Introduction to simplicial homotopy theory,
 the art of breaking down topological spaces to points and rebuilding them up

Hossein Abbaspour
Université de Nantes

Contents

Chapter 1. Simplicial sets 1
1.1. Introduction 1
1.2. Basic notions 2
1.3. Yoneda Lemma 5
1.4. Basic operations on simplcial sets 7
1.5. Simplicial object in a category 8
1.5.1. Chain complex of a simplicial set 8
1.6. Simplicial homotopy 10
1.7. Adjunction 11
1.8. Geometric realization and adjunction 14
1.9. Dold-Kan correspondence 18
1.10. Internal hom and simplicial fonction space 24
1.11. All about the nerve of a category: Part I 26
1.12. Kan complexes 30
1.13. Homotopies in Kan complexes and Homotopy groups of simplicial sets 32
1.14. Kan fibrations 40
1.15. Universal cover 42
1.16. Minimal Complex 42
1.17. Simplicial Postnikov system 47
1.18. Hurewicz and Whitehead theorem in simplicial setting 49
1.19. Geometric realisation of Kan complexes 54
Chapter 2. An introduction to model categories and derived functors 57
2.0.1. Hinich's theorem and Derived category of DG modules 64
Chapter 3. ∞-categories are dark and full of terrors 71
Bibliography 73
Index 75

CHAPTER 1

Simplicial sets

1.1. Introduction

The primary goal of algebraic topology is to build algebraic probes for topological spaces in order to distinguish them from one another. However one can be more ambitious and ask for rebuilding the space out of these algebraic entities. The most natural topological spaces that our intuition can afford, are the topological spaces built out of geometric pieces such as lines, triangles, tetrahedra etc. These are the spaces that we call triangulated manifolds. Obviously this is too much to ask since such spaces are rare. So the first step would be to try approximate and compare a general topological space X with such geometric pieces. Thus we have to consider all the continuous maps $\Delta^{n} \rightarrow X$ because there is no preferred one. Next we have investigate how these rough images of simplexes fit together to fill the target space X. This step gets us to singular singular complex $\left(\operatorname{Sing}_{*}(X), \partial\right)$ where

$$
\operatorname{Sing}(X)_{n}:=\left\{f: \Delta^{n} \rightarrow X \mid f \text { is continuous }\right\}
$$

and $\Delta^{n}:=\left\{\left(t_{0}, t_{1}, \cdots t_{n}\right) \mid \sum t_{i}=1,0 \leq t_{i} \leq 1\right\}$ is the geometric simplex. The singular chains complex $S_{*}(X)$ is the graded free abelian group whose generators are the the element of $\operatorname{Sing}_{*}(X)$.

The only structural data which has so far manifested is the collection of face maps which are of geometric nature. Now we can start asking many natural questions such as: can we build back the space X out of the singular complex $\left(\operatorname{Sing}_{*}(X), \partial\right)$. How about other (infinite dimensional)topological space such loop spaces and paths spaces related to X ? The next layer of questions would be the functorial properties of the construction $\left(\operatorname{Sing}_{*}(X), \partial\right)$. It turns out that a continuous map gives rise to a map of simplcial sets and chain complexes and more; two continuous homotopic maps give rise to two chain homotopic maps. The proof of the last statement is quite interesting because it requires triangulating $\Delta^{n} \times I$. This process known as the prism operation relies on sending the simplices of each factor to some degenenrate simplices (i.e.lower geometric dimension) in the product. For a similar reason, computing the homology of the cartesian product of spaces uses the Eilenberg-Zilber map which also requires the degeneracy maps. While trying to understand further more the internal algebraic structure of the singular chain complex $\left(S_{*}(X), \partial\right)$, one has to look at the most important map in topology i.e. the diagonal map
$X \rightarrow X \times X$. The map induced by the diagonal on the singular chains together with Alexander-Whiteny (the left inverse of Eilenberg-Zilber map) equips $S_{*}(X)$ with a remarkable coassociative product. This coproduct, whose dual, the cup product, is better known) plays an essential role in Adams' cobar construction which computes the homology of the based loop space of X. We have started to convince ourselves that if we are interested in studying X, we should also consider the degeneracy maps as part of the structure. The degeneracy maps correspond to the situations where two vertices of a simplex are in fact geometrically identical therefore the geometric dimension is lower. So our holy grail will be $\operatorname{Sing}_{*}(X)$ with its face d_{i} and s_{i} degeneracy maps which is prototype of simplicial set. We have task ourselves with distinguishing topological spaces among the simplicial sets and rebuilding homotopy theory out of simplicial sets.

1.2. Basic notions

As explained in the introduction, we want the singular complex of a space to be prototype of simplicial sets, so naturally the geometric simplices

$$
\Delta^{n}:=\left\{\left(t_{0}, t_{1}, \cdots t_{n}\right) \mid \sum t_{i}=1,0 \leq t_{i} \leq 1\right\} \subset \mathbb{R}^{n+1}
$$

should form an example of cosimilicial set.
Inspired by this example, we define the simplicial category $\boldsymbol{\Delta}$ whose objects are $[n]:=\{0, \cdots n\}$ for $n=0,1, \cdots$. The set of morphism $\left.\operatorname{Hom}_{\Delta}([n],[m])\right):=$ $\{f:[n] \rightarrow[m] \mid f$ order preserving $\}$

For instance, for each i we have the coface morphisms $d^{i}:[n] \rightarrow[n+1]$ and codegeneracy morphisms $s^{i}:[n+1] \rightarrow[n]$ defined as follows:

$$
d^{i}(j)=\left\{\begin{array}{l}
j \text { if } 0 \leq j<i \\
j+1 \text { if } i \leq j
\end{array}\right.
$$

and

$$
s^{i}(j)=\left\{\begin{array}{l}
j \text { if } j<i+1 \\
j-1 \text { if } i+1 \leq j
\end{array}\right.
$$

for $O \geq i \leq n$.
Definition 1.1. A cosimplicial set is covariant functor $X: \boldsymbol{\Delta} \rightarrow$ Set where is $\mathbb{S e t}$ is the category of sets. Similarly a simplicial set is covariant functor $X: \boldsymbol{\Delta}^{o p} \rightarrow$ Set where is $\boldsymbol{\Delta}^{o p}$ is the opposite category of $\boldsymbol{\Delta}$.

Notation 1.2. Let $f \in \operatorname{Hom}_{\Delta}(-,-)$ be a morphism in the simplicial category. For a cosimplicial (resp. simplicial) set $X, f_{*}:=X(f)$ (reps. $\left.f^{*}:=X(f)\right)$ denotes the corresponding morphism in the category Set.

Example 1.3. The geometric simplices , $\Delta^{*}: n \mapsto \Delta^{n}$ form a cosimplicial object. For a morphism $f \in \operatorname{Hom}_{\Delta}([n],[m]), \Delta^{*}(f): \Delta_{n} \rightarrow \Delta_{m}$ is defined by $\Delta^{*}(f)\left(t_{0}, t_{1} \cdots t_{n}\right):=\left(s_{0} \cdots s_{m}\right)$ where $s_{i}=\sum_{t_{j} \in f^{-1}\left(s_{i}\right)} t_{j}$.

In this example $\Delta^{*}\left(d^{i}\right)$ are precisely the inclusion $\Delta^{n} \hookrightarrow \Delta^{n}$ as the i-th face.

Examples 1.4. For a topological space X, the singular complex $\operatorname{Sing}(X)$ functor $\operatorname{Sing}(X): \boldsymbol{\Delta}^{o p} \rightarrow$ Set, given by the sets of singular simplices

$$
\operatorname{Sing}_{n}(X):=C^{0}\left(\Delta^{n}, X\right)
$$

form a simplicial set. Therefore we have functor Sing :Top-Spaces \rightarrow sSet

Lemma 1.5. Any morphism in $\operatorname{Hom}([n],[m])$ has a unique factorisation of the form

$$
f=d^{i_{l}} \cdots d^{i_{1}} s^{j_{1}} \cdots s^{j_{k}}
$$

where $n-k=m-l$
Proof. An order preserving map from $[n]$ to $[m]$ is determined by its image (or its complement) and the equivalent classes of $\stackrel{f}{\sim}$, where $x \stackrel{f}{\sim} y$ iff $f(x)=f(y)$. Moreover f induces a bijection between these equivalence classes and its image. Suppose that $i_{1}<i_{2} \cdots<i_{l}$ are the distinct elements of $[m] \backslash \operatorname{Im}(f)$, and $j_{1}, \cdots j_{k}$ is a the maximal sequence for which $f\left(j_{p}\right)=$ $f\left(j_{p}+1\right)$. The equivalence described above has $n-k$ element and the image of f has $m-l$, therefore $n-k=m-l$. We also noticed that the $\operatorname{map} d^{i_{l}} \cdots d^{i_{1}}$ does not have $i_{1}, i_{2} \cdots, i_{l}$ in its image and the map $s^{j_{1}} \cdots s^{j_{k}}$ define an equivalence relation $\stackrel{\phi}{\sim}$ whose number of classes is smaller than number of classes of f. In other words, if we set $\phi=d^{i_{l}} \cdots d^{i_{1}} s^{j_{1}} \cdots s^{j_{k}}$ then $\phi\left(j_{p}\right)=\phi\left(j_{p}+1\right)$ for all p and $i_{1}, i_{2} \cdots, i_{l}$ are not in the image of ϕ. In fact $\operatorname{Im}(\phi)=\operatorname{Im}(f)$. Since ϕ is also order preserving, it establishes a bijection between its equivalence classes (which there are at most $n-k$) and its image (which has exactly $m-l$ elements). Since $m-l=n-k$, therefore ϕ has exactly the same number of equivalence classes (and the imgae) therefore $f=\phi$.

Since d^{i} and s^{i} verify the relations

$$
\begin{align*}
d^{i} d^{j} & =d^{j+1} d^{i} \\
s^{j} s^{i} & =s^{i} s^{j+1} \\
s^{j} d^{i} & = \begin{cases}d^{i} s^{j-1} & i \leq j \\
1 & i=j, j+1 \\
d^{i-1} s^{j} & \text { otherwise }\end{cases} \tag{1.1}
\end{align*}
$$

By Lemma1.5 and relations (1.1) we have
Proposition 1.6. The morphisms of the simplicial category $\boldsymbol{\Delta}$ are generated by d^{i} and s^{i} subject to the relations (1.1).

We call d^{i} 's and s^{i},s respectively the coface and codegeneracy maps. Similarly the the morphisms of the opposition category $\Delta^{o p}$ are generated by the (dual) generators $d_{i}:[n+1] \rightarrow[n]$ and $s_{i}:[n] \rightarrow[n+1]$, for $0 \leq i \leq n$ subject to relations,

$$
\begin{align*}
d_{j} d_{i} & =d_{i} d_{j+1}
\end{align*} \quad i \leq j, ~= \begin{cases}s_{i} s_{j} & =s_{j+1} s_{i} \\
s_{j-1} d_{i} & i \leq j \\
d_{i} s_{j} & = \begin{cases}j, j+1 \\
s_{j} d_{i-1} & \text { otherwise }\end{cases} \end{cases}
$$

Corollary 1.7. A simplicial set consists of a collections of sets $\left\{X_{n}\right\}$ together with maps $d_{i}: X_{n+1} \rightarrow X_{n}$ and $s_{i}: X_{n} \rightarrow X_{n+1}$ subject to relations (1.2).

Proof. If $X: \Delta^{o p} \rightarrow$ Set is a given simplicial set then above mentioned morphism $X\left(d_{i}\right): X_{n+1} \rightarrow X_{n}$ and $X\left(s_{i}\right): X_{n} \rightarrow X_{n+1}$ are the abovementioned morphism. For simplicity we denote $X\left(d_{i}\right)$ and $X\left(s_{i}\right)$ by d_{i} and s_{i}.

We call X_{0} the set of vertices and X_{n} the set of n-simplices. We call d^{i} 's and s^{i}, s respectively the face and degeneracy maps.

Definition 1.8. Simplcial sets form a category sSet. The morphism sets $\operatorname{Hom}_{\text {sSet }}(X, Y)$ from a simplicial set X to Y is defined to be the set of natural transformation between X and Y as functors. This is equivalent to have a collection of maps $f_{n}: X_{n} \rightarrow Y_{n}$ which commute with structural maps d_{i} and s_{i}.

Definition 1.9. In a simplicial set simplex $\left\{X_{n}\right\}_{n}$, an n-simplex x is called degenerate if it belongs to the image of a degeneracy maps s_{i}.

Proposition 1.10. A n-simplex x in a simplicial set $\left\{X_{n}\right\}$, is either nondegenerate or there is a presentation $x=s_{j_{1}} s_{j_{2}} \cdots s_{j_{k}} y$ with $j_{1} \leq j_{2} \cdots \leq$ j_{k} where y is unique

Proof. Existence of the presentation: If x is degenerate then we are done, if not then there is i_{1} and y_{1} such that $x=s_{i_{1}} y_{1}$. Continuing this process and by finiteness of the dimension, we can write $x=s_{i_{1}} s_{i_{2}} \cdot s_{i_{k}} y$ where y is nondegenrate. Now using the relations (1.2) we can rewrite the expression in the form $x=s_{j_{1}} s_{j_{2}} \cdots s_{j_{k}} y$ such that $j_{1}<j_{2} \cdots<j_{k}$.

Uniquness Suppose that $s_{j_{1}} s_{j_{2}} \cdots s_{j_{k}} y=s_{i_{1}} s_{j_{2}} \cdots s_{i_{l}} z$. Let $D=$ $d_{j_{k}} d_{j_{k-1}} \cdots d_{j_{1}}$. Then we have $D s_{j_{1}} s_{j_{2}} \cdots s_{j_{k}}=i d$, therefore

$$
y=D s_{i_{1}} s_{i_{2}} \cdots s_{i_{l}} z
$$

Let $S=s_{i_{1}} s_{i_{2}} \cdots s_{i_{l}}$, so we have $y=D S z$. Using the simplicial relations (1.2) we can write $D S=S^{\prime} D^{\prime}$ where D^{\prime} is a product of some face maps and S^{\prime} is a product of some degeneracy maps. This give $y=S^{\prime} D^{\prime} z$ which would
contradict y being nondegenerate unless S^{\prime} is void/nonexisting. Therefore we have proved that y is a face of z and symmetrically y is face of z hence $y=z$.

1.3. Yoneda Lemma

As we know there are some topological space which are triangulate therefore they provide us a host of simplicial complexes. It turns ou that we can turn them into simplicial sets as follows.

Example 1.11. Let $K=\left\{s_{i}\right\}$ be an oriented simplicial complex i.e. with a partial ordering on $\operatorname{Vert}(K)$ such that the induced orientation on each simplex is a linear ordering. We construct a simplicial set $\left\{K_{s}(n)\right\}_{n}$ by
$K_{s}(n):=\left\{\left[v_{i_{O}} \leq v_{i_{1}} \cdots \leq v_{i_{n}}\right] \mid v_{i_{O}}, v_{i_{1}} \cdots v_{i_{n}}\right.$ spans a simplex in $\left.K\right\}$.
Note that in a n-simplex, we allow repeated vertices. The structural maps are given by

$$
d_{k}\left(\left[v_{i_{O}} \leq v_{i_{1}} \cdots \leq v_{i_{n}}\right]\right)=\left[v_{i_{O}} \leq v_{i_{1}} \cdots v_{i_{k-1}} \leq v_{i_{k+1}} \cdots \leq v_{i_{n}}\right]
$$

and

$$
s_{k}\left(\left(\left[v_{i_{O}} \leq v_{i_{1}} \cdots \cdots \leq v_{i_{n}}\right]\right)==\left[v_{i_{O}} \leq v_{i_{1}} \cdots v_{i_{k}} \leq v_{i_{k}} \cdots \leq v_{i_{n}}\right]\right.
$$

We give an explicit example of the construction above. Let K be the simplicial complex consisting of the standard geometric simplex $\Delta^{n}=$ $\left[e_{0}, e_{1} \cdots e_{n}\right] \subset \mathbb{R}^{n}$ and all of its faces. We have

$$
K_{s}(m)=\left\{\left[e_{i_{0}}, e_{i_{1}} \cdots e_{i_{m}}\right] \mid \quad i_{0} \leq i_{1} \leq \cdots \leq i_{m} \quad \& \quad 0 \leq i_{k} \leq n\right\}
$$

which as a set, it is in bijection with the set of order preserving maps from $\{0, \cdots m\}$ to $\{0, \cdots n\}$.

Examples 1.12. A point $\Delta^{0}=\{0\}$ as a simplicial set, has one n-simplex for each, they are $X_{0}=\{[0]\}, X_{1}=\{[0,0]\}, X_{2}=\{[0,0,0]\} \cdots$

Similarly the interval Δ^{1} has, as a simplcial set, $n+2 n$-simplices for each n, namely

$$
\begin{gathered}
X_{0}=\{[0],[1]\} \\
X_{1}=\{[0,0],[0,1],[1,1]\} \\
X_{2}=\{[0,0,0],[0,0,1],[0,1,1],[1,1,1]\}
\end{gathered}
$$

etc.
So we define the simplicial set Δ_{n} whose set of m-simplices is

$$
\Delta_{n}[m]:=\operatorname{Hom}_{\Delta}([m],[n])
$$

Lemma 1.13. (Yoneda lemma) There is a natural bijection

$$
\operatorname{Hom}_{s \operatorname{Set}}\left(\Delta_{n}, X\right) \simeq X_{n}
$$

Proof. The bijection $\psi: \operatorname{Hom}_{\text {sSet }}\left(\Delta_{n}, X\right) \rightarrow X_{n}$ is given by sending a natural transformation $T: \Delta_{n} \rightarrow X_{n}$ to $\psi(T):=T\left(i d_{n}\right) \in X_{n}$. Here we think of $i d_{n}$ as an element of $\Delta_{n}[n]=\operatorname{Hom}_{\Delta}([n],[n])$. The inverse Υ of ψ is given by $\Upsilon_{n}(x): \Delta_{n} \rightarrow X$ defined by $\Upsilon_{n}(x)(f)=X(f)(x) \in X_{m}$ for an element $f:[m] \rightarrow[n]$ of $\Delta_{n}[m]$. This defines a natural transformation if the diagram

is commutative for all $g:[p] \rightarrow[m] \in \operatorname{Hom}_{\boldsymbol{\Delta}}([p],[m])$. The commutativity is indeed a consequence of X begin a functor from the the opposite categor the identity

$$
X(g)(X(f)(x)=(X(g) \circ X(f))(x)=X(g \circ f)(x)
$$

In order to be able to define the notion of homotopy between simplicials maps we need to define the basis operation on the simplicial sets.

For a simplicial set $X=\left\{X_{n}\right\}_{n \geq 0}$, the n-th skeleton $\operatorname{Sk}_{n}(X)$ is by definition the smallest simplicial subset of X containing all the nondegenerate simplices of dimension at most n. We have a natural filtration

$$
\mathrm{Sk}_{0}(X) \subset \mathrm{Sk}_{1}(X) \cdots
$$

Now we can define a notion of dimension for a simplicial set. A simplicial set is said to be finite dimensional if for some $n, X=\mathrm{Sk}_{n}(X)$. If X is finite dimensional, the dimension of X is the smallest n for which $X=\operatorname{Sk}_{n}(X)$. For instance, the simplicial Δ_{n} is of dimension n. The boundary $\partial \Delta_{n}$ of Δ_{n} is the $(n-1)$-skeleton of X. One should think of $\partial \Delta_{n}$ as a simplicial model for the the sphere S^{n-1}. Intuitively we can notice that $\partial \Delta_{n}$ should a be union of a other simplicial subsets $\partial_{i} \Delta_{n}$. The simplicial subset $\partial_{i} \Delta_{n}$ is the simplmicial subset generated by $d^{i} \in \operatorname{Hom}_{\Delta}([n-1],[n])=\Delta_{n}[n-1]$.

Proposition 1.14. If x is a nondegenerate n-simplex then any face $d_{i} x$ belongs to $\mathrm{Sk}_{n-1}(X)$. As a consequence we have a push out,

where $e_{n}(X)$ denotes the set of nondegenerate n-simplices and Υ_{n} is the map provided by Yoneda lemma.

Proof. If $d_{i}(x)$ is nondenerate then by defining it belongs to $\mathrm{Sk}_{n-1}(X)$. Otherwise it is of the form $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}(y)$ where y is nondegenerate simplicies of dimension less than $n-1$ therefore $y \in \operatorname{Sk}_{n-1}(X)$.

1.4. Basic operations on simplcial sets

The cartesian product. For simplicial sets $X=\left\{X_{n}\right\}_{n}$ and $Y=$ $\left\{Y_{n}\right\}_{n}$, the simplicial cartesian product is defined by

$$
(X \times Y)=X_{n} \times Y_{n}
$$

The face and degeneracy maps are defined in a diagonal manner i.e.

$$
\begin{equation*}
d_{i}(x, y)=\left(d_{i}(x), d_{i}(y)\right) \& \quad s_{i}(x, y)=\left(s_{i}(x), s_{i}(y)\right) \tag{1.5}
\end{equation*}
$$

REmark 1.15. Note that that product of two degenerate simplices in X and Y is not necessarily a degenerate simplex in $X \times Y$. You can find the importance of this observation in the following example.

Example 1.16. As explained earlier in Example 1.11, unit interval $I=$ $[0,1]$ can be enriched into a simplidcial set therefore we can consider the simplicial cartesian product $I \times I$. Note that the simplices of $I=\Delta_{1}$ are the sequences of the form $[0, \cdots 0,1, \cdots 1]$. So in the cartesian product, there are 40 -simplices are

$$
([0],[0]),([0],[1]),([1],[0]),([1],[1]) .
$$

We have 5 nondegenerate 1 -simplices

$$
\begin{align*}
\alpha & =([0,0],[0,1]) \\
\beta & =([0,1],[0,0]) \\
\gamma & =([1,1],[0,1]) \tag{1.6}\\
\theta & =([0,1],[1,1]) \\
\lambda & =([0,1],[0,1])
\end{align*}
$$

and two nondegenerate 2-simplices $\Omega_{1}=([0,0,1] \times[0,1,1])$ and $\Omega_{2}=$ $([0,1,1] \times[0,0,1])$.

Union For two simplicial sets $X=\left\{X_{i}\right\}$ and $Y=\left\{Y_{i}\right\}$, union $X \cup Y$ is a simplicial set whose n-simplices are

$$
(X \cup Y)_{n}:=X_{n} \cup Y_{n} .
$$

The faces maps and degeneracy maps are those of X or Y.
Wedge For two simplicials sets X and Y, the wedge product $X \wedge Y$ is simplicial subset of $X \times Y$

$$
X \wedge Y:=\left(X \times\left[*_{y}\right]\right) \cup\left(\left[*_{x}\right] \cup Y\right)
$$

Here $\left[*_{x}\right]$ and $\left[*_{y}\right]$ are the (simplicial) base points of X and Y.

1.5. Simplicial object in a category

Definition 1.17. A simplicial object in a category \mathcal{C} is covariant functor $F: \boldsymbol{\Delta}^{o p} \rightarrow \mathcal{C}$. Similarly a cosimplicial object in \mathcal{C} is a covariant functor $F: \Delta \rightarrow \mathcal{C}$

For instance, a simplicial abelian group is a functor $F: \boldsymbol{\Delta}^{o p} \rightarrow \mathbb{Z}-$ Module i.e. it consists of a collection $\left\{G_{n}\right\}_{n}$ of abelian groups G_{n} with group homomorphism $d_{i}: G_{n} \rightarrow G_{n-1}$ and $s_{i}: G_{n-1} \rightarrow G_{n}$ which satisfy the usual simplicial relations

Definition 1.18. By a simplicial chain complex over a unital ring R, we mean a simplicial object in the category of R-Modules. It consists of a sequence R-module C_{n} together with maps $d_{i}: C_{n} \rightarrow C_{n-1}$ and S_{i} : $C_{n-1} \rightarrow C_{n}$ subject to the usual simplicial identities. It has an underlying chain complex $\left(C_{*}, \partial\right)$ where $\partial: C_{n} \rightarrow C_{n-1}$ given by $\partial=\sum(-1)^{i} d_{i}$
1.5.1. Chain complex of a simplicial set. Let R be a unital ring. We start with a simplicial set $X=\left\{X_{n}\right\}$. We set $C_{n}(X)=\oplus_{x \in X_{n}} R\langle x\rangle$ to be the free R-module generated by $x \in X_{n}$.

The face and degeneracy maps induces the face and degeneracy maps of $C_{*}(X)$. s In other words the functor $C_{*}(X): \boldsymbol{\Delta}^{o p} \rightarrow R-$ Module defined by

$$
C_{*}(X)[n]:=C_{n}(X)
$$

and

$$
C_{*}(X)(f): C_{n}(X) \rightarrow C_{m}(X) \quad C_{*}(X)(f)(x)=f(x), \quad \forall x \in X_{n}
$$

for all $f:[m] \rightarrow[n] \in \operatorname{Hom}_{\Delta}$, is a simplicial chain complex. Of course $C_{*}(X)$ has a underlying a chain complex whose differential is given by $\partial=$ $\sum(-1)^{i} d_{i}: C_{n}(X) \rightarrow C_{n-1}(X)$. We recall the standard notation for the group of cycles

$$
Z_{i}(C)=\operatorname{ker}\left(\partial: C_{i}(K) \rightarrow C_{i-1}(K)\right)
$$

and boundary element

$$
B_{i}(C)=\operatorname{Im}\left(\partial: C_{i+1}(C) \rightarrow C_{i}(K)\right)
$$

Example 1.19. The simplicial chain complex of the simplicial set $\operatorname{Sing}_{n}(X)$ is called the singular chain complex of X and is denoted $\left\{S_{n}(X)\right\}_{n}$.

