X) = H∗(S(X),
from the identity SΦ ◦ΨS = id and the previous result that Ψ ◦ S induces
an isomorphism on homology for the case K = S(X), it follows that SΦ
also induces an isomorphism in homology.

�

1.9. Dold-Kan correspondence

The aim of this section is to prove the Dold-Kan correspondence which
states that the category of simplicial objects in an abelian category A is
equivalent to the category of positively graded chain complexes of A. As
a byproduct we prove that the complex of nondegenerate subcomplex of a
simplicial complex is chain homotopic to the simplicial complex itself.

Let A = {An}n be a simplicial abelian group we continue to use A∗ to
denote its Moore complex equipped with differential ∂ =

∑n
i=0(−1)idi. The

normalized complex NA∗ of A∗ is defined by

NAn := ∩n−1
i=0 ker(di)

which is submcomplex complex of the Moore complex of A∗ meaning that
∂(NA∗) ⊂ NA∗ (a consequence of the simplicial identites ). We have in fac

∂|NAn = (−1)ndn.

Let DA∗ be subcomplex of the Moore complex generated by the ele-
ments of the image of the degeneracy maps. We call DA∗ the degenerate
subcomplex and its quotient the degenerate complex .

We consider the composition of the inclusion followed by the natural
projection,

φ : NA∗ ↪→ A∗ � A∗/DA∗.

Obviously φ is a chain map.

Theorem 1.43. The chain map φ is indeed an isomorphism of com-
plexes.
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Proof. We first filter NA∗ by subcomplexes NjA∗

NjAn := ∩ji=0 ker(di) ⊂ NAn.

Similarly we filter DA∗ by DjA∗ by setting DjAn ⊂ DA to be the subcom-
plex generated by Im(si) for i ≤ j and consider the restriction φ to these
subcomplexes,

φj := φ|NjA∗ : NjA∗ → DjA∗.

We prove by induction on j that φj , j < n, is an isomorphism. j = 0:
We have N0An = ker(d0) and for all classes [x] ∈ An/D0An, d0(x − s0d0)x
because d0s0 = id. In the quotient An/D0An

[x] = [x− s0d0x]

proving that φ0 is surjective. For x0 ∈ N0An if φ0(x) = 0 ∈ An/D0An then
x = s0y for some y ∈ A, and as a consequence, 0 = d0x = d0s0y = y hence
y = 0 and φ0 is injective.

Now we suppose that for all k < j , φk : NkAn → An/DkAn is an
isomorphism for n > k. We have the commutative diagram

(1.20) Nj−1An
φj−1// An/Dj−1(An)

����
NjAn

φj

//
?�

OO

An/DjAn

where the vertical arrow on the left is surjective. A class [x] ∈ An/DjAn has
representative and ultimately a presentative in Nj−1An because by hypoth-
esis φj−1 is surjective. Let y ∈ Nj−1An be representative for [x], replace y
by y − sjdjy. We have dj(y − sjdjy) = 0 and [y] = [y − sjdjy] ∈ An/DjAn
therefore [x] = φj(y − sjdjy) proving thatφj is surjective.

As for the injectivity, consider the commutative diagram whose top ar-
row is exact.
(1.21)

0 // An−1/Dj−1An−1

sj // An/Dj−1An // An/DjAn // 0

Nj−1An−1
� � //

φj−1

OO

Nj−1An

φj−1

OO

NjAn? _oo

φj

OO

If for x ∈ NjAn, φj(x) = 0, then using the commutative diagram above we
can conclude that x = sj(y) for some y ∈ Nj−1An−1. Since djx = 0, we
have y = djsj(y) = djx = 0. Thus φj is injective. �

We jut proved that normalised complex (which is subcomplex) is iso-
morphic to the quotient complex A ∗ /DA∗ where there is no degeneracy
maps, i.e. essentially a complex. In the following we explain how can we
recover the simplicial complex from of it normalized complex.



20 1. SIMPLICIAL SETS

Let Bn := ⊕[n]�[k]NAk where direct sum is taken over surjective mor-
phism in simplicial category ∆. We recall that by Proposition 1.5, a surjec-
tion is a composition of the codege neracy maps si’s. We use the notation

(x, [n]
σ
� [k]) to denote the elements of Bn

It turns out that n 7→ Bn is a simplcial abelian group: For f : [m] →
[n] ∈ Hom∆ and for each index map σ : [n] → [k], using Lemma 1.5 we
decompose the decompostion map σ ◦ f : [m] → [k] as the composition of
surjection g and injection τ i.e. σ ◦ f = τ ◦ g where τ is injective and g is
surjective

(1.22) [m]
f // [n]

σ // //

||

[k]

[m]
g // // [l] //

τ // [k]

We define the action of f on (x, [n]
σ
� [k]) ∈ Bn to be

f∗(x, [n]
σ
� [k]) := (τ∗(x), [m]

g
� [l])

In other words to every morphism f in the category ∆ we have associated
a morphism

f∗ : Bn → Bm

which will prove that it is functorial

Proposition 1.44. The collection of set {Bn}n together with induced
maps f∗ as above, is a simplicial set.

Proof. let f : [p] → [m] and g : [m] → [n] be two composable mor-

phisms in ∆ and (x, [n]
σ
� [k])) an element of Bn. Then f∗(g∗((x, [n]

σ
� [k])

is defined by the series of (unique) epic-monic decomposition displayed in
the diagram below,

(1.23) [p]
f // [m]

g // [n]
σ // //

||

[k]

[p]
f // [m]

||

σ′ // // [l] //
τ // [k]

[p]
f ′ // // [t] //

σ′′ // [l]

||

// τ // [k]

[p]
f ′ // // [t]

||

// τσ′′ // [k]

[p]
gf // // [n] //

σ // [k]
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we have f∗(g∗((x, [n]
σ
� [k]) = ((σ′′)∗τ∗(x), f ′) and from the diagram we see

that (f ′, τσ′′) is the epi-monic decomposition of gf hence (gf) ∗ (x, [n]
σ
�

[k]) = ((σ′′)∗τ∗(x), f ′).

This proves that f∗(g∗(x, [n]
σ
� [k])) = (gf)∗(x, [n]

σ
� [k]) �

Proposition 1.45. For a simplicial abelian group A = {An}, the natural
map ψn : Bn := ⊕[n]�[k]NAk → An, given on the generators of Bn by

ψn : (x, [n]
σ
� [k]) 7→ σ∗(x) ∈ An, s

is an isomorphism for simplicial sets.

Proof. First we verify that ψ is a map of simplicial sets. Let f : [m]→
[n] ∈ Hom∆,

f∗(ψn(x, [n]
σ
� [k])) = f∗(σ∗(x)).

On the other hand

(1.24) ψm(f∗((x, [n]
σ
� [k])) = ψ(τ∗(x), [m]

g
� [l])

where τ ◦ g = fσ is the pic-monic decomposition of f ◦ σ, and then

ψm(f∗((x, [n]
σ
� [k])) = ψm(τ∗(x), [m]

g
� [l])

= g∗τ∗(x)
A being a simplicial set

= (τ ◦ g)∗(x)

= (fσ)∗(x)
A being a simplicial set

= f∗(σ∗(x))

= f∗ψn(((x, [n]
σ
� [k]))

(1.25)

Now we prove by induction on n that ψ is an isomorphism. It is clear that
B0 = NA0 = A0 and the only surjection out of [0] is the identity map.

Suppose that ψj is an isomorphism for j < n: The image of ψn include all
the degenerat simplices x = si(y) because y ∈ An−1 therefore y = ψn−1(z)
and x = siψn−1(z) = ψn(si(z)).

We also claim that the ψ induces an isormorphism between the nor-
malised complex of B∗ and NA∗. To this end we compute the NBn,

NBn = ∩ kern−1
i=0 (di)

For (x, [n]
σ
� [k]), if σ 6= id we can write σ = sj1 · · · sjn−k where j1 < j2 · · · <

jn−k. Then djn−k(x, [n]
σ
� [k]) = (x, sj1sj2 · · · sjn−k−1). This is because

sj1 · · · sjn−k ◦ djnk = sj1 · · · sjn−k−1 therefore its epi-monic decomposition is
id◦sj1 · · · sjn−k−1 . This means if (x, σ) 6= 0 is in NBn then σ = id and in that
case 0 = di(x, id) = di

∗
(x, id) = (di

∗
(x), id) = (dix, id) because idn−1 ◦ di is

epi-monic decomposition of di ◦ idn. Thus x ∈ NAn and NBn is isomorphic
to NAn.

Using the isomorphism in Theorem 1.43, that we have a natural exact
sequence of 0 → DA∗ → A∗ → NA∗ → 0 which is split because NA∗ is
a subcomplex of A∗. Since ψn is surjective on degenerate simplices DAn
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of An and an isomorphism (hence surjective) on normalised complexes, we
conclude that φn is surjective.

As for the injectivity of φn: Suppose that φn(((xσ′ , [n]
σ′

� [kσ′ ])σ′)) = 0.
For a surjection σ 6= id, σ = sj1 · · · sjn−k and σ has a right inverse dσ :=

djn−k · · · dj1 . Using this fact d∗σ(xσ, [n]
σ
� [kσ]) = (xσ, id). We fixe an index

σ in (xσ′ , [n]
σ′

� [kσ′ ]),

φn−1(dσ((xσ′ , [n]
σ′

� [kσ′ ])) = dσφn((xσ′ , [n]
σ′

� [kσ′ ])) = 0

therefore by injectivity of φn−1 we conclude that

dσ((xσ′ , [n]
σ′

� [kσ′ ])σ′) = 0.

First notice that since left inverse dσ is unique (i.e. σ) there is only

one component of dσ((xσ′ , [n]
σ′

� [kσ′ ])
′
σ) which corresponds to the identity

map and that is precisely xσ, hence xσ = 0. Since σ was arbitary, we have

((xσ′ , [n]
σ′

� [kσ′ ]) = 0 and φn is injective. �

Theorem 1.46. Dold-Kan correspondence The nomalisation func-
tor N : sAb → Ch+, from the simplicial abelian groups to the category of
positively graded complexes, is an isomorphism of complexes. The inverse
Γ : Ch+ → sAb to N is given by

Γ(C)n =:=
⊕

[n]�[k]

Ck

Proof. The content of Proposition 1.45 is essentially that there is a
natural isomorphism Γ ◦N ' id.

It remains to prove that there is natural of isomorphism of complexes
N ◦ Γ ' id. To that end, we prove that Γ(C)/D(Γ(C)) ' C as complexes
and since there is natural isomorphism N(Γ(C)) we get the isomorphism
that we want.

Suppose that (x, [n]
σ
� [k]) ∈ Γ(C)n = ⊕[n]�[k]Ck. Since σ is surjective,

we can write σ = sj1sj2 · · · sjk , k ≥ 1. Then we get (sjk)∗(x, sj1sj2 · · · sjk−1) =
(x, σ). This means that in Γ(C) all the components are degenerate ex-
cept the one which corresponds to the identity morphism σ = id therefore
Γ(C)/D(Γ(C)) ' C. �

Theorem 1.47. For a simplicial abelian group A = {An}n, the nor-
malised complex NA∗ is homotopy equivalent to the Moore complex A∗.

Proof. We introduce a nested sequence NjA∗ of subcomplexes of A∗
which stabilises degree-wise to NA∗ in a finite length. Moreover we prove
that each inclusion is a homotopy equivalence. We set N−1A∗ = A∗ and for
0 ≤ j ≤ n− 1

NjAn :=

{
∩jk=0 ker(dk) if n ≥ j + 2

NAn otherwise
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Notice that. Nn−1An = NAn and each NjA∗ is subcomplex of A∗ because

• if n < j + 2, then for x ∈ NAn = NjAn then dx ∈ NAn−1 =
NjAn−1, since NA∗ is a subcomplex.
• if n ≥ j + 2 then for x ∈ NjAn and k ≤ j

dkdx = dk(

n∑
i=j+1

(−1)idix) =

n∑
i=j+1

(−1)idi−1dkx = 0

It turns out that the inclusion ij : Nj+1A∗ ⊂ NjA∗ has a homotopy
inverse,

rj(x) =

{
x− sj+1dj+1(x) if n ≥ j + 2

x otherwise

First of all note that for x ∈ NjAn

• dj+1(x − sj+1dj+1(x)) = dj+1(x) − dj+1sj+1dj+1(x) = dj+1x −
dj+1x = 0,
• for k < j + 1, dk(x − sj+1dj+1(x)) = dk(x) − dksj+1dj+1(x) =

0− sjdkdj+1(x) = −sjdjdk(x) = 0,

implying that Im(rj) ⊂ Nj+1A∗. The second step is to verify that rj is a
chain map: For x ∈ NjAn, n ≥ j + 2,

drj(x) =

n∑
i=j+2

(−1)kdk(x− sj+1dj+1x) =

n∑
i=j+2

(−1)kdk(x)− (−1)j+2dj+2sj+1dj+1x

−
n∑

i=j+3

(−1)kdksj+1dj+1x =

n∑
i=j+2

(−1)kdk(x)− (−1)j+2dj+1x−
n∑

i=j+3

(−1)kdksj+1dj+1x

n∑
i=j+1

(−1)kdk(x)−
n∑

i=j+3

(−1)kdksj+1dj+1x

(1.26)

and

rj(dx) = dx− sj+1dj+1dx =

n∑
i=j+1

(−1)kdkx−
n∑

i=j+1

(−1)ksj+1dj+1dkx

=

n∑
i=j+1

(−1)kdkx− (−1)j+1sj+1dj+1dj+1x− (−1)j+2sj+1dj+1dj+2x−
n∑

i=j+3

(−1)ksj+1dj+1dkx

=
n∑

i=j+1

(−1)kdkx− (−1)j+1sj+1dj+1dj+1x− (−1)j+2sj+1dj+1dj+1x−
n∑

i=j+3

(−1)ksj+1dj+1dkx

=
n∑

i=j+1

(−1)kdkx− (−1)j+1sj+1dj+1dj+1x−
n∑

i=j+3

(−1)ksj+1dj+1dkx = drj(x)

(1.27)
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It is clear that rj ◦ ij = id. We claim that that ij ◦ rj is homotop to the
identity map via the homotopy hj : NjAn → NjAn+1

(1.28) hj(x) =

{
(−1)jsj+1(x) if n ≥ j + 1

0 otherwise

To see that,

∂hj(x) + hj∂(x) =

n+1∑
k=j+1

(−1)j+kdksj+1(x) +

n∑
k=j+1

(−1)j+ksj+1dk(x)

= (−1)j+j+1dj+1sj+1(x) + (−1)j+j+2dj+2sj+1(x) +
n+1∑
k=j+3

(−1)j+kdksj+1(x)

+ (−1)j+j+1sj+1dj+1(x) +
n∑

k=j+2

(−1)j+ksj+1dk(x)

= −x+ x− sj+1dj+1(x) +
n+1∑
k=j+3

(−1)j+kdksj+1(x) +
n∑

k=j+2

(−1)j+ksj+1dk(x)

= −sj+1dj+1(x) +

n+1∑
k=j+3

(−1)j+kdksj+1(x) +

n∑
k=j+2

(−1)j+kdk+1sj+1(x)

= −sj+1dj+1(x)

= ij ◦ rj(x)− x

(1.29)

The homotopy inverse f : A∗ → NA∗ to the inclusion i : NA∗ → A∗ is
given degree-wise by An → NAn

fn := rn−2 ◦ · · · ◦ r0 ◦ r−1

and the chain homotopy is given by

h−1 + i−1h0r−1 + · · ·+ i−1 · · · rk−1hkik−1 · · · r−1 + · · ·+ i−1 · · · rn−3hn−2in−3 · · · r−1

(1.30)

‘ �

1.10. Internal hom and simplicial fonction space

The morphism set of two objects in a category does not necessary the
category. However this turns out to be turn be for category of presheaves
on a category. Here we explain this phenomena for the simplicial set (i.e.
presheaves on ∆op) but everything extends to any category of presheaves.