Proposition 1.20. The collection of simplicials sets $\left\{\Delta_{n}\right\}_{n}$ form a cosimplicial set in the category of simplicial sets.

Proof. For $f:[m] \rightarrow[n]$, the $f *: \Delta_{m} \rightarrow \Delta_{n}$ on a k-simplex is defined by

$$
h \in \Delta_{m}=\operatorname{Hom}_{\Delta}([k],[m]) \mapsto f \circ h \in \Delta_{n}=\operatorname{Hom}_{\Delta}([k],[n])
$$

The funtoriality $(f \circ g)_{*}=f_{*} \circ g_{*}$ is obvious.
Definition 1.21. Similarly we can define the maps between simplicial objets $X, Y: \boldsymbol{\Delta}^{o p} \rightarrow \mathcal{C}$ in a category \mathcal{C}. These are the natural transformation $X \xrightarrow{F} Y$. More explicitly, a map f between two simplicial R-modules $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}_{n}$ consists of a sequence of R-linear maps $f_{n}: X_{n} \rightarrow Y_{n}$ which commute with the (simplicial) structural maps d_{i} and s_{i}.

In particular f induces a map of chain complexes $C_{*}(f): C_{*}(X) \rightarrow$ $C_{*}(Y)$ which on generator is given by $x \in X_{n} \mapsto f\left(x_{n}\right) \in Y_{n}$

Definition 1.22. A simplicial chain homotopy between two simplcial chain maps $g, f:\left(C_{*}, \partial_{C}=\sum(-1)^{i} d_{i}\right) \rightarrow\left(D_{*}, \partial_{D}=\sum(-1)^{i} d_{i}\right)$ is a sequence of $h_{i}: C_{n} \rightarrow D_{n+1}$, for $0 \leq i \leq n$ such

$$
\begin{align*}
d_{0} h_{0} & =f \\
d_{n+1} h_{n} & =h \\
d_{i} h_{j} & =h_{j-1} d_{i} \quad i<j \\
d_{j+1} h_{j} & =d_{j+1} h_{j+1} \tag{1.8}\\
d_{i} h_{j} & =h_{j} d_{i-1} \quad i>j+1 \\
s_{i} h_{j} & =h_{j+1} s_{i} \quad i \leq j \\
s_{i} h_{j} & =h_{j} s_{i-1} \quad i>j
\end{align*}
$$

If these relations above holds then $h=\sum_{i=0}(-1)^{i} h_{i}$ is a chain homotopy in the usual sense i.e

$$
\partial_{D} h+h \partial_{C}=f-g
$$

1.6. Simplicial homotopy

Definition 1.23. Two simplicial maps $f, g: X \rightarrow Y$ are said to be homotopic, we write $f \sim g$, if there is a simplicial map $h: X \times \Delta^{1} \rightarrow Y$ such that $\left.h\right|_{X \times[0]}=f$ and $\left.h\right|_{X \times[1]}=f$. Here [0] and [1] are singleton as simplicial sets (see Example 1.12) In other words we have a commutative diagram

Here $d^{0}, d^{1}: \Delta_{0}=\operatorname{Hom}_{\Delta}(-,[0]) \rightarrow \Delta_{1}=\operatorname{Hom}_{\Delta}(-,[1])$ are induced are induced by $d^{0}, d^{1}:[0] \rightarrow[1]$.

Proposition 1.24. For composable the simplicial maps f_{1} and f_{2}, If $f_{1} \sim g_{1}$ and $f_{2} \sim g_{2}$ the $f_{1} \circ f_{2} \sim g_{1} \circ g_{2}$

Proof. it is worth to detail
Proposition 1.25. Let X and Y be two simplicial abelian groups. A simplicial homotopy $h: X \times \Delta_{1} \rightarrow Y$ between maps of simplicial abelian groups $f, g: X \rightarrow Y$, induces a simplicial chain homotopy between induced maps $C_{*}(f)$ and $C_{*}(g)$ on the the Moore complexes.

Proof. For each n and $0 \leq i \leq n$, Let $\eta_{i}^{n}:[n] \rightarrow$ [1] be simplicial morphism defined $\eta_{i}^{n}(j)=0$ if and only if $j \leq i$. One should. think of η_{i}^{n} as a n-simplex in Δ_{1}. We observe that

$$
d_{i}\left(\eta_{j}^{n}\right)= \begin{cases}\eta_{j-1}^{n-1} & i \leq j \tag{1.10}\\ \eta_{j}^{n-1} & i>j\end{cases}
$$

and

$$
s_{i}\left(\eta_{j}^{n}\right)= \begin{cases}\eta_{j+1}^{n+1} & i \leq j \tag{1.11}\\ \eta_{j}^{n+1} & i>j\end{cases}
$$

Let $h_{i}: X_{n} \rightarrow Y_{n+1}, 0 \leq i \leq n$, be the map defined by

$$
\begin{equation*}
h_{i}(a):=h\left(\left(s_{i}(a), \eta_{i}^{n+1}\right)\right) \tag{1.12}
\end{equation*}
$$

Now one can check easy that relations (1.13) hold. For instance,
$d_{0} h_{0}(a)=d_{0} h\left(\left(s_{0}(a), \eta_{0}^{n+1}\right)\right)=h_{0}\left(\left(d_{0} s_{0}(a), d_{0} \eta_{0}^{n+1}\right)=h_{0}(a,([1,1 \cdots 1])=f(a)\right.$
For $i<j$
$d_{i} h_{j}(a):=d_{i} h\left(\left(s_{j}(a), \eta_{j}^{n+1}\right)\right)=h\left(d_{i} s_{j}(a), d_{i} \eta_{j}^{n+1}\right)=h\left(s_{j-1} d_{i}(a), \eta_{j-1}^{n-1}\right)=h_{j-1}\left(d_{i}(a)\right)$

Corollary 1.26. Let X and Y be two simplicial sets. A simplicial homotopy. $H: X \times \Delta_{1} \rightarrow Y$ between simplicial maps $f, g: X \rightarrow Y$, induces a chain homotopy between $C_{*}(f)$ and $C_{*}(g): C_{*}(X) \rightarrow C_{*}(Y)$.

Proof. Apply Proposition1.25 to the simplicial groups $C_{*}(X)$ and $C_{*}(Y)$

The proof of the following result is identical to that of Proposition 1.25.
Corollary 1.27. A simplicial homotopy $h: X \times \Delta_{1} \rightarrow Y$ between. simplicial maps $f, g: X \rightarrow Y$ is equivalent to a collection of maps h_{i} : $X_{n} \rightarrow Y_{n+i}$ which satisfies the identites

$$
\begin{align*}
d_{0} h_{0} & =f \\
d_{n+1} h_{n} & =h \\
d_{i} h_{j} & =h_{j-1} d_{i} \quad i<j \\
d_{j+1} h_{j} & =d_{j+1} h_{j+1} \tag{1.13}\\
d_{i} h_{j} & =h_{j} d_{i-1} \quad i>j+1 \\
s_{i} h_{j} & =h_{j+1} s_{i} \quad i \leq j \\
s_{i} h_{j} & =h_{j} s_{i-1} \quad i>j
\end{align*}
$$

1.7. Adjunction

Let $T: \mathcal{C} \rightarrow \mathcal{D}$ and $S: \mathcal{D} \rightarrow \mathcal{C}$ be two covariant functors and

$$
\phi_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, S(B)) \rightarrow \operatorname{Hom}_{\mathcal{D}}(T(A), B)
$$

and

$$
\psi_{A, B}: \operatorname{Hom}_{\mathcal{D}}(T(A), B) \rightarrow \operatorname{Hom}_{\mathcal{C}}(A, S(B))
$$

be two natural transformations between bi-functors $\operatorname{Hom}(A, S(B))$ and $\operatorname{Hom}(T(A), B)$ on the category $\mathcal{C}^{o p} \times \mathcal{D}$. Being natural transformation amount to the identity

$$
\begin{align*}
f \circ \phi(g) & =\phi(s(f) \circ g) \\
\psi(f \circ h) & =s(f) \circ \psi(h) \tag{1.14}
\end{align*}
$$

for $g \in \operatorname{Hom}_{\mathcal{C}}\left(A, S(B)\right.$ and $h \in \operatorname{Hom}_{\mathcal{C}}(A, S(B))$ and $f: B \rightarrow B^{\prime}$ and

Similarly, for $k: A^{\prime} \rightarrow A, g: A \rightarrow S(B), h: T(A) \rightarrow B$

$$
\begin{align*}
\phi(g \circ k) & =\phi(g) T(k) \\
\psi(h \circ T(k)) & =\psi(h) \circ k \tag{1.16}
\end{align*}
$$

Remark 1.28. Using theidentities (1.14) and (1.16) we can prove that the natural transfor mation ϕ and ψ are natural with respect S and T. In other words two natural $\tau: S \rightarrow S^{\prime}$ and $\sigma: T \rightarrow T^{\prime}$ gives rises to a ma natural transformation ϕ^{\prime} and ψ^{\prime}.

Definition 1.29. We say that the functors T and S for an adjunction if $\phi_{A, B} \circ \psi_{A, B}=i d$ and $\psi_{A, B} \circ \phi_{A, B}=i d$.

We call T a left adjoint of S and S is a right adjoint of T.
The natural transformations ϕ and ψ provide us two natural transformations $\Psi: 1 \rightarrow S T$ and $\Phi: T S \rightarrow 1$ called respectively unit and counit called .

They are defined by

$$
\Phi_{B}:=\phi_{S(B), B}\left(i d_{S(B)}\right) \in \operatorname{Hom}(T S(B), B)
$$

and

$$
\Psi_{A}=\psi\left(1_{T(A)}\right) \in \operatorname{Hom}(A, S T(A))
$$

The natural transformations ϕ and ψ provide us two natural transformations $\Psi: 1 \rightarrow S T$ and $\Phi: T S \rightarrow 1$ called respectively unit and counit called .

Notice that the defining the natural transformations Ψ and Φ does not require the idnentity $\phi \circ \psi=i d$ and $\phi \circ \psi=i d$.

Proposition 1.30. $\psi \circ \phi=1$ if and only if the composition $S \xrightarrow{\Psi S}$ $S T S \xrightarrow{S \Phi} S$ is the identity natural transformation.

Similarly, $\phi \circ \psi=1$ if and only the composition $T \xrightarrow{\Psi S} T S T \xrightarrow{S \Phi} T$ is the identity natural transformation.

Proof. It follows from the commutative diagram below.

Definition 1.31. The adjunction given by ϕ and ψ is called an equivalence if $\phi \circ \psi=i d$ and $\psi \circ \phi=i d$

Proposition 1.32. The equivalence adjunctions are natural with respect to the natural transformation $\tau: T^{\prime} \rightarrow T$ and $\sigma: S \rightarrow S^{\prime}$. More precisely if $\tau: T^{\prime} \rightarrow T$ exists then $\sigma: S \rightarrow S^{\prime}$ making the diagram below commutative, and vice versa.

Proof. If τ is given, in order to find $\sigma: S(B) \rightarrow S^{\prime}(B)$, one should chase digram from upper-left corner for $A:=S(B) S$. we will get

$$
\sigma(B)=\psi_{S(B), B}^{\prime}\left(\phi_{S(B), B}\left(i d_{S(B)}\right) \tau(S(B))\right),
$$

One can then check that σ makes the diagram commutative for all A and B. Similarly τ can be defined in terms of σ by

$$
\tau(A)=\phi^{\prime}\left(\sigma(T(A)) \circ \psi_{A, T(A)}\right) .
$$

1.8. Geometric realization and adjunction

We already know that there is a functor $S:$ TopSpace \rightarrow sSet which is given by the singular simplices $\operatorname{Sing}_{n}(X)=C^{0}\left(\Delta^{n}, X\right)$ of X. Now we intend to introduce a left adjoint for S.

Definition 1.33. Geometric realization of a simplicial set $K=\left\{K_{n}\right\}_{n}$ is the set of equivalence relation

$$
T(K)=|K|:=\sqcup_{n \geq 0} K_{n} \times \Delta^{n} / \sim
$$

where the equivalence relation is generated by the relations $\left(d_{i} x, p\right) \sim\left(x, d^{i} p\right)$ and $\left(s_{i} x, p\right) \sim\left(x, s^{i} p\right)$.

The topology of $T(k)$ is quotient topology of $\sqcup K_{n} \times \Delta^{n}$ which itself is equipped with the thweak topology (on the union). This means that $U \subset \sqcup_{n \geq 0} K_{n} \times \Delta^{n} i$ is open if and only if for each $n, U \cap K_{n} \times \Delta^{n} i$ is open in $K_{n} \times \Delta^{n} i$. Here $K_{n} \times \Delta^{n}$ has product topology.

Definition 1.34. A pair $(k, w) \in|K|$ is called an ideal point if k is nondegenerate n-simplex and w is in the interior of the geometric n-simplex.

Proposition 1.35. Each class in $|K|$ has a unique representative (x, p) which is an ideal point. where x is nondegenerate and p in the interior Δ^{n} of the geometric simplex Δ^{n}.

Proof. Let a be a class in $|K|$, starting with a representative $\left(z, q^{\prime}\right)$ we can assume that q^{\prime} is interior otherwise it can be wirtten $q^{\prime}=d^{i_{1}} \cdots d^{i_{l}} q$ where q is in the interior of a geometric simplex. Then

$$
a=\left[\left(z, q^{\prime}\right)\right]=\left[\left(z, d^{i_{1}} \cdots d^{i_{l}} q\right)\right]=\left[\left(d_{i_{l}} \cdots d_{i_{1}} z, q\right)\right]
$$

So we can suppose that a has a representative (y, q) where q is in the interior. By Proposition 1.10, either y is non degenerate or $y=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}(x)$ where z is nondegenerate. In either case, a has (y, q) or $\left(x, s^{i_{k}} \ldots s^{i_{2}} s^{i_{1}}(q)\right)$ as representative. In either case the first coordinate is nondegenerate. Also note that if q is interior then $s^{i_{k}} \cdots s^{i_{2}} s^{i_{1}}(q)$ is also in interior. This is because the codegeneracy maps of the geometric simplices are of the form $\left(t_{0}, \cdots, t_{n}\right) \mapsto\left(t_{0}, \cdots, t_{i}+t_{i+1}, \cdot, t_{n}\right)$, so if all $t_{i}>0$ the same is true for its image.

Corollary 1.36. $|K|$ is a $C W$-complex.
Proof. By Proposition $1.35 K$ is a union of open cell whose boundaries are included in lower dimension cells. The topology of $|K|$ is the weak topology which is the topology of CW-complexes.

Theorem 1.37. For all simplicial sets K and L, there is a natural bijection. $|K \times L|$ and $|K| \times|L|$. Moreover this bijection is a homeomorphism if $|K|$ or $|L|$ is locally finite or if they are both countable.

Proof. We introduce $\pi_{1} \times \pi_{2}:|K \times L| \rightarrow|K| \times|L|$ as follows: For a class $x \in|K \times L|$ we choose a representative (k, l, w) where (k, l) is nondegenerate n-simplex and w is in interior of a simplex Δ^{n}. Note that this does not mean that k or l are nondegenerate. Nonetheless the pairs $(k, w)(l, w)$, which are not necessarily ideal points, represent respectively two classes in $\pi_{1}(x) \in|K|$ and $\pi_{2}(x) \in|L|$.

Now we construct the inverse of $\pi_{1} \times \pi_{2}$. Let (k, u) and (l, v) be two ideal points representing two classes in $x \in|k|$ and $y \in|l|$ and $u=\left(t_{0}, \cdots t_{m}\right)$ and $v=\left(t_{0}^{\prime} \cdots t_{n}^{\prime}\right)$. We set

$$
u^{p}:=\sum_{1}^{p} t_{i} \quad \& \quad v^{q}:=\sum_{1}^{q} t_{i}^{\prime} .
$$

u^{p} 's and v^{q} 's are strictly increasing sequence out of which we can reconstruct the sequences t_{i} 's and $t^{\prime} i$'s by subtracting consecutive terms. Being strictly increasing is a consequence of having ideal points as representative.

We can consider the set $\left\{u^{p}\right\}_{p} \cup\left\{v^{q}\right\}_{q}$ and write its elements in a increasing sequence $r^{0}<r_{1} \cdots<r_{a}$. Note that the sequence $t_{i}^{\prime \prime}:=r_{i}-r_{i-1}$ is very unlikely to be on the nose $t_{p}=u^{p}-u^{p-1}$ and $t^{\prime} q=v^{q}-v^{q-1}$ but this can be corrected by taking carefully their consecutive sums. The latter corresponds to the codegeneracy maps for geometric simplicials. More accurately, let $i_{1}<\cdots<i_{a-m}$ where $r_{i_{k}} \notin\left\{u^{p}\right\}_{p}$ and $j_{1}<\cdots<i_{a-n}$ where $r_{j_{k}} \notin\left\{v^{q}\right\}_{q}$. Notice that we have $\sum t_{i}^{\prime \prime}=1$ so $w:=\left(t_{1}^{\prime \prime}, \cdots t_{a}^{\prime \prime}\right) \in \Delta^{a}$ and we
have

$$
u=s^{i_{1}} \cdots s^{i_{a-m}} w
$$

and

$$
v=s^{j_{1}} \cdots s^{j_{a-n}} w
$$

The inverse η of $\left(\pi_{1} \times \pi_{2}\right)$ is given by

$$
\left.\eta(x, y):=\left[s_{i_{a-m}} \cdots s_{i_{1}} k, s_{i_{j_{1}}} \cdots s_{i_{a-n}} l, w\right)\right]
$$

The identity $\left(\pi_{1} \times \pi_{2}\right) \eta=i d$ is pretty clear. The identity $\eta\left(\pi_{1} \times \pi_{2}\right)=i d$ is also easily verifiable. For the ideal point $(k, l, w) \in|K \times L|, k$ and l are not necessarily nondegenerate. In that case $k=s_{i_{m}} \cdots s_{i_{1}} k^{\prime}$ and $l=s_{j_{n}} \cdots s_{j_{1}} l^{\prime}$. We have

$$
\pi_{1}([(k, l, w)])=[(k, w)]=\left[\left(k^{\prime}, s^{i_{1}} \cdots s^{i_{m}} w\right)\right]
$$

and

$$
\pi_{2}([(k, l, w)])=\left[\left(\left(l^{\prime}, s^{j_{1}} \cdots s^{j_{n}} w\right)\right]\right.
$$

Note that both $\left.k^{\prime}, s^{i_{1}} \cdots s^{i_{m}} w\right)$ and $\left(\left(l^{\prime}, s^{j_{1}} \cdots s^{j_{n}} w\right)\right.$ are ideal points because the codegeneracy maps of the geometric simplex send the interiors to the interiors. Applying the algorithm defining η to $\left(k^{\prime}, s^{i_{1}} \cdots s^{i_{m}} w\right)$ and $\left(l^{\prime}, s^{j_{1}} \cdots s^{j_{n}} w\right)$ gives us back $\left(s_{i_{m}} \cdots s_{i_{1}} k^{\prime}, s_{j_{n}} \cdots s_{j_{1}} l^{\prime}, w\right)$ because the w is common preimage (under codegeneracy maps) of $s^{i_{1}} \cdots s^{i_{m}} w$ and $s^{j_{1}} \cdots s^{j_{n}} w$. This proves the identity.

Note that we can equip $|K| \times|L|$ with the topology of of CW-complex(weak topology) because the product of two open cell is cell and with respect CWtopology η (and its inverse $\pi_{1} \times \pi_{2}$) is a homeomorphism because it is true cell by cell. Therefore if the product (weak) topology of (CW-complexes) on $|K| \times|L|$ coincides weak topology (of CW-complexes) on $|K| \times|L|$ then we have a homeomorphism in that sense too. This happens under the assumptions of the theorem.

Corollary 1.38. If $h: K \times \Delta_{1} \rightarrow L$ is the homotopy between simplicial map $f, g: K \rightarrow L$ then the continuous maps $|f|,|g|:|K| \rightarrow|L|$ are homotopic.

Proof. By apply the geometric realization to H we obtain a continuous $\operatorname{map}|H|:|K| \times \Delta^{1} \rightarrow|L|$ which is homotopy between $|f|=|H|_{|K| \times\{0\}}$ and $|g|=|H|_{|K| \times\{1\}}$.

Corollary 1.39. If \mathcal{C} is category has a initial (or terminal) element then $|N \mathcal{C}|$ is contractible topological space.

Proof. This is a consequence of the previous result and Proposition 1.55.

As mentioned earlier there the functors $S: T o p-S p a c e \rightarrow$ sSet whose n-simplices are the s continuous maps $\sigma: \boldsymbol{\Delta}^{n} \rightarrow X$ with integer coefficients. We have also the geometric realization functor $T:$ sSet \rightarrow Top - Space.

We define adjunction natural transformations

$$
\phi: \operatorname{Hom}_{\text {sSet }}(K, S(X)) \rightarrow \operatorname{Hom}_{T o p}(|K|, X)
$$

and

$$
\psi: \operatorname{Hom}_{\text {Top }}(|K|, X) \rightarrow \operatorname{Hom}_{\text {sSet }}(K, S(X))
$$

by:
(a) For $f: K_{*} \rightarrow S_{*}(X)$, the continuous $\phi(f):|K| \rightarrow X$ is given by

$$
\phi(f)([k, u])=f(k)(u) \quad \forall[k, u] \in|K|
$$

which is well-defined because f is a map of simplicial sets.
(b) For $g \in \operatorname{Hom}_{\text {Top }}(|K|, X)$, the simplicial map is given by $\psi(g): K \rightarrow$ $S(X)$

$$
\forall k \in K_{n} \quad \psi(g)(k)(u):=g([k, u]) \quad \forall u \in \boldsymbol{\Delta}^{n} .
$$

One can see that for all $f, \psi(\phi(f))(k)(u)=\phi(f)([k, u])=$ $f(k)(u)$ implying that $\psi(\phi(f))=f$, and similarly $\phi \circ \psi=i d$.
The associated the counit natural transformation $\Phi_{X}:|S(X)|=T S(X) \rightarrow$ X is given by

$$
\Phi_{X}([k, u])=\phi\left(1_{S(X)}([k, u])=k(u)\right.
$$

where k is a singular chain and $u \in \boldsymbol{\Delta}^{n}$. The unit natural transformation $\Psi_{K}: K \rightarrow S T(K)$ is

$$
\Psi_{K}(k)(u)=\psi\left(1_{T K}\right)=i d([k, u]) .
$$

Proposition 1.40. For all simplicial set K, the unit $\Psi_{K}: K \rightarrow S T(K)$ is injective. Similarly, for all topological space $X, \Phi_{X}: T S(X) \rightarrow X$ is surjective.

Proof. TO come soon
The following results would be useful for comparing the model categories of simplicial sets and topological spaces.

Proposition 1.41. The maps ϕ and ψ preserves homotopies.
Proof. If $F: K \times \Delta^{1} \rightarrow S(X)$ a simplicial homotopy then $T(F)$: $T K \times \boldsymbol{\Delta}^{1} \rightarrow T S(X)$ is homotopy of continuous maps, so is the composition

$$
\Phi_{X} \circ T F: T K \times \boldsymbol{\Delta}^{1} \rightarrow T S(X) \rightarrow X .
$$

 homotopy between $\left.\phi(F)\right|_{T K \times[0]}$ and $\left.\phi(F)\right|_{T K \times[1]}$.

Similarly if $H: T(K) \times \boldsymbol{\Delta}^{1} \rightarrow X$ is homotopy of continuous maps then $S H: S T\left(K \times \Delta_{1}\right)=S T(K) \times S T\left(\Delta_{1}\right) \rightarrow S(X)$ is a simplcial map (a homotopy) so is its precomposition with a simplicial map $\Psi_{K \times \Delta^{1}}$. Therefore we have a simplicial map

$$
S H \circ \Psi_{K \times I}: K \times \Delta_{1} \rightarrow S(X)
$$

which is a simplicial homotopy. Moreover $S H \circ \Psi_{K \times I}=S H \circ \psi\left(1_{K \times I}\right) \stackrel{\text { by }}{\stackrel{(1.14)}{=}}$ $\psi(H)$, therefore $\psi(H)$ is a homotopy between $\left.\psi\right|_{K \times d^{1}\left(\Delta_{0}\right)}$ and $\left.\psi\right|_{K \times d^{0}\left(\Delta_{0}\right)}$

Theorem 1.42. The unit and counit natural transformations induce an isomorphism in homologies.

Proof. We have $H_{*}(K):=H_{*}\left(C_{*}(K)\right)$ where is $C_{*}(K)$ is the simplicial complex of K. We will in Section 1.9) that $H_{*}\left(C_{*}(K)\right) \simeq H_{*}\left(C_{*}(K) / D_{*}(K)\right)$ where $D_{*}(K)$ is teh subcomplex generated by the degenerate simplices. On the other hand the generators of $C_{*}(K) / D_{*}(K)$ are precisellt the cells of CWcomplex $T(K)$ therefore $H_{*}\left(C_{*}(K) / D_{*}(K)\right)$ is precesly the cellular homology of $T K$ which isomorphic to the singular homology $H_{*}(S T(K)$), we conclude that Ψ_{K} (an inclusion) induces an isomorphism $H_{*}(K) \simeq H_{*}(S T(K))$.

As for $\left(S \Phi_{X}\right) *: H_{*}(T S(X))=H_{*}(S T S(X)) \rightarrow H_{*}(X)=H_{*}(S(X)$, from the identity $S \Phi \circ \Psi S=i d$ and the previous result that $\Psi \circ S$ induces an isomorphism on homology for the case $K=S(X)$, it follows that $S \Phi$ also induces an isomorphism in homology.

1.9. Dold-Kan correspondence

The aim of this section is to prove the Dold-Kan correspondence which states that the category of simplicial objects in an abelian category \mathcal{A} is equivalent to the category of positively graded chain complexes of \mathcal{A}. As a byproduct we prove that the complex of nondegenerate subcomplex of a simplicial complex is chain homotopic to the simplicial complex itself.

Let $A=\left\{A_{n}\right\}_{n}$ be a simplicial abelian group we continue to use A_{*} to denote its Moore complex equipped with differential $\partial=\sum_{i=0}^{n}(-1)^{i} d_{i}$. The normalized complex $N A_{*}$ of A_{*} is defined by

$$
N A_{n}:=\cap_{i=0}^{n-1} \operatorname{ker}\left(d_{i}\right)
$$

which is submcomplex complex of the Moore complex of A_{*} meaning that $\partial\left(N A_{*}\right) \subset N A_{*}$ (a consequence of the simplicial identites). We have in fac

$$
\left.\partial\right|_{N A_{n}}=(-1)^{n} d_{n} .
$$

Let $D A_{*}$ be subcomplex of the Moore complex generated by the elements of the image of the degeneracy maps. We call $D A_{*}$ the degenerate subcomplex and its quotient the degenerate complex .

We consider the composition of the inclusion followed by the natural projection,

$$
\phi: N A_{*} \hookrightarrow A_{*} \rightarrow A_{*} / D A_{*} .
$$

Obviously ϕ is a chain map.
Theorem 1.43. The chain map ϕ is indeed an isomorphism of complexes.

Proof. We first filter $N A_{*}$ by subcomplexes $N_{j} A_{*}$

$$
N_{j} A_{n}:=\cap_{i=0}^{j} \operatorname{ker}\left(d_{i}\right) \subset N A_{n} .
$$

Similarly we filter $D A_{*}$ by $D_{j} A_{*}$ by setting $D_{j} A_{n} \subset D A$ to be the subcomplex generated by $\operatorname{Im}\left(s_{i}\right)$ for $i \leq j$ and consider the restriction ϕ to these subcomplexes,

$$
\phi_{j}:=\left.\phi\right|_{N_{j} A_{*}}: N_{j} A_{*} \rightarrow D_{j} A_{*} .
$$

We prove by induction on j that $\phi_{j}, j<n$, is an isomorphism. $j=0$: We have $N_{0} A_{n}=\operatorname{ker}\left(d_{0}\right)$ and for all classes $[x] \in A_{n} / D_{0} A_{n}, d_{0}\left(x-s_{0} d_{0}\right) x$ because $d_{0} s_{0}=i d$. In the quotient $A_{n} / D_{0} A_{n}$

$$
[x]=\left[x-s_{0} d_{0} x\right]
$$

proving that ϕ_{0} is surjective. For $x_{0} \in N_{0} A_{n}$ if $\phi_{0}(x)=0 \in A_{n} / D_{0} A_{n}$ then $x=s_{0} y$ for some $y \in A$, and as a consequence, $0=d_{0} x=d_{0} s_{0} y=y$ hence $y=0$ and ϕ_{0} is injective.

Now we suppose that for all $k<j, \phi_{k}: N_{k} A_{n} \rightarrow A_{n} / D_{k} A_{n}$ is an isomorphism for $n>k$. We have the commutative diagram

where the vertical arrow on the left is surjective. A class $[x] \in A_{n} / D_{j} A_{n}$ has representative and ultimately a presentative in $N_{j-1} A_{n}$ because by hypothesis ϕ_{j-1} is surjective. Let $y \in N_{j-1} A_{n}$ be representative for $[x]$, replace y by $y-s_{j} d_{j} y$. We have $d_{j}\left(y-s_{j} d_{j} y\right)=0$ and $[y]=\left[y-s_{j} d_{j} y\right] \in A_{n} / D_{j} A_{n}$ therefore $[x]=\phi_{j}\left(y-s_{j} d_{j} y\right)$ proving that ϕ_{j} is surjective.

As for the injectivity, consider the commutative diagram whose top arrow is exact.

If for $x \in N_{j} A_{n}, \phi_{j}(x)=0$, then using the commutative diagram above we can conclude that $x=s_{j}(y)$ for some $y \in N_{j-1} A_{n-1}$. Since $d_{j} x=0$, we have $y=d_{j} s_{j}(y)=d_{j} x=0$. Thus ϕ_{j} is injective.

We jut proved that normalised complex (which is subcomplex) is isomorphic to the quotient complex $A * / D A *$ where there is no degeneracy maps, i.e. essentially a complex. In the following we explain how can we recover the simplicial complex from of it normalized complex.

Let $B_{n}:=\oplus_{[n] \rightarrow[k]} N A_{k}$ where direct sum is taken over surjective morphism in simplicial category $\boldsymbol{\Delta}$. We recall that by Proposition 1.5, a surjection is a composition of the codege neracy maps s^{i} 's. We use the notation $(x,[n] \xrightarrow{\sigma}[k])$ to denote the elements of B_{n}

It turns out that $n \mapsto B_{n}$ is a simplcial abelian group: For $f:[m] \rightarrow$ $[n] \in \operatorname{Hom}_{\Delta}$ and for each index map $\sigma:[n] \rightarrow[k]$, using Lemma 1.5 we decompose the decompostion map $\sigma \circ f:[m] \rightarrow[k]$ as the composition of surjection g and injection τ i.e. $\sigma \circ f=\tau \circ g$ where τ is injective and g is surjective

$$
\begin{gather*}
{[m] \xrightarrow{f}[n] \xrightarrow{\sigma}[k]} \tag{1.22}\\
\\
{[m] \xrightarrow{g}[l] \xrightarrow{\tau}[k]}
\end{gather*}
$$

We define the action of f on $(x,[n] \xrightarrow{\sigma}[k]) \in B_{n}$ to be

$$
f^{*}(x,[n] \xrightarrow{\sigma}[k]):=\left(\tau^{*}(x),[m] \xrightarrow{g}[l]\right)
$$

In other words to every morphism f in the category $\boldsymbol{\Delta}$ we have associated a morphism

$$
f^{*}: B_{n} \rightarrow B_{m}
$$

which will prove that it is functorial
Proposition 1.44. The collection of set $\left\{B_{n}\right\}_{n}$ together with induced maps f^{*} as above, is a simplicial set.

Proof. let $f:[p] \rightarrow[m]$ and $g:[m] \rightarrow[n]$ be two composable morphisms in $\boldsymbol{\Delta}$ and $(x,[n] \xrightarrow{\sigma}[k]))$ an element of B_{n}. Then $f^{*}\left(g^{*}((x,[n] \xrightarrow{\sigma}[k])\right.$ is defined by the series of (unique) epic-monic decomposition displayed in the diagram below,

$$
\begin{align*}
& {[p] \xrightarrow{f}[m] \xrightarrow{g}[n] \xrightarrow{\sigma}[k]} \tag{1.23}\\
& \text { \| } \\
& {[p] \xrightarrow{f}[m] \xrightarrow{\sigma^{\prime}}[l] \stackrel{\tau}{\longrightarrow}[k]} \\
& \| \\
& {[p] \xrightarrow{f^{\prime}}[t] \xrightarrow{\sigma^{\prime \prime}}[l] \longleftrightarrow \xrightarrow{\tau}[k]} \\
& \text { \| } \\
& \left.[p] \xrightarrow{f^{\prime}}[t]\right\} \quad \tau \sigma^{\prime \prime}[k] \\
& \text { \| } \\
& {[p] \xrightarrow{g f}[n] \longrightarrow \quad \sigma \quad[k]}
\end{align*}
$$

we have $f^{*}\left(g^{*}\left((x,[n] \xrightarrow{\sigma}[k])=\left(\left(\sigma^{\prime \prime}\right)^{*} \tau^{*}(x), f^{\prime}\right)\right.\right.$ and from the diagram we see that $\left(f^{\prime}, \tau \sigma^{\prime \prime}\right)$ is the epi-monic decomposition of $g f$ hence $(g f) *(x,[n] \xrightarrow{\sigma}$ $[k])=\left(\left(\sigma^{\prime \prime}\right)^{*} \tau^{*}(x), f^{\prime}\right)$.

This proves that $f^{*}\left(g^{*}(x,[n] \xrightarrow{\sigma}[k])\right)=(g f)^{*}(x,[n] \xrightarrow{\sigma}[k])$
Proposition 1.45. For a simplicial abelian group $A=\left\{A_{n}\right\}$, the natural map $\psi_{n}: B_{n}:=\oplus_{[n] \rightarrow[k]} N A_{k} \rightarrow A_{n}$, given on the generators of B_{n} by

$$
\psi_{n}:(x,[n] \stackrel{\sigma}{\rightarrow}[k]) \mapsto \sigma^{*}(x) \in A_{n}, s
$$

is an isomorphism for simplicial sets.
Proof. First we verify that ψ is a map of simplicial sets. Let $f:[m] \rightarrow$ $[n] \in \operatorname{Hom}_{\Delta}$,

$$
f^{*}\left(\psi_{n}(x,[n] \stackrel{\sigma}{\rightarrow}[k])\right)=f^{*}\left(\sigma^{*}(x)\right) .
$$

On the other hand

$$
\begin{equation*}
\psi_{m}\left(f^{*}((x,[n] \xrightarrow{\sigma}[k]))=\psi\left(\tau^{*}(x),[m] \xrightarrow{g}[l]\right)\right. \tag{1.24}
\end{equation*}
$$

where $\tau \circ g=f \sigma$ is the pic-monic decomposition of $f \circ \sigma$, and then

$$
\begin{align*}
& \psi_{m}\left(f^{*}((x,[n] \stackrel{\sigma}{\rightarrow}[k]))\right.=\psi_{m}\left(\tau^{*}(x),[m] \stackrel{g}{\rightarrow}[l]\right) \\
&=g^{*} \tau^{*}(x) A \text { being a simplicial set } \\
&= \tag{1.25}\\
&=(\tau \circ g)^{*}(x) \\
&=f^{*} \psi_{n}\left((x) \text { being a simplicial set } \stackrel{\sigma}{=} f^{*}\left(\sigma^{*}(x)\right)\right. \\
& \rightarrow {[k])) }
\end{align*}
$$

Now we prove by induction on n that ψ is an isomorphism. It is clear that $B_{0}=N A_{0}=A_{0}$ and the only surjection out of $[0]$ is the identity map.

Suppose that ψ_{j} is an isomorphism for $j<n$: The image of ψ_{n} include all the degenerat simplices $x=s_{i}(y)$ because $y \in A_{n-1}$ therefore $y=\psi_{n-1}(z)$ and $x=s_{i} \psi_{n-1}(z)=\psi_{n}\left(s_{i}(z)\right)$.

We also claim that the ψ induces an isormorphism between the normalised complex of B_{*} and $N A_{*}$. To this end we compute the $N B_{n}$,

$$
N B_{n}=\cap \operatorname{ker}_{i=0}^{n-1}\left(d_{i}\right)
$$

For $(x,[n] \stackrel{\sigma}{\rightarrow}[k])$, if $\sigma \neq i d$ we can write $\sigma=s^{j_{1}} \cdots s^{j_{n-k}}$ where $j_{1}<j_{2} \cdots<$ j_{n-k}. Then $d^{j_{n-k}}(x,[n] \xrightarrow{\sigma}[k])=\left(x, s^{j_{1}} s^{j_{2}} \ldots s^{j_{n-k-1}}\right)$. This is because $s^{j_{1}} \ldots s^{j_{n-k}} \circ d^{j_{n_{k}}}=s^{j_{1}} \cdots s^{j_{n-k-1}}$ therefore its epi-monic decomposition is $i d \circ s^{j_{1}} \cdots s^{j_{n-k-1}}$. This means if $(x, \sigma) \neq 0$ is in $N B_{n}$ then $\sigma=i d$ and in that case $0=d_{i}(x, i d)=d^{i^{*}}(x, i d)=\left(d^{i^{*}}(x), i d\right)=\left(d_{i} x, i d\right)$ because $i d_{n-1} \circ d^{i}$ is epi-monic decomposition of $d^{i} \circ i d_{n}$. Thus $x \in N A_{n}$ and $N B_{n}$ is isomorphic to $N A_{n}$.

Using the isomorphism in Theorem 1.43, that we have a natural exact sequence of $0 \rightarrow D A_{*} \rightarrow A_{*} \rightarrow N A_{*} \rightarrow 0$ which is split because $N A_{*}$ is a subcomplex of A_{*}. Since ψ_{n} is surjective on degenerate simplices $D A_{n}$
of A_{n} and an isomorphism (hence surjective) on normalised complexes, we conclude that ϕ_{n} is surjective.

As for the injectivity of ϕ_{n} : Suppose that $\phi_{n}\left(\left(\left(x_{\sigma^{\prime}},[n] \xrightarrow{\sigma^{\prime}}\left[k_{\sigma^{\prime}}\right]\right)_{\sigma^{\prime}}\right)\right)=0$. For a surjection $\sigma \neq i d, \sigma=s^{j_{1}} \cdots s^{j_{n-k}}$ and σ has a right inverse $d_{\sigma}:=$ $d^{j_{n-k}} \cdots d^{j_{1}}$. Using this fact $d_{\sigma}^{*}\left(x_{\sigma},[n] \xrightarrow{\sigma}\left[k_{\sigma}\right]\right)=\left(x_{\sigma}, i d\right)$. We fixe an index σ in $\left(x_{\sigma^{\prime}},[n] \xrightarrow{\sigma^{\prime}}\left[k_{\sigma^{\prime}}\right]\right)$,

$$
\phi_{n-1}\left(d_{\sigma}\left(\left(x_{\sigma^{\prime}},[n] \xrightarrow{\sigma^{\prime}}\left[k_{\sigma^{\prime}}\right]\right)\right)=d_{\sigma} \phi_{n}\left(\left(x_{\sigma^{\prime}},[n] \xrightarrow{\sigma^{\prime}}\left[k_{\sigma^{\prime}}\right]\right)\right)=0\right.
$$

therefore by injectivity of ϕ_{n-1} we conclude that

$$
d_{\sigma}\left(\left(x_{\sigma^{\prime}},[n] \xrightarrow{\sigma^{\prime}}\left[k_{\sigma^{\prime}}\right]\right)_{\sigma^{\prime}}\right)=0
$$

First notice that since left inverse d_{σ} is unique (i.e. σ) there is only one component of $d_{\sigma}\left(\left(x_{\sigma^{\prime}},[n] \xrightarrow{\sigma^{\prime}}\left[k_{\sigma^{\prime}}\right]\right)_{\sigma}^{\prime}\right)$ which corresponds to the identity map and that is precisely x_{σ}, hence $x_{\sigma}=0$. Since σ was arbitary, we have $\left(\left(x_{\sigma^{\prime}},[n] \xrightarrow{\sigma^{\prime}}\left[k_{\sigma^{\prime}}\right]\right)=0\right.$ and ϕ_{n} is injective.

THEOREM 1.46. Dold-Kan correspondence The nomalisation functor $N: \mathrm{sAb} \rightarrow \mathrm{Ch}_{+}$, from the simplicial abelian groups to the category of positively graded complexes, is an isomorphism of complexes. The inverse $\Gamma: \mathrm{Ch}_{+} \rightarrow \mathrm{sAb}$ to N is given by

$$
\Gamma(C)_{n}=:=\bigoplus_{[n] \rightarrow[k]} C_{k}
$$

Proof. The content of Proposition 1.45 is essentially that there is a natural isomorphism $\Gamma \circ N \simeq i d$.

It remains to prove that there is natural of isomorphism of complexes $N \circ \Gamma \simeq i d$. To that end, we prove that $\Gamma(C) / D(\Gamma(C)) \simeq C$ as complexes and since there is natural isomorphism $N(\Gamma(C))$ we get the isomorphism that we want.

Suppose that $(x,[n] \xrightarrow{\sigma}[k]) \in \Gamma(C)_{n}=\oplus_{[n] \rightarrow[k]} C_{k}$. Since σ is surjective, we can write $\sigma=s^{j_{1}} s^{j_{2}} \cdots s^{j_{k}}, k \geq 1$. Then we get $\left(s^{j_{k}}\right)^{*}\left(x, s^{j_{1}} s^{j_{2}} \cdots s^{j_{k-1}}\right)=$ (x, σ). This means that in $\Gamma(C)$ all the components are degenerate except the one which corresponds to the identity morphism $\sigma=i d$ therefore $\Gamma(C) / D(\Gamma(C)) \simeq C$.

THEOREM 1.47. For a simplicial abelian group $A=\left\{A_{n}\right\}_{n}$, the normalised complex $N A_{*}$ is homotopy equivalent to the Moore complex A_{*}.

Proof. We introduce a nested sequence $N_{j} A_{*}$ of subcomplexes of A_{*} which stabilises degree-wise to $N A_{*}$ in a finite length. Moreover we prove that each inclusion is a homotopy equivalence. We set $N_{-1} A_{*}=A_{*}$ and for $0 \leq j \leq n-1$

$$
N_{j} A_{n}:=\left\{\begin{array}{l}
\cap_{k=0}^{j} \operatorname{ker}\left(d_{k}\right) \text { if } n \geq j+2 \\
N A_{n} \text { otherwise }
\end{array}\right.
$$

Notice that. $N_{n-1} A_{n}=N A_{n}$ and each $N_{j} A_{*}$ is subcomplex of A_{*} because

- if $n<j+2$, then for $x \in N A_{n}=N_{j} A_{n}$ then $d x \in N A_{n-1}=$ $N_{j} A_{n-1}$, since $N A_{*}$ is a subcomplex.
- if $n \geq j+2$ then for $x \in N_{j} A_{n}$ and $k \leq j$

$$
d_{k} d x=d_{k}\left(\sum_{i=j+1}^{n}(-1)^{i} d_{i} x\right)=\sum_{i=j+1}^{n}(-1)^{i} d_{i-1} d_{k} x=0
$$

It turns out that the inclusion $i_{j}: N_{j+1} A_{*} \subset N_{j} A_{*}$ has a homotopy inverse,

$$
r_{j}(x)=\left\{\begin{array}{l}
x-s_{j+1} d_{j+1}(x) \text { if } n \geq j+2 \\
x \text { otherwise }
\end{array}\right.
$$

First of all note that for $x \in N_{j} A_{n}$

- $d_{j+1}\left(x-s_{j+1} d_{j+1}(x)\right)=d_{j+1}(x)-d_{j+1} s_{j+1} d_{j+1}(x)=d_{j+1} x-$ $d_{j+1} x=0$,
- for $k<j+1, d_{k}\left(x-s_{j+1} d_{j+1}(x)\right)=d_{k}(x)-d_{k} s_{j+1} d_{j+1}(x)=$ $0-s_{j} d_{k} d_{j+1}(x)=-s_{j} d_{j} d_{k}(x)=0$,
implying that $\operatorname{Im}\left(r_{j}\right) \subset N_{j+1} A_{*}$. The second step is to verify that r_{j} is a chain map: For $x \in N_{j} A_{n}, n \geq j+2$,

$$
\begin{align*}
d r_{j}(x) & =\sum_{i=j+2}^{n}(-1)^{k} d_{k}\left(x-s_{j+1} d_{j+1} x\right)=\sum_{i=j+2}^{n}(-1)^{k} d_{k}(x)-(-1)^{j+2} d_{j+2} s_{j+1} d_{j+1} x \tag{1.26}\\
& -\sum_{i=j+3}^{n}(-1)^{k} d_{k} s_{j+1} d_{j+1} x=\sum_{i=j+2}^{n}(-1)^{k} d_{k}(x)-(-1)^{j+2} d_{j+1} x-\sum_{i=j+3}^{n}(-1)^{k} d_{k} s_{j+1} d_{j+1} x \\
& \sum_{i=j+1}^{n}(-1)^{k} d_{k}(x)-\sum_{i=j+3}^{n}(-1)^{k} d_{k} s_{j+1} d_{j+1} x
\end{align*}
$$

and

$$
\begin{align*}
r_{j}(d x) & =d x-s_{j+1} d_{j+1} d x=\sum_{i=j+1}^{n}(-1)^{k} d_{k} x-\sum_{i=j+1}^{n}(-1)^{k} s_{j+1} d_{j+1} d_{k} x \tag{1.27}\\
& =\sum_{i=j+1}^{n}(-1)^{k} d_{k} x-(-1)^{j+1} s_{j+1} d_{j+1} d_{j+1} x-(-1)^{j+2} s_{j+1} d_{j+1} d_{j+2} x-\sum_{i=j+3}^{n}(-1)^{k} s_{j+1} d_{j+1} d_{k} x \\
& =\sum_{i=j+1}^{n}(-1)^{k} d_{k} x-(-1)^{j+1} s_{j+1} d_{j+1} d_{j+1} x-(-1)^{j+2} s_{j+1} d_{j+1} d_{j+1} x-\sum_{i=j+3}^{n}(-1)^{k} s_{j+1} d_{j+1} d_{k} x \\
& =\sum_{i=j+1}^{n}(-1)^{k} d_{k} x-(-1)^{j+1} s_{j+1} d_{j+1} d_{j+1} x-\sum_{i=j+3}^{n}(-1)^{k} s_{j+1} d_{j+1} d_{k} x=d r_{j}(x)
\end{align*}
$$

It is clear that $r_{j} \circ i_{j}=i d$. We claim that that $i_{j} \circ r_{j}$ is homotop to the identity map via the homotopy $h_{j}: N_{j} A_{n} \rightarrow N_{j} A_{n+1}$

$$
h_{j}(x)=\left\{\begin{array}{l}
(-1)^{j} s_{j+1}(x) \text { if } n \geq j+1 \tag{1.28}\\
0 \text { otherwise }
\end{array}\right.
$$

To see that,

$$
\begin{align*}
\partial h_{j}(x)+h_{j} \partial(x) & =\sum_{k=j+1}^{n+1}(-1)^{j+k} d_{k} s_{j+1}(x)+\sum_{k=j+1}^{n}(-1)^{j+k} s_{j+1} d_{k}(x) \tag{1.29}\\
& =(-1)^{j+j+1} d_{j+1} s_{j+1}(x)+(-1)^{j+j+2} d_{j+2} s_{j+1}(x)+\sum_{k=j+3}^{n+1}(-1)^{j+k} d_{k} s_{j+1}(x) \\
& +(-1)^{j+j+1} s_{j+1} d_{j+1}(x)+\sum_{k=j+2}^{n}(-1)^{j+k} s_{j+1} d_{k}(x) \\
& =-x+x-s_{j+1} d_{j+1}(x)+\sum_{k=j+3}^{n+1}(-1)^{j+k} d_{k} s_{j+1}(x)+\sum_{k=j+2}^{n}(-1)^{j+k} s_{j+1} d_{k}(x) \\
& =-s_{j+1} d_{j+1}(x)+\sum_{k=j+3}^{n+1}(-1)^{j+k} d_{k} s_{j+1}(x)+\sum_{k=j+2}^{n}(-1)^{j+k} d_{k+1} s_{j+1}(x) \\
& =-s_{j+1} d_{j+1}(x) \\
& =i_{j} \circ r_{j}(x)-x
\end{align*}
$$

The homotopy inverse $f: A_{*} \rightarrow N A_{*}$ to the inclusion $i: N A_{*} \rightarrow A_{*}$ is given degree-wise by $A_{n} \rightarrow N A_{n}$

$$
f_{n}:=r_{n-2} \circ \cdots \circ r_{0} \circ r_{-1}
$$

and the chain homotopy is given by
$h_{-1}+i_{-1} h_{0} r_{-1}+\cdots+i_{-1} \cdots r_{k-1} h_{k} i_{k-1} \cdots r_{-1}+\cdots+i_{-1} \cdots r_{n-3} h_{n-2} i_{n-3} \cdots r_{-1}$

1.10. Internal hom and simplicial fonction space

The morphism set of two objects in a category does not necessary the category. However this turns out to be turn be for category of presheaves on a category. Here we explain this phenomena for the simplicial set (i.e. presheaves on $\Delta^{o p}$) but everything extends to any category of presheaves.