Definition 1.48. For two simplcial sets X and Y , the internal hom-set
hom(X,Y ) ∈ sSet is a simplicial set whose set n-simplices is

hom(X,Y )n := HomsSet(X ×∆n, Y )
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The simplicial structure of hom(X,Y ) is consequence of the cosimplicial
structure of the collection {∆n}n (see Proposition†1.20): For f : [m]→ [n],
and θ ∈ hom(X,Y )n

f∗(θ) ∈ hom(X,Y )m

is given by
(x, h) ∈ Xk ×∆m[k] 7→ θ(x, f ◦ h) ∈ Yk

i.e.
f∗(θ) := θ(id× f∗).

The functoriality is clear because

g∗f∗(θ) = g∗(f∗(θ)) = g∗(θ(id, f∗)) = θ(id, f∗)(id, g∗) = θ(id, (fg)∗) = (fg)∗(θ)

With every morphism set, comes an evaluation.

Proposition 1.49. The evaluation map
ev∗ : X × hom(X,Y )→ Y given by

evn(x, g) := g(x, idn) x ∈ Xn, g ∈ hom(X,Y )n

is a simplicial map.

Proof. For a map f : [m]→ [n] and (x, θ) ∈ Xn×HomsSet(X×∆n, Y )

evm(f∗(x, θ)) = evm(f∗(x), f∗(θ)) = f∗(θ)(f∗(x), idm)

= θ(id, f∗)(f
∗(x), idm) = θ(f∗(x), f∗(id)) =

= θ(f∗(x), f)

(1.31)

f∗(evn(x, θ)) = f∗(θ(x, idn))
θ being a simplicial map

= θ(f∗(x, idn)

= θ(f∗(x), f∗(idn)) = θ(f∗(x), f)

�

Proposition 1.50. In the category of simplicial sets, the cartesian prod-
uct is the left adjoint of the internal hom functor i.e. we have a natural
bijection

HomsSet(K,hom(X,Y )) ' HomsSet(K ×X,Y )

Proof. We define

φ : HomsSet(K,hom(X,Y ))→ HomsSet(K ×X,Y )

φ(θ)(k, x) := ev(x, θ(k)) = ev(1× θ)(x, k).

which is a simplicial map because eve and θ are. The inverse

ψ : HomsSet(K ×X,Y )→ HomsSet(K,hom(X,Y ))

is given by
ψ(h)(k)(x, g) = h(g∗(k), x)
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where h ∈ HomsSet(K × X,Y ), k ∈ Kk and (x, g) ∈ Xn × ∆k[n] ∈ Y . We
have

ψ(φ(θ))(k)(x, g) = φ(θ)(g∗(k), x) = θ(g∗(k))(x, id) = g∗(θ)(x, id)

= θ(id× g∗)(x, id) = θ(x, g),

hence ψ ◦ φ = id. Similarly,

φ(ψ(h))(k, x) = ψ(h)(k)(x, id) = h(id∗(k), x) = h(k, x),

and φ ◦ ψ = id. �

1.11. All about the nerve of a category: Part I

There is a general construction which allows to give a combinatorial
model for the classifying space of the groups.

Suppose that C is a small category. We define a simplicial set NC by
setting NC0 = obj(C) and NCn to nbe the set of n composable morphism i.e

NCn := {(X0
f0→ X1 · · ·Xn−1

fn−1→ Xn)| fi ∈ HomNC(Xi, Xi+1), Xi ∈ obj(C)}.
The face et degeneracy maps are given as follows: For n > 1,

d0(f0, · · · fn−1) = (f1, · · · fn−1)

dn(f0, · · · fn−1) = (f0, · · · fn−2)

di(f0, · · · fn−1) = ((f0, · · · fi+1 ◦ fi, · · · , fn−1), 0 < i < n

si(f0, · · · fn−1) = ((f0, · · · idXi , · · · fn−1)

(1.32)

For n = 1, d0(f0) = t(f0) and d1(f0) = s(f0) where t and s stand for the
target (image) and source (domain) of f .

The nerve construction is functorial because a functor preserves the com-
position and the identity maps.

Proposition 1.51. A functor F : C → D between small categories,
induces a map of simplicial set Nf : NC → ND in a natural manner.

Proof. The induced maps on the vertices is given by x 7→ F (x) and on
n-simplices is given by (f0, · · · fn−1) 7→ (F (f0), · · ·F (fn−1)).

�

Example 1.52. Classifying space of a group
A groups G can be thought of as a category G with one object ∗ and the
morphism HomcG(∗, ∗) = Gop. Here op means that the compostion rule for
the morphism is (g, h) 7→ hg Then nerf NG is a simplicial in which

d0(g0, · · · gn−1) = (g1, · · · gn−1)

dn(g0, · · · gn−1) = (g0, · · · gn−2)

di(g0, · · · gn−1) = ((g0, · · · gigi+1, · · · , gn−1), 0 < i < n

si(f0, · · · fn−1) = (f0, · · · idG, · · · fn−1)

(1.33)

Note that this construction is natural with respect group homomorphism.
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Example 1.53. Let I be the category with two ordered objects 0 and
1 where the nonempty morphism sets are singleton: Hom(0, 0) = {id0},
Hom(1, 1) = {id1} and Hom(0, 1) = {w}. We can easily check that the
nerve of this category is the simplicial ∆1.

Example 1.54. The simplicila set ∆n can be identifies as the nerve of the
category [n]. This is the category associated to the ordered set {0, 1 · · ·n}
where t

(1.34) Hom[n](p, q) =

{
ipq if p ≤ q
∅ otherwise

On should think of ipq as the inclusion of {0, 1 · · · p} in {0, 1 · · · q}. It is esily
seen that ∆n = N [n].

Since the simplicial map di : [n]→ [n+1] and si : [n+1]→ [n] are order
preseverving they can be seen as functors between [n+ 1] and [n] therefore
N(di) and N(si) are maps simplicial sets which ultimatemately turns the
collection {∆n} into a cosimplicial objet in the category of simplicial sets
sSet.

Note that N(di) : ∆n → ∆n+1 and N(si) : ∆n+1 → ∆n are respectively
the post-composition with di and si i.e for f ∈ Hom∆([k], [n]) and g ∈
Hom∆([k], [n+ 1])

N(di)(f) = di ◦ f and N(si)(g) = si ◦ g.

Proposition 1.55. A natural transformation F
T→ G between two func-

tors induces a simplicial homotopy NC ×∆1 → ND between F and G.

Proof. Let I be the category with two objects in Example 1.53. We
claim that that the natural T induces a functor G : C × I → D:

H(x, 0) = G(x) x ∈ obj(C)
H(x, 1) = F (x) x ∈ obj(C)

H(f, Id0) = G(f) f ∈ HomC

H(f, Id0) = G(f) f ∈ ∀HomC

H(f, w) = Ty ◦ F (f) = G(f) ◦ Tx ∀f ∈ HomC(x, y)

(1.35)

H being a functor is essentially consequence of the commutativity of the
diagrams of the form

(1.36) F (x)
Tx //

F (f)

��

G(x)

G(f)

��
F ((y)

Ty // G(y)

Now by applying the nerv efunctor N to H, we obtain a simplicial map
NH : N(C)××∆1 = N(C)×N(I) = N(C × I)→ ND �
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Corollary 1.56. The nerf of a category with final objet (initial) object
is a contractible simplicial set.

Proof. Having an initial objects gives rise to a natural transformation
between the identity functor and constant functor. �

Definition 1.57. For two categories C and D, let Func(C,D) be the
category whose objets are functors F : C → D and its morphisms are the
natural transformations between functors.

Proposition 1.58. The nerve functor N : Small − categories→ sSet

Proof. We shall prove that N : Func(C,D) → HomsSet(NC, ND) is a
bijection. We construct an invese N−1 for N . Let φ : NC → ND be a map
of simplicials sets. Since the 0-simplicies of NC and ND are the objects of
cC and D, we obtain a map N−1(φ) = φ0 : obj(C) = NC0 → obj(D) = ND0.
Note the f : X → Y be a morphism in C. Since NC1 is the set of morphism,
then we φ1 is indeed a maps from morphisms of C to the morphisms of D
and we define N−1(φ)(f) := φ1(f). Now we have to show that φ0 and φ1

constitute a functor. First notice that for a morphism f : X → Y , the
morphism φ(f) is a morphism from φ0(X)→ φ0(Y ). This is consequence of
of φ being a simplicial map

source(φ1(f)) = d0φ1(f) = φ0(d0f) = φ0(X)

and similarly for the target. We have also φ1(idA) = idφ0(A), for A ∈ obj(C)
because φ commutes with the degeneracy maps. Finally we should prove

that for two composable morphisms X
f0→ Y

f1→ Z, φ1(g ◦ f) = φ1(g) ◦
φ1(f).This follows from that the fact σ := (f0, f1) is defines a 2-simplex in
NC and since φ is a map of simplicial sets. We have

d0φ2(σ) = φ1(d1σ) = φ1(f)

and
d2φ2(σ) = φ1(d2σ) = φ1(g),

therefore φ2(σ) = (φ1f), φ1(g). Again, φ being a simplicial map, we

(1.37) φ1(g ◦ f) = φ1(d1σ) = d1φ2(σ) = φ1(g) ◦ φ1(f).

hence (φ0, φ1) form a functor. The identity N−1N = id is obvious. TO prove
that N ◦ N−1 = id, take a simplicial map φ : NC → ND. By definition of
N−1, N ◦ N−1(φ) on 0 and 1-simplicies is identical to φ and this suffices
because a simpliciam map betwen nerves is determined by it effect on 0 and
1-simplices, therefore

N ◦N−1(φ) = φ.

�

Proposition 1.59. Let C and D be two small categories. Then we have
an isomorphism of simplicial set

(1.38) NFunc(C,D) ' hom(NC,ND)
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Here hom(NC,ND) ∈ sSet is the simpclicial function space introduced in
Section 1.10

Proof.

hom(NC,D)n = HomsSet(NC,×∆n, ND)
by Example 1.54

' HomsSet(NC ×N [n], ND)

' HomsSet(N(C × [n]), ND)

by Prop 1.58
' Func(C × [n],D) ' Func([n],Func(C,D)) = N(Func(C,D))n

(1.39)

The fact that these isomorphisms are compatible avec les simplicial map
is easily verifiable and is actually discussed in Example 1.54. �

One can naturally ask if the nerve function is part of an adjunction. It
turns out that the functor N has a left adjoint T : sSet→ small−Cat called
the fundamental category functor and for simplicial set X, subsequently
T (X) is called the fundamental category of the simplicial set X..

Definition 1.60. Let X = {Xn}n be a simplicial set. Let fundamen-
tal category T (X) of X be the category whose set of objects is X0 with
morphism sets

HomT (X)(x, y) = {f ∈ X1| d1f = x & d0f = y}/ ∼

where ∼ is defined by the identities d1σ = d0σ ◦ d2σ for all σ ∈ X2.

It is not hard to see that for x ∈ X0, we have s0(x) = idx ∈ T (X).
Indeed if f ∈ HomT (X)(x, x) for σ = s0(f) we have

d0σ = d1σ = f and d2σ = d2s0f = s0d1f = s0(x)

and the 2-simplex σ imposes the relation f ◦ s0(x) = f. Similarly for 2-
simplex τ = s1(f) we obtain that s0(x) ◦ f = f , therefore s0(x) is the
identity morphism.

Proposition 1.61. The functor T : sSet→ Small−Catergoies is left-
adjoint for the nerve functor N .

Proof. To prove that statment we should a natural bijection Func(TX, C) '
HomsSet(X,NC).

Let φ : X → NC be simplicial maps. This includes the maps φ0 :
X0 → Obj(C) and φ1 : X1 → HomC which can be though of as map φ0 :
Obj(T (X)) → obj(C) and φ1 : HomT (X) → HomC and T (X) to C. Note
that. φ1 is a first defined on the generators of HomT (X) and then it is
extend by compositing law, now we need to prove this is well-defined with
respect to the equaivalance relation∼ and it sends the identity morphism to
the identity.
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Note that the maps φ0 and φ1 come with the following commutative
diagrams:

X1

φ1

��

d0 // X0

φ0

��
HomC target

// obj(C)

X1

φ1

��

d1 // X0

φ0

��
HomC source

// obj(C)

X0

φ0

��

s0 // X1

φ1

��
obj(C)

s0:A 7→(A
idA→ A)

// HomC

(1.40)

The upper right diagram implies that for x ∈ X0 = Obj(T (X)), we have
φ1(idx) = φ1(s0(x)) = s0(φ0(x)) = idφ0(x) therefore φ1 sends the identity
morphism to the identity, as it should (as a functor). The two other diagrams
above show that for a 1-simplex σ, the morphism φ1(σ) is a morphism from
φ0(d1σ) to φ0(d0σ) as it should be. The only remaining part is to prove
that under that the composition law under ∼ is sent to the composition
of the morphisms. Let σ be a 2-simplex. Then φ2(σ) is 2-simplex of the
form (f, g) where f and g are composable morphisms in HomC . Becaucse
φ2 ◦ di = di ◦ φ2 we conclude that

(1.41) g = d0φ2(σ) = φ1(d0σ) f = d2φ2(σ) = φ1(d2σ),

therefore d0φ2(σ) ◦ d2φ2(σ) = g ◦ f = d1(φ2(σ)) = φ1(d1σ). So we have
constructed a map Ψ : HomsSet(X,NC) → Func(T (X), C) which essentially
looks like {φi}i≥0 → (φ0, φ1). It is not hard that to see that Ψ is injective.
This follows from that fact that an simplex in NC is completely determined
by it 0 and 1 dimensional faces. In other words if for two simplicial maps
φ = {φi}i≥0 and ψ = {ψi}i≥0, we have φ0 = ψ0 and φ1 = ψ1 then φ = ψ.