Definition 1.48. For two simplcial sets X and Y, the internal hom-set $\operatorname{hom}(X, Y) \in \mathrm{sSet}$ is a simplicial set whose set n-simplices is

$$
\operatorname{hom}(X, Y)_{n}:=\operatorname{Hom}_{\mathrm{sSet}}\left(X \times \Delta_{n}, Y\right)
$$

The simplicial structure of $\operatorname{hom}(X, Y)$ is consequence of the cosimplicial structure of the collection $\left\{\Delta_{n}\right\}_{n}$ (see Proposition $\dagger 1.20$): For $f:[m] \rightarrow[n]$, and $\theta \in \operatorname{hom}(X, Y)_{n}$

$$
f^{*}(\theta) \in \operatorname{hom}(X, Y)_{m}
$$

is given by

$$
(x, h) \in X_{k} \times \Delta_{m}[k] \mapsto \theta(x, f \circ h) \in Y_{k}
$$

i.e.

$$
f^{*}(\theta):=\theta\left(i d \times f_{*}\right) .
$$

The functoriality is clear because
$g^{*} f^{*}(\theta)=g^{*}\left(f^{*}(\theta)\right)=g^{*}\left(\theta\left(i d, f_{*}\right)\right)=\theta\left(i d, f_{*}\right)\left(i d, g_{*}\right)=\theta\left(i d,(f g)_{*}\right)=(f g)^{*}(\theta)$
With every morphism set, comes an evaluation.
Proposition 1.49. The evaluation map
$e v_{*}: X \times \operatorname{hom}(X, Y) \rightarrow Y$ given by

$$
e v_{n}(x, g):=g\left(x, i d_{n}\right) \quad x \in X_{n}, \quad g \in \operatorname{hom}(X, Y)_{n}
$$

is a simplicial map.
Proof. For a map $f:[m] \rightarrow[n]$ and $(x, \theta) \in X_{n} \times \operatorname{Hom}_{\text {sSet }}\left(X \times \Delta_{n}, Y\right)$

$$
\begin{align*}
& e v_{m}\left(f^{*}(x, \theta)\right)=e v_{m}\left(f^{*}(x), f^{*}(\theta)\right)=f^{*}(\theta)\left(f^{*}(x), i d_{m}\right) \\
&=\theta\left(i d, f_{*}\right)\left(f^{*}(x), i d_{m}\right)=\theta\left(f^{*}(x), f_{*}(i d)\right)= \tag{1.31}\\
&=\theta\left(f^{*}(x), f\right) \\
& f^{*}\left(e v_{n}(x, \theta)\right)=f^{*}\left(\theta\left(x, i d_{n}\right)\right) \\
&=\theta\left(f^{*}(x), f^{*}\left(i d_{n}\right)\right)=\theta\left(f^{*}(x), f\right)
\end{align*}
$$

Proposition 1.50. In the category of simplicial sets, the cartesian product is the left adjoint of the internal hom functor i.e. we have a natural bijection

$$
\operatorname{Hom}_{\text {sSet }}(K, \operatorname{hom}(X, Y)) \simeq \operatorname{Hom}_{\text {sSet }}(K \times X, Y)
$$

Proof. We define

$$
\begin{gathered}
\phi: \operatorname{Hom}_{\mathrm{sSet}}(K, \operatorname{hom}(X, Y)) \rightarrow \operatorname{Hom}_{\mathrm{sSet}}(K \times X, Y) \\
\phi(\theta)(k, x):=e v(x, \theta(k))=e v(1 \times \theta)(x, k) .
\end{gathered}
$$

which is a simplicial map because eve and θ are. The inverse

$$
\psi: \operatorname{Hom}_{\text {sSet }}(K \times X, Y) \rightarrow \operatorname{Hom}_{\text {sSet }}(K, \operatorname{hom}(X, Y))
$$

is given by

$$
\psi(h)(k)(x, g)=h\left(g^{*}(k), x\right)
$$

where $h \in \operatorname{Hom}_{\mathrm{sSet}}(K \times X, Y), k \in K_{k}$ and $(x, g) \in X_{n} \times \Delta_{k}[n] \in Y$. We have

$$
\begin{gathered}
\psi(\phi(\theta))(k)(x, g)=\phi(\theta)\left(g^{*}(k), x\right)=\theta\left(g^{*}(k)\right)(x, i d)=g^{*}(\theta)(x, i d) \\
=\theta\left(i d \times g_{*}\right)(x, i d)=\theta(x, g)
\end{gathered}
$$

hence $\psi \circ \phi=i d$. Similarly,

$$
\phi(\psi(h))(k, x)=\psi(h)(k)(x, i d)=h\left(i d^{*}(k), x\right)=h(k, x)
$$

and $\phi \circ \psi=i d$.

1.11. All about the nerve of a category: Part I

There is a general construction which allows to give a combinatorial model for the classifying space of the groups.

Suppose that \mathcal{C} is a small category. We define a simplicial set $N \mathcal{C}$ by setting $N \mathcal{C}_{0}=\operatorname{obj}(\mathcal{C})$ and $N \mathcal{C}_{n}$ to nbe the set of n composable morphism i.e
$N \mathcal{C}_{n}:=\left\{\left(X_{0} \xrightarrow{f_{0}} X_{1} \cdots X_{n-1} \xrightarrow{f_{n-1}} X_{n}\right) \mid \quad f_{i} \in \operatorname{Hom}_{N \mathcal{C}}\left(X_{i}, X_{i+1}\right), \quad X_{i} \in \operatorname{obj}(\mathcal{C})\right\}$. The face et degeneracy maps are given as follows: For $n>1$,

$$
\begin{align*}
d_{0}\left(f_{0}, \cdots f_{n-1}\right) & =\left(f_{1}, \cdots f_{n-1}\right) \\
d_{n}\left(f_{0}, \cdots f_{n-1}\right) & =\left(f_{0}, \cdots f_{n-2}\right) \tag{1.32}\\
d_{i}\left(f_{0}, \cdots f_{n-1}\right) & =\left(\left(f_{0}, \cdots f_{i+1} \circ f_{i}, \cdots, f_{n-1}\right), \quad 0<i<n\right. \\
s_{i}\left(f_{0}, \cdots f_{n-1}\right) & =\left(\left(f_{0}, \cdots i d_{X_{i}}, \cdots f_{n-1}\right)\right.
\end{align*}
$$

For $n=1, d_{0}\left(f_{0}\right)=t\left(f_{0}\right)$ and $d_{1}\left(f_{0}\right)=s\left(f_{0}\right)$ where t and s stand for the target (image) and source (domain) of f.

The nerve construction is functorial because a functor preserves the composition and the identity maps.

Proposition 1.51. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ between small categories, induces a map of simplicial set $N f: N \mathcal{C} \rightarrow N \mathcal{D}$ in a natural manner.

Proof. The induced maps on the vertices is given by $x \mapsto F(x)$ and on n-simplices is given by $\left(f_{0}, \cdots f_{n-1}\right) \mapsto\left(F\left(f_{0}\right), \cdots F\left(f_{n-1}\right)\right)$.

Example 1.52. Classifying space of a group

A groups G can be thought of as a category \mathcal{G} with one object $*$ and the morphism $\operatorname{Hom}_{c G}(*, *)=G^{o p}$. Here op means that the compostion rule for the morphism is $(g, h) \mapsto h g$ Then nerf $N \mathcal{G}$ is a simplicial in which

$$
\begin{align*}
d_{0}\left(g_{0}, \cdots g_{n-1}\right) & =\left(g_{1}, \cdots g_{n-1}\right) \\
d_{n}\left(g_{0}, \cdots g_{n-1}\right) & =\left(g_{0}, \cdots g_{n-2}\right) \\
d_{i}\left(g_{0}, \cdots g_{n-1}\right) & =\left(\left(g_{0}, \cdots g_{i} g_{i+1}, \cdots, g_{n-1}\right), \quad 0<i<n\right. \tag{1.33}\\
s_{i}\left(f_{0}, \cdots f_{n-1}\right) & =\left(f_{0}, \cdots i d_{G}, \cdots f_{n-1}\right)
\end{align*}
$$

Note that this construction is natural with respect group homomorphism.

Example 1.53. Let \mathcal{I} be the category with two ordered objects 0 and 1 where the nonempty morphism sets are singleton: $\operatorname{Hom}(0,0)=\left\{i d_{0}\right\}$, $\operatorname{Hom}(1,1)=\left\{i d_{1}\right\}$ and $\operatorname{Hom}(0,1)=\{w\}$. We can easily check that the nerve of this category is the simplicial Δ_{1}.

Example 1.54. The simplicila set Δ_{n} can be identifies as the nerve of the category $[n]$. This is the category associated to the ordered set $\{0,1 \cdots n\}$ where t

$$
\operatorname{Hom}_{[n]}(p, q)=\left\{\begin{array}{l}
i_{p q} \quad \text { if } p \leq q \tag{1.34}\\
\emptyset \text { otherwise }
\end{array}\right.
$$

On should think of $i_{p q}$ as the inclusion of $\{0,1 \cdots p\}$ in $\{0,1 \cdots q\}$. It is esily seen that $\Delta_{n}=N[n]$.

Since the simplicial map $d^{i}:[n] \rightarrow[n+1]$ and $s^{i}:[n+1] \rightarrow[n]$ are order preseverving they can be seen as functors between $[n+1]$ and $[n]$ therefore $N\left(d^{i}\right)$ and $N\left(s^{i}\right)$ are maps simplicial sets which ultimatemately turns the collection $\left\{\Delta_{n}\right\}$ into a cosimplicial objet in the category of simplicial sets sSet.

Note that $N\left(d^{i}\right): \Delta_{n} \rightarrow \Delta_{n+1}$ and $N\left(s^{i}\right): \Delta_{n+1} \rightarrow \Delta_{n}$ are respectively the post-composition with d^{i} and s^{i} i.e for $f \in \operatorname{Hom}_{\Delta}([k],[n])$ and $g \in$ $\operatorname{Hom}_{\Delta}([k],[n+1])$

$$
N\left(d^{i}\right)(f)=d^{i} \circ f \text { and } N\left(s^{i}\right)(g)=s^{i} \circ g .
$$

Proposition 1.55. A natural transformation $F \xrightarrow{T} G$ between two functors induces a simplicial homotopy $N \mathcal{C} \times \Delta_{1} \rightarrow N \mathcal{D}$ between F and G.

Proof. Let \mathcal{I} be the category with two objects in Example 1.53. We claim that that the natural T induces a functor $G: \mathcal{C} \times \mathcal{I} \rightarrow \mathcal{D}$:

$$
\begin{align*}
H(x, 0) & =G(x) \quad x \in \operatorname{obj}(\mathcal{C}) \\
H(x, 1) & =F(x) \quad x \in \operatorname{obj}(\mathcal{C}) \\
H\left(f, I d_{0}\right) & =G(f) \quad f \in \operatorname{Hom}_{\mathcal{C}} \tag{1.35}\\
H\left(f, I d_{0}\right) & =G(f) \quad f \in \forall \operatorname{Hom}_{\mathcal{C}} \\
H(f, w) & =T_{y} \circ F(f)=G(f) \circ T_{x} \quad \forall f \in \operatorname{Hom}_{\mathcal{C}}(x, y)
\end{align*}
$$

H being a functor is essentially consequence of the commutativity of the diagrams of the form

Now by applying the nerv efunctor N to H, we obtain a simplicial map $N H: N(\mathcal{C}) \times \Delta_{1}=N(\mathcal{C}) \times N(\mathcal{I})=N(\mathcal{C} \times \mathcal{I}) \rightarrow N \mathcal{D}$

Corollary 1.56. The nerf of a category with final objet (initial) object is a contractible simplicial set.

Proof. Having an initial objects gives rise to a natural transformation between the identity functor and constant functor.

Definition 1.57. For two categories \mathcal{C} and \mathcal{D}, let $\operatorname{Func}(C, D)$ be the category whose objets are functors $F: C \rightarrow D$ and its morphisms are the natural transformations between functors.

Proposition 1.58. The nerve functor N : Small - categories \rightarrow sSet
Proof. We shall prove that $N: \operatorname{Func}(\mathcal{C}, \mathcal{D}) \rightarrow \operatorname{Hom}_{\text {sSet }}(N \mathcal{C}, N \mathcal{D})$ is a bijection. We construct an invese N^{-1} for N. Let $\phi: N \mathcal{C} \rightarrow N \mathcal{D}$ be a map of simplicials sets. Since the 0 -simplicies of $N \mathcal{C}$ and $N \mathcal{D}$ are the objects of $c C$ and \mathcal{D}, we obtain a map $N^{-1}(\phi)=\phi_{0}: \operatorname{obj}(\mathcal{C})=N \mathcal{C}_{0} \rightarrow \operatorname{obj}(\mathcal{D})=N \mathcal{D}_{0}$. Note the $f: X \rightarrow Y$ be a morphism in \mathcal{C}. Since $N \mathcal{C}_{1}$ is the set of morphism, then we ϕ_{1} is indeed a maps from morphisms of \mathcal{C} to the morphisms of \mathcal{D} and we define $N^{-1}(\phi)(f):=\phi_{1}(f)$. Now we have to show that ϕ_{0} and ϕ_{1} constitute a functor. First notice that for a morphism $f: X \rightarrow Y$, the morphism $\phi(f)$ is a morphism from $\phi_{0}(X) \rightarrow \phi_{0}(Y)$. This is consequence of of ϕ being a simplicial map

$$
\operatorname{source}\left(\phi_{1}(f)\right)=d_{0} \phi_{1}(f)=\phi_{0}\left(d_{0} f\right)=\phi_{0}(X)
$$

and similarly for the target. We have also $\phi_{1}\left(i d_{A}\right)=i d_{\phi_{0}(A)}$, for $A \in \operatorname{obj}(\mathcal{C})$ because ϕ commutes with the degeneracy maps. Finally we should prove that for two composable morphisms $X \xrightarrow{f_{0}} Y \xrightarrow{f_{7}} Z, \phi_{1}(g \circ f)=\phi_{1}(g) \circ$ $\phi_{1}(f)$.This follows from that the fact $\sigma:=\left(f_{0}, f_{1}\right)$ is defines a 2 -simplex in $N \mathcal{C}$ and since ϕ is a map of simplicial sets. We have

$$
d_{0} \phi_{2}(\sigma)=\phi_{1}\left(d_{1} \sigma\right)=\phi_{1}(f)
$$

and

$$
d_{2} \phi_{2}(\sigma)=\phi_{1}\left(d_{2} \sigma\right)=\phi_{1}(g),
$$

therefore $\phi_{2}(\sigma)=\left(\phi_{1} f\right), \phi_{1}(g)$. Again, ϕ being a simplicial map, we

$$
\begin{equation*}
\phi_{1}(g \circ f)=\phi_{1}\left(d_{1} \sigma\right)=d_{1} \phi_{2}(\sigma)=\phi_{1}(g) \circ \phi_{1}(f) . \tag{1.37}
\end{equation*}
$$

hence $\left(\phi_{0}, \phi_{1}\right)$ form a functor. The identity $N^{-1} N=i d$ is obvious. TO prove that $N \circ N^{-1}=i d$, take a simplicial map $\phi: N \mathcal{C} \rightarrow N \mathcal{D}$. By definition of $N^{-1}, N \circ N^{-1}(\phi)$ on 0 and 1-simplicies is identical to ϕ and this suffices because a simpliciam map betwen nerves is determined by it effect on 0 and 1 -simplices, therefore

$$
N \circ N^{-1}(\phi)=\phi .
$$

Proposition 1.59. Let \mathcal{C} and \mathcal{D} be two small categories. Then we have an isomorphism of simplicial set

$$
\begin{equation*}
N \operatorname{Func}(\mathcal{C}, \mathcal{D}) \simeq \operatorname{hom}(N C, N D) \tag{1.38}
\end{equation*}
$$

Here $\operatorname{hom}(N C, N D) \in$ sSet is the simpclicial function space introduced in Section 1.10

Proof.

$$
\begin{align*}
\operatorname{hom}(N \mathcal{C}, \mathcal{D})_{n} & =\operatorname{Hom}_{\text {sSet }}\left(N \mathcal{C}, \times \Delta_{n}, N \mathcal{D}\right) \stackrel{\text { by Example } 1.54}{\simeq} \operatorname{Hom}_{\text {sSet }}(N \mathcal{C} \times N[n], N \mathcal{D}) \tag{1.39}\\
& \simeq \operatorname{Hom}_{\text {sSet }}(N(\mathcal{C} \times[n]), N \mathcal{D}) \\
& { }^{\text {by Prop }}{ }^{1.58} \operatorname{Func}(\mathcal{C} \times[n], \mathcal{D}) \simeq \operatorname{Func}([n], \operatorname{Func}(\mathcal{C}, \mathcal{D}))=N(\operatorname{Func}(\mathcal{C}, \mathcal{D}))_{n}
\end{align*}
$$

The fact that these isomorphisms are compatible avec les simplicial map is easily verifiable and is actually discussed in Example 1.54.

One can naturally ask if the nerve function is part of an adjunction. It turns out that the functor N has a left adjoint $T:$ sSet \rightarrow small - Cat called the fundamental category functor and for simplicial set X, subsequently $T(X)$ is called the fundamental category of the simplicial set X..

Definition 1.60. Let $X=\left\{X_{n}\right\}_{n}$ be a simplicial set. Let fundamental category $T(X)$ of X be the category whose set of objects is X_{0} with morphism sets

$$
\operatorname{Hom}_{T(X)}(x, y)=\left\{f \in X_{1} \mid \quad d_{1} f=x \quad \& \quad d_{0} f=y\right\} / \sim
$$

where \sim is defined by the identities $d_{1} \sigma=d_{0} \sigma \circ d_{2} \sigma$ for all $\sigma \in X_{2}$.
It is not hard to see that for $x \in X_{0}$, we have $s_{0}(x)=i d_{x} \in T(X)$. Indeed if $f \in \operatorname{Hom}_{T(X)}(x, x)$ for $\sigma=s_{0}(f)$ we have

$$
d_{0} \sigma=d_{1} \sigma=f \text { and } d_{2} \sigma=d_{2} s_{0} f=s_{0} d_{1} f=s_{0}(x)
$$

and the 2-simplex σ imposes the relation $f \circ s_{0}(x)=f$. Similarly for 2simplex $\tau=s_{1}(f)$ we obtain that $s_{0}(x) \circ f=f$, therefore $s_{0}(x)$ is the identity morphism.

Proposition 1.61. The functor $T:$ sSet \rightarrow Small - Catergoies is leftadjoint for the nerve functor N.

Proof. To prove that statment we should a natural bijection Func $(T X, \mathcal{C}) \simeq$ $\operatorname{Hom}_{\text {sset }}(X, N \mathcal{C})$.

Let $\phi: X \rightarrow N \mathcal{C}$ be simplicial maps. This includes the maps ϕ_{0} : $X_{0} \rightarrow \operatorname{Obj}(\mathcal{C})$ and $\phi_{1}: X_{1} \rightarrow \operatorname{Hom}_{\mathcal{C}}$ which can be though of as map $\phi_{0}:$ $\operatorname{Obj}(T(X)) \rightarrow \operatorname{obj}(\mathcal{C})$ and $\phi_{1}: \operatorname{Hom}_{T(X)} \rightarrow \operatorname{Hom}_{\mathcal{C}}$ and $T(X)$ to \mathcal{C}. Note that. ϕ_{1} is a first defined on the generators of $\operatorname{Hom}_{T(X)}$ and then it is extend by compositing law, now we need to prove this is well-defined with respect to the equaivalance relation \sim and it sends the identity morphism to the identity.

Note that the maps ϕ_{0} and ϕ_{1} come with the following commutative diagrams:

The upper right diagram implies that for $x \in X_{0}=\operatorname{Obj}(T(X))$, we have $\phi_{1}\left(i d_{x}\right)=\phi_{1}\left(s_{0}(x)\right)=s_{0}\left(\phi_{0}(x)\right)=i d_{\phi_{0}(x)}$ therefore ϕ_{1} sends the identity morphism to the identity, as it should (as a functor). The two other diagrams above show that for a 1 -simplex σ, the morphism $\phi_{1}(\sigma)$ is a morphism from $\phi_{0}\left(d_{1} \sigma\right)$ to $\phi_{0}\left(d_{0} \sigma\right)$ as it should be. The only remaining part is to prove that under that the composition law under \sim is sent to the composition of the morphisms. Let σ be a 2 -simplex. Then $\phi_{2}(\sigma)$ is 2 -simplex of the form (f, g) where f and g are composable morphisms in Hom ${ }_{\mathcal{C}}$. Becaucse $\phi_{2} \circ d_{i}=d_{i} \circ \phi_{2}$ we conclude that

$$
\begin{equation*}
g=d_{0} \phi_{2}(\sigma)=\phi_{1}\left(d_{0} \sigma\right) \quad f=d_{2} \phi_{2}(\sigma)=\phi_{1}\left(d_{2} \sigma\right) \tag{1.41}
\end{equation*}
$$

therefore $d_{0} \phi_{2}(\sigma) \circ d_{2} \phi_{2}(\sigma)=g \circ f=d_{1}\left(\phi_{2}(\sigma)\right)=\phi_{1}\left(d_{1} \sigma\right)$. So we have constructed a map $\Psi: \operatorname{Hom}_{\text {sSet }}(X, N \mathcal{C}) \rightarrow \operatorname{Func}(T(X), \mathcal{C})$ which essentially looks like $\left\{\phi_{i}\right\}_{i \geq 0} \rightarrow\left(\phi_{0}, \phi_{1}\right)$. It is not hard that to see that Ψ is injective. This follows from that fact that an simplex in $N \mathcal{C}$ is completely determined by it 0 and 1 dimensional faces. In other words if for two simplicial maps $\phi=\left\{\phi_{i}\right\}_{i \geq 0}$ and $\psi=\left\{\psi_{i}\right\}_{i \geq 0}$, we have $\phi_{0}=\psi_{0}$ and $\phi_{1}=\psi_{1}$ then $\phi=\psi$.

As for surjectivity of Ψ, let $F: T(X) \rightarrow \mathcal{C}$ be a functor. The first two component $\phi_{0}: X_{0} \rightarrow N \mathcal{C}_{0}$ and $\phi_{1}: X_{1} \rightarrow \mathcal{C}_{1}$ of the simplicial map $\left\{\phi_{i}\right\}_{i \geq 0}$ are the maps given by F on sets of object and morphisms. The higher components $\phi_{n}: X_{n} \rightarrow N \mathcal{C}_{n}$ is given by

$$
\begin{equation*}
\phi_{n}(\sigma):=\left(F\left(d_{2} d_{3} \cdots d_{n} \sigma\right), \cdots, F\left(d_{2} d_{3} d_{0}^{n-3} \sigma\right), F\left(d_{2} d_{0}^{n-2} \sigma\right), F\left(d_{0}^{n-1} \sigma\right)\right) \tag{1.42}
\end{equation*}
$$

This formule can be easily proved by induction. The naturality of the bijection Ψ is easily seen.

1.12. Kan complexes

As mentioned earlier, we are guided by the singular chains as the main examples of simplicial set offered by topology. So we intend to characterize simplicial set coming from topological spaces. To that end we introduce the notion of Kan complexes.

Definition 1.62. Let K be a simplicial set. A sequence of $n(n-1)$ simplicies $x_{0}, x_{1}, \cdots x_{k-1},-, x_{k+1}, \cdots x_{n}$ is said to be compatible if for all $i<j, i \neq k, i \neq k$

$$
d_{i} x_{j}=d_{j-1} x_{i}
$$

We say that K is a Kan complex if every compatible sequence has an extension i.e. there is an n-simplex x such that for all $i \neq k$

$$
d_{i} x=x_{i}
$$

Proposition 1.63. For all topological space X then singular chain $\operatorname{Sing}(X)=$ $\left\{\operatorname{Sing}_{n}(X)\right\}_{n}$ is a Kan complex.