As for surjectivity of Ψ, let F : T (X) → C be a functor. The first
two component φ0 : X0 → NC0 and φ1 : X1 → NC1 of the simplicial map
{φi}i≥0 are the maps given by F on sets of object and morphisms. The
higher components φn : Xn → NCn is given by
(1.42)

φn(σ) := (F (d2d3 · · · dnσ), · · · , F (d2d3d
n−3
0 σ), F (d2d

n−2
0 σ), F (dn−1

0 σ))

This formule can be easily proved by induction. The naturality of the bijec-
tion Ψ is easily seen. �

1.12. Kan complexes

As mentioned earlier, we are guided by the singular chains as the main
examples of simplicial set offered by topology. So we intend to characterize
simplicial set coming from topological spaces. To that end we introduce the
notion of Kan complexes.

Definition 1.62. Let K be a simplicial set. A sequence of n (n − 1)-
simplicies x0, x1, · · ·xk−1,−, xk+1, · · ·xn is said to be compatible if for all
i < j , i 6= k, i 6= k

dixj = dj−1xi.
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We say that K is a Kan complex if every compatible sequence has an ex-
tension i.e. there is an n-simplex x such that for all i 6= k

dix = xi

Proposition 1.63. For all topological space X then singular chain Sing(X) =
{Singn(X)}n is a Kan complex.

Proof. We have to prove the extension for a compatible sequence made
of generators i.e. continuous maps from the geometric simplex ∆n−1 to X.
Given a compatible sequence of continuous maps xi : ∆n−1 → X with the
property

(1.43) dixj = dj−1xi

which means

(1.44) xj(s0, s1 · · · si−1, 0, si, · · · sn−2) = xi(s0, s1 · · · sj−2, 0, sj−1, · · · sn−2)

We define f : ∪i 6=k∂i∆n → X

∂i∆
n = t−1

i ({0}) ∩∆n ⊂ ∆n

as follows: f(t0, · · · ti−1, 0, ti+1, · · · tn) = xi(t0, · · · ti−1, ti+1, · · · tn). We have
to check that f is well-defined on ∂i∆

n∩∂j∆n. For i < j−1 this is equivalent
to the identity

xi(t0, · · · ti−1, ti+1, · · · tj−1, 0, tj+1 · · · tn) = xj(t0, · · · ti−1, 0, ti+1, · · · tj−1, tj+1, · · · tn)

which follows from the (1.44) for

s0 = t0, · · · , si−1 = ti−1

si = ti+1, · · · , sj−2 = tj−1

sj−1 = tj+1, · · · , sn−2 = tn

(1.45)

For i = j − 1 the f being well-defines amounts to the identity

xi(t0, · · · ti−1, 0, ti+2 · · · tn) = xi+1(t0, · · · ti−1, 0, ti+2, · · · tn)

which follows from (1.44) for sk = tk �

There is another description of the extension property for for compatible
sequences in terms of simplicial maps. For a fix n and 0 ≤ i ≤ n, as we
mentioned earlier the i-th face ∂i∆n of ∆n is the subcomplex generated
by di ∈ Hom∆([n − 1], [n]). If we have a sequence of (n − 1)-simplices
x0, · · ·xk−1, xk+1, · · ·xn, then just like Yoneda Lemma we a have a sequence
of simplicial maps x̄i : ∂i∆n → X given by sending a k-simplex di ◦ f ∈
∂i∆

n[k] to

x̄i(d
if) = f∗(xi) ∈ Xk,

here f : [k] → [n − 1]. One cas natural ask if the collection x̄i gives rise to
a well-defined a simplicial map from the i-th horn

Λkn := ∪i 6=k∂i∆n
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Proposition 1.64. x0, · · ·xk−1, xk+1, · · ·xn, of (n − 1)-simplices in X
are compatible if and only the collection of maps x̄i : ∂i∆n → X extends
to a simplicial maps x̄ : ∪i 6=k∂i∆n. When the sequence is compatible, the
existence of a n-simlex x ∈ Xn with ∂ix = xi is equivalente to the existence
of an extension of x̄ from Λkn to the entier ∆n.

Proof. Suppose that xi’s are compatible. We just have to prove that
on the intersection ∂i∆n ∩ ∂j∆n the simplicial maps x̄i and x̄j coincide:
Suppose that dif = djg for certain f, g : [k]→ [n− 1]. We can assume that
i < j. Then using Proposition 1.5, we can write f = dj−1h g = dih for a
unique morphism h : [k − 2]→ [k − 1]. We have

x̄i(d
if) = f∗(xi) = (dj−1h)∗(xi) = h∗(dj−1)∗(xi) = h∗(dj−1(xi))x(

= h∗(dixj) = h∗(di)∗(xj) = (dih)∗(xj) = g∗(xj) = x̄j(d
jg)

(1.46)

Conversely, if x̄i extends to a map on Λkn, then x̄i and x̄j must coincide on
the intersection ∂i∆n ∩ ∂j∆n which contains didj−1 = djdi. The identity
x̄i(d

idj−1) = x̄j(d
jdi) is equaivalente to the identity dj−1xi = dixj .

�

Theorem 1.65. (J. C. Moore) Any simplicial group G is s Kan complex.

Proof. Suppose that x0, · · ·xk−1, xk+1, · · ·xn, is a compatible sequence.
Let

y0 = s0(x0)

yi = yi−1(sidiwi−1)−1si(xi) 0 < i < k

yn = yk−1(sn−1dn(yk−1))−1sn−1(xn)

yi = yi+1(si−1diyi+1)−1si(xi) k < i < n

(1.47)

yk+1 is the desired extension of xi’s. �

1.13. Homotopies in Kan complexes and Homotopy groups of
simplicial sets

For topological spaces we can construct homotopy groups. So we expect
to be able to introduce a notion of homotopy groups which will be isomorphic
to the the homotopy groups of the geometric realisation.

Definition 1.66. Let K be a simplcial set. Two n-simplices x and x′

are said to be homotop and we write x ∼ x′, if for all 0 ≤ i ≤ n,

dix = dix
′

and there is an n+ 1-simplex y such that

dny = x

dn+1y = x′

diy = sn−1dix = sn−1dix
′

(1.48)
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We say that y is a homotopy between x and x′.

Proposition 1.67. If K is a Kan complex the ∼ is an equivalence re-
lation.

Proof. First we have to prove x ∼ x for all x. If y = Sn(x), then we
have dny = dn+1y = x and diy = disn(x) = sn−1dix.

To prove the symmetry and transitivity we prove that if x ∼ x′ and
x ∼ x′′ then x′ ∼ x′′. Let y′ be a homotopy between x and x′ and y′′ a
homotopy between x and x′′:

dny
′ = x, dn+1y

′ = x′, diy
′ = sn−1dix = sn−1dix

′

dny
′′ = x, dn+1y

′′ = x′′, diy
′′ = sn−1dix = sn−1dix

′′(1.49)

Consider the compatible sequence

α0 = d0snsnx
′, · · · , αk = dksnsnx

′ · · · ..., αn = dn−1snsnx, αn = y′, αn+1 = y′′,−.

There is a z such that diz = αi for 0 ≤ i ≤ n+ 1. Let w = dn+2z, then we
have

dnw = dndn+2z = dn+1dnz = dn+1y
′ = x′

dn+1w = dn+1dn+2z = dn+1dn+1z = dn+1y
′′ = x′′

(1.50)

and

diw = didn+2z = dn+1diz = dn+1disnsnx
′ = didnsnsnx

′ = disnx
′ = sn−1dix

′

so w is a homotopy between x′ and x′′. �

A good theory of homotopy groups requires long exact sequence therefore
a relative theory.

Definition 1.68. Let L be a simplicial subset of K. Two n-simplices

are said to homotop relative L, x
L∼ x′ if

(1) dix = dix
′, 1 ≤ i ≤ n.

(2) If y is a homotopy between d0x and d0x
′, there is a (n+ 1)-simplex

w ∈ Kn+1 such that

d0w = y, dnw = x, dn+1w = x′ d0<i<n−1w = sn−1dix = sn−1dix
′

We say that w is a relative homotopy between x and x′.

Proposition 1.69. Suppose that L ⊂ K are both Kan complexes. Then
L∼ is a homotopy equivalence.

Proof. First of all x
L∼ x because if d0x ∈ L then as we saw y = sn−1d0x

is self-homotopy of d0x. For w = snsx, we have 1 ≤ i ≤ n, diw = sn−1dix
and dnw = dn+1 = x, d0w = y therefore w is a relative homotopy between
x and x.
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As for symmetry and transitivity, suppose x
L∼ x′ and x

L∼ x′′. Let w′

and w′′ be the corresponding relative homotopies ie.e

dnw
′′ = x, dn+1w

′ = x′, diw
′ = sn−1dix = sn−1dix

′, 1 ≤ i ≤ n
dny

′′ = x, dn+1y
′′ = x′′, diy

′′ = sn−1dix = sn−1dix
′′ 1 ≤ i ≤ n

(1.51)

and y′ = d0w
′ and y′′ = d0w

′′ provide respectively the homotopies d0x
L∼

d0x
′ and d0x

L∼ d0x
′′ in L. Similarly to the proof of Proposition 1.67 there

is a z ∈ Ln+1 such that di = disn−1sn−1d0x
′ , 0 ≤ i < n− 1, dn−1z = y′ and

dn−1z = y′′.
Now the sequence z, d1snsnx

′, · · · , dn−1snsnx
′, w′, w′′,− is a compatible

one, so there is a V such that div, 0 ≤ i ≤ n+ 1 are, in order, the elements
of the above sequence. Then w = dn+2v does the job, i.e. it is a relative
homotopy between x′ and x′′.

�

We are ready to the define the homotopy groups of a Kan complex K. To
that end we need to introduce the right notion of basepoint. Choose x0 ∈ K,
consider the simplicial subset generated by x0. This simplicial subset has
exactly one n-simplex sn−1sn−2 · · · s0(x) for all n ≥ 1. We continue to denote
this simplicial subset with x0. We set

K̃n := {x ∈ K|dix = x0, 0 ≤ i ≤ n}.

Then the n-homotopy group of K is

πn(K,x0) := K̃n/ ∼

The relative homotopy groups is defines in a similar manner,

K̃n(L) := {x ∈ Kn| dix = x0 1 ≤ i ≤ n, d0x ∈ Ln−1},

and

πn(K,L, x0) := K̃n(L)/ ∼ .

Definition 1.70. For homotopy classes a = [x] and b = [y] ∈ πn(K,x0)
We define product

[x].[y] = [dnz]

where z is the extension of the compatible sequence x0, · · ·x0, x,−, y.

Proposition 1.71. The product defined above is well-defined.

Proof. • First we prove that for given representatives x and y,
the class of [dnz] is independent of the choice of z. Suppose that
z and z′ are two extension for the sequence x0, · · ·x0, x,−, y. Let
w ∈ Kn+2 be an extension for the suite x0 · · · , snx,−, z, z′) then
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dnw is homotopy between dnz and dnz
′ because we have

dndnw = dndn+1w = dnz

dn+1dnw = dndn+2w = dnz.

dn−1dnw = dn−1dn−1w = dn−1snx = sn−1dn−1x = x0.

di≤n−1dnw = dn−1diw = x0

(1.52)

• We prove that the classes a and b of the product a.b is independent
of the choice of the representatives x and y. Suppose that w is a
homotopy between y and y′ i.e.

dn+1w = y & dnw = y′& diw = x0

• Let z′ be an extension for the sequence x0, · · ·x0, x,−, y′. The se-
quence x0, · · ·x0, sn−1x, z

′,−, w is compatible therefore it has an
extension of the sequence u ∈ Kn+2. We claim that dn+1u is an
extension x0, · · ·x0, x,−, y. This is because

dn−1dn+1u = dndn−1u = dnsn−1x = x

dn+1dn+1u = dn+1dn+2u = dn+1w = y

di<n−1dn+1u = dndiu = x0.

(1.53)

Therefore dndn+1u is the product of the classes a and b using the
representatives x and y.On the other hand

dndn+1u = dndnu = dnz
′

which is the product of the classes using the representatives x and
y′.

�

Similarly we define the product on the relative homotopy classes πn(K,L, x0).
Let [x] and [y] two relative classes. Then d0x and d0y in Ln−1 and represents
two homotopy classes in πn−1(L, x0) where we can define the their product

[d0x].[d0y] = [dn−1z]

where z is the extension of the compatible sequence x0, · · · , x0, d0x,−, d0y.
The sequence z, x0, · · · , x0, x,−, y is also compatible therefore has an exten-
sion w, we set

[x].[y] = [dnw].

It turns out this product is well-defined as well.

Proposition 1.72. For a Kan complex K, (πn(K,x0), ·) is a group.

Proof. It is quite clear that that [x0] is a neutral element. We prove
that existence of the inverse by showing that we can divide. For the two
classes [x] and [y] ∈ πn(K,x0) we consider the compatible sequence x0, · · ·x0,−, x, y
of n-simplices which can be extend to a (n+ 1)-simplex z, then by the defi-
nition of the product we have

[dn−1z][x] = [y].
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As for the associativity, we consider the three extensions of three compatible
sequences,

Extension/facesn+ 1 0 to (n− 2)th faces dn−1 dn dn+1 dn+2

wn−1 ∈ Kn+1 x0, · · · , x0 x − y ∅
wn+1 ∈ Kn+1 x0, · · · , x0 dnwn−1 − z ∅
wn+2 ∈ Kn+1 x0, · · · , x0 y − z ∅
u ∈ Kn+2 x0, · · · , x0 wn−1 − wn+1 wn+2

Then we have

([x].[y]).[z] = [dnwn−1][z] = [dnwn+1] = [dndn+1u] = [dndnu](1.54)

We can observe that dnu is an extension of the sequence

x0, · · ·x0, x,−, dnwn+2,

therefore

[x].[dnwn+2] = [dndnu]

On the other hand [dnwn+2] = [y][z], hence the associativity.
�

Theorem 1.73. For all pair of L ⊂ K of Kan complexes, there is a
natural long exact sequence of groups
(1.55)

· · · // πn+1(K,L, x0)
∂ // πn(L, x0)

i // πn(K,x0)
j // πn(K,L, x0) // · · ·

Where ∂[x] = [d0x] and i and j are induced by inclusion.