Proof. We have to prove the extension for a compatible sequence made of generators i.e. continuous maps from the geometric simplex Δ^{n-1} to X. Given a compatible sequence of continuous maps $x_{i}: \Delta_{n-1} \rightarrow X$ with the property

$$
\begin{equation*}
d_{i} x_{j}=d_{j-1} x_{i} \tag{1.43}
\end{equation*}
$$

which means

$$
\begin{equation*}
x_{j}\left(s_{0}, s_{1} \cdots s_{i-1}, 0, s_{i}, \cdots s_{n-2}\right)=x_{i}\left(s_{0}, s_{1} \cdots s_{j-2}, 0, s_{j-1}, \cdots s_{n-2}\right) \tag{1.44}
\end{equation*}
$$

We define $f: \cup_{i \neq k} \partial_{i} \Delta^{n} \rightarrow X$

$$
\partial_{i} \Delta^{n}=t_{i}^{-1}(\{0\}) \cap \Delta^{n} \subset \Delta^{n}
$$

as follows: $f\left(t_{0}, \cdots t_{i-1}, 0, t_{i+1}, \cdots t_{n}\right)=x_{i}\left(t_{0}, \cdots t_{i-1}, t_{i+1}, \cdots t_{n}\right)$. We have to check that f is well-defined on $\partial_{i} \Delta^{n} \cap \partial_{j} \Delta^{n}$. For $i<j-1$ this is equivalent to the identity
$x_{i}\left(t_{0}, \cdots t_{i-1}, t_{i+1}, \cdots t_{j-1}, 0, t_{j+1} \cdots t_{n}\right)=x_{j}\left(t_{0}, \cdots t_{i-1}, 0, t_{i+1}, \cdots t_{j-1}, t_{j+1}, \cdots t_{n}\right)$
which follows from the (1.44) for

$$
\begin{array}{r}
s_{0}=t_{0}, \cdots, s_{i-1}=t_{i-1} \\
s_{i}=t_{i+1}, \cdots, s_{j-2}=t_{j-1} \tag{1.45}\\
s_{j-1}=t_{j+1}, \cdots, s_{n-2}=t_{n}
\end{array}
$$

For $i=j-1$ the f being well-defines amounts to the identity

$$
x_{i}\left(t_{0}, \cdots t_{i-1}, 0, t_{i+2} \cdots t_{n}\right)=x_{i+1}\left(t_{0}, \cdots t_{i-1}, 0, t_{i+2}, \cdots t_{n}\right)
$$

which follows from (1.44) for $s_{k}=t_{k}$
There is another description of the extension property for for compatible sequences in terms of simplicial maps. For a fix n and $0 \leq i \leq n$, as we mentioned earlier the i-th face $\partial_{i} \Delta_{n}$ of Δ_{n} is the subcomplex generated by $d_{i} \in \operatorname{Hom}_{\boldsymbol{\Delta}}([n-1],[n])$. If we have a sequence of $(n-1)$-simplices $x_{0}, \cdots x_{k-1}, x_{k+1}, \cdots x_{n}$, then just like Yoneda Lemma we a have a sequence of simplicial maps $\bar{x}_{i}: \partial_{i} \Delta_{n} \rightarrow X$ given by sending a k-simplex $d^{i} \circ f \in$ $\partial_{i} \Delta^{n}[k]$ to

$$
\bar{x}_{i}\left(d^{i} f\right)=f^{*}\left(x_{i}\right) \in X_{k},
$$

here $f:[k] \rightarrow[n-1]$. One cas natural ask if the collection $\overline{x_{i}}$ gives rise to a well-defined a simplicial map from the i-th horn

$$
\Lambda_{n}^{k}:=\cup_{i \neq k} \partial_{i} \Delta_{n}
$$

Proposition 1.64. $x_{0}, \cdots x_{k-1}, x_{k+1}, \cdots x_{n}$, of $(n-1)$-simplices in X are compatible if and only the collection of maps $\bar{x}_{i}: \partial_{i} \Delta_{n} \rightarrow X$ extends to a simplicial maps $\bar{x}: \cup_{i \neq k} \partial_{i} \Delta_{n}$. When the sequence is compatible, the existence of a n-simlex $x \in X_{n}$ with $\partial_{i} x=x_{i}$ is equivalente to the existence of an extension of \bar{x} from Λ_{n}^{k} to the entier Δ_{n}.

Proof. Suppose that x_{i} 's are compatible. We just have to prove that on the intersection $\partial_{i} \Delta_{n} \cap \partial_{j} \Delta_{n}$ the simplicial maps \bar{x}_{i} and \bar{x}_{j} coincide: Suppose that $d^{i} f=d^{j} g$ for certain $f, g:[k] \rightarrow[n-1]$. We can assume that $i<j$. Then using Proposition 1.5, we can write $f=d^{j-1} h g=d^{i} h$ for a unique morphism $h:[k-2] \rightarrow[k-1]$. We have

$$
\begin{align*}
\bar{x}_{i}\left(d^{i} f\right) & =f^{*}\left(x_{i}\right)=\left(d^{j-1} h\right)^{*}\left(x_{i}\right)=h^{*}\left(d^{j-1}\right)^{*}\left(x_{i}\right)=h^{*}\left(d_{j-1}\left(x_{i}\right)\right) x(\tag{1.46}\\
& =h^{*}\left(d_{i} x_{j}\right)=h^{*}\left(d^{i}\right)^{*}\left(x_{j}\right)=\left(d^{i} h\right)^{*}\left(x_{j}\right)=g^{*}\left(x_{j}\right)=\bar{x}_{j}\left(d^{j} g\right)
\end{align*}
$$

Conversely, if \bar{x}_{i} extends to a map on Λ_{n}^{k}, then \bar{x}_{i} and \bar{x}_{j} must coincide on the intersection $\partial_{i} \Delta_{n} \cap \partial_{j} \Delta_{n}$ which contains $d^{i} d^{j-1}=d j d^{i}$. The identity $\bar{x}_{i}\left(d^{i} d^{j-1}\right)=\bar{x}_{j}\left(d^{j} d^{i}\right)$ is equaivalente to the identity $d_{j-1} x_{i}=d_{i} x_{j}$.

Theorem 1.65. (J. C. Moore) Any simplicial group G is s Kan complex.
Proof. Suppose that $x_{0}, \cdots x_{k-1}, x_{k+1}, \cdots x_{n}$, is a compatible sequence. Let

$$
\begin{align*}
y_{0} & =s_{0}\left(x_{0}\right) \\
y_{i} & =y_{i-1}\left(s_{i} d_{i} w_{i-1}\right)^{-1} s_{i}\left(x_{i}\right) \quad 0<i<k \\
y_{n} & =y_{k-1}\left(s_{n-1} d_{n}\left(y_{k-1}\right)\right)^{-1} s_{n-1}\left(x_{n}\right) \tag{1.47}\\
y_{i} & =y_{i+1}\left(s_{i-1} d_{i} y_{i+1}\right)^{-1} s_{i}\left(x_{i}\right) \quad k<i<n
\end{align*}
$$

y_{k+1} is the desired extension of x_{i} 's.

1.13. Homotopies in Kan complexes and Homotopy groups of simplicial sets

For topological spaces we can construct homotopy groups. So we expect to be able to introduce a notion of homotopy groups which will be isomorphic to the the homotopy groups of the geometric realisation.

Definition 1.66. Let K be a simplcial set. Two n-simplices x and x^{\prime} are said to be homotop and we write $x \sim x^{\prime}$, if for all $0 \leq i \leq n$,

$$
d_{i} x=d_{i} x^{\prime}
$$

and there is an $n+1$-simplex y such that

$$
\begin{array}{r}
d_{n} y=x \\
d_{n+1} y=x^{\prime} \tag{1.48}\\
d_{i} y=s_{n-1} d_{i} x=s_{n-1} d_{i} x^{\prime}
\end{array}
$$

We say that y is a homotopy between x and x^{\prime}.
Proposition 1.67. If K is a Kan complex the \sim is an equivalence relation.

Proof. First we have to prove $x \sim x$ for all x. If $y=S_{n}(x)$, then we have $d_{n} y=d_{n+1} y=x$ and $d_{i} y=d_{i} s_{n}(x)=s_{n-1} d_{i} x$.

To prove the symmetry and transitivity we prove that if $x \sim x^{\prime}$ and $x \sim x^{\prime \prime}$ then $x^{\prime} \sim x^{\prime \prime}$. Let y^{\prime} be a homotopy between x and x^{\prime} and $y^{\prime \prime}$ a homotopy between x and $x^{\prime \prime}$:

$$
\begin{array}{r}
d_{n} y^{\prime}=x, \quad d_{n+1} y^{\prime}=x^{\prime}, \quad d_{i} y^{\prime}=s_{n-1} d_{i} x=s_{n-1} d_{i} x^{\prime} \\
d_{n} y^{\prime \prime}=x, \quad d_{n+1} y^{\prime \prime}=x^{\prime \prime}, \quad d_{i} y^{\prime \prime}=s_{n-1} d_{i} x=s_{n-1} d_{i} x^{\prime \prime} \tag{1.49}
\end{array}
$$

Consider the compatible sequence
$\alpha_{0}=d_{0} s_{n} s_{n} x^{\prime}, \cdots, \alpha_{k}=d_{k} s_{n} s_{n} x^{\prime} \cdots \ldots, \alpha_{n}=d_{n-1} s_{n} s_{n} x, \alpha_{n}=y^{\prime}, \alpha_{n+1}=y^{\prime \prime},-$.
There is a z such that $d_{i} z=\alpha_{i}$ for $0 \leq i \leq n+1$. Let $w=d_{n+2} z$, then we have

$$
\begin{array}{r}
d_{n} w=d_{n} d_{n+2} z=d_{n+1} d_{n} z=d_{n+1} y^{\prime}=x^{\prime} \\
d_{n+1} w=d_{n+1} d_{n+2} z=d_{n+1} d_{n+1} z=d_{n+1} y^{\prime \prime}=x^{\prime \prime} \tag{1.50}
\end{array}
$$

and
$d_{i} w=d_{i} d_{n+2} z=d_{n+1} d_{i} z=d_{n+1} d_{i} s_{n} s_{n} x^{\prime}=d_{i} d_{n} s_{n} s_{n} x^{\prime}=d_{i} s_{n} x^{\prime}=s_{n-1} d_{i} x^{\prime}$ so w is a homotopy between x^{\prime} and $x^{\prime \prime}$.

A good theory of homotopy groups requires long exact sequence therefore a relative theory.

Definition 1.68. Let L be a simplicial subset of K. Two n-simplices are said to homotop relative $L, x \stackrel{L}{\sim} x^{\prime}$ if
(1) $d_{i} x=d_{i} x^{\prime}, 1 \leq i \leq n$.
(2) If y is a homotopy between $d_{0} x$ and $d_{0} x^{\prime}$, there is a ($n+1$)-simplex $w \in K_{n+1}$ such that

$$
d_{0} w=y, \quad d_{n} w=x, \quad d_{n+1} w=x^{\prime} \quad d_{0<i<n-1} w=s_{n-1} d_{i} x=s_{n-1} d_{i} x^{\prime}
$$

We say that w is a relative homotopy between x and x^{\prime}.
Proposition 1.69. Suppose that $L \subset K$ are both Kan complexes. Then $\stackrel{L}{\sim}$ is a homotopy equivalence.

Proof. First of all $x \stackrel{L}{\sim} x$ because if $d_{0} x \in L$ then as we saw $y=s_{n-1} d_{0} x$ is self-homotopy of $d_{0} x$. For $w=s_{n} s x$, we have $1 \leq i \leq n, d_{i} w=s_{n-1} d_{i} x$ and $d_{n} w=d_{n+1}=x, d_{0} w=y$ therefore w is a relative homotopy between x and x.

As for symmetry and transitivity, suppose $x \stackrel{L}{\sim} x^{\prime}$ and $x \stackrel{L}{\sim} x^{\prime \prime}$. Let w^{\prime} and $w^{\prime \prime}$ be the corresponding relative homotopies ie.e

$$
\begin{array}{rlrl}
d_{n} w^{\prime \prime}=x, & d_{n+1} w^{\prime}=x^{\prime}, & d_{i} w^{\prime}=s_{n-1} d_{i} x=s_{n-1} d_{i} x^{\prime}, & \\
1 \leq i \leq n \tag{1.51}\\
d_{n} y^{\prime \prime}=x, & d_{n+1} y^{\prime \prime}=x^{\prime \prime}, & d_{i} y^{\prime \prime}=s_{n-1} d_{i} x=s_{n-1} d_{i} x^{\prime \prime} & \\
1 \leq i \leq n
\end{array}
$$

and $y^{\prime}=d_{0} w^{\prime}$ and $y^{\prime \prime}=d_{0} w^{\prime \prime}$ provide respectively the homotopies $d_{0} x \underset{\sim}{\sim}$ $d_{0} x^{\prime}$ and $d_{0} x \stackrel{L}{\sim} d_{0} x^{\prime \prime}$ in L. Similarly to the proof of Proposition 1.67 there is a $z \in L_{n+1}$ such that $d_{i}=d_{i} s_{n-1} s_{n-1} d_{0} x^{\prime}, 0 \leq i<n-1, d_{n-1} z=y^{\prime}$ and $d_{n-1} z=y^{\prime \prime}$.

Now the sequence $z, d_{1} s_{n} s_{n} x^{\prime}, \cdots, d_{n-1} s_{n} s_{n} x^{\prime}, w^{\prime}, w^{\prime \prime},-$ is a compatible one, so there is a V such that $d_{i} v, 0 \leq i \leq n+1$ are, in order, the elements of the above sequence. Then $w=d_{n+2} v$ does the job, i.e. it is a relative homotopy between x^{\prime} and $x^{\prime \prime}$.

We are ready to the define the homotopy groups of a Kan complex K. To that end we need to introduce the right notion of basepoint. Choose $x_{0} \in K$, consider the simplicial subset generated by x_{0}. This simplicial subset has exactly one n-simplex $s_{n-1} s_{n-2} \cdots s_{0}(x)$ for all $n \geq 1$. We continue to denote this simplicial subset with x_{0}. We set

$$
\tilde{K}_{n}:=\left\{x \in K \mid d_{i} x=x_{0}, \quad 0 \leq i \leq n\right\} .
$$

Then the n-homotopy group of K is

$$
\pi_{n}\left(K, x_{0}\right):=\tilde{K}_{n} / \sim
$$

The relative homotopy groups is defines in a similar manner,

$$
\tilde{K}_{n}(L):=\left\{x \in K_{n} \mid \quad d_{i} x=x_{0} \quad 1 \leq i \leq n, \quad d_{0} x \in L_{n-1}\right\},
$$

and

$$
\pi_{n}\left(K, L, x_{0}\right):=\tilde{K}_{n}(L) / \sim .
$$

Definition 1.70. For homotopy classes $a=[x]$ and $b=[y] \in \pi_{n}\left(K, x_{0}\right)$ We define product

$$
[x] \cdot[y]=\left[d_{n} z\right]
$$

where z is the extension of the compatible sequence $x_{0}, \cdots x_{0}, x,-, y$.
Proposition 1.71. The product defined above is well-defined.
Proof. - First we prove that for given representatives x and y, the class of $\left[d_{n} z\right]$ is independent of the choice of z. Suppose that z and z^{\prime} are two extension for the sequence $x_{0}, \cdots x_{0}, x,-, y$. Let $w \in K_{n+2}$ be an extension for the suite $\left.x_{0} \cdots, s_{n} x,-, z, z^{\prime}\right)$ then
$d_{n} w$ is homotopy between $d_{n} z$ and $d_{n} z^{\prime}$ because we have

$$
\begin{aligned}
d_{n} d_{n} w & =d_{n} d_{n+1} w=d_{n} z \\
d_{n+1} d_{n} w & =d_{n} d_{n+2} w=d_{n} z \\
d_{n-1} d_{n} w & =d_{n-1} d_{n-1} w=d_{n-1} s_{n} x=s_{n-1} d_{n-1} x=x_{0} \\
d_{i \leq n-1} d_{n} w & =d_{n-1} d_{i} w=x_{0}
\end{aligned}
$$

- We prove that the classes a and b of the product $a . b$ is independent of the choice of the representatives x and y. Suppose that w is a homotopy between y and y^{\prime} i.e.

$$
d_{n+1} w=y \quad \& \quad d_{n} w=y^{\prime} \& \quad d_{i} w=x_{0}
$$

- Let z^{\prime} be an extension for the sequence $x_{0}, \cdots x_{0}, x,-, y^{\prime}$. The sequence $x_{0}, \cdots x_{0}, s_{n-1} x, z^{\prime},-, w$ is compatible therefore it has an extension of the sequence $u \in K_{n+2}$. We claim that $d_{n+1} u$ is an extension $x_{0}, \cdots x_{0}, x,-, y$. This is because

$$
\begin{aligned}
d_{n-1} d_{n+1} u & =d_{n} d_{n-1} u=d_{n} s_{n-1} x=x \\
d_{n+1} d_{n+1} u & =d_{n+1} d_{n+2} u=d_{n+1} w=y \\
d_{i<n-1} d_{n+1} u & =d_{n} d_{i} u=x_{0} .
\end{aligned}
$$

Therefore $d_{n} d_{n+1} u$ is the product of the classes a and b using the representatives x and y.On the other hand

$$
d_{n} d_{n+1} u=d_{n} d_{n} u=d_{n} z^{\prime}
$$

which is the product of the classes using the representatives x and y^{\prime}.

Similarly we define the product on the relative homotopy classes $\pi_{n}\left(K, L, x_{0}\right)$. Let $[x]$ and $[y]$ two relative classes. Then $d_{0} x$ and $d_{0} y$ in L_{n-1} and represents two homotopy classes in $\pi_{n-1}\left(L, x_{0}\right)$ where we can define the their product

$$
\left[d_{0} x\right] \cdot\left[d_{0} y\right]=\left[d_{n-1} z\right]
$$

where z is the extension of the compatible sequence $x_{0}, \cdots, x_{0}, d_{0} x,-, d_{0} y$. The sequence $z, x_{0}, \cdots, x_{0}, x,-, y$ is also compatible therefore has an extension w, we set

$$
[x] \cdot[y]=\left[d_{n} w\right] .
$$

It turns out this product is well-defined as well.
Proposition 1.72. For a Kan complex K, $\left(\pi_{n}\left(K, x_{0}\right), \cdot\right)$ is a group.
Proof. It is quite clear that that $\left[x_{0}\right]$ is a neutral element. We prove that existence of the inverse by showing that we can divide. For the two classes $[x]$ and $[y] \in \pi_{n}\left(K, x_{0}\right)$ we consider the compatible sequence $x_{0}, \cdots x_{0},-, x, y$ of n-simplices which can be extend to a $(n+1)$-simplex z, then by the definition of the product we have

$$
\left[d_{n-1} z\right][x]=[y] .
$$

As for the associativity, we consider the three extensions of three compatible sequences,

Extension/faces $n+1$	0 to $(n-2)$ th faces	d_{n-1}	d_{n}	d_{n+1}	d_{n+2}
$w_{n-1} \in K_{n+1}$	x_{0}, \cdots, x_{0}	x	-	y	\emptyset
$w_{n+1} \in K_{n+1}$	x_{0}, \cdots, x_{0}	$d_{n} w_{n-1}$	-	z	\emptyset
$w_{n+2} \in K_{n+1}$	x_{0}, \cdots, x_{0}	y	-	z	\emptyset
$u \in K_{n+2}$	x_{0}, \cdots, x_{0}	w_{n-1}	-	w_{n+1}	w_{n+2}

Then we have

$$
\begin{equation*}
([x] \cdot[y]) \cdot[z]=\left[d_{n} w_{n-1}\right][z]=\left[d_{n} w_{n+1}\right]=\left[d_{n} d_{n+1} u\right]=\left[d_{n} d_{n} u\right] \tag{1.54}
\end{equation*}
$$

We can observe that $d_{n} u$ is an extension of the sequence

$$
x_{0}, \cdots x_{0}, x,-, d_{n} w_{n+2},
$$

therefore

$$
[x] .\left[d_{n} w_{n+2}\right]=\left[d_{n} d_{n} u\right]
$$

On the other hand $\left[d_{n} w_{n+2}\right]=[y][z]$, hence the associativity.

Theorem 1.73. For all pair of $L \subset K$ of Kan complexes, there is a natural long exact sequence of groups

$$
\begin{equation*}
\cdots \longrightarrow \pi_{n+1}\left(K, L, x_{0}\right) \xrightarrow{\partial} \pi_{n}\left(L, x_{0}\right) \xrightarrow{i} \pi_{n}\left(K, x_{0}\right) \xrightarrow{j} \pi_{n}\left(K, L, x_{0}\right) \longrightarrow \cdots \tag{1.55}
\end{equation*}
$$

Where $\partial[x]=\left[d_{0} x\right]$ and i and j are induced by inclusion.
Proof. Obviously the i and j are group homomorphism. It follows from our definition of the the production on the relative homotopy groups that ∂ is also a group homomorphism.
(1) Exactness at (∂, i) :

- $\operatorname{Im}(\partial) \subset \operatorname{ker}(i):$ We have $i \partial[x]=i\left[d_{0} x\right]$. Let y be an extension of the sequence of $n+1$-simplices $-, x_{0}, x_{0}, \cdots, x_{0}, x$, the $d_{0} z$ is a homotopy between $d_{0} x$ and x_{0} in L_{n}.
$-\operatorname{ker}(i) \subset \operatorname{Im}(\partial):$
$-\operatorname{ker}(i) \subset \operatorname{Im}(\partial):$ If $i[x]=\left[x_{0}\right]$ i.e. $x \simeq x_{0} \in K_{n}$ there is a homotopy y in K_{n} between x and ${ }_{0}$. This implies that the sequence of $(n+1)$-simplices $y, x_{0} \cdots, x_{0}$, - are compatible, hence expandable to z. Take a look at $d_{n+2} z$, we have

$$
\begin{align*}
& d_{0} d_{n+2} z=d_{n+1} d_{0} z=d_{n+1} y \\
&=x \tag{1.56}\\
& d_{1 \leq i \leq n+1} d_{n+2} z=d_{n+1} d_{i} z=d_{n+} x_{0}=x_{0}
\end{align*}
$$

therefore $d_{n+2} z$ represents a class in $\pi_{n+1}\left(K, L, x_{0}\right)$ and $\partial\left[d_{n+2} z\right]=$ $\left[d_{0} d_{n+2} u\right]=[y]$.
(2) Exactness at (j, ∂) :
$-\operatorname{Im}(j) \subset$ ker ∂ because $\partial j[x]=\left[d_{0} x\right]=\left[x_{0}\right]$ by definition of \tilde{K}_{n}.
-As for $\operatorname{ker} \partial \subset \operatorname{Im}(j):$ If for $x \in \pi_{n}\left(K, x_{0}\right), d_{0} x \simeq x_{0} \in \tilde{K}_{n}(L)$ then there is $z \in L_{n}$ such that

$$
d_{n} z=d_{0} x \quad \text { and } d_{0 \leq i<n} z=x_{0} .
$$

Clearly $z, x_{0} \cdots, x_{0},-, x$ are compatible so there is an extension $y \in K_{n+1}$. It is easily verified that y is relative homotopy between $d_{n} y$ and x. Note that

$$
d_{1 \leq i \leq n} d_{n} y=d_{n-1} d_{i} y=d_{n-1} d_{i} y=x_{0} d_{0} d_{n} y=d_{n-1} d_{0} y=d_{n-1} z=x_{0}
$$

therefore $d_{n} y$ represents a class in $\pi_{n}\left(K, x_{0}\right)$. Moreover $d_{0} y=z$ is the homotopy in L_{n-1} between $d_{0} x$ and x_{0} as it should be, and

$$
[x]=j\left(\left[d_{n} y\right]\right)
$$

(3) Exactness at $(i, i))$:

- $\operatorname{Im}(i) \subset \operatorname{ker}(j):$ For $x \in \tilde{L}_{n}$, the sequence

$$
-, x_{0}, \cdots, x_{0}, x
$$

is extendable to $z \in L_{n+1}$. Indeed $d_{0} z$ is a homottopy in L between x_{0} and $d_{0} x$ and z is a relative homotopy between x_{0} and x.
$-\operatorname{ker}(j) \subset \operatorname{Im}(i):$ Suppose that $j([x])=\left[x_{0}\right]$ in $\pi_{n}\left(K, L, x_{0}\right)$ then there is a relative homotopy w between x and x_{0} and $z:=d_{0} w \in L_{n}$ is a homotopy between x_{0} and $d_{0} x=x_{0}$ in L. The $n+1 n$-simplices z, x_{0}, \cdots, x_{0}, are compatible therefore there is an $n+1$-simplex v such tht

$$
d_{0} v=z, d_{0 \leq i \leq n} z=x_{0}
$$

It turns out that

$$
s_{n-1} z, x_{0}, \cdots, x_{0}, v, w,-
$$

are compatible and extendable to $t \in K_{n+2}$. Then we claim that $d_{n+2} t$ is a homotopy between x an $d_{n+1} v \in L$, hence x is in the image of i. To see that

$$
\begin{align*}
d_{n} d_{n+2} t & =d_{n+1} d_{n} t=d_{n+1} v \\
d_{n+1} d_{n+2} t & =d_{n+1} d_{n+1} t=d_{n+1} w=x \\
d_{0<i<n} d_{n+2} t & =d_{n+1} d_{i} t d_{n+2} x_{0}=x_{0} \tag{1.57}\\
d_{1} d_{n+2} t & =d_{n+1} d_{0} t=d_{n+1} s_{n-1} z=s_{n-1} d_{n} z=s_{n-1} x_{0}=x_{0}
\end{align*}
$$

It may not be immediately clear to the reader why our definition of homotopy groups is related to the standard topological definition. Here we answer to the this question.

By Yoneda lemma, a n-simplex x gives rise to a simplicial map $\bar{x}: \Delta_{n} \rightarrow$ K. In particular, if $\Delta_{i} x=x_{0}$, for all i, then $\bar{x}\left(\partial \Delta_{n}\right) \subset x_{0}$.

Proposition 1.74. There is a bijection between elements of $\pi_{n}\left(K, x_{0}\right)$ and the homotopy class of maps $\bar{x}:\left(\Delta_{n}, \partial \Delta_{n}\right) \rightarrow\left(K, x_{0}\right)$. Here the homotopies are relative to $\partial \Delta_{n}$) and x_{0}.

Proof. Suppose that $x, y \in \tilde{K}_{n}$ are homotpo. Then there is $z \in K_{n+1}$ such that $x=d_{n} z, y=d_{n+1} z$ and $d_{i<n} z=x_{0}$. We construct a homotopy $h_{i}: \Delta_{n}[q] \rightarrow L_{q+1}, 0 \leq i \leq q$, between \bar{x} and \bar{y} as follows: We use the fact Δ_{n} is generated by on element namely $i d_{n} \in \Delta_{n}[n]$ and then we extend to other element of Δ_{n} using the equations (see (1.13)) uniqueness of the presentation of the morphism in the category Δ.

$$
\begin{align*}
h_{i}\left(i d_{n}\right) & =s_{i}(x) \quad 0 \leq i<n, \\
h_{n}\left(i d_{n}\right) & =z \tag{1.58}
\end{align*}
$$

It remains to prove that $h_{i}\left(\partial \Delta_{n}\right) \subset x_{0}$. To that end, note that $\partial \Delta_{n}$ is generated by $d^{i} \in \operatorname{Hom}_{\Delta}([n-1],[n])$ and its elements are of the form $d^{i} \circ f$ where $f \in \operatorname{Hom}_{\Delta}([k],[n])$. For instance, for $f=i d_{n}$ and $0 \leq j \leq n-1$ we have
$h_{j}\left(d^{i} \circ i d_{n}\right)=h_{j}\left(d_{i}\left(i d_{n}\right)\right)=\left\{\begin{array}{l}d_{i} h_{j+1}\left(i d_{n}\right)=d_{i} s_{j}(x) \quad \text { if } j \geq i=\left\{\begin{array}{l}d_{i} h_{n}\left(i d_{n}\right)=d_{i} z=x_{0}, \\ d_{i} s_{j+1}(x)=s_{j} d_{i}(x)=s_{j}\left(x_{0}\right)=x_{0}\end{array}\right. \\ d_{i+1} h_{j}\left(i d_{n}\right) \quad \text { if } j<i=\left\{\begin{array}{l}d_{n} h_{n-1}\left(i d_{n}\right)=d_{n} s_{n-1}(x)=x_{0}, \quad i=n-1 \\ d_{i+1} s_{j}(x)=s_{j} d_{i}(x)=s_{j}\left(x_{0}\right)=x_{0}\end{array}\right.\end{array}\right.$
Similar computation and result hold for all $f \in \operatorname{Hom}_{\Delta}(-,[n])$. Coversely, suppose that h is a homotopy relative to $\partial \Delta^{n}$ between \bar{x} and \bar{y}. Let $z_{i}:=$ $h_{i}\left(i d_{n}\right)$, for $0 \leq i \leq n$. Then using the relations ((1.13)) and hypothesis that $h_{i}\left(d^{i}\left(i d_{n}\right)\right) \in h_{i}\left(\partial \Delta_{n}\right)=x_{0}$, we have,

$$
\begin{align*}
d_{i} z_{j} & =x_{0}, \quad i \neq j, j+1 \\
d_{i} z_{i} & =d_{i} z_{i-1} \\
d_{0} z_{0} & =x \tag{1.60}\\
d_{n+1} z_{n} & =y
\end{align*}
$$

To complete the proof we need the following lemma.
Lemma 1.75. Suppose that $z \in K_{n+1}$ and $d_{i} z=x_{0}$ for $i \neq i, i+1$, and $d_{r} z$ and $d_{r+1} z \in \tilde{K}_{n}$. Then we have a homotopy $d_{r} z \sim d_{r+1} z$ in K_{n}.
Proof of the Lemma For $r=n$ it is obvious by definition. So we suppose that $r<n$.

Let $w \in K_{n+2}$ be the extension for the sequence
$\alpha_{0}:=x_{0}, \cdots, \alpha_{r-1}:=x_{0}, \alpha_{r}=s_{r+1} d_{r+1} z, \alpha_{r+1}:=z, \alpha_{r+2}:=s_{r} d_{r+1} z,-, \alpha_{i>r+3}:=x_{0}$.
Then $t=d_{r} w$ satisfies the

$$
d_{r+1} t=d_{r} z, \quad d_{r+2} t=d_{r+1} z \text { and } d_{i} t=x_{0}, \neq r+1, r+2 .
$$

By repeating this process we increase the indices from r to n where the results is obvious.

To finish the proof of the Proposition, it suffices to applies the lemma to to the each z_{i} for $r=i$ and use the identit $d_{i} z_{i}=d_{i} z_{i-1}$,

$$
x=d_{0} z \sim d_{1} z_{0}=d_{1} z_{1} \sim d_{2} z_{1} \cdots d_{n} z_{n-1}=d_{n} z_{n} \sim d_{n+1} z_{n}=y
$$

An immediate consequence of the previous result, Proposition 1.74, is the invariance of homotopy groups under homotopic maps.

Corollary 1.76. If $f, g: K \rightarrow L$ are homotopic then $f_{*}=g_{*}$: $\pi_{*}(K) \rightarrow \pi_{*}(L)$.

The first and most important example of Kan complex is the singular complex $\operatorname{Sing}(X)=\left\{\operatorname{Sing}_{n}(X)\right\}_{n}$ of a topology space (See Proposition 1.63). So it is natural to ask if $\pi_{*}(\operatorname{Sing}(X)$ is related to the (topological) homotopy groups $\pi_{*}(X)$.

THEOREM 1.77. For a topological spaces X we have a natural isomorphism of groups

$$
\pi_{n}(S(X), S(a)) \simeq \pi_{n}(X, a)
$$

where $a \in X$ is basepoint, $S(X):=\operatorname{Sing}(X)$ is the singular (Kan) complex de X and T is the geometric realization.

Proof. By the adjunction property of S and T, we have a bijection

$$
\operatorname{Hom}_{T o p}\left(D_{n}, X\right) \simeq \operatorname{Hom}_{T o p}\left(T \Delta_{n}, X\right) \simeq \operatorname{Hom}_{\text {sSet }}\left(\Delta_{n}, S(X)\right)
$$

Here D_{n} is the n-dimensional disk. Since $T\left(\partial \Delta_{n}\right) \stackrel{\text { homeo }}{\simeq} \partial \mathbb{D}_{n} \simeq S^{n-1}$, The functoriality of the above bijection implies that we have a bijection for pairs,

$$
\operatorname{Hom}_{T o p}\left(\left(T \Delta_{n}, T \partial \Delta_{n}\right),(X, a)\right) \simeq \operatorname{Hom}_{\text {sSet }}\left(\left(\Delta_{n}, \partial \Delta_{n}\right),(S(X), S(a))\right.
$$

which Proposition 1.41 conserves the homotopy relation, therefore ϕ induces an isomorphism

$$
\pi_{n}(S(X), S(a)) \simeq \pi_{n}(X, a)
$$

Verifying that this is conserves the group structure is not hard and is left to a reader who wants to indulge oneself.

THEOREM 1.78. (Moore's Theorem) For a simplicial abelian group G_{*} we have a natural group isomorphism

$$
\pi_{n}\left(G_{*}, 0\right) \simeq H_{n}\left(N\left(G_{*}\right)\right)
$$

induced by the identity map, where $N\left(G_{*}\right)$ is the normalized complex of G and 0 is the simplicial basepoint generated by neutral element of G_{0}.

Proof. Let 0 be the neutral elements of G_{0}, since all the degeneracy maps S_{i} are simplicial maps, $s_{i-1} \cdots s_{0}(0)$ is the neutral element of G_{i}. Therefore our simplicial base point consists of the neutral element of G_{i} 's.

The identity map $\tilde{K}_{n} \rightarrow N(G)_{n}$ is well-define because if $x \in \tilde{K}_{n}$, then $d_{i} x=0$ for $0 \leq n \leq n-1$. Morever, since $d_{n} x=0$ the identity map induces a well-define map $\tilde{K}_{n} \rightarrow H_{n}(N(G))$.

Suppose that $x \sim y \in \tilde{K}_{n}$ via homotopy $\sigma \in K_{n+1}$, i.e.

$$
d_{n} \sigma=x, \quad d_{n+1} \sigma=y, \quad d_{i} \sigma=0
$$

Let $z:=\sigma-s_{n}(y)$. Then $d_{n} z=x-y, d_{i} z=0$ for $i=n+1$ and $0 \leq i<n$, therefore $\partial z=x-y$ and x and y are homologous. Therefore we have an induced map

$$
\pi_{n}(G, 0) \rightarrow H_{n}(N(G)) .
$$

The surjectivity of this map is clear because the elements of $H_{n}(N(G))$ are represented by n-simplices σ such that $d_{i} \sigma=0$ for all i, therefore $\sigma \in \tilde{K}_{n}$.

As for injectivity, suppose that $\sigma \in \tilde{K}_{n}$ repreent 0 in $H_{n}(N(G))$ i.e. there is $z \in N(G)_{n+1}$ such that $d_{n+1} z=\sigma$. Now it is clear that $\sigma \sim 0=d_{n} z$ because $d_{i} z=0$ for $0 \leq o \leq n-1$.

It remains to prove that the identity map is group homomorphism. To end we should prove that for $x, y \in \tilde{K}_{n}$, there is a $(n+1)$-simplex z such that

$$
\begin{align*}
d_{i} z & =0 \quad 0 \leq i n-1 \\
d_{n-1} z & =x \tag{1.61}\\
d_{n} z & =x+y
\end{align*}
$$

Indeed $z=s_{n-1}(x)+s_{n}(y)$ does the job.

1.14. Kan fibrations

A simplicial map $p: E \rightarrow B$ is called a Kan fibration if for any compatible $n(n-1)$-simplices $x_{0}, \cdots, x_{k-1},-, x_{k+1}, \cdots, x_{n}$ with an extension $y \in B_{n}$ for $p\left(x_{i}\right)$, then there is an extension $x \in E_{n+1}$ for x_{i} 's such that $y=p(x)$. It is clear that:

Proposition 1.79. E is a Kan complex if and only if $p: E \rightarrow *$ is a Kan fibration. Here * is a the simplicial singleton.

One can introduce the notion of fibre for a Kan fibration $p: E \rightarrow B$ by setting $F=\partial^{-1}\left(x_{0}\right)$ where $x_{0} \subset B$ is the simplicial base point (i.e the simplicial subset generated by a 0 -simplex $x_{0} \in B_{0}$.).

Proposition 1.80. The fiber F of a Kan fibration $p: E \rightarrow B$ is a Kan complex.

Proof. Let $x_{0}, \cdots, x_{k-1},-, x_{k+1}, \cdots, x_{n}$ be a compatible sequence in F, then for all $i, p\left(x_{i}\right)=x_{0}$ and x_{0} is a an obvious extension of $p\left(x_{i}\right)$'s in B. Since p is a Kan fibration then there is an extension $x \in E$ for x_{i} 's such that $p(x)=x_{0}$. The latter means that $x \in F$, in other wors x is an extension of x_{i} 's in F, this proves that F is a Kan complex.

Lemma 1.81. Suppose that $p: E \rightarrow B$ is a Kan fibration. Let $x_{i_{1}}, \cdots x_{i_{r}}$, $i_{1}<i_{2}<\cdots<i_{r}$, be a sequence of q-simplices in E such that $d_{i_{s}} x_{i_{t}}=$ $d_{i_{t}-1} x_{i_{s}}$ for $s<t$. Assume that there is an extension $y \in B_{q+1}$ for $p\left(x_{i_{j}}\right)^{\prime}$ s, i.e.

$$
d_{i_{j}} y=p\left(x_{i_{j}}\right) .
$$

There is an extension $x \in E$ for $x_{i_{j}}$'s, i.e.

$$
d_{i_{j}} x=p\left(x_{i_{j}}\right) .
$$

Proof. One day
Proposition 1.82. Let $p: E \rightarrow B$ be a Kan fibertion:
(1) If E is Kan complex and p is onto, then B is also a Kan complex.
(2) If B is a Kan complex then E is also.

Proof. Proof of (1): If $y_{0}, \cdots, y_{k-1},-, y_{k+1}, \cdots, y_{n}$ is a sequence of compatible $(n-1)$-simplices in B. Then there is x_{0} such that. $y_{0}=p\left(x_{0}\right)$. Since $d_{0} y_{1}=d_{0} y_{0}$, by applying Lemma 1.81 to sequence x_{0} (with $y:=y_{1}$ satisfying $\left.d_{0} y_{1}=p\left(d_{0} x_{0}\right)\right)$ there is a $x_{1} \in E$ such that $p\left(x_{1}\right)=y_{1}$ and $d_{0} x_{1}=d_{0} x_{0}$. By repeating this process, at each stage we find $x_{i} \in E$ such that $p\left(x_{i}\right)=y_{i}$ and $d_{j} x_{i}=d_{i-1} x_{j}$ for all $j<i$. By doing so we are lifting y_{i} 's to a compatible sequence of $(n-1)$-simpkices in E which a is Kan complex. Let x be an extension of x_{i} 's in E, then $p(x)$ is desired extension of y_{i} 's.

Proof of (2): If x_{i} 's is a compatible sequence in E then $p\left(x_{i}\right)$ is a compatible sequence in B therefore has an extension y in B. Since p is Kan fibration, y can be lifted to an extension x in E of x_{i} 's.

One naturally expects a long exacts sequence of homotopy groups associated to a fibration. the groups homomorphism $q: \pi_{n}\left(B, b_{0}\right) \rightarrow \pi_{n}\left(E, F, a_{0}\right)$. where $b_{0}=p\left(a_{0}\right)$ and $a_{0} \in E_{0}$, is defined as follows: For $y \in \tilde{B}_{n}$, we have $d_{i} y=b_{0}$, so we can think of y as an extension of the compatible sequence $-, b_{0}, b_{0}, \cdots, b_{0}$ which is image of the compatible sequence $-, a_{0}, a_{0}, \cdots a_{0}$, p being a Kan fibration there is an n-simplex x such that $p(x)=y$ and $d_{i>0} x=a_{0}$. Now $p\left(d_{0} x\right)=d_{0} p(x)=d_{0} y=b_{0}$ therefore $d_{0} x \in F$ and x defines a homotopy class in the the relative homotopy group $\pi_{n}\left(E, F, a_{0}\right)$. The map $q: \pi_{n}\left(B, b_{0}\right) \rightarrow \pi_{n}\left(E, F, a_{0}\right)$,

$$
q([x])=[y]
$$

is well-defined meaning that it conserves the homotopy relation, because the homotopies which are also extensions, can be lifted via p. On the other hand $p: E \rightarrow B$ induces a map $p: \pi_{n}\left(E, F, a_{0}\right) \rightarrow \pi_{n}\left(B, b_{0}\right)$. It is clear that $q p=i d$ and $p q=i d$ proving that q and q are bijections, and since p is a group homomorphism, q is so.

Via the isomorphism q, the connecting $\partial: \pi_{n+1}\left(E, F, a_{0}\right) \rightarrow \pi_{n}\left(F, b_{0}\right)$ becomes $\partial_{\#}: \pi_{n+1}\left(B, a_{0}\right) \rightarrow \pi_{n}\left(F, b_{0}\right)$,

$$
\left.\partial_{\#}([y])=\left[d_{0} x\right]\right) .
$$

Using the isomorphism q, the long exact sequence 1.73 transforms in:
Proposition 1.83. For a Kan fibration $p: E \rightarrow B$ with fibre F, we have a long exact sequence of groups
$\cdots \rightarrow \pi_{n+1}\left(F, a_{0}\right) \xrightarrow{i} \pi_{n+1}\left(E, a_{0}\right) \xrightarrow{p} \pi_{n+1}\left(B, b_{0}\right) \xrightarrow{\partial_{\#}} \pi_{n}\left(F, a_{0}\right) \rightarrow \cdots$

1.15. Universal cover

In this section we give a construction of the universal cover of a Kan complex K.

We suppose that K is a connected Kan complex with just one 0 -simples x_{0}. Let $\pi=\pi_{1}\left(K, x_{0}\right)$ be the fundamental group of K (here x_{0} also denotes the subcomplex generated by x_{0}). Define \tilde{K} by

$$
\tilde{K}_{n}=K_{n} \times \pi
$$

equipped with the degeneracy and degeneracy maps
(1) $d_{i}(x, a)=\left(d_{i} x, a\right)$ for. $i<n$
(2) $d_{n}(x, a)=\left(d_{n} x,\left(d_{0}^{n-1} x\right)^{-1} a\right)$, here d_{0}^{n-1} is $(n-1)$-th iteration of d_{0}.
(3) $s_{i}(x, a)=\left(s_{i} x, a\right)$

Let x_{0} be the (simplicial) base point of K and $\bar{x}_{0}=\left(x_{0}, 1\right)$ be the simplicial basepoint of \tilde{K} where $1 \in \pi$ is the neutral element. Then we have
(1) \tilde{K}_{n} is a simplicial set.
(2) The natural projection $\pi: \tilde{K} \rightarrow K$ is a Kan fiberation.
(3) $\pi_{n}\left(F, \bar{x}_{0}\right)=1$ for $n \geq 1$ and $\pi_{0}\left(F, \bar{x}_{0}\right) \simeq \pi$.
(4) The connecting map $\partial: \pi_{1}=\pi_{1}\left(K, x_{0}\right) \rightarrow \pi_{1}=\pi_{0}\left(F, \bar{x}_{0}\right)$ of the fiberation long exact sequence

$$
\cdots \rightarrow \pi_{1}\left(F, \bar{x}_{0}\right) \rightarrow \pi_{1}\left(\tilde{K}, \bar{x}_{0}\right) \rightarrow \pi_{1}\left(K, x_{0}\right) \rightarrow \pi_{0}\left(F, \bar{x}_{0}\right) \rightarrow \cdots
$$

is an isomorphism.
(5) Conclude that $\pi_{n}\left(\tilde{K}, \bar{x}_{0}\right) \simeq \pi_{n}\left(K, x_{0}\right)$ for $n \geq 2$.

Proof of the (1) and (2) are easy and left to the reader.

1.16. Minimal Complex

Existence of a minimal complex is an key ingredient for proving various theorems such as Whitehead and Hurewicz theorems.

Definition 1.84. A Kan complex is called Minimal if $d_{i} x=d_{i} y$ for all $i \neq k$, implies that $d_{k} x=d_{k} y$.

Proposition 1.85. A Kan complex is minimal if and only if homotopy equivalence relation is indeed the equality.

Proof. Suppose that K is minimal and $x \sim y \in K_{n}$. Then there exist $w \in K_{n+1}$ such that $d_{n} w=x, d_{n+1} w=y$ and $d_{i<n} w=s_{n-1} d_{i} x$. The latter implies that

$$
d_{i} s_{n}(x)=s_{n-1} d_{i} x=d_{i} w \text { for } i<n
$$

and we have $d_{n} s_{n}(x)=x=d_{n} w$, therefore by minimality

$$
x=d_{n+1} s_{n}(x)=d_{n+1} w=y .
$$

Conversely, suppose that for $(n+1)$-simplices x and y we have $d_{i} x=d_{i} y$ for all $i \neq k$. In order to prove that $d_{k} x=d_{k} y$ it suffices to $d_{k} x \sim d_{k} y$.

First the case $k \leq n$, note that $s_{n} d_{0} x, \cdots, s_{n} d_{k-1} x-, s_{n} d_{k+1} x, \cdots s_{n} d_{n} x,, x, y$ is a compatible sequence therefore extendable by a $(n+2)$-simplex. It is easily checked that $d_{k} z$ is homotopy beween $d_{k} x$ and $d_{k} y$. As for the case $k=$ $n+1$, let the ($n+2$)-simplex z be an extension for $s_{n-1} d_{0} x, \cdots, s_{n-1} d_{n-1} x, x, y,-$ then $d_{n+2} z$ is a homotopy between $d_{n+1} x$ and $d_{n+1} y$.

The fundamental result of this section is that every Kan complex K has minimal subcomplex which is deformation retract of K. This requires a lemma.

Lemma 1.86. Let x and y be two degenerate n-simplices. If $d_{i} x=d_{i} y$ for all i, then $x=y$.

Proof. First notice that a degenerate simplex x, is of the form form $x=s_{i} d_{i} x$. To see, write $x=s_{i} z$ for z and i, then $z=d_{i} s_{i} z=d_{i} x$ hence $x=s_{i} d_{i} x$.

If $x=s_{i} d_{i} x$ and $y=s_{i} d_{i} y$ now it is clear that $x=y$ because by hypothesis $d_{i} x=d_{i} y$. If $x=s_{i} d_{i} x$ and $y=s_{j} d_{j} y$ for $i<j$, then

$$
\begin{align*}
x & =s_{i} d_{i} x=s_{i} d_{i} y=s_{i} d_{i} s_{j} d_{j} y=s_{i} s_{j-1} d_{i} d_{j} y \\
& =s_{j} s_{i} d_{i} d_{j} y \tag{1.62}
\end{align*}
$$

Therefore x is in the image of s_{j} thus by the argument in the begining, $x=s_{j} d_{j} x$ and we are back to the case $i=j$.

Theorem 1.87. Every Kan complex K admits a minimal K^{\prime} which is deformation retract of K.

Proof. We construct the simplices of K^{\prime} by induction. The vertices of K_{0}^{\prime} is made by choosing a representative for each classes of $\pi_{0}(K)$ Suppose that $K_{i}^{\prime}, i<n$, are constructed for . To define K_{n}^{\prime}, first we consider the set of n-simplices x with $d_{i} x \in K_{n-1}^{\prime}$. Then we pick one representative from each homotopy classe of this set, and when it is possible we chose a degenerate representative.

First we prove that K^{\prime} is a subcomplex. The stability under the face maps is true by construction. Stability under degeneracy maps is also proved by induction. Let $x \in K_{n}^{\prime}$, then for a fixed degeneracy map s_{i}, all the face $d_{j}\left(s_{i}(x)\right)$ belongs, by induction, to K_{n}^{\prime}. Therefore, by construction of K_{n+1}^{\prime}, $s_{i}(x)$ is homotopic to a simplex y in K_{n+1}^{\prime}. By the construction K_{n+1}^{\prime}, y
should be degenerate since otherwise we would have chosen the degenerate representative $s_{i}(x)$ instead of y and we would be done. So have $s_{i}(x) \sim y$, which also means $d_{k}\left(s_{i}(x)=d_{k} y\right.$ for all k and by Lemma 1.86, $s_{i}(x)=y$ hence $s_{i}(x) \in K_{n+1}^{\prime}$. By construction K^{\prime} is a minimal comples because the homotopy implies equality.

Now we prove that K^{\prime} is a deformation retract of K. To that end we construct a simplicial homotopy $H: K \times \Delta_{1} \rightarrow K$ between the identity map $i d: K \simeq K \times \Delta_{0} \rightarrow K$ and a retraction $r: K \simeq K \times \Delta_{1} \rightarrow K$ whose image is in. K^{\prime}

We construct H on $\mathrm{Sk}_{n}(K)$ by induction on n. For $n=0, F H$ on $\mathrm{Sk}_{0}(K) \times \Delta_{1}$ is defined by
$H(x, 0)=x$
$H(x, 1)=m$, where m is the unique 0 -simplex in K^{\prime} which is in the same connected component a $H(s(x), i d)=\sigma$ where σ is a 1 -simplex with $d_{0} \sigma=x$ and $d_{1} \sigma=m$

We suppose that $H: \mathrm{Sk}_{n-1}(K) \times \Delta_{1} \rightarrow K$ is constructed. Since we have a push-out diagram (see Proposition 1.14), in order to extend H to $S k_{n}(K) \times$ Δ_{1} it suffices to extend. $H \circ \Upsilon_{n}$ from $\underset{x \in e_{n}(K)}{\cup} \partial \Delta_{n} \times \Delta_{1}$ to $\underset{x \in e_{n}(K)}{\cup} \Delta_{n} \times \Delta_{1}$. Note that $\Delta_{n} \times \Delta_{1}$ is union of simplicial subsets which are generated by the images of the maps $\sigma_{j}:[n+1] \rightarrow[1] \times[n]$ given by its image (which is ordered)

$$
\operatorname{Im}\left(\sigma_{j}\right)=((0,0),(1,0) \cdots,(j, 0,),(j, 1) \cdots(n, 1))
$$

These generators have all of their faces in the boundary complex $\partial_{n} \times \Delta_{1}$ except for $d^{i} \sigma_{j} \in \partial \Delta_{n} \times \Delta_{1}$, for $i \neq j, j+1$ and $j \neq 0, n+1$. Moreover,
$d_{0} \sigma_{0} \in \Delta_{n} \times d_{0} \Delta_{1}=\Delta_{n} \times 1$ and $d_{n+1} \sigma_{0} \in \Delta_{n} \times d_{1} \Delta_{1}=\Delta_{n} \times 0$

$$
d_{j+1} \sigma_{j}=d_{j+1} \sigma_{j+1}
$$

Now we prove the existence of i^{\prime} as extension of $H \circ \Upsilon_{n-1}$. Since $(n+1)$ simplex σ_{0} has all of its faces, except for one, in $\partial \Delta_{n} \times \Delta_{1}$ and K is a Kan complex then $\left.H \circ \Upsilon_{n-1}\right|_{\sigma_{0}}$ can be extended to σ_{0}. Now σ_{1} has all of its faces in $\partial \Delta_{n} \times \Delta_{1}$ except for two, one of which is shared with σ_{0}. Therefore $H \circ \Upsilon_{n}$ is defined on all of the faces σ_{1} except for one face, again since K is a Kan complex, we can extend $H \circ \Upsilon_{n-1}$ to all of σ_{1} and so on. By repeating this process we can extend $H \circ \Upsilon_{n-1}$ to all of $\Delta_{n} \times \Delta_{1}$. Finally the restriction of the newly extended H to $\Delta_{n} \times d^{0} \Delta_{1}$ takes its in the minimal subcomplex because by the induction hypothesis all of its faces $\left.H\right|_{\partial \Delta_{n} \times d^{0} \Delta_{1}}$ are in the minimal complex.