Proof. Obviously the i and j are group homomorphism. It follows
from our definition of the the production on the relative homotopy groups
that ∂ is also a group homomorphism.

(1) Exactness at (∂, i):

- Im(∂) ⊂ ker(i): We have i∂[x] = i[d0x]. Let y be an extension
of the sequence of n + 1-simplices −, x0, x0, · · · , x0, x, the d0z is a
homotopy between d0x and x0 in Ln.

-ker(i) ⊂ Im(∂):

-ker(i) ⊂ Im(∂): If i[x] = [x0] i.e. x ' x0 ∈ Kn there is a ho-
motopy y in Kn between x and 0. This implies that the sequence of
(n+ 1)-simplices y, x0 · · · , x0,− are compatible, hence expandable
to z. Take a look at dn+2z, we have

d0dn+2z = dn+1d0z = dn+1y = x

d1≤i≤n+1dn+2z = dn+1diz = dn+x0 = x0
(1.56)

therefore dn+2z represents a class in πn+1(K,L, x0) and ∂[dn+2z] =
[d0dn+2u] = [y].
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(2) Exactness at (j, ∂):

- Im(j) ⊂ ker ∂ because ∂j[x] = [d0x] = [x0] by definition of K̃n.

-As for ker ∂ ⊂ Im(j): If for x ∈ πn(K,x0), d0x ' x0 ∈ K̃n(L)
then there is z ∈ Ln such that

dnz = d0x and d0≤i<nz = x0.

Clearly z, x0 · · · , x0,−, x are compatible so there is an extension
y ∈ Kn+1. It is easily verified that y is relative homotopy between
dny and x. Note that

d1≤i≤ndny = dn−1diy = dn−1diy = x0d0dny = dn−1d0y = dn−1z = x0

therefore dny represents a class in πn(K,x0). Moreover d0y = z is
the homotopy in Ln−1 between d0x and x0 as it should be, and

[x] = j([dny])

(3) Exactness at (i, i)):

- Im(i) ⊂ ker(j): For x ∈ L̃n, the sequence

−, x0, · · · , x0, x

is extendable to z ∈ Ln+1. Indeed d0z is a homottopy in L between
x0 and d0x and z is a relative homotopy between x0 and x.

- ker(j) ⊂ Im(i): Suppose that j([x]) = [x0] in πn(K,L, x0) then
there is a relative homotopy w between x and x0 and z := d0w ∈ Ln
is a homotopy between x0 and d0x = x0 in L. The n+1 n-simplices
z, x0, · · · , x0,− are compatible therefore there is an n + 1-simplex
v such tht

d0v = z, d0≤i≤nz = x0

It turns out that

sn−1z, x0, · · · , x0, v, w,−
are compatible and extendable to t ∈ Kn+2. Then we claim that
dn+2t is a homotopy between x an dn+1v ∈ L, hence x is in the
image of i. To see that

dndn+2t = dn+1dnt = dn+1v

dn+1dn+2t = dn+1dn+1t = dn+1w = x

d0<i<ndn+2t = dn+1ditdn+2x0 = x0

d1dn+2t = dn+1d0t = dn+1sn−1z = sn−1dnz = sn−1x0 = x0

(1.57)

�

It may not be immediately clear to the reader why our definition of
homotopy groups is related to the standard topological definition. Here we
answer to the this question.

By Yoneda lemma, a n-simplex x gives rise to a simplicial map x̄ : ∆n →
K. In particular, if ∆ix = x0, for all i, then x̄(∂∆n) ⊂ x0.
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Proposition 1.74. There is a bijection between elements of πn(K,x0)
and the homotopy class of maps x̄ : (∆n, ∂∆n) → (K,x0). Here the homo-
topies are relative to ∂∆n) and x0.

Proof. Suppose that x, y ∈ K̃n are homotpo. Then there is z ∈ Kn+1

such that x = dnz, y = dn+1z and di<nz = x0. We construct a homotopy
hi : ∆n[q] → Lq+1, 0 ≤ i ≤ q , between x̄ and ȳ as follows: We use the
fact ∆n is generated by on element namely idn ∈ ∆n[n] and then we extend
to other element of ∆n using the equations (see (1.13)) uniqueness of the
presentation of the morphism in the category ∆.

hi(idn) = si(x) 0 ≤ i < n,

hn(idn) = z
(1.58)

It remains to prove that hi(∂∆n) ⊂ x0. To that end, note that ∂∆n is
generated by di ∈ Hom∆([n− 1], [n]) and its elements are of the form di ◦ f
where f ∈ Hom∆([k], [n]). For instance, for f = idn and 0 ≤ j ≤ n − 1 we
have

(1.59)

hj(d
i◦idn) = hj(di(idn)) =


dihj+1(idn) = disj(x) if j ≥ i =

{
dihn(idn) = diz = x0, if i < n

disj+1(x) = sjdi(x) = sj(x0) = x0

di+1hj(idn) if j < i =

{
dnhn−1(idn) = dnsn−1(x) = x0, i = n− 1

di+1sj(x) = sjdi(x) = sj(x0) = x0

Similar computation and result hold for all f ∈ Hom∆(−, [n]). Coversely,
suppose that h is a homotopy relative to ∂∆n between x̄ and ȳ. Let zi :=
hi(idn), for 0 ≤ i ≤ n. Then using the relations ((1.13)) and hypothesis that
hi(d

i(idn)) ∈ hi(∂∆n) = x0, we have,

dizj = x0, i 6= j, j + 1

dizi = dizi−1

d0z0 = x

dn+1zn = y

(1.60)

To complete the proof we need the following lemma.

Lemma 1.75. Suppose that z ∈ Kn+1 and diz = x0 for i 6= i, i+ 1, and
drz and dr+1z ∈ K̃n. Then we have a homotopy drz ∼ dr+1z in Kn.

Proof of the Lemma For r = n it is obvious by definition. So we suppose
that r < n.

Let w ∈ Kn+2 be the extension for the sequence

α0 := x0, · · · , αr−1 := x0, αr = sr+1dr+1z, αr+1 := z, αr+2 := srdr+1z,−, αi>r+3 := x0.

Then t = drw satisfies the

dr+1t = drz, dr+2t = dr+1z and dit = x0, 6= r + 1, r + 2.
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By repeating this process we increase the indices from r to n where the
results is obvious.

To finish the proof of the Proposition, it suffices to applies the lemma
to to the each zi for r = i and use the identit dizi = dizi−1,

x = d0z ∼ d1z0 = d1z1 ∼ d2z1 · · · dnzn−1 = dnzn ∼ dn+1zn = y

�

An immediate consequence of the previous result, Proposition 1.74, is
the invariance of homotopy groups under homotopic maps.

Corollary 1.76. If f, g : K → L are homotopic then f∗ = g∗ :
π∗(K)→ π∗(L).

The first and most important example of Kan complex is the singular
complex Sing(X) = {Singn(X)}n of a topology space (See Proposition 1.63).
So it is natural to ask if π∗(Sing(X) is related to the (topological) homotopy
groups π∗(X).

Theorem 1.77. For a topological spaces X we have a natural isomor-
phism of groups

πn(S(X), S(a)) ' πn(X, a)

where a ∈ X is basepoint, S(X) := Sing(X) is the singular (Kan) complex
de X and T is the geometric realization.

Proof. By the adjunction property of S and T , we have a bijection

HomTop(Dn, X) ' HomTop(T∆n, X) ' HomsSet(∆n, S(X)).

Here Dn is the n-dimensional disk. Since T (∂∆n)
homeo' ∂Dn ' Sn−1, The

functoriality of the above bijection implies that we have a bijection for pairs,

HomTop((T∆n, T∂∆n), (X, a)) ' HomsSet((∆n, ∂∆n), (S(X), S(a)).

which Proposition 1.41 conserves the homotopy relation, therefore φ induces
an isomorphism

πn(S(X), S(a)) ' πn(X, a)

Verifying that this is conserves the group structure is not hard and is left to
a reader who wants to indulge oneself. �

Theorem 1.78. (Moore’s Theorem) For a simplicial abelian group G∗
we have a natural group isomorphism

πn(G∗, 0) ' Hn(N(G∗))

induced by the identity map, where N(G∗) is the normalized complex of G
and 0 is the simplicial basepoint generated by neutral element of G0.

Proof. Let 0 be the neutral elements of G0, since all the degeneracy
maps Si are simplicial maps, si−1 · · · s0(0) is the neutral element of Gi.
Therefore our simplicial base point consists of the neutral element of Gi’s.
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The identity map K̃n → N(G)n is well-define because if x ∈ K̃n , then
dix = 0 for 0 ≤ n ≤ n− 1. Morever, since dnx = 0 the identity map induces
a well-define map K̃n → Hn(N(G)).

Suppose that x ∼ y ∈ K̃n via homotopy σ ∈ Kn+1, i.e.

dnσ = x, dn+1σ = y, diσ = 0.

Let z := σ − sn(y). Then dnz = x− y, diz = 0 for i = n+ 1 and 0 ≤ i < n,
therefore ∂z = x − y and x and y are homologous. Therefore we have an
induced map

πn(G, 0)→ Hn(N(G)).

The surjectivity of this map is clear because the elements of Hn(N(G)) are

represented by n-simplices σ such that diσ = 0 for all i, therefore σ ∈ K̃n.
As for injectivity, suppose that σ ∈ K̃n repreent 0 in Hn(N(G)) i.e.

there is z ∈ N(G)n+1 such that dn+1z = σ. Now it is clear that σ ∼ 0 = dnz
because diz = 0 for 0 ≤ o ≤ n− 1.

It remains to prove that the identity map is group homomorphism. To
end we should prove that for x, y ∈ K̃n, there is a (n + 1)-simplex z such
that

diz = 0 0 ≤ in− 1

dn−1z = x

dnz = x+ y

(1.61)

Indeed z = sn−1(x) + sn(y) does the job. �

1.14. Kan fibrations

A simplicial map p : E → B is called a Kan fibration if for any com-
patible n (n − 1)-simplices x0, · · · , xk−1,−, xk+1, · · · , xn with an extension
y ∈ Bn for p(xi), then there is an extension x ∈ En+1 for xi’s such that
y = p(x). It is clear that:

Proposition 1.79. E is a Kan complex if and only if p : E → ∗ is a
Kan fibration. Here ∗ is a the simplicial singleton.

One can introduce the notion of fibre for a Kan fibration p : E → B
by setting F = ∂−1(x0) where x0 ⊂ B is the simplicial base point (i.e the
simplicial subset generated by a 0-simplex x0 ∈ B0.).

Proposition 1.80. The fiber F of a Kan fibration p : E → B is a Kan
complex.

Proof. Let x0, · · · , xk−1,−, xk+1, · · · , xn be a compatible sequence in
F , then for all i, p(xi) = x0 and x0 is a an obvious extension of p(xi)’s in B.
Since p is a Kan fibration then there is an extension x ∈ E for xi’s such that
p(x) = x0. The latter means that x ∈ F , in other wors x is an extension of
xi’s in F , this proves that F is a Kan complex. �
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Lemma 1.81. Suppose that p : E → B is a Kan fibration. Let xi1 , · · ·xir ,
i1 < i2 < · · · < ir, be a sequence of q-simplices in E such that disxit =
dit−1xis for s < t. Assume that there is an extension y ∈ Bq+1 for p(xij )

′s,
i.e.

dijy = p(xij ).

There is an extension x ∈ E for xij ’s, i.e.

dijx = p(xij ).

Proof. One day �

Proposition 1.82. Let p : E → B be a Kan fibertion:

(1) If E is Kan complex and p is onto, then B is also a Kan complex.

(2) If B is a Kan complex then E is also.

Proof. Proof of (1): If y0, · · · , yk−1,−, yk+1, · · · , yn is a sequence of
compatible (n− 1)-simplices in B. Then there is x0 such that. y0 = p(x0).
Since d0y1 = d0y0, by applying Lemma 1.81 to sequence x0 (with y := y1

satisfying d0y1 = p(d0x0)) there is a x1 ∈ E such that p(x1) = y1 and
d0x1 = d0x0. By repeating this process, at each stage we find xi ∈ E such
that p(xi) = yi and djxi = di−1xj for all j < i. By doing so we are lifting yi’s
to a compatible sequence of (n− 1)-simpkices in E which a is Kan complex.
Let x be an extension of xi’s in E, then p(x) is desired extension of yi’s.

Proof of (2): If xi’s is a compatible sequence in E then p(xi) is a com-
patible sequence in B therefore has an extension y in B. Since p is Kan
fibration, y can be lifted to an extension x in E of xi’s. �

One naturally expects a long exacts sequence of homotopy groups associ-
ated to a fibration. the groups homomorphism q : πn(B, b0)→ πn(E,F, a0).

where b0 = p(a0) and a0 ∈ E0,is defined as follows: For y ∈ B̃n, we have
diy = b0, so we can think of y as an extension of the compatible sequence
−, b0, b0, · · · , b0 which is image of the compatible sequence −, a0, a0, · · · a0,,
p being a Kan fibration there is an n-simplex x such that p(x) = y and
di>0x = a0. Now p(d0x) = d0p(x) = d0y = b0 therefore d0x ∈ F and x
defines a homotopy class in the the relative homotopy group πn(E,F, a0).
The map q : πn(B, b0)→ πn(E,F, a0),

q([x]) = [y]

is well-defined meaning that it conserves the homotopy relation, because
the homotopies which are also extensions, can be lifted via p. On the other
hand p : E → B induces a map p : πn(E,F, a0)→ πn(B, b0). It is clear that
qp = id and pq = id proving that q and q are bijections, and since p is a
group homomorphism, q is so.

Via the isomorphism q, the connecting ∂ : πn+1(E,F, a0) → πn(F, b0)
becomes ∂# : πn+1(B, a0)→ πn(F, b0),

∂#([y]) = [d0x]).
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Using the isomorphism q, the long exact sequence 1.73 transforms in:

Proposition 1.83. For a Kan fibration p : E → B with fibre F , we
have a long exact sequence of groups

· · · → πn+1(F, a0)
i→ πn+1(E, a0)

p→ πn+1(B, b0)
∂#→ πn(F, a0)→ · · ·

1.15. Universal cover

In this section we give a construction of the universal cover of a Kan
complex K.

We suppose that K is a connected Kan complex with just one 0-simples
x0. Let π = π1(K,x0) be the fundamental group of K (here x0 also denotes

the subcomplex generated by x0). Define K̃ by

K̃n = Kn × π

equipped with the degeneracy and degeneracy maps

(1) di(x, a) = (dix, a) for. i < n

(2) dn(x, a) = (dnx, (d
n−1
0 x)−1a), here dn−1

0 is (n − 1)-th iteration of
d0.