Proposition 1.88. Let M be a minimal complex and $f, g: M \rightarrow L$ two homotopic simplicial map. If f is an isomorphism then g is also.

Proof. Let $h=\left\{h_{q}\right\}_{q}$, be a homotopy between f and g, here $h_{q}: M_{i} \rightarrow$ $L_{i+1}, 0 \leq q \leq i$.
Proof of injectivity:
Suppose that $x, y \in M_{0}$ and $g(x)=g(y)$. For the two 1 -simplices $h_{0}(x)$ and $h_{0}(y)$, We have $d_{1} h_{0}(x)=g(x)=g(y)=d_{1} h_{0}(y)$ and by minimality of L we have $f(x)=d_{1} h_{0}(x)=d_{1} h_{0}(y)=f(y)$.

Now suppose that we have proved the injectivity of g on M_{i} for $i \leq q$. let x and y be two q-simplices with $g(x)=g(y)$. Since g is a simplicial map, we deduce that $g\left(d_{i} x\right)=g\left(d_{i} y\right)$, therefore by hypothesis (on injectivity) $d_{i} x=d_{i} y$. Using these identities we have

$$
\begin{aligned}
d_{i} h_{q}(x) & =h_{q-1}\left(d_{i} x\right)=h_{q-1}\left(d_{i} y\right)=d_{i} h_{q}(y), \quad \text { for } i<q \\
d_{q+1} h_{q}(x) & =g(x)=g(y)=d_{q+1} h_{q}(y)
\end{aligned}
$$

therefore by the minimality of L, we get $d_{q} h_{q}(x)=d_{q} h_{q}(y)$ which implies

$$
\begin{equation*}
d_{q} h_{q-1}(x)=d_{q} h_{q-1}(y) \tag{1.66}
\end{equation*}
$$

because h being a simplicial homotopy satisfies the identity $d_{q} h_{q-1}=$ $d_{q} h_{q}$. We repeat this process for $q-1$ instead of q, more precisely

$$
\begin{aligned}
& d_{i} h_{q-1}(x)=h_{q-2}\left(d_{i} x\right)=h_{q-2}\left(d_{i} y\right)=d_{i} h_{q-1}(y), \quad \text { for } i<q-1 \\
& d_{q} h_{q-1}(x)=d_{q} h_{q-1}(y) \quad(\text { by }(1.66))
\end{aligned}
$$

and then by minimality we get $d_{q-1} h_{q-1}(x)=d_{q-1} h_{q-1}(y)$, hence $d_{q-1} h_{q-2}(x)=$ $d_{q-1} h_{q-2}(y)$. By repeating this process we can finally get to the identity

$$
d_{0} h_{0}(x)=d_{0} h_{0}(y)
$$

which is to say $f(x)=f(y)$, therefore $x=y$

Proof of injectivity:

If $x \in L_{0}$ then choose $z \in L_{1}$ such that $d_{1} z=x$, and then choose $x \in M_{0}$ such that $f(x)=d_{0} z$. We have

$$
d_{0} h_{0}(x)=f(x)=d_{0} z
$$

so by minimality $d_{1} h_{0}(x)=d_{1} z$ which implies $g(x)=y$ hence the surjectivity of g on L_{0}. Now we complete the proof of the surjectivity by an induction: suppose that g is surjective on L_{i} for $i<q$ and $y \in L_{q}$. Choose x_{i} 's such that $g\left(x_{i}\right)=d_{i} y, 0 \leq i \leq q$.

Let $z_{q} \in L_{q+1}$ be an extension to for the sequence

$$
h_{q-1}\left(x_{0}\right), \cdots h_{q-1}\left(x_{q-1}\right),-, y .
$$

We choose $z_{i<q} \in L_{q+1}$ by descending recurrence relation as follows: $z_{j} \in L_{q+1}$ is the extension for sequence

$$
h_{j-1}\left(x_{0}\right), \cdots h_{j-1}\left(x_{j-1}\right),-, d_{j+1} z_{j+1}, h_{j}\left(x_{j+2}\right), \cdots, h_{j}\left(x_{q}\right)
$$

(in particular $d_{j+1} z_{j}=d_{j+1} z_{j+1}$). Now choose x such that $f(x)=d_{0} z_{0}$, we have, for $i>0$

$$
\begin{equation*}
f^{\prime}\left(d_{i} x\right)=d_{i} f(x)=d_{i} d_{0} z_{0}=d_{0} d_{i+1} z_{0}=d_{0} h_{0}\left(x_{0}\right)=d_{0} h_{0}\left(x_{i}\right)=f\left(x_{i}\right), \tag{1.67}
\end{equation*}
$$

for $i=0$,

$$
f\left(d_{0} x\right)=d_{0} f(x)=d_{0} d_{0} z_{0}=d_{0} d_{1} z_{0}=d_{0} d_{1} z_{1}=d_{0} d_{0} z_{1}=d_{0} h_{0}\left(x_{0}\right)=f\left(x_{0}\right)
$$

and by injectivity $d_{i} x=x_{i}$ for all i.
We have

$$
\begin{align*}
d_{0} h_{0}(x) & =f(x)=d_{0} z_{0} \\
d_{i} h_{0}(x) & =h_{0}\left(d_{i-1} x\right)=h_{0}\left(x_{i-1}\right)=d_{i} z_{0} \quad \text { for } i>1 \tag{1.68}
\end{align*}
$$

therefore by minimality $d_{1} z_{0}=d_{1} h_{0}(x)$. We continue this process using the identity $d_{j+1} z_{j}=d_{j+1} z_{j+1}$, we can prove that $d_{i} z_{j}=d_{i} h_{j}(x)$ for all i and as a consequence

$$
g(x)=d_{q+1} h_{q}(x)=d_{q+1} z_{q}=y,
$$

proving g is surjective.

Corollary 1.89. Suppose that M and L are minimal complexes. If $f: M \rightarrow L$ to is a homotopy equivalence then f is an isomorphism.

Proof. Suppose the g is the homotopical inverse of f then $f \circ g \simeq i d_{L}$ and $g \circ f \simeq i d_{M}$. Then by the previous result, Proposition 1.88, $f \circ g$ and $g \circ f$ are isomorphisms hence f and g are isomorphisms.

1.17. Simplicial Postnikov system

The Postnikov system is a way of decomposition a simplicial K set by means of an inverse system of simplicial subsets $K^{(n)}$ whose first n-th homotopy groups are identical to those of K. A major tool in proving various theorems about the homotopy type of the simplicial sets.

Definition 1.90. For a simplicial set $K^{(n)}$ is a simplicial defined as the equivalence classes

$$
K_{q}^{(n)}:=K_{q} / \stackrel{n}{\sim}
$$

where $x \stackrel{n}{\sim} y$ if $\left.\bar{x}\right|_{\Delta_{q}[p]}=\left.\bar{y}\right|_{\Delta_{q}[p]}$ for all $p \leq n$. In other words,

$$
\left.x \stackrel{n}{\sim} y \Longleftrightarrow \bar{x}\right|_{\mathrm{Sk}_{n}\left(\Delta_{q}\right)}=\left.\bar{y}\right|_{\mathrm{Sk}_{n}\left(\Delta_{q}\right)}
$$

Here $\bar{x}=\Upsilon_{q}(x): \Delta_{n} \rightarrow K$ is the simplicial map provided by the Yoneda Lemma. It is clear that

$$
K_{q}^{(n)}=K_{q}, \quad \text { for } n \geq q
$$

For our convenience in formulating he statements, we introduce

$$
K^{\infty}:=K
$$

When $n \geq m$ we have the natural projection maps $p_{m}^{n}: K^{(n)} \rightarrow K^{(m)}$ which are obviously simplicial maps. The reader may have noticed that this definition does not requires K to be a Kan complex.

Proposition 1.91. Let K be a Kan complex.
(1) For all $n\left(\infty\right.$ included), $K^{(n)}$ is a Kan complex.
(2) For all $n \geq m$ (∞ included), the simplicial map $p_{m}^{n}: K^{(n)} \rightarrow K^{(m)}$ is Kan fibration.
Proof. By virtue of Proposition 1.82, it is clear (2)for $n=\infty$ implies (1). As for (2), suppose that $x_{1}, \cdots, x_{k-1},-, x_{k+1}, \cdots, x_{q+1} \in K_{q}^{(n)}$ is a compatible sequence and $y \in K_{q}^{(m)}$ such that $d_{i} y=p\left(x_{i}\right)$.

- If $q \leq m$ then $K_{q}^{(n)}=K_{q}^{(m)}=K_{q}$, therefore x_{i} are basically the element of K_{q}. Let $z \in K_{q+1}$ be a representative for y, then it is clear that $d_{i} z=x_{i}=p\left(x_{i}\right) \in K_{q}^{(n)}=K_{q}^{(m)}=K_{q}$ so the class represented by z in $K_{q}^{(n)}$ does the job.
- If $q>m$, there are two possibilities:
- $n=\infty$: Since $K_{q}^{(n)}=K_{q}$ and K is a Kan complex, then there exist $x \in K_{q+1}$ such that $d_{i} x=x_{i}$. Let $z \in K_{q+1}$ be a representative for $y \in K_{q+1}^{(m)}$, then we claim that $x \stackrel{m}{\sim} z$, and this implies that $p(x)=y$ and we are done. As for the claim, first noticed that $p\left(d_{i} x\right)=p\left(x_{i}\right)=d_{i} y=p\left(d_{i} z\right)$ therefore for all i

$$
\begin{equation*}
d_{i} x \stackrel{m}{\sim} d_{i} z \tag{1.69}
\end{equation*}
$$

Since $m<q$, all the m-iterated faces of the q-simplices x and z are respectively are m-1-iterated faces of, respectively, $\left\{d_{i} x\right\}_{i}$ and $\left\{d_{i} z\right\}_{i}$. Let's spell the reasoning in more details: The relation (1.69) means that for all simplicial morphism $f:[m] \rightarrow[q]$ we $f^{*} d^{i *}(x)=f^{*} d^{i *}(z)$ i.e.

$$
\begin{equation*}
\left(d^{i} f\right)^{*}(x)=\left(d^{i} f\right)^{*}(z), \quad \text { for all } i \tag{1.70}
\end{equation*}
$$

On the other hand $x \stackrel{m}{\sim} z$ is equivalent to $g^{*}(x)=g^{*}(z)$ for any simplicial morphism $g:[m] \rightarrow[q+1]$. Note that any such simplicial morphism has a unique decomposition (see Lemma 1.5) which by some d^{i} therefore it can be written of the form $g=d^{i} f$, now the claim follows from (1.70).
$-n<\infty$: Since we just prove the case $n=\infty$ so we can use the result that $K^{(n)}$'s are all Kan complxes. Now the proof of this case is exactly the same as case $n=\infty$ of $q<m$ since the only hypothesis that we used was $K^{(n)}=K$ being a Kan complex.

Definition 1.92. The n-th Eilenberg-McLane space $E_{n+1}(K)$ of a Kan complex K is the fiber of the fibration

$$
\begin{equation*}
p=p_{n}^{\infty}: K \rightarrow K^{(n)}, \tag{1.71}
\end{equation*}
$$

i.e. we have a diagram

$$
\begin{equation*}
E_{n+1}(K) \hookrightarrow K \xrightarrow{p} K^{(n)} . \tag{1.72}
\end{equation*}
$$

Once a basepoint $x_{0} \in K$ is fixed, $E_{n+1}(K)$ consists of the simplices in K with faces of dimension less than n falling into the simplicial basepoint. So as a result

$$
E_{n+1}(K)_{q \leq n}=x_{0} .
$$

and

$$
\begin{equation*}
\pi_{q \leq n}\left(E_{n+1}(K)\right)=0 \tag{1.73}
\end{equation*}
$$

Proposition 1.93. Let K be Kan complex, x_{o} basepoint for K and $m \leq n$.
(i) $p_{*}:=\left(p_{m}^{n}\right) *: \pi_{q}\left(K^{(n)}\right) \rightarrow \pi_{q}\left(K^{(m)}\right)$ is an isomorphism for $q \leq m$.
(ii) $\pi_{q}\left(K^{(m)}\right)=0$ for all $q>m$.
(iii) The map $\pi_{q}\left(E_{m+1}\left(K^{(n)}\right)\right) \xrightarrow{\sim} \pi_{q}\left(K^{(n)}\right)$ induced by inclusion is an isomorphism for $q>m$.
(iv) $\pi_{q}\left(E_{m+1}\left(K^{(n)}\right)\right)=0$ if $q>n$ or $q \leq m$. In particular $E_{n}\left(K^{(n)}\right)$ is McLane-Eilenberg space.

Proof. (i): it follows from the homotopy groups long exact sequence associated to the fibration

$$
\begin{equation*}
p_{m}^{n}: K^{(n)} \xrightarrow{p} K^{(m)} . \tag{1.74}
\end{equation*}
$$

One can easily see that the fibre is $E_{m+1}\left(K^{(n)}\right)$ and by (1.73) i.e. $\pi_{i \leq m}\left(E_{m+1}\left(K^{(n)}\right)\right)=$ 0 and (i) follows.

Proof of (ii): Let $[x] \in \pi_{q}\left(K^{(m)}\right)$, where $x \in K_{q}$ is a representative. Then by definition $\left.\overline{d_{i}} x\right|_{\mathrm{Sk}_{m}\left(\Delta_{q-1}\right)}=\left.\overline{x_{0}}\right|_{\mathrm{Sk}_{m}\left(\Delta_{q-1}\right)}$. Because $m \leq q-1$ this implies that $\left.\bar{x}\right|_{\mathrm{Sk}_{m}\left(\Delta_{q}\right)}=\left.\overline{x_{0}}\right|_{\mathrm{Sk}_{m}\left(\Delta_{q}\right)}$. Said in more detail, every nondegenrate $f \in \operatorname{Sk}_{m}\left(\Delta_{q}\right)$ has a decomposition which starts with one codegenracy map d^{i} (see proof of (2) in Proposition 1.91 for a similar situation).
(iii) is a consequence of (ii) by taking again into the fibration

$$
E_{m+1}\left(K^{(n)}\right) \hookrightarrow \rightarrow K^{(n)} \xrightarrow{p} K^{(m)} .
$$

Proof of (iv):The case $q \leq m$ has already been proved (1.73). The case $q<n$ follows from (ii) and (iii).

1.18. Hurewicz and Whitehead theorem in simplicial setting

In this section we prove a series of theorems on comparing homotopy and homology groups. All over this section \sim denote the homotopy equivalence relation used for defining homotopy groups.

Proposition 1.94. Let K be a Kan complex. Then we have a group isomorphism

$$
\begin{equation*}
H_{0}(K)=\mathbb{Z} \pi_{0}(K) \tag{1.75}
\end{equation*}
$$

Here $\mathbb{Z} \pi_{0}(K)$ stands for the free abelian group generated by the elements of $\pi_{0}(K)$.

Proof. The canonical projection map $K_{0} \rightarrow K_{0} / \sim$ induces a map $p: C_{0}(K) \rightarrow \mathbb{Z} \pi_{0}(K)$. It is obvious that $B_{0}(K)$ is in the kernel of p because every 1 -simplex $\sigma, d_{0} \sigma$ and $d_{1} \sigma$ are homotopic (by definition), therefore we have map $p: H_{0}(K) \rightarrow \mathbb{Z} \pi_{0}(K)$ which is obvious surjective. The injectivity follows from the substitution principal.

Lemma 1.95. (Substitution principal) Let F be a free abelian group with basis B and $\left\{x_{i}\right\}_{i=0 . k}$ in B be a list of elements in B (repetition allowed), and assume that

$$
\sum_{i=1}^{k} m_{i} x_{i}=0
$$

for some $m_{i} \in \mathbb{Z}$. If G is any abelian group and $\left\{y_{i}\right\}_{i=0 . k}$ a list in G with the property that $\left(x_{i}=x_{j} \Rightarrow y_{i}=y_{j}\right)$, the

$$
\sum_{i=1}^{k} m_{i} y_{i}=0
$$

Definition 1.96. The reduced simplicial homology $\tilde{H}_{*}(K)$ of a simplicial set K is the homology of the quotient complex

$$
\tilde{C}_{n}(K):=C_{n}(K) / C_{n}\left(x_{0}\right)
$$

where x_{0} is a (simplicial) basepoint)
It follows from that long exact sequence associate to the short exact sequence

$$
0 \rightarrow C_{*}\left(x_{0}\right) \rightarrow C_{*}(K) \rightarrow \tilde{C}_{*}(K) \rightarrow 0
$$

that

$$
\tilde{H}_{n>0}(K) \simeq H_{n}(K) .
$$

The Hurewicz map $h: \pi_{n}\left(K, x_{0}\right) \rightarrow \tilde{H}_{n}(K)$, is the identity on the generators. Indeed if x represents a class in $\pi_{n}\left(K, x_{0}\right)$ then by definition, $d_{i} x=x_{0}$ for all i therefore we have $\partial x=0 \in \tilde{C}_{*}(K)$. Similarly one can define the relative Hurewicz map $h: \pi_{n}\left(K, L, x_{0}\right) \rightarrow H_{n}(K, L)$.

Proposition 1.97. The Hurewicz maps are well-defined group homomorphisms.

Proof. First we treat the non-relative case $h: \pi_{n}\left(K, x_{0}\right) \rightarrow \tilde{H}_{n}(K)$, the proof of the relative case is very much similar. Suppose that $w \in K_{n+1}$ is homotopy between x and $y \in \tilde{K}_{n}$. Then we have $\partial w=(-1)^{n}(y-x) \in \tilde{C}_{n}(K)$ and h is well-defined.

As for h being a homomorphism, suppose that $w \in K n+1$ is the simplex defining the product of $x, y \in \tilde{K}_{n}$ i.e. $d_{n-1} w=x, d_{n+1} w=y$ and $d_{i} w=x_{0}$. and by definition $[x] \cdot[y]=\left[d_{n} w\right]$.

We have that
$0=\partial w=(-1)^{n}\left(d_{n} w-(x+y) \in \tilde{C}_{n}(K)=(-1)^{n}(h([x \cdot y])-h([x]-h([y])\right.$ hence,

$$
h([x \cdot y])=h([x])+h([y])
$$

The proof of the next result is standard enough to be left to the reader.
Proposition 1.98. The Hurewiczs maps induce a map of long exact sequences.

Theorem 1.99. Let K be a connected simplicial set, then h induced an isomorphism

$$
h: \pi_{1}(K) /\left[\pi_{1}(K), \pi_{1}(K)\right] \rightarrow \tilde{H}_{1}(K) \simeq H_{1}(K)
$$

Proof. We can assume that K is minimal because it does not change the homotopy type. So K has only one 0 -simplex and $K_{1}=\tilde{K}_{1}$. First of all since the image of h is an abelian group, h induces a well-defined on the quotient i.e

$$
h: \pi_{1}(K) /\left[\pi_{1}(K), \pi_{1}(K)\right] \rightarrow H_{1}(K)
$$

We construct an inverse $\tilde{j}: H_{1}(K) \rightarrow \pi_{1}(K) /\left[\pi_{1}(K), \pi_{1}(K)\right]$ for h. Indeed the inverser is given by

$$
\left.j: \tilde{Z}_{1}(K)\right) \rightarrow \pi_{1}(K) /\left[\pi_{1}(K), \pi_{1}(K)\right]
$$

which is induced by the natural projection map $K_{1} \rightarrow K_{1} / \sim$ on the generators and then extended linearly to all of the group. We only have to show that $j\left(\operatorname{Im}(\partial) \subset\left[\pi_{1}, \pi_{1}\right]\right.$. So let $\sigma \in K_{2}$, hen by definition of the product on π_{1} we

$$
\left[d_{0} \sigma\right] \cdot\left[d_{2} \sigma\right]=\left[d_{1} \sigma\right]
$$

and

$$
\begin{align*}
j(\partial \sigma) & =j\left(d_{0} \sigma\right) j\left(-d_{1} \sigma\right) j\left(d_{2} \sigma\right)=\left[d_{0} \sigma\right]\left[d_{1} \sigma\right]^{-1}\left[d_{2} \sigma\right]=\left[d_{0} \sigma\right]\left(\left[d_{0} \sigma\right]\left[d_{2} \sigma\right]\right)^{-1}\left[d_{2} \sigma\right] \tag{1.77}\\
& =\left[\left[d_{0} \sigma\right],\left[d_{2} \sigma\right]^{-1}\right] \in\left[\pi_{1}(K), \pi_{1}(K)\right]
\end{align*}
$$

It is quite clear that $\tilde{j} \circ h=i d$ and $h \circ \tilde{j}=i d$
Definition 1.100. A Kan complex is called n-connected if $\pi_{i \leq n}(K)=$ 0/

Theorem 1.101. Let K be a $(n-1)$-connected Kan complex then $H_{i<n}(K)=$ 0 and

$$
h: \pi_{n}(K) \rightarrow H_{n}(K)
$$

is an isomorphism.
Proof. IF necessary we can replace K the minimal subcomplex of K because they have the same the same homotopy and homology groups. So assume that K is a minimal complex, therefor it has only one i-simplex for all $i<n$, and clearly $H_{i}(K)=0$ for $0<i<n$.

Another consequence is

$$
\tilde{C}_{n}(K)=\tilde{Z}_{n}(K)=\mathbb{Z}\left(K_{n} \backslash\left\{x_{0}\right\}\right)
$$

is the free abelian group generated by the all n-simplices except for the one falling in the basepoint. Similarly to the proof of Theorem 1.101, w construct an inverse \tilde{j} for h which is induced by the natural projection

$$
j: K_{n} \rightarrow K_{n} / \sim
$$

for the generator of $\tilde{C}_{n}(K)=\tilde{Z}_{n}(K)$ and then extended linearly. In other to prove that j induces a well-defined map \tilde{j} on the reduced homology, we have to prove that the elements in the image $j \circ \partial\left(\tilde{C}_{n+1}\right)$ are homotopic to x_{0}.

The proof relies on the following lemmata which basically give alternatives definitions of the groups law on π_{n}.

Lemma 1.102. Let v_{n+1} be a $(n+1)$-simplex such that

$$
d_{i} v_{n+1}=x_{0}, \text { for } i=n+1 \text { and } i<n-2 .
$$

Then $\left[d_{n} v_{n+1}\right]\left[d_{n-2} v_{n+1}\right]=\left[d_{n-1} v_{n+1}\right]$ in $\pi_{n}(K)$
Proof. Let $x:=d_{n-1} v_{n}, y=d_{n} v_{n}, w=d_{n-2} v_{n}$ Let v_{n-1} be the $(n+1)$-simplex extending the compatible sequence $x_{0} \cdots, x_{0},-, x, w$, tha denote $t:=d_{n-1} v_{n-1}$, hence

$$
\begin{equation*}
[t] \cdot[w]=[x] \tag{1.78}
\end{equation*}
$$

Let r be $(n+2)$-simplex extending

$$
x_{0}, \cdots, x_{0}, s_{n}(w), v_{n-1},-, v_{n+1}, s_{n-2}(w)
$$

and let $v_{n}=d_{n} r$. We have $d_{i \leq n-2} v_{n}=x_{0}, d_{n-1} v_{n}=t, d_{n} v_{n}=y$, or in other words

$$
[t]=[y],
$$

and using we get (1.78) $[y] .[w]=[x]$ as desired.
Lemma 1.103. Let v_{n} be a $(n+1)$-simplices such that such that $d_{i} v_{n}=x_{0}$ for $i=n-1$ and $i<n-2$. Then $\left[d_{n-1} v_{n}\right]\left[d_{n} v_{n}\right]=\left[d_{n+1} v_{n}\right]$ in $\pi_{n}(K)$.

Proof. We put $w=d_{n-1} v_{n}, y=d_{n} v_{n}, z=d_{n+1} v_{n}$. Choose an extension v_{n-1} for the sequence $x_{0}, \cdots, x_{0}, w, x_{0},-, x_{0}$ and let $t=d_{n-1} v_{n-1}$. By previous lemma we have

$$
[t][w]=1=\left[x_{0}\right] .
$$

Let $(n+2)$-simplex r be the extension of $x_{0} \cdots, x_{0}, s_{n-2}(w), v_{n-1}, v_{n},-, s_{n}(z)$ Then $(n+1)$-simplex $v_{n+1}:=d_{n+1} r$ implies the identity

$$
[t][z]=[y] .
$$

Putting the two obtained identity together we conclude that $[w][y]=[z]$.
Completing the proof of Theorem 1.101: Here we give detailed proof for $n=2$, the proof higher dimension is similar and left to the reader. Below we write everything in terms n to give a clue for higher dimension, but at the end threader should pout $n=2$.

So let v_{n+2} be a $(n+1)$-simplex. Let $w:=d_{n-2} v_{n+2}, x:=d_{n-1} v_{n+2}$, $y:=d_{n} v_{n+2}$ and $z:=d_{n+1} v_{n+2}$. We intend to prove that $[w]^{-1}[x][y]^{-1}[z]$ is homotopic to the degenerate 2 -simplex x_{0}.