(3) si(x, a) = (six, a)

Let x0 be the (simplicial) base point of K and x̄0 = (x0, 1) be the simplicial

basepoint of K̃ where 1 ∈ π is the neutral element. Then we have

(1) K̃n is a simplicial set.

(2) The natural projection π : K̃ → K is a Kan fiberation.

(3) πn(F, x̄0) = 1 for n ≥ 1 and π0(F, x̄0) ' π.

(4) The connecting map ∂ : π1 = π1(K,x0) → π1 = π0(F, x̄0) of the
fiberation long exact sequence

· · · → π1(F, x̄0)→ π1(K̃, x̄0)→ π1(K,x0)→ π0(F, x̄0)→ · · ·

is an isomorphism.

(5) Conclude that πn(K̃, x̄0) ' πn(K,x0) for n ≥ 2.

Proof of the (1) and (2) are easy and left to the reader.

1.16. Minimal Complex

Existence of a minimal complex is an key ingredient for proving various
theorems such as Whitehead and Hurewicz theorems.

Definition 1.84. A Kan complex is called Minimal if dix = diy for all
i 6= k, implies that dkx = dky.

Proposition 1.85. A Kan complex is minimal if and only if homotopy
equivalence relation is indeed the equality.
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Proof. Suppose that K is minimal and x ∼ y ∈ Kn. Then there exist
w ∈ Kn+1 such that dnw = x, dn+1w = y and di<nw = sn−1dix. The latter
implies that

disn(x) = sn−1dix = diw for i < n

and we have dnsn(x) = x = dnw, therefore by minimality

x = dn+1sn(x) = dn+1w = y.

Conversely, suppose that for (n+1)-simplices x and y we have dix = diy
for all i 6= k. In order to prove that dkx = dky it suffices to dkx ∼ dky.

First the case k ≤ n, note that snd0x, · · · , sndk−1x−, sndk+1x, · · · sndnx, , x, y
is a compatible sequence therefore extendable by a (n + 2)-simplex. It is
easily checked that dkz is homotopy beween dkx and dky. As for the case k =
n+1, let the (n+2)-simplex z be an extension for sn−1d0x, · · · , sn−1dn−1x, x, y,−
then dn+2z is a homotopy between dn+1x and dn+1y.

�

The fundamental result of this section is that every Kan complex K has
minimal subcomplex which is deformation retract of K. This requires a
lemma.

Lemma 1.86. Let x and y be two degenerate n-simplices. If dix = diy
for all i, then x = y.

Proof. First notice that a degenerate simplex x, is of the form form
x = sidix . To see, write x = siz for z and i, then z = disiz = dix hence
x = sidix.

If x = sidix and y = sidiy now it is clear that x = y because by
hypothesis dix = diy. If x = sidix and y = sjdjy for i < j, then

x = sidix = sidiy = sidisjdjy = sisj−1didjy

= sjsididjy
(1.62)

Therefore x is in the image of sj thus by the argument in the begining,
x = sjdjx and we are back to the case i = j. �

Theorem 1.87. Every Kan complex K admits a minimal K ′ which is
deformation retract of K.

Proof. We construct the simplices of K ′ by induction. The vertices of
K ′0 is made by choosing a representative for each classes of π0(K) Suppose
that K ′i, i < n, are constructed for . To define K ′n, first we consider the set of
n-simplices x with dix ∈ K ′n−1. Then we pick one representative from each
homotopy classe of this set, and when it is possible we chose a degenerate
representative.

First we prove that K ′ is a subcomplex. The stability under the face
maps is true by construction. Stability under degeneracy maps is also proved
by induction. Let x ∈ K ′n, then for a fixed degeneracy map si, all the face
dj(si(x)) belongs, by induction, to K ′n. Therefore, by construction of K ′n+1,
si(x) is homotopic to a simplex y in K ′n+1. By the construction K ′n+1, y
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should be degenerate since otherwise we would have chosen the degenerate
representative si(x) instead of y and we would be done. So have si(x) ∼ y,
which also means dk(si(x) = dky for all k and by Lemma 1.86, si(x) = y
hence si(x) ∈ K ′n+1. By construction K ′ is a minimal comples because the
homotopy implies equality.

Now we prove that K ′ is a deformation retract of K. To that end we
construct a simplicial homotopy H : K×∆1 → K between the identity map
id : K ' K ×∆0 → K and a retraction r : K ' K ×∆1 → K whose image
is in. K ′

(1.63) K ×∆0

1×d1

��

id

##
K ×∆1

F // X

K ×∆0

r

;;

1×d0

OO

We construct H on Skn(K) by induction on n. For n = 0, FH on
Sk0(K)×∆1 is defined by

H(x, 0) = x

H(x, 1) = m, where m is the unique 0-simplex in K ′ which is in the same connected component as x

H(s(x), id) = σ where σ is a 1-simplex with d0σ = x and d1σ = m

(1.64)

(1.65) ∪
x∈en(K)

∂∆n ×∆1
i=incl.//

Υn−1

��

∪
x∈en(K)

∆n ×∆1

Υn

�� i′

��

Skn−1(K)×∆1

H --

j=incl. // Skn(K)×∆1

&&
K

We suppose that H : Skn−1(K)×∆1 → K is constructed. Since we have a
push-out diagram (see Proposition 1.14), in order to extend H to Skn(K)×
∆1 it suffices to extend. H ◦Υn from ∪

x∈en(K)
∂∆n ×∆1 to ∪

x∈en(K)
∆n ×∆1.

Note that ∆n × ∆1 is union of simplicial subsets which are generated by
the images of the maps σj : [n+ 1]→ [1]× [n] given by its image (which is
ordered)

Im(σj) = ((0, 0), (1, 0) · · · , (j, 0, ), (j, 1) · · · (n, 1))

These generators have all of their faces in the boundary complex ∂n × ∆1

except for diσj ∈ ∂∆n × ∆1, for i 6= j, j + 1 and j 6= 0, n + 1. Moreover,
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d0σ0 ∈ ∆n × d0∆1 = ∆n × 1 and dn+1σ0 ∈ ∆n × d1∆1 = ∆n × 0

dj+1σj = dj+1σj+1.

Now we prove the existence of i′ as extension of H ◦ Υn−1. Since (n + 1)-
simplex σ0 has all of its faces, except for one, in ∂∆n ×∆1 and K is a Kan
complex then H ◦Υn−1|σ0 can be extended to σ0. Now σ1 has all of its faces
in ∂∆n×∆1 except for two, one of which is shared with σ0. Therefore H◦Υn

is defined on all of the faces σ1 except for one face, again since K is a Kan
complex, we can extend H ◦Υn−1 to all of σ1 and so on. By repeating this
process we can extend H ◦ Υn−1 to all of ∆n ×∆1. Finally the restriction
of the newly extended H to ∆n×d0∆1 takes its in the minimal subcomplex
because by the induction hypothesis all of its faces H|∂∆n×d0∆1

are in the
minimal complex. �

Proposition 1.88. Let M be a minimal complex and f, g : M → L two
homotopic simplicial map. If f is an isomorphism then g is also.

Proof. Let h = {hq}q, be a homotopy between f and g, here hq : Mi →
Li+1 , 0 ≤ q ≤ i.
Proof of injectivity:
Suppose that x, y ∈M0 and g(x) = g(y). For the two 1-simplices h0(x) and
h0(y), We have d1h0(x) = g(x) = g(y) = d1h0(y) and by minimality of L we
have f(x) = d1h0(x) = d1h0(y) = f(y).

Now suppose that we have proved the injectivity of g on Mi for i ≤ q.
let x and y be two q-simplices with g(x) = g(y). Since g is a simplicial map,
we deduce that g(dix) = g(diy), therefore by hypothesis (on injectivity)
dix = diy. Using these identities we have

dihq(x) = hq−1(dix) = hq−1(diy) = dihq(y), for i < q

dq+1hq(x) = g(x) = g(y) = dq+1hq(y)

therefore by the minimality of L, we get dqhq(x) = dqhq(y) which implies

(1.66) dqhq−1(x) = dqhq−1(y)

because h being a simplicial homotopy satisfies the identity dqhq−1 =
dqhq. We repeat this process for q − 1 instead of q, more precisely

dihq−1(x) = hq−2(dix) = hq−2(diy) = dihq−1(y), for i < q − 1

dqhq−1(x) = dqhq−1(y) (by (1.66))

and then by minimality we get dq−1hq−1(x) = dq−1hq−1(y), hence dq−1hq−2(x) =
dq−1hq−2(y). By repeating this process we can finally get to the identity

d0h0(x) = d0h0(y)

which is to say f(x) = f(y), therefore x = y
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Proof of injectivity:
If x ∈ L0 then choose z ∈ L1 such that d1z = x, and then choose x ∈ M0

such that f(x) = d0z. We have

d0h0(x) = f(x) = d0z,

so by minimality d1h0(x) = d1z which implies g(x) = y hence the surjectivity
of g on L0. Now we complete the proof of the surjectivity by an induction:
suppose that g is surjective on Li for i < q and y ∈ Lq. Choose xi’s such
that g(xi) = diy, 0 ≤ i ≤ q.

Let zq ∈ Lq+1 be an extension to for the sequence

hq−1(x0), · · ·hq−1(xq−1),−, y.

We choose zi<q ∈ Lq+1 by descending recurrence relation as follows:
zj ∈ Lq+1 is the extension for sequence

hj−1(x0), · · ·hj−1(xj−1),−, dj+1zj+1, hj(xj+2), · · · , hj(xq)

(in particular dj+1zj = dj+1zj+1). Now choose x such that f(x) = d0z0, we
have, for i > 0

(1.67)
f(dix) = dif(x) = did0z0 = d0di+1z0 = d0h0(x0) = d0h0(xi) = f(xi),

for i = 0,

f(d0x) = d0f(x) = d0d0z0 = d0d1z0 = d0d1z1 = d0d0z1 = d0h0(x0) = f(x0)

and by injectivity dix = xi for all i.
We have

d0h0(x) = f(x) = d0z0

dih0(x) = h0(di−1x) = h0(xi−1) = diz0 for i > 1
(1.68)

therefore by minimality d1z0 = d1h0(x). We continue this process using the
identity dj+1zj = dj+1zj+1, we can prove that dizj = dihj(x) for all i and
as a consequence

g(x) = dq+1hq(x) = dq+1zq = y,

proving g is surjective.
�

Corollary 1.89. Suppose that M and L are minimal complexes. If
f : M → L to is a homotopy equivalence then f is an isomorphism.

Proof. Suppose the g is the homotopical inverse of f then f ◦ g ' idL
and g ◦ f ' idM . Then by the previous result, Proposition 1.88, f ◦ g and
g ◦ f are isomorphisms hence f and g are isomorphisms. �
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1.17. Simplicial Postnikov system

The Postnikov system is a way of decomposition a simplicial K set by
means of an inverse system of simplicial subsets K(n) whose first n-th ho-
motopy groups are identical to those of K. A major tool in proving various
theorems about the homotopy type of the simplicial sets.

Definition 1.90. For a simplicial set K(n) is a simplicial defined as the
equivalence classes

K(n)
q := Kq/

n∼,

where x
n∼ y if x̄|∆q [p] = ȳ|∆q [p] for all p ≤ n. In other words,

x
n∼ y ⇐⇒ x̄|Skn(∆q) = ȳ|Skn(∆q)

Here x̄ = Υq(x) : ∆n → K is the simplicial map provided by the Yoneda
Lemma. It is clear that

K(n)
q = Kq, for n ≥ q.

For our convenience in formulating he statements, we introduce

K∞ := K.

When n ≥ m we have the natural projection maps pnm : K(n) → K(m)

which are obviously simplicial maps. The reader may have noticed that this
definition does not requires K to be a Kan complex.

Proposition 1.91. Let K be a Kan complex.

(1) For all n (∞ included), K(n) is a Kan complex.

(2) For all n ≥ m (∞ included), the simplicial map pnm : K(n) → K(m)

is Kan fibration.

Proof. By virtue of Proposition 1.82, it is clear (2)for n = ∞ implies

(1). As for (2), suppose that x1, · · · , xk−1,−, xk+1, · · · , xq+1 ∈ K
(n)
q is a

compatible sequence and y ∈ K(m)
q such that diy = p(xi).

• If q ≤ m then K
(n)
q = K

(m)
q = Kq, therefore xi are basically the

element of Kq. Let z ∈ Kq+1 be a representative for y, then it

is clear that diz = xi = p(xi) ∈ K
(n)
q = K

(m)
q = Kq so the class

represented by z in K
(n)
q does the job.

• If q > m , there are two possibilities:

- n =∞: SinceK
(n)
q = Kq andK is a Kan complex, then there exist

x ∈ Kq+1 such that dix = xi. Let z ∈ Kq+1 be a representative

for y ∈ K
(m)
q+1, then we claim that x

m∼ z, and this implies that

p(x) = y and we are done. As for the claim, first noticed that
p(dix) = p(xi) = diy = p(diz) therefore for all i

(1.69) dix
m∼ diz.
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Since m < q, all the m-iterated faces of the q-simplices x and
z are respectively are m − 1-iterated faces of, respectively, {dix}i
and {diz}i. Let’s spell the reasoning in more details: The relation
(1.69) means that for all simplicial morphism f : [m] → [q] we
f∗di∗(x) = f∗di∗(z) i.e.

(1.70) (dif)∗(x) = (dif)∗(z), for all i

On the other hand x
m∼ z is equivalent to g∗(x) = g∗(z) for any

simplicial morphism g : [m]→ [q+1]. Note that any such simplicial
morphism has a unique decomposition (see Lemma 1.5) which by
some di therefore it can be written of the form g = dif , now the
claim follows from (1.70).

- n < ∞: Since we just prove the case n = ∞ so we can use
the result that K(n)’s are all Kan complxes. Now the proof of this
case is exactly the same as case n = ∞ of q < m since the only
hypothesis that we used was K(n) = K being a Kan complex.

�

Definition 1.92. The n-th Eilenberg-McLane space En+1(K) of a Kan
complex K is the fiber of the fibration

(1.71) p = p∞n : K → K(n),

i.e. we have a diagram

(1.72) En+1(K) ↪→ K
p→ K(n).

Once a basepoint x0 ∈ K is fixed, En+1(K) consists of the simplices in K
with faces of dimension less than n falling into the simplicial basepoint. So
as a result

En+1(K)q≤n = x0.

and

(1.73) πq≤n(En+1(K)) = 0

Proposition 1.93. Let K be Kan complex, xo basepoint for K and
m ≤ n.

(i) p∗ := (pnm)∗ : πq(K
(n))→ πq(K

(m)) is an isomorphism for q ≤ m.

(ii) πq(K
(m)) = 0 for all q > m.

(iii) The map πq(Em+1(K(n)))
∼→ πq(K

(n)) induced by inclusion is an
isomorphism for q > m.

(iv) πq(Em+1(K(n))) = 0 if q > n or q ≤ m. In particular En(K(n)) is
McLane-Eilenberg space.

Proof. (i): it follows from the homotopy groups long exact sequence asso-
ciated to the fibration

(1.74) pnm : K(n) p→ K(m).
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One can easily see that the fibre is Em+1(K(n)) and by (1.73) i.e. πi≤m(Em+1(K(n))) =
0 and (i) follows.

Proof of (ii): Let [x] ∈ πq(K(m)), where x ∈ Kq is a representative. Then
by definition ¯dix|Skm(∆q−1) = x̄0|Skm(∆q−1). Because m ≤ q − 1 this im-

plies that x̄|Skm(∆q) = x̄0|Skm(∆q). Said in more detail, every nondegenrate
f ∈ Skm(∆q) has a decomposition which starts with one codegenracy map
di (see proof of (2) in Proposition 1.91 for a similar situation) .

(iii) is a consequence of (ii) by taking again into the fibration

Em+1(K(n)) ↪→→ K(n) p→ K(m).

Proof of (iv):The case q ≤ m has already been proved (1.73). The case q < n
follows from (ii) and (iii). �

1.18. Hurewicz and Whitehead theorem in simplicial setting

In this section we prove a series of theorems on comparing homotopy and
homology groups. All over this section ∼ denote the homotopy equivalence
relation used for defining homotopy groups.

Proposition 1.94. Let K be a Kan complex. Then we have a group
isomorphism

(1.75) H0(K) = Zπ0(K)

Here Zπ0(K) stands for the free abelian group generated by the elements
of π0(K).

Proof. The canonical projection map K0 → K0/ ∼ induces a map
p : C0(K)→ Zπ0(K). It is obvious that B0(K) is in the kernel of p because
every 1-simplex σ, d0σ and d1σ are homotopic (by definition), therefore we
have map p : H0(K)→ Zπ0(K) which is obvious surjective. The injectivity
follows from the substitution principal.

Lemma 1.95. (Substitution principal) Let F be a free abelian group with
basis B and {xi}i=0·k in B be a list of elements in B (repetition allowed),
and assume that

k∑
i=1

mixi = 0

for some mi ∈ Z. If G is any abelian group and {yi}i=0·k a list in G with
the property that (xi = xj ⇒ yi = yj) , the

k∑
i=1

miyi = 0

�
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Definition 1.96. The reduced simplicial homology H̃∗(K) of a simpli-
cial set K is the homology of the quotient complex

C̃n(K) := Cn(K)/Cn(x0)

where x0 is a (simplicial) basepoint)

It follows from that long exact sequence associate to the short exact
sequence

0→ C∗(x0)→ C∗(K)→ C̃∗(K)→ 0

that
H̃n>0(K) ' Hn(K).

The Hurewicz map h : πn(K,x0) → H̃n(K), is the identity on the genera-
tors. Indeed if x represents a class in πn(K,x0) then by definition, dix = x0

for all i therefore we have ∂x = 0 ∈ C̃∗(K). Similarly one can define the
relative Hurewicz map h : πn(K,L, x0)→ Hn(K,L).

Proposition 1.97. The Hurewicz maps are well-defined group homo-
morphisms.

Proof. First we treat the non-relative case h : πn(K,x0)→ H̃n(K), the
proof of the relative case is very much similar. Suppose that w ∈ Kn+1 is
homotopy between x and y ∈ K̃n. Then we have ∂w = (−1)n(y−x) ∈ C̃n(K)
and h is well-defined.

As for h being a homomorphism, suppose that w ∈ Kn+ 1 is the simplex
defining the product of x, y ∈ K̃n i.e. dn−1w = x, dn+1w = y and diw = x0.
and by definition [x] · [y] = [dnw].

We have that

0 = ∂w = (−1)n(dnw − (x+ y) ∈ C̃n(K) = (−1)n(h([x · y])− h([x]− h([y])

hence,
h([x · y]) = h([x]) + h([y])

�

The proof of the next result is standard enough to be left to the reader.

Proposition 1.98. The Hurewiczs maps induce a map of long exact
sequences.

(1.76) · · ·πn+1(K,L)

h
��

d0 // πn(L)

h
��

inclu. // πn(K) //

h
��

πn(K,L) · · ·

h
��

· · · H̃n+1(K,L)
∂
// H̃n(L)

inclu. // H̃n(K) // H̃n(K,L) · · ·

Theorem 1.99. Let K be a connected simplicial set, then h induced an
isomorphism

h : π1(K)/[π1(K), π1(K)]→ H̃1(K) ' H1(K)
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Proof. We can assume that K is minimal because it does not change
the homotopy type. So K has only one 0-simplex and K1 = K̃1. First of
all since the image of h is an abelian group, h induces a well-defined on the
quotient i.e

h : π1(K)/[π1(K), π1(K)]→ H1(K)

We construct an inverse j̃ : H1(K) → π1(K)/[π1(K), π1(K)] for h. In-
deed the inverser is given by

j : Z̃1(K))→ π1(K)/[π1(K), π1(K)]

which is induced by the natural projection map K1 → K1/ ∼ on the gener-
ators and then extended linearly to all of the group. We only have to show
that j(Im(∂) ⊂ [π1, π1]. So let σ ∈ K2, hen by definition of the product on
π1 we

[d0σ] · [d2σ] = [d1σ]

and

j(∂σ) = j(d0σ)j(−d1σ)j(d2σ) = [d0σ][d1σ]−1[d2σ] = [d0σ]([d0σ][d2σ])−1[d2σ]

= [[d0σ], [d2σ]−1] ∈ [π1(K), π1(K)]

(1.77)

It is quite clear that j̃ ◦ h = id and h ◦ j̃ = id �

Definition 1.100. A Kan complex is called n-connected if πi≤n(K) =
0/

Theorem 1.101. Let K be a (n−1)-connected Kan complex then Hi<n(K) =
0 and

h : πn(K)→ Hn(K)

is an isomorphism.

Proof. IF necessary we can replace K the minimal subcomplex of K
because they have the same the same homotopy and homology groups. So
assume that K is a minimal complex, therefor it has only one i-simplex for
all i < n, and clearly Hi(K) = 0 for 0 < i < n.

Another consequence is

C̃n(K) = Z̃n(K) = Z(Kn \ {x0})
is the free abelian group generated by the all n-simplices except for the
one falling in the basepoint. Similarly to the proof of Theorem 1.101, w
construct an inverse j̃ for h which is induced by the natural projection

j : Kn → Kn/ ∼

for the generator of C̃n(K) = Z̃n(K) and then extended linearly. In other to
prove that j induces a well-defined map j̃ on the reduced homology, we have
to prove that the elements in the image j ◦ ∂(C̃n+1) are homotopic to x0.
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The proof relies on the following lemmata which basically give alternatives
definitions of the groups law on πn.

Lemma 1.102. Let vn+1 be a (n+ 1)-simplex such that

divn+1 = x0, for i = n+ 1 and i < n− 2.

Then [dnvn+1][dn−2vn+1] = [dn−1vn+1] in πn(K)

Proof. Let x := dn−1vn, y = dnvn, w = dn−2vn Let vn−1 be the
(n + 1)-simplex extending the compatible sequence x0 · · · , x0,−, x, w, tha
denote t := dn−1vn−1, hence

(1.78) [t].[w] = [x]

Let r be (n+ 2)-simplex extending

x0, · · · , x0, sn(w), vn−1,−, vn+1, sn−2(w)

and let vn = dnr. We have di≤n−2vn = x0, dn−1vn = t, dnvn = y, or in other
words

[t] = [y],

and using we get (1.78) [y].[w] = [x] as desired. �

Lemma 1.103. Let vn be a (n+1)-simplices such that such that divn = x0

for i = n− 1 and i < n− 2. Then [dn−1vn][dnvn] = [dn+1vn] in πn(K).

Proof. We put w = dn−1vn, y = dnvn, z = dn+1vn. Choose an exten-
sion vn−1 for the sequence x0, · · · , x0, w, x0,−, x0 and let t = dn−1vn−1. By
previous lemma we have

[t][w] = 1 = [x0].

Let (n+2)-simplex r be the extension of x0 · · · , x0, sn−2(w), vn−1, vn,−, sn(z)
Then (n+ 1)-simplex vn+1 := dn+1r implies the identity

[t][z] = [y].

Putting the two obtained identity together we conclude that [w][y] = [z]. �

Completing the proof of Theorem 1.101: Here we give detailed proof
for n = 2, the proof higher dimension is similar and left to the reader. Below
we write everything in terms n to give a clue for higher dimension, but at
the end threader should pout n = 2.

So let vn+2 be a (n + 1)-simplex. Let w := dn−2vn+2, x := dn−1vn+2,
y := dnvn+2 and z := dn+1vn+2. We intend to prove that [w]−1[x][y]−1[z] is
homotopic to the degenerate 2-simplex x0.

Let vn−2 ∈ K3 be an extension of x0 · · · , x0,−, x0, x0, w and t = dn−2vn−2,
then by the previous lemma

[t] = [w].

Let vn−1 ∈ Kn+1 be an extension of x0, · · · , x0, t, x0,−, x and u :=
dnvn−1 then

[t][u] = [x].
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Finally let r be an extension of x0, · · · , x0, vn−2, vn−1, sn(y),−, vn+2. Then
dn+1r defines gives rise to the identity

[u][z] = [y].

Now putting the three obtained identities above we get

[w][x]−1[y][z]−1 = [x0] ∈ πn(K),

which is equivalent to

j(∂vn+2) = [x0] = 1 ∈ πn(K).

Now that j̃ is well-defined, verifying j̃◦h = id and h◦j̃ = id is quite easy. �

Corollary 1.104. If K is a 1-connected Kan complex and Hi>0(K) = 0
then K is contractible.

Proof. By applying Theorem 1.101 we have πi(M) = 1 for all i. Let K ′

be a minimal complex for K. Since K ′ is a deformation retract of K then,
we have π(K

′) = 1 for all. This means that K ′ has only one simplex in each
dimension, which has to be the degenerate one or in other words K ′ = x0

and K is a deformation retract of a (simplicial) point hence contractible.
�

The relative version of the Hurewicz theorem can be proved in a similar
manner.

Theorem 1.105. Let L ⊂ K be a pair of Kan complexes. If πi≤n−1(K,L) =
1 then Hi≤n−1(K,L) = 0 and h : πn(K,L)→ Hn(K,L) is an isomorphism.

Theorem 1.106. Let f : K → L be an inclusion of 1-connected simpli-
cial spaces and n > 1. The followings statement are equivalente.

(1) f∗ : πi(K) → πi(L) is an isomorphism for i < n and epimoprhism
for i = n

(2) f∗ : Hi(K)→ Hi(L) is an isomorphism for i < n and epimoprhism
for i = n

Proof. (1⇒ 2) : Using the exact sequence (1.73), we see immediately that
πi(K,L) = 1 for 0 ≤ i ≤ n, therefore by the relative version of Hurewicz the-
orem, Hi(K,L) = 0 for 0 ≤ i ≤ n. Thus the natural map H∗(L) → H∗(K)
surjective because of the long exact sequence involving the homologies of K
and L and the relative homology H∗(K,L).

(2 ⇒ 1) : Similarly we have Hi(K,L) = 0 for 0 ≤ i ≤ n. Since By the
relative Hurewicz theorem the fist nontrivial relative homotopy group is
isomorphic to the relative homology group. Since we assume that K and
L are 1-connected, we can initiate applying the relative Hurewicz theorem
inductively: π1(K,L) = 1, therefore π2(K,L) ' H2(K,L) = 0 and so on.

�
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1.19. Geometric realisation of Kan complexes

Proposition 1.107. Let K be a connected Kan complex with a basepont
x0. Then maps induced by the adjuntion isomorphisl Ψ,

Ψ∗(K) : π1(K,x0)→ π1(ST (K), ST (x0))

is an isomorphism.

Proof. As usual, we can assume that K is minimal. Since K has a sin-
gle 0-simplex, the fundamental group π1(K,x0) has a simple description. It
has one generator for each nondegenerate 1-simplex and on relation for each
nondegenerate 2-simplex. Thanks to the Van-Kampen theorem, we have
exactly the same description for the fundamental group π1(ST (K), ST (x0))
of CW-complex TS(X) where 1-cells (generators ) and 2-cells (relations) are
in one-to-one correspondance with nondegenerate 1 and 2-simplices.

�

Theorem 1.108. Let K be be a connected Kan complex and X a con-
nected topological space.

(1) Ψ∗(K) : πn(K,x0) → πn(ST (K), TS(x0)) is an isomorphism for
all n ≥ 1.

(2) Φ∗ : πn(TS(X), TS(a))→ πn(X, a) is an isomorphism.

Here the maps Ψ and Φ are the bijection of the adjunction between the
functor S and T in Section 1.8.

Proof. (1): The case n = 1 is the previous theorem therefore we assume
that n ≥ 2. We may assume that K is minimal. Otherwise we replace K
by one of its minimal subcomplex which is a deformation retract of K.
Therefore it has only one 0-simplex and we can use the construction of the
universal cover K̃ of K and we have that

for n ≥ 2. Let F be fibre of the natural projection p : K̃ → K which is
Kan fibration. By Theorem 1.42, the (inclusion) unit map Ψ : K̃ → ST (K)
of the adjunction, induces an isomorphism in homology groups, therefore by
Theorem 1.106 Ψ induces an isomorphism in homotopy groups

πn(K̃, x0) ' πn(ST (K̃, ST (x0))

Clearly we have an isomorphism πn(F, x̄0) ' πn(ST (F, )ST (x̄)0)). Now
using the naturality of homotopy group long exact sequence associated to the
Kan fibrations, in our case F → K̃ → K and ST (F ) → ST (K̃) → ST (K),
we conclude that

Proof of (2): By (1 ) we have an isomorphism

πn(S(X))
Ψ(S(X))∗' πn(ST (S(X)).

Since SΦ ◦ΨS = id we conclude that (SΦ)∗(X) : πn(STS(X)→ πn(S(X))
is an isomorphism. By Theorem 1.77 we have isomorphisms
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πn(ST (S(X))
φ∆n,(TS(X))

' πn(TS(X))

and

πn(S(X))
φ∆n,(X)

' πn(X).

Now the result follows. �





CHAPTER 2

An introduction to model categories and derived
functors

The classical references for this subject are Hovey’s book [Hov99] and
the Dwyer-Spalińsky manuscript [DS95]. The reader who gets to know the
notion of model category for the first time should not worry about the word
“closed”, which now has only a historical bearing. From now on we drop
the word “closed” from “closed model category”.

Definition 2.1. A model category is a category C endowed with three
classes of morphisms C (cofibrations), F (fibrations) and W (weak equiva-
lences) such that the following conditions hold:

(MC1) C is closed under finite limits and colimits.
(MC2) Let f, g ∈ Mor(C) such that fg is defined. If any two among f, g

and fg are in W, then the third one is in W.
(MC3) Let f be a retract of g, meaning that there is a commutative dia-

gram

A //

f
��

C //

g

��

A

f
��

B // D // B

in which the two horizontal compositions are identities. If g ∈ C
(resp. F or W), then f ∈ C (resp. F or W).

(MC4) For a commutative diagram as below with i ∈ C and p ∈ F , the
morphism f making the diagram commutative exists if

(1) i ∈ W (left lifting property (LLP) of fibrations f ∈ F with
respect to acyclic cofibrations i ∈ W ∩ C).

(2) p ∈ W (right lifting property (RLP) of cofibrations i ∈ C with
respect to acyclic fibrations p ∈ W ∩ F).

(2.1) A

i
��

// X

p

��
B

f
>>

// Y

In the above we call the elements of W ∩ C (resp. W ∩ F) acyclic
cofibrations (resp. acyclic fibrations).

(MC5) Any morphism f : A→ B can be written as one of the following:

57
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(1) f = pi where p ∈ F and i ∈ C ∩W;

(2) f = pi where p ∈ F ∩W and i ∈ C.

In fact, in a model category the lifting properties characterize the fibra-
tions and cofibrations.

Proposition 2.2. In a model category:

(i) The cofibrations are the morphisms which have the RLP with respect
to acyclic fibrations.

(ii) The acyclic cofibrations are the morphisms which have the RLP
with respect to fibrations.

(iii) The fibrations are the morphisms which have the LLP with respect
to acyclic cofibrations.

(iv) The acyclic fibrations in C are the maps which have the LLP with
respect to cofibrations.

It follows from (MC1) that a model category C has an initial object ∅
and a terminal object ∗. An object A ∈ Obj(C) is called cofibrant if the
morphism ∅ → A is a cofibration and is said to be fibrant if the morphism
A→ ∗ is a fibration.

Example 1: For any unital associative ring R, let Ch(R) be the category
of non-negatively graded chain complexes of left R-modules. The following
three classes of morphisms endow Ch(R) with a model category structure:

(1) Weak equivalences W: these are the quasi-isomorphims, i.e. maps
of R-complexes f = {fk}k≥0 : {Mk}k∈Z → {Nk}k≥0 inducing an
isomorphism f∗ : H∗(M)→ H∗(N) in homology.

(2) Fibrations F : f is a fibration if it is (componentwise) surjective,
i.e. for all k ≥ 0, fk : Mk → Nk is surjective.

(3) Cofibrations C: f = {fk} is a cofibration if for all k ≥ 0, fk : Mk →
Nk is injective with a projective R-module as its cokernel. Here we
use the standard definition of projective R-modules, i.e. modules
which are direct summands of free R-modules.

Example 2: The category Top of topological spaces can be given the
structure of a model category by defining a map f : X → Y to be

(i) a weak equivalence if f is a homotopy equivalence;

(ii) a cofibration if f is a Hurewicz cofibration;

(iii) a fibration if f is a Hurewicz fibration.

Let A be a closed subspace of a topological space B. We say that
the inclusion i : A ↪→ B is a Hurewicz cofibration if it has the homotopy
extension property that is for all maps f : B → X, any homotopy F :
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A× [0, 1]→ X of f |A can be extended to a homotopy of f : B → X.

B ∪ (A× [0, 1])
f∪F //

id×0∪(i×id)

��

X

B × [0, 1]

88

A Hurewicz fibration is a continuous map E → B which has the homo-
topy lifting property with respect to all continuous maps X → B, where
X ∈ Top.

Example 3: The category Top of topological spaces can be given the
structure of a model category by defining f : X → Y to be

(i) a weak equivalence when it is a weak homotopy equivalence.

(ii) a cofibration if it is a retract of a map X → Y ′ in which Y ′ is
obtained from X by attaching cells,

(iii) a fibration if it is a Serre fibration.

We recall that a Serre fibration is a continuous map E → B which has
the homotopy lifting property with respect to all continuous maps X → B
where X is a CW-complex (or, equivalently, a cube).

Cylinder, path objects and homotopy relation. After setting up the gen-
eral framework, we define the notion of homotopy. A cylinder object for A ∈
Obj(C) is an object A ∧ I ∈ Obj(C) with a weak equivalence ∼: A ∧ I → A
which factors the natural map idA t idA : A

∐
A→ A:

idA t idA : A
∐

A
i→ A ∧ I ∼→ A

Here A
∐
A ∈ Obj(C) is the colimit, for which one has two structural

maps in0, in1 : A → A
∐
A. Let i0 = i ◦ in0 and i1 = i ◦ in1. A cylinder

object A∧ I is said to be good if A
∐
A→ A∧ I is a cofibration. By (MC5),

every A ∈ Obj(C) has a good cylinder object.

Definition 2.3. Two maps f, g : A → B are said to be left homotopic

f
l∼ g if there is a cylinder object A ∧ I and H : A ∧ I → B such that

f = H ◦ i0 and g = H ◦ i1. A left homotopy is said to be good if the cylinder
object A ∧ I is good. It turns out that every left homotopy relation can be
realized by a good cylinder object. In addition one can prove that if B is a
fibrant object, then a left homotopy for f and g can be refined into a very
good one, i.e. A ∧ I → A is a fibration.

It is easy to prove the following:

Lemma 2.4. If A is cofibrant, then left homotopy
l∼ is an equivalence

relation on HomC(A,B).

Similary, we introduce the notion of path objects which will allow us
to define right homotopy relation. A path object for A ∈ Obj(C) is an
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object AI ∈ Obj(C) with a weak equivalence A
∼→ AI and a morphism

p : AI → A×A which factors the diagonal map

(idA, idA) : A
∼→ AI

p→ A×A.

Let pr0, pr1 : A×A→ A be the structural projections. Define pi = pri◦p.
A path object AI is said to be good if AI → A×A is a fibration. By (MC5)
every A ∈ Obj(C) has a good path object.

Definition 2.5. Two maps f, g : A→ B are said to be right homotopic

f
r∼ g if there is a path object BI and H : A → BI such that f = p0 ◦ H

and g = p1 ◦H. A right homotopy is said to be good if the path object P I

is good. It turns out that every right homotopy relation can be refined into
a good one. In addition one can prove that if B is a cofibrant object then a
right homotopy for f and g can be refined into a very good one, i.e. B → BI

is a cofibration.

Lemma 2.6. If B is fibrant, then right homotopy
r∼ is an equivalence

relation on HomC(A,B).

One naturally asks whether being right and left homotopic are related.
The following result answers this question.

Lemma 2.7. Let f, g : A → B be two morphisms in a model category
C.

(1) If A is cofibrant then f
l∼ g implies f

r∼ g.

(2) If B is fibrant then f
r∼ g implies f

l∼ g.

Cofibrant and Fibrant replacement and homotopy category. By applying
(MC5) to the canonical morphism ∅ → A, there is a cofibrant object (not

unique) QA and an acyclic fibration p : QA
∼→ A such that ∅ → QA

p→ A.
If A is cofibrant we can choose QA = A.

Lemma 2.8. Given a morphism f : A → B in C, there is a morphism
f̃ : QA→ QB such that the following diagram commutes:

(2.2) QA

pA
��

f̃ // QA

pB
��

A
f // B

The morphism f̃ depends on f up to left and right homotopy, and is a
weak equivalence if and only f is. Moreover, if B is fibrant then the right
or left homotopy class of f̃ depends only on the left homotopy class of f .

Similarly one can introduce a fibrant replacement by applying (MC5)
to the terminal morphism A → ∗ and obtain a fibrant object RA with an
acyclic cofibration iA : A→ RA.
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Lemma 2.9. Given a morphism f : A → B in C, there is a morphism
f̃ : RA→ RB such that the following diagram commutes:

(2.3) A

iA
��

f // B

iB
��

RA
f̃ // RB

The morphism f̃ depends on f up to left and right homotopy, and is a
weak equivalence if and only f is. Moreover, if A is cofibrant then right or
left homotopy class of f̃ depends only on the right homotopy class of f .

Remark 2.10. For a cofibrant object A, RA is also cofibrant because

the trivial morphism (∅ → RA) = (∅ → A
iA→ RA) can be written as the

composition of two cofibrations, therefore is a cofibration. In particular, for
any object A, RQA is fibrant and cofibrant. Similarly, QRA is a fibrant and
cofibrant object.

Lemma 2.11. Suppose that f : A→ X is a map in C between objects A
and X which are both fibrant and cofibrant. Then f is a weak equivalence
if and only if f has a homotopy inverse, i.e. if and only if there exists a
map g : X → A such that the composites gf and fg are homotopic to the
respective identity maps.

Putting the last three lemmas together, one can make the following
definition:

Definition 2.12. The homotopy category Ho(C) of a model category C
has the same objects as C and the morphism set HomHo(C)(A,B) consists of
the (right or left) homotopy classes of the morphisms in HomC(RQA,RQB).
Note that since RQA and RQB are fibrant and cofibrant, the left and right
homotopy relations are the same. There is a natural functor HC : C →
Ho(C) which is the identity on the objects and sends a morphism f : A→ B
to the homotopy class of the morphism obtained in HomC(RQA,RQB) by
applying consecutively Lemma 2.8 and Lemma 2.9.

Localization functor. Here we give a brief conceptual description of the
homotopy category of a model category. This description relies only on
the class of weak equivalences and suggests that weak equivalences encode
most of the homotopic properties of the category. Let W be a subset of the
morphisms in a category C. A functor F : C→ D is said to be a localization
of C with respect to W if the elements of W are sent to isomorphisms and if
F is universal for this property, i.e. if G : C→ D′ is any another localizing
functor then G factors through F via a functor G′ : D → D′ for which
G′F = G. It follows from Lemma 2.11 and a little work that:

Theorem 2.13. For a model category C, the natural functor HC : C→
Ho(C) is a localization of C with respect to the weak equivalences.
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Derived and total derived functors. In this section we introduce the no-
tions of left derived functor LF and right derived functor RF of a functor
F : C → ∆ on a model category C. In particular, we spell out sufficient
conditions for the existence of LF and RF which provide us a factorization
of F via the homotopy categories. If ∆ happens to be a model category,
then we also introduce the notion of total derived functor and provide some
sufficient conditions for its existence.

All functors considered here are covariant, however see Remark 2.17.

Definition 2.14. For a functor F : C → ∆ on a model category C,
we consider all pairs (G, s) where G : Ho(C) → ∆ is a functor and s :
GHC → F is a natural transformation. The left derived functor of F is
such a pair (LF, t) which is universal from the left, i.e. for any other such
pair (G, s) there is a unique natural transformation t′ : G → LF such that
t(t′HC) : GHC → F is s.

Similarly one can define the right derived functor RF : Ho(C) → ∆
which provides a factorization of F and satisfies the usual universal property
from the right. A right derived functor of F is a pair (RF, t) where RF :
Ho(C)→ ∆ and t is a natural transformation t : F → RFHC such that for
any pair (G, s) there is a unique natural transformation t′ : RF → G such
that (t′HC)t : F → GHC is s.

The reader can easily check that the derived functors of F are unique
up to canonical equivalence. The following result tells us when do derived
functors exist.

Proposition 2.15. (1) Suppose that F : C→ ∆ is a functor from
a model category C to a category ∆, which transforms acyclic cofi-
brations between cofibrant objects into isomorphims. Then (LF, t),
the left derived functor of F , exists. Moreover, for any cofibrant
object X the map tX : LF (X)→ F (X) is an isomorphism.

(2) Suppose that F : C → ∆ is a functor from a model category C
to a category ∆, which transforms acyclic fibrations between fi-
brant objects into isomorphisms. Then (RF, t), the right derived
functor of F , exists. Moreover, for all fibrant object X the map
tX : RF (X)→ F (X) is an isomorphism.

Definition 2.16. Let F : C → ∆ be a functor between two model
categories. The total left derived functor LF : Ho(C) → Ho(∆) is the left
derived functor of H∆F : C→ Ho(∆). Similarly one defines the total right
derived functor RF : C→ ∆ to be the right derived functor of H∆F : C→
Ho(∆).

Remark 2.17. Till now we have defined and discussed the derived func-
tor for covariant functors. We can define the derived functors for contravari-
ant functors as well, for that we only have to work with the opposite cat-
egory of the source of the functor. A morphism A → B in the opposite
category is a cofibration (resp. fibration, weak equivalence) if and only if
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the corresponding morphism B → A is a fibration (resp. cofibration, weak
equivalence).

We finish this section with an example.

Example 4: Consider the model category Ch(R) of Example 1 in Section ??
and let M be a fixed R-module. One defines the functor FM : Ch(R) →
Ch(Z) given by FM (N∗) = M ⊗R N∗ where N∗ ∈ Ch(R) is a complex of
R-modules. Let us check that F = HCh(R)FM : Ch(R) → Ch(Z) satisfies
the conditions of Proposition 2.15.

Note that in Ch(R) every object is fibrant and a complex A∗ is cofibrant
if for all k, Ak is a projective R-module. We have to show that an acyclic
cofibration f : A∗ → B∗ between cofibrant objects A and B is sent by
F to an isomorphism. So for all k, we have a short exact sequence 0 →
A∗ → B∗ → B∗/A∗ → 0 where for all k, Bk/Ak is also projective. Since
f is a quasi-isomorphism the homology long exact sequence of this short
exact sequence tells us that the complex B∗/A∗ is acyclic. The lemma
below shows that B∗/A∗ is in fact a projective complex. Therefore we have
B∗ ' A∗ ⊕ B∗/A∗. So FM (B∗) ' FM (A∗) ⊕ FM (B∗/A∗) ' FM (A∗) ⊕⊕

n FM (D(Zn−1(B∗/A∗), n)). Here Z∗(X∗) := ker(d : X∗ → X∗+1) stands
for the graded module of the cycles in a given complex X∗, and the complex
D(X,n)∗ is defined as follows: To any R-module X and a positive integer
n, one can associate a complex {D(X,n)k}k≥0,

D(X,n)k =

{
0, if k 6= n, n− 1,

X, if k = n, n− 1,

where the only nontrivial differential is the identity map.
It is a direct check that each FM (D(Zn−1(B∗/A∗), n)) is acyclic, and

therefore HCh(Z)(FM (B)) is isomorphic to HCh(Z)(FM (A)) in the homotopy
category Ho(Ch(Z)).

Lemma 2.18. Let {Ck}k≥0 be an acyclic complex where each Ck is a
projective R-module. Then {Ck}k≥0 is a projective complex, i.e. any level-
wise surjective chain complex map D∗ → E∗ can be lifted via any chain
complex map C∗ → E∗.

Proof. It is easy to check that if X is a projective R-module then

Dn(X) is a projective complex. Let C
(m)
∗ be the complex

C
(m)
k =


Ck, if k ≥ m,
Zk(C), if k = m− 1,

0 otherwise.

Here Zk(C) denotes the space of cycles in Ck, and Bk(C) is the space of
boundary elements in Ck. The acyclicity condition implies that we have an

isomorphism C
(m)
∗ /C

(m+1)
∗ ' D(Zm−1(C),m). Note that Z0(C) = C0 is a

projective R-module and C∗ = C(1) = C(2) ⊕D1(Z0(C)). Now D1(Z0(C))
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is a projective complex and C(2) also satisfies the assumption of the lemma
and vanishes in degree zero. Therefore by applying the same argument one
sees that C(2) = C(3) ⊕ D(Z1(C), 2). Continuing this process one obtains
C∗ = D(Z0(C), 1)⊕D(Z1(C), 2) · · · ⊕D(Zk−1, k)⊕ · · · where each factor is
a projective complex, thus proving the statement. �

We finish this example by computing the left derived functor. For
any R-module N let K(N, 0) be the chain complex concentrated in de-
gree zero where there is a copy of N . Since every object is fibrant, a
fibrant-cofibrant replacement of K(N, 0) is simply a cofibrant replacement.
A cofibrant replacement P∗ of K(N, 0) is exactly a projective resolution
(in the usual sense) of N in the category of R-modules. In the homotopy
category of Ch(R), K(N, 0) and P are isomorphic because by definition
HomHo(Ch(R))(K(N, 0), P ) consists of the homotopy classes of

HomCh(R)(RQK(N, 0), RQP∗) = HomCh(R)(P∗, P∗)

which contains the identity map. Therefore by Proposition 2.15

LF (K(N, 0)) ' LF (P∗)

and LF (P∗) and the definition of total derived functor is isomorphic to
HCh(R)F (P∗) = M ⊗R P∗. In particular,

H∗(LF (K(N, 0)) = TorR∗ (N,M),

where TorR∗ is the usual TorR in homological algebra. We usually denote
the derived functor LF (N) = N ⊗LR M . Similarly one can prove that the
contravariant functor N∗ 7→ HomR(N∗,M) has a total right derived functor,
denoted by RHomR(N∗,M), and

H∗(RHomR(K(N, 0),M)) ' Ext∗R(N,M)

is just the usual Ext functor (see Remark 2.17).

2.0.1. Hinich’s theorem and Derived category of DG modules.
The purpose of this section is to introduce a model category and derived
functors of DG-modules over a fixed differential graded k-algebra. From
now on we assume that k is a field. The main result is essentially due to
Hinich [Hin97], who introduced a model category structure for algebras
over a vast class of operads.

Let C(k) be the category of (unbounded) complexes over k. For d ∈ Z
let Md ∈ C(k) be the complex

· · · → 0→ k = k→ 0→ 0 · · ·

concentrated in degrees d and d+ 1.
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Theorem 2.19. (Hinich) Let C be a category which admits finite limits
and arbitrary colimits and is endowed with two right and left adjoint functors
(#, F )

(2.4) # : C � C(k) : F

such that for all A ∈ Obj(A) the canonical map A → A
∐
F (Md) induces

a quasi-isomorphism A# → (A
∐
F (Md))

#. Then there is a model category
structure on C where the three distinct classes of morphisms are:

(1) Weak equivalences W: f ∈ Mor(C) is in W if f# is a quasi-
isomorphism.

(2) Fibrations F : f ∈ Mor(C) is in F if f# is (componentwise) sur-
jective.

(3) Cofibrations C: f ∈Mor(C) is a cofibration if it satisfies the LLP
property with respect to all acyclic fibrations W ∩F .

As an application of Hinich’s theorem, one obtains a model category
structure on the category Mod(A) of (left) differential graded modules over
a differential graded algebra A. Here # is the forgetful functor and F is
given by tensoring F (M) = A⊗k M .

Corollary 2.20. The category Mod(A) of DG A-modules is endowed
with a model category structure where

(i) weak equivalences are the quasi-isomorphisms.

(ii) fibrations are level-wise surjections. Therefore all objects are fi-
brant.

(iii) cofibrations are the maps that have the left lifting property with
respect to all acyclic fibrations.

In what follows we give a description of cofibrations and cofibrant ob-
jects. An excellent reference for this part is [FHT95].

Definition 2.21. An A-module P is called a semi-free extension of M if
P is a union of an increasing family of A-modules M = P (−1) ⊂ P (0) ⊂ · · ·
where each P (k)/P (k − 1) is a free A-modules generated by cycles. In
particular P is said to be a semi-free A-module if it is a semi-free extension
of the trivial module 0. A semi-free resolution of an A-module morphism
f : M → N is a semi-free extension P of M with a quasi-isomorphism
P → N which extends f .

In particular a semi-free resolution of an A-module M is a semi-free
resolution of the trivial map 0→M .

The notion of a semi-free module can be traced back to [GM74], and
[Dri04] is another nice reference for the subject. A k-complex (M,d) is
called a semi-free complex if it is semi-free as a differential k-module. Here
k is equipped with the trivial differential. In the case of a field k, every
positively graded k-complex is semi-free. It is clear from the definition that
a finitely generated semi-free A-module is obtained through a finite sequence
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of extensions of some free A-modules of the form A[n], n ∈ Z. Here A[n] is
A after a shift in degree by −n.

Lemma 2.22. Let M be an A-module with a filtration F0 ⊂ F1 ⊂ F2 · · ·
such that F0 and all Fi+1/Fi are semifree A-modules. Then M is semifree.

Proof. Since Fk/Fk−1 is semifree, it has a filtration · · ·P kl ⊂ P kl+1 · · ·
such that P kl /P

k
l+1 is generated as an (A, d)-module by cycles. So one can

write Fk/Fk−1 = ⊕l(A ⊗ Z ′k(l)) where Z ′k(l) are free (graded) k-modules
such that d(Zk(l)) ⊂ ⊕j≤lZk(j). Therefore there are free k-modules Zk(l)
such that

Fk = Fk−1

⊕
l≥0

Z ′k(l)

and
d(Zk(l)) ⊂ Fk−1

⊕
j<l

A⊗ Zk(j).

In particular M is the free k-module generated by the union of all basis
elements {zα} of Zk(l)’s. Now consider the filtration P0 ⊂ P1 · · · of free
k-modules constructed inductively as follows: P0 is generates as k-module
by the zα’s which are cycles, i.e. dzα = 0. Then Pk is generated by those
zα’s such that dzα ∈ A · Pk−1. This is clearly a semifree resolution if we
prove that M = ∪kPk. For that, we show by induction on degree that for all
α, zα belongs to some Pk. Suppose that zα ∈ Zk(l). Then dzα ∈ ⊕A.Zi(j)
where i < k or i = k and j < l. By the induction hypothesis all zβ’s in the
sum dzα are in some Pmβ . Therefore zα ∈ Pm where m = maxβmβ and this
finishes the proof. �

Remark 2.23. If we had not assumed that k is a field but only a com-
mutative ring then we could still have put a model category structure on
Mod(A). This is a special case of the Schwede-Shipley theorem [SS00,
Theorem 4.1]. More details are provided on pages 503-504 of [SS00].

Proposition 2.24. In the model category of A-modules, a mapf : M →
N is a cofibration if and only if it is a retract of a semi-free extension
M ↪→ P . In particular, an A-module M is cofibrant if and only if it is a
retract of a semi-free A-module, i.e. if and only if it is a direct summand of
a semi-free A-module.

Here is a list of properties of semi-free modules which allow us to define
the derived functor by means of semi-free resolutions.

Proposition 2.25. (i) Any morphism f : M → N of A-modules
has a semi-free resolution. In particular every A-module has a
semi-free resolution.

(ii) If P is a semi-free A-module, HomA(P,−) preserves quasi-isomorphisms.

(iii) Let P and Q be semi-free A-modules and f : P → Q be a quasi-
isomorphism. Then

g ⊗ f : M ⊗A P → N ⊗A Q
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is a quasi-isomorphism if g : M → N is a quasi-isomorphism.

(iv) Let P and Q be semi-free A-modules and f : P → Q be a quasi-
isomorphism. Then

HomR(g, f) : HomA(Q,M)→ HomA(P,N)

is a quasi-isomorphism if g : M → N is a quasi-isomorphism.

The second statement in proposition 2.25 implies that a quasi-isomorphism
f : M → N between semi-free A-modules is a homotopy equivalence,
i.e. there is a map f ′ : N → M such that ff ′ − idN = [dN , h

′] and
f ′f − idM = [dM , h] for some h : M → N and h′ : N → M . In fact
part (iii) and (iv) follow easily from this observation.

The properties listed above imply that the functors−⊗AM and HomA(−,M)
preserve enough weak equivalences, ensuring that the derived functors ⊗LA
and RHomA(−,M) exist for all A-modules M .

Since we are interested in Hochschild and cyclic (co) homology, we switch
to the category of DG A-bimodules. This category is the same as the cat-
egory of DG Ae-modules. Therefore one can endow A-bimodules with a
model category structure and define the derived functors − ⊗LAe M and
RHomAe(−,M) by means of fibrant-cofibrant replacements.

More precisely, for two A-bimodules M and N we have

TorA
e

∗ (M,N) = H∗(P ⊗Ae N)

and

Ext∗Ae(M,N) = H∗(HomAe(P,N))

where P is cofibrant replacement for M .
By Proposition 2.25 every Ae-module has a semi-free resolution. There

is an explicit construction of the latter using the two-sided bar construction.
For right and left A-modules P and M , let

(2.5) B(P,A,M) =
⊕
k≥0

P ⊗ (sĀ)⊗k ⊗M

equipped with the following differential:

• if k = 0,

D(p[ ]m) = dp[ ]n+ (−1)|p|p[ ]dm
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• if k > 0

D(p[a1, · · · , ak]m)

= d0(p[a1, · · · , ak]m) + d1(p[a1, · · · , ak]m)

= dp[a1, · · · , ak]m−
k∑
i=1

(−1)εip[a1, · · · , dai, . . . ak]m

+(−1)εk+1p[a1, · · · , ak]dm

+(−1)|p|pa1[a2, · · · , ak]m+

k∑
i=2

(−1)εip[a1, · · · , ai−1ai, . . . ak]m

−(−1)εkp[a1, · · · , ak−1]akm,

where

εi = |p|+ |a1|+ · · · |ai−1| − i+ 1.

Let P = A and εM : B(A,A,M)→M be defined by

(2.6) εM (a[a1, · · · , ak])m) =

{
0, if k ≥ 1,

am, if k = 0.

It is clear that εM is a map of left A-modules if M .

Lemma 2.26. In the category of left A-modules, εM : B(A,A,M)→ M
is a semi-free resolution.

Proof. We first prove that this is a resolution. Let h : B(A,A,M) →
B(A,A,M) be defined by

(2.7) h(a[a1, a2, · · · ak]m) =

{
[a, a1, · · · ak]m, if k ≥ 1,

[a]m, if k = 0.

On can easily check that [D,h] = id on ker εM , which implies H∗(ker(εM )) =
0. Since εM is surjective, εM is a quasi-isomorphism. Now we prove that
B(A,A,M) is a semifree A-module. Let Fk =

⊕
i≤k A ⊗ T (sĀ)⊗i ⊗ M .

Since d1(Fk+1) ⊂ Fk, then Fk+1/Fk is isomorphic as a differential graded
A-module to (A ⊗ (sA)⊗k ⊗M,d0) = (A, d) ⊗k ((sA)⊗k, d) ⊗ (M,d). The
latter is a semifree (A, d)-module since ((sA)⊗k, d) ⊗k (M,d) is a semifree
k-module via the filtration

0 ↪→ ker(d⊗ 1 + 1⊗ d) ↪→ ((sA)⊗k, d)⊗k (M,d).

Therefore B(A,A,M) is semi-free by Lemma 2.22.
�

Corollary 2.27. The map εA : B(A,A) := B(A,A,k)→ k given by

εk(a[a1, a2 · · · an]) =

{
ε(a), if n = 0,

0 otherwise
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is a resolution. Here ε : A → k is the augmentation of A. In other words
B(A,A) is acyclic.

Proof. In the previous lemma, let M = k be the differential A-module
with trivial differential and the module structure a.k := ε(a)k. �

Lemma 2.28. In the category Mod(Ae), εA : B(A,A,A) → A is a
semifree resolution.

Proof. The proof is similar to the proof of the previous lemma. First
of all, it is obvious that this is a map of Ae-modules. Let Fk =

⊕
i≤k A ⊗

T (sĀ)⊗i⊗A. Then Fk+1/Fk is isomorphic as a differential graded A-module
to (A⊗ (sA)⊗k ⊗A, d0) = (A, d)⊗k ((sA)⊗k, d)⊗ (A, d). The latter is semi-
free as Ae-module since ((sA)⊗k, d) is a semi-free k-module via the filtration
ker d ↪→ (sA)⊗k. �

Since the two-sided bar construction B(A,A,A) provides us with a semi-
free resolution of A we have that

HH∗(A,M) = H∗(B(A,A,A)⊗Ae M) = TorA
e

∗ (A,M)

and

HH∗(A,M) = H∗(HomAe(B(A,A,A),M)) = Ext∗Ae(A,M).

In some special situations, for instance that of Calabi-Yau algebras, one
can choose smaller resolutions to compute Hochschild homology or cohomol-
ogy.

The following result will be useful.

Lemma 2.29. If H∗(A) is finite dimensional then for all finitely gener-
ated semi-free A-bimodules P and Q, H∗(P ), H∗(Q) and H∗(HomAe(P,Q))
are also finite dimensional.

Proof. Since A has finite dimensional cohomology, we see that H∗(A⊗
Aop) is finite dimensional. Similarly P (orQ) has finite cohomological dimen-
sion since it is obtained via a finite sequence of extensions of free bimodules
of the form (A⊗Aop)[n]. We also have HomAe(A⊗Aop, A⊗Aop) ' A⊗Aop,
and A ⊗ Aop is a free A-bimodule of finite cohomological dimension. Since
HomAe(P,Q) is obtained through a finite sequence of extensions of shifted
free A-bimodules, we obtain that it has finite cohomological dimension. �
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