Let $v_{n-2} \in K_{3}$ be an extension of $x_{0} \cdots, x_{0},-, x_{0}, x_{0}, w$ and $t=d_{n-2} v_{n-2}$, then by the previous lemma

$$
[t]=[w] .
$$

Let $v_{n-1} \in K_{n+1}$ be an extension of $x_{0}, \cdots, x_{0}, t, x_{0},-, x$ and $u:=$ $d_{n} v_{n-1}$ then

$$
[t][u]=[x] .
$$

Finally let r be an extension of $x_{0}, \cdots, x_{0}, v_{n-2}, v_{n-1}, s_{n}(y),-, v_{n+2}$. Then $d_{n+1} r$ defines gives rise to the identity

$$
[u][z]=[y] .
$$

Now putting the three obtained identities above we get

$$
[w][x]^{-1}[y][z]^{-1}=\left[x_{0}\right] \in \pi_{n}(K),
$$

which is equivalent to

$$
j\left(\partial v_{n+2}\right)=\left[x_{0}\right]=1 \in \pi_{n}(K) .
$$

Now that \tilde{j} is well-defined, verifying $\tilde{j} \circ h=i d$ and $h \circ \tilde{j}=i d$ is quite easy.
Corollary 1.104. If K is a 1 -connected Kan complex and $H_{i>0}(K)=0$ then K is contractible.

Proof. By applying Theorem 1.101 we have $\pi_{i}(M)=1$ for all i. Let K^{\prime} be a minimal complex for K. Since K^{\prime} is a deformation retract of K then, we have $\left.\pi_{(} K^{\prime}\right)=1$ for all. This means that K^{\prime} has only one simplex in each dimension, which has to be the degenerate one or in other words $K^{\prime}=x_{0}$ and K is a deformation retract of a (simplicial) point hence contractible.

The relative version of the Hurewicz theorem can be proved in a similar manner.

Theorem 1.105. Let $L \subset K$ be a pair of Kan complexes. If $\pi_{i \leq n-1}(K, L)=$ 1 then $H_{i \leq n-1}(K, L)=0$ and $h: \pi_{n}(K, L) \rightarrow H_{n}(K, L)$ is an isomorphism.

Theorem 1.106. Let $f: K \rightarrow L$ be an inclusion of 1 -connected simplicial spaces and $n>1$. The followings statement are equivalente.
(1) $f_{*}: \pi_{i}(K) \rightarrow \pi_{i}(L)$ is an isomorphism for $i<n$ and epimoprhism for $i=n$
(2) $f_{*}: H_{i}(K) \rightarrow H_{i}(L)$ is an isomorphism for $i<n$ and epimoprhism for $i=n$

Proof. $(1 \Rightarrow 2)$: Using the exact sequence (1.73), we see immediately that $\pi_{i}(K, L)=1$ for $0 \leq i \leq n$, therefore by the relative version of Hurewicz theorem, $H_{i}(K, L)=0$ for $0 \leq i \leq n$. Thus the natural map $H_{*}(L) \rightarrow H_{*}(K)$ surjective because of the long exact sequence involving the homologies of K and L and the relative homology $H_{*}(K, L)$.
$(2 \Rightarrow 1)$: Similarly we have $H_{i}(K, L)=0$ for $0 \leq i \leq n$. Since By the relative Hurewicz theorem the fist nontrivial relative homotopy group is isomorphic to the relative homology group. Since we assume that K and L are 1-connected, we can initiate applying the relative Hurewicz theorem inductively: $\pi_{1}(K, L)=1$, therefore $\pi_{2}(K, L) \simeq H_{2}(K, L)=0$ and so on.

1.19. Geometric realisation of Kan complexes

Proposition 1.107. Let K be a connected Kan complex with a basepont x_{0}. Then maps induced by the adjuntion isomorphisl Ψ,

$$
\Psi_{*}(K): \pi_{1}\left(K, x_{0}\right) \rightarrow \pi_{1}\left(S T(K), S T\left(x_{0}\right)\right)
$$

is an isomorphism.
Proof. As usual, we can assume that K is minimal. Since K has a single 0 -simplex, the fundamental group $\pi_{1}\left(K, x_{0}\right)$ has a simple description. It has one generator for each nondegenerate 1 -simplex and on relation for each nondegenerate 2-simplex. Thanks to the Van-Kampen theorem, we have exactly the same description for the fundamental group $\pi_{1}\left(S T(K), S T\left(x_{0}\right)\right)$ of CW-complex $T S(X)$ where 1-cells (generators) and 2-cells (relations) are in one-to-one correspondance with nondegenerate 1 and 2 -simplices.

Theorem 1.108. Let K be be a connected Kan complex and X a connected topological space.
(1) $\Psi_{*}(K): \pi_{n}\left(K, x_{0}\right) \rightarrow \pi_{n}\left(S T(K), T S\left(x_{0}\right)\right)$ is an isomorphism for all $n \geq 1$.
(2) $\Phi_{*}: \pi_{n}(T S(X), T S(a)) \rightarrow \pi_{n}(X, a)$ is an isomorphism.

Here the maps Ψ and Φ are the bijection of the adjunction between the functor S and T in Section 1.8.

Proof. (1): The case $n=1$ is the previous theorem therefore we assume that $n \geq 2$. We may assume that K is minimal. Otherwise we replace K by one of its minimal subcomplex which is a deformation retract of K. Therefore it has only one 0 -simplex and we can use the construction of the universal cover \tilde{K} of K and we have that
for $n \geq 2$. Let F be fibre of the natural projection $p: \tilde{K} \rightarrow K$ which is Kan fibration. By Theorem 1.42, the (inclusion) unit map $\Psi: \tilde{K} \rightarrow S T(K)$ of the adjunction, induces an isomorphism in homology groups, therefore by Theorem 1.106Ψ induces an isomorphism in homotopy groups

$$
\pi_{n}\left(\tilde{K}, x_{0}\right) \simeq \pi_{n}\left(S T\left(\tilde{K}, S T\left(x_{0}\right)\right)\right.
$$

Clearly we have an isomorphism $\left.\pi_{n}\left(F, \bar{x}_{0}\right) \simeq \pi_{n}\left(S T(F) S, T(\bar{x})_{0}\right)\right)$. Now using the naturality of homotopy group long exact sequence associated to the Kan fibrations, in our case $F \rightarrow \tilde{K} \rightarrow K$ and $S T(F) \rightarrow S T(\tilde{K}) \rightarrow S T(K)$, we conclude that

Proof of (2): By (1) we have an isomorphism

$$
\pi_{n}(S(X)) \stackrel{\Psi(S(X))_{*}}{\sim} \pi_{n}(S T(S(X)) .
$$

Since $S \Phi \circ \Psi S=i d$ we conclude that $(S \Phi)_{*}(X): \pi_{n}\left(S T S(X) \rightarrow \pi_{n}(S(X))\right.$ is an isomorphism. By Theorem 1.77 we have isomorphisms

$$
\pi_{n}\left(S T(S(X)) \stackrel{\phi_{\Delta_{n},(T S(X))}^{\sim}}{\sim} \pi_{n}(T S(X))\right.
$$

and

$$
\pi_{n}(S(X)) \stackrel{\phi_{\Delta_{n,(X)}}}{\simeq} \pi_{n}(X)
$$

Now the result follows.

CHAPTER 2

An introduction to model categories and derived functors

The classical references for this subject are Hovey's book [Hov99] and the Dwyer-Spalińsky manuscript [DS95]. The reader who gets to know the notion of model category for the first time should not worry about the word "closed", which now has only a historical bearing. From now on we drop the word "closed" from "closed model category".

Definition 2.1. A model category is a category \mathbf{C} endowed with three classes of morphisms \mathcal{C} (cofibrations), \mathcal{F} (fibrations) and \mathcal{W} (weak equivalences) such that the following conditions hold:
(MC1) \mathbf{C} is closed under finite limits and colimits.
(MC2) Let $f, g \in \operatorname{Mor}(\mathbf{C})$ such that $f g$ is defined. If any two among f, g and $f g$ are in \mathcal{W}, then the third one is in \mathcal{W}.
(MC3) Let f be a retract of g, meaning that there is a commutative diagram

in which the two horizontal compositions are identities. If $g \in \mathcal{C}$ (resp. \mathcal{F} or \mathcal{W}), then $f \in \mathcal{C}($ resp. \mathcal{F} or $\mathcal{W})$.
(MC4) For a commutative diagram as below with $i \in \mathcal{C}$ and $p \in \mathcal{F}$, the morphism f making the diagram commutative exists if
(1) $i \in \mathcal{W}$ (left lifting property (LLP) of fibrations $f \in \mathcal{F}$ with respect to acyclic cofibrations $i \in \mathcal{W} \cap \mathcal{C})$.
(2) $p \in \mathcal{W}$ (right lifting property (RLP) of cofibrations $i \in \mathcal{C}$ with respect to acyclic fibrations $p \in \mathcal{W} \cap \mathcal{F}$).

In the above we call the elements of $\mathcal{W} \cap \mathcal{C}$ (resp. $\mathcal{W} \cap \mathcal{F}$) acyclic cofibrations (resp. acyclic fibrations).
(MC5) Any morphism $f: A \rightarrow B$ can be written as one of the following:
(1) $f=p i$ where $p \in \mathcal{F}$ and $i \in \mathcal{C} \cap \mathcal{W}$;
(2) $f=p i$ where $p \in \mathcal{F} \cap \mathcal{W}$ and $i \in \mathcal{C}$.

In fact, in a model category the lifting properties characterize the fibrations and cofibrations.

Proposition 2.2. In a model category:
(i) The cofibrations are the morphisms which have the RLP with respect to acyclic fibrations.
(ii) The acyclic cofibrations are the morphisms which have the RLP with respect to fibrations.
(iii) The fibrations are the morphisms which have the LLP with respect to acyclic cofibrations.
(iv) The acyclic fibrations in C are the maps which have the LLP with respect to cofibrations.

It follows from (MC1) that a model category \mathbf{C} has an initial object \emptyset and a terminal object $*$. An object $A \in \operatorname{Obj}(\mathbf{C})$ is called cofibrant if the morphism $\emptyset \rightarrow A$ is a cofibration and is said to be fibrant if the morphism $A \rightarrow *$ is a fibration.

Example 1: For any unital associative ring R, let $\mathrm{Ch}(R)$ be the category of non-negatively graded chain complexes of left R-modules. The following three classes of morphisms endow $\mathrm{Ch}(R)$ with a model category structure:
(1) Weak equivalences \mathcal{W} : these are the quasi-isomorphims, i.e. maps of R-complexes $f=\left\{f_{k}\right\}_{k \geq 0}:\left\{M_{k}\right\}_{k \in \mathbb{Z}} \rightarrow\left\{N_{k}\right\}_{k \geq 0}$ inducing an isomorphism $f_{*}: H_{*}(M) \rightarrow H_{*}(N)$ in homology.
(2) Fibrations $\mathcal{F}: f$ is a fibration if it is (componentwise) surjective, i.e. for all $k \geq 0, f_{k}: M_{k} \rightarrow N_{k}$ is surjective.
(3) Cofibrations $\mathcal{C}: f=\left\{f_{k}\right\}$ is a cofibration if for all $k \geq 0, f_{k}: M_{k} \rightarrow$ N_{k} is injective with a projective R-module as its cokernel. Here we use the standard definition of projective R-modules, i.e. modules which are direct summands of free R-modules.

Example 2: The category Top of topological spaces can be given the structure of a model category by defining a map $f: X \rightarrow Y$ to be
(i) a weak equivalence if f is a homotopy equivalence;
(ii) a cofibration if f is a Hurewicz cofibration;
(iii) a fibration if f is a Hurewicz fibration.

Let A be a closed subspace of a topological space B. We say that the inclusion $i: A \hookrightarrow B$ is a Hurewicz cofibration if it has the homotopy extension property that is for all maps $f: B \rightarrow X$, any homotopy F :
$A \times[0,1] \rightarrow X$ of $\left.f\right|_{A}$ can be extended to a homotopy of $f: B \rightarrow X$.

A Hurewicz fibration is a continuous map $E \rightarrow B$ which has the homotopy lifting property with respect to all continuous maps $X \rightarrow B$, where $X \in$ Top.

Example 3: The category Top of topological spaces can be given the structure of a model category by defining $f: X \rightarrow Y$ to be
(i) a weak equivalence when it is a weak homotopy equivalence.
(ii) a cofibration if it is a retract of a map $X \rightarrow Y^{\prime}$ in which Y^{\prime} is obtained from X by attaching cells,
(iii) a fibration if it is a Serre fibration.

We recall that a Serre fibration is a continuous map $E \rightarrow B$ which has the homotopy lifting property with respect to all continuous maps $X \rightarrow B$ where X is a CW-complex (or, equivalently, a cube).

Cylinder, path objects and homotopy relation. After setting up the general framework, we define the notion of homotopy. A cylinder object for $A \in$ $\operatorname{Obj}(\mathbf{C})$ is an object $A \wedge I \in \operatorname{Obj}(\mathbf{C})$ with a weak equivalence $\sim: A \wedge I \rightarrow A$ which factors the natural map $i d_{A} \sqcup i d_{A}: A \amalg A \rightarrow A$:

$$
i d_{A} \sqcup i d_{A}: A \coprod A \xrightarrow{i} A \wedge I \xrightarrow[\rightarrow]{\sim} A
$$

Here $A \amalg A \in \operatorname{Obj}(\mathbf{C})$ is the colimit, for which one has two structural maps $i n_{0}, i n_{1}: A \rightarrow A \amalg A$. Let $i_{0}=i \circ i n_{0}$ and $i_{1}=i \circ i n_{1}$. A cylinder object $A \wedge I$ is said to be good if $A \amalg A \rightarrow A \wedge I$ is a cofibration. By (MC5), every $A \in \operatorname{Obj}(\mathbf{C})$ has a good cylinder object.

Definition 2.3. Two maps $f, g: A \rightarrow B$ are said to be left homotopic $f \stackrel{l}{\sim} g$ if there is a cylinder object $A \wedge I$ and $H: A \wedge I \rightarrow B$ such that $f=H \circ i_{0}$ and $g=H \circ i_{1}$. A left homotopy is said to be good if the cylinder object $A \wedge I$ is good. It turns out that every left homotopy relation can be realized by a good cylinder object. In addition one can prove that if B is a fibrant object, then a left homotopy for f and g can be refined into a very good one, i.e. $A \wedge I \rightarrow A$ is a fibration.

It is easy to prove the following:
Lemma 2.4. If A is cofibrant, then left homotopy $\stackrel{l}{\sim}$ is an equivalence relation on $\operatorname{Hom}_{\mathbf{C}}(A, B)$.

Similary, we introduce the notion of path objects which will allow us to define right homotopy relation. A path object for $A \in \operatorname{Obj}(\mathbf{C})$ is an
object $A^{I} \in \operatorname{Obj}(\mathbf{C})$ with a weak equivalence $A \xrightarrow{\sim} A^{I}$ and a morphism $p: A^{I} \rightarrow A \times A$ which factors the diagonal map

$$
\left(i d_{A}, i d_{A}\right): A \xrightarrow{\sim} A^{I} \xrightarrow{p} A \times A .
$$

Let $p r_{0}, p r_{1}: A \times A \rightarrow A$ be the structural projections. Define $p_{i}=p r_{i} \circ p$. A path object A^{I} is said to be good if $A^{I} \rightarrow A \times A$ is a fibration. By (MC5) every $A \in \operatorname{Obj}(\mathbf{C})$ has a good path object.

Definition 2.5. Two maps $f, g: A \rightarrow B$ are said to be right homotopic $f \stackrel{r}{\sim} g$ if there is a path object B^{I} and $H: A \rightarrow B^{I}$ such that $f=p_{0} \circ H$ and $g=p_{1} \circ H$. A right homotopy is said to be good if the path object P^{I} is good. It turns out that every right homotopy relation can be refined into a good one. In addition one can prove that if B is a cofibrant object then a right homotopy for f and g can be refined into a very good one, i.e. $B \rightarrow B^{I}$ is a cofibration.

Lemma 2.6. If B is fibrant, then right homotopy $\stackrel{r}{\sim}$ is an equivalence relation on $\operatorname{Hom}_{\mathbf{C}}(A, B)$.

One naturally asks whether being right and left homotopic are related. The following result answers this question.

Lemma 2.7. Let $f, g: A \rightarrow B$ be two morphisms in a model category C.
(1) If A is cofibrant then $f \stackrel{l}{\sim} g$ implies $f \stackrel{r}{\sim} g$.
(2) If B is fibrant then $f \stackrel{r}{\sim} g$ implies $f \stackrel{l}{\sim} g$.

Cofibrant and Fibrant replacement and homotopy category. By applying (MC5) to the canonical morphism $\emptyset \rightarrow A$, there is a cofibrant object (not unique) $Q A$ and an acyclic fibration $p: Q A \xrightarrow{\sim} A$ such that $\emptyset \rightarrow Q A \xrightarrow{p} A$. If A is cofibrant we can choose $Q A=A$.

Lemma 2.8. Given a morphism $f: A \rightarrow B$ in \mathbf{C}, there is a morphism $\tilde{f}: Q A \rightarrow Q B$ such that the following diagram commutes:

The morphism \tilde{f} depends on f up to left and right homotopy, and is a weak equivalence if and only f is. Moreover, if B is fibrant then the right or left homotopy class of \tilde{f} depends only on the left homotopy class of f.

Similarly one can introduce a fibrant replacement by applying (MC5) to the terminal morphism $A \rightarrow *$ and obtain a fibrant object $R A$ with an acyclic cofibration $i_{A}: A \rightarrow R A$.

Lemma 2.9. Given a morphism $f: A \rightarrow B$ in \mathbf{C}, there is a morphism $\tilde{f}: R A \rightarrow R B$ such that the following diagram commutes:

The morphism \tilde{f} depends on f up to left and right homotopy, and is a weak equivalence if and only f is. Moreover, if A is cofibrant then right or left homotopy class of \tilde{f} depends only on the right homotopy class of f.

REmARK 2.10. For a cofibrant object $A, R A$ is also cofibrant because the trivial morphism $(\emptyset \rightarrow R A)=\left(\emptyset \rightarrow A \xrightarrow{i_{A}} R A\right)$ can be written as the composition of two cofibrations, therefore is a cofibration. In particular, for any object $A, R Q A$ is fibrant and cofibrant. Similarly, $Q R A$ is a fibrant and cofibrant object.

Lemma 2.11. Suppose that $f: A \rightarrow X$ is a map in \mathbf{C} between objects A and X which are both fibrant and cofibrant. Then f is a weak equivalence if and only if f has a homotopy inverse, i.e. if and only if there exists a map $g: X \rightarrow A$ such that the composites $g f$ and $f g$ are homotopic to the respective identity maps.

Putting the last three lemmas together, one can make the following definition:

Definition 2.12. The homotopy category $\mathrm{Ho}(\mathbf{C})$ of a model category \mathbf{C} has the same objects as \mathbf{C} and the morphism set $\operatorname{Hom}_{\mathrm{Ho}(\mathbf{C})}(A, B)$ consists of the (right or left) homotopy classes of the morphisms in $\operatorname{Hom}_{\mathbf{C}}(R Q A, R Q B)$. Note that since $R Q A$ and $R Q B$ are fibrant and cofibrant, the left and right homotopy relations are the same. There is a natural functor $H_{\mathbf{C}}: \mathbf{C} \rightarrow$ $\mathrm{Ho}(\mathbf{C})$ which is the identity on the objects and sends a morphism $f: A \rightarrow B$ to the homotopy class of the morphism obtained in $\operatorname{Hom}_{\mathbf{C}}(R Q A, R Q B)$ by applying consecutively Lemma 2.8 and Lemma 2.9.

Localization functor. Here we give a brief conceptual description of the homotopy category of a model category. This description relies only on the class of weak equivalences and suggests that weak equivalences encode most of the homotopic properties of the category. Let W be a subset of the morphisms in a category \mathbf{C}. A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ is said to be a localization of \mathbf{C} with respect to W if the elements of W are sent to isomorphisms and if F is universal for this property, i.e. if $G: \mathbf{C} \rightarrow \mathbf{D}^{\prime}$ is any another localizing functor then G factors through F via a functor $G^{\prime}: \mathbf{D} \rightarrow \mathbf{D}^{\prime}$ for which $G^{\prime} F=G$. It follows from Lemma 2.11 and a little work that:

Theorem 2.13. For a model category \mathbf{C}, the natural functor $H_{\mathbf{C}}: \mathbf{C} \rightarrow$ $\mathrm{Ho}(\mathbf{C})$ is a localization of \mathbf{C} with respect to the weak equivalences.

Derived and total derived functors. In this section we introduce the notions of left derived functor LF and right derived functor RF of a functor $F: \mathbf{C} \rightarrow \Delta$ on a model category \mathbf{C}. In particular, we spell out sufficient conditions for the existence of $L F$ and $R F$ which provide us a factorization of F via the homotopy categories. If Δ happens to be a model category, then we also introduce the notion of total derived functor and provide some sufficient conditions for its existence.

All functors considered here are covariant, however see Remark 2.17.
Definition 2.14. For a functor $F: \mathbf{C} \rightarrow \Delta$ on a model category \mathbf{C}, we consider all pairs (G, s) where $G: \operatorname{Ho}(\mathbf{C}) \rightarrow \Delta$ is a functor and s : $G H_{\mathbf{C}} \rightarrow F$ is a natural transformation. The left derived functor of F is such a pair $(L F, t)$ which is universal from the left, i.e. for any other such pair (G, s) there is a unique natural transformation $t^{\prime}: G \rightarrow L F$ such that $t\left(t^{\prime} H_{\mathbf{C}}\right): G H_{\mathbf{C}} \rightarrow F$ is s.

Similarly one can define the right derived functor $R F: \operatorname{Ho}(\mathbf{C}) \rightarrow \Delta$ which provides a factorization of F and satisfies the usual universal property from the right. A right derived functor of F is a pair $(R F, t)$ where $R F$: $\mathrm{Ho}(\mathbf{C}) \rightarrow \Delta$ and t is a natural transformation $t: F \rightarrow R F H_{\mathbf{C}}$ such that for any pair (G, s) there is a unique natural transformation $t^{\prime}: R F \rightarrow G$ such that $\left(t^{\prime} H_{\mathbf{C}}\right) t: F \rightarrow G H_{\mathbf{C}}$ is s.

The reader can easily check that the derived functors of F are unique up to canonical equivalence. The following result tells us when do derived functors exist.

Proposition 2.15. (1) Suppose that $F: \mathbf{C} \rightarrow \Delta$ is a functor from a model category \mathbf{C} to a category Δ, which transforms acyclic cofibrations between cofibrant objects into isomorphims. Then (LF,t), the left derived functor of F, exists. Moreover, for any cofibrant object X the map $t_{X}: L F(X) \rightarrow F(X)$ is an isomorphism.
(2) Suppose that $F: \mathbf{C} \rightarrow \Delta$ is a functor from a model category \mathbf{C} to a category Δ, which transforms acyclic fibrations between fibrant objects into isomorphisms. Then $(R F, t)$, the right derived functor of F, exists. Moreover, for all fibrant object X the map $t_{X}: R F(X) \rightarrow F(X)$ is an isomorphism.
Definition 2.16. Let $F: \mathbf{C} \rightarrow \Delta$ be a functor between two model categories. The total left derived functor $\mathbb{L} F: \operatorname{Ho}(\mathbf{C}) \rightarrow \operatorname{Ho}(\Delta)$ is the left derived functor of $H_{\Delta} F: \mathbf{C} \rightarrow \operatorname{Ho}(\Delta)$. Similarly one defines the total right derived functor $\mathbb{R} F: \mathbf{C} \rightarrow \Delta$ to be the right derived functor of $H_{\Delta} F: \mathbf{C} \rightarrow$ $\operatorname{Ho}(\Delta)$.

Remark 2.17. Till now we have defined and discussed the derived functor for covariant functors. We can define the derived functors for contravariant functors as well, for that we only have to work with the opposite category of the source of the functor. A morphism $A \rightarrow B$ in the opposite category is a cofibration (resp. fibration, weak equivalence) if and only if
the corresponding morphism $B \rightarrow A$ is a fibration (resp. cofibration, weak equivalence).

We finish this section with an example.
Example 4: Consider the model category $\mathrm{Ch}(R)$ of Example 1 in Section ?? and let M be a fixed R-module. One defines the functor $F_{M}: \mathrm{Ch}(R) \rightarrow$ $\mathrm{Ch}(\mathbb{Z})$ given by $F_{M}\left(N_{*}\right)=M \otimes_{R} N_{*}$ where $N_{*} \in \operatorname{Ch}(R)$ is a complex of R-modules. Let us check that $F=H_{\mathrm{Ch}(R)} F_{M}: \operatorname{Ch}(R) \rightarrow \mathrm{Ch}(\mathbb{Z})$ satisfies the conditions of Proposition 2.15.

Note that in $\mathrm{Ch}(R)$ every object is fibrant and a complex A_{*} is cofibrant if for all k, A_{k} is a projective R-module. We have to show that an acyclic cofibration $f: A_{*} \rightarrow B_{*}$ between cofibrant objects A and B is sent by F to an isomorphism. So for all k, we have a short exact sequence $0 \rightarrow$ $A_{*} \rightarrow B_{*} \rightarrow B_{*} / A_{*} \rightarrow 0$ where for all $k, B_{k} / A_{k}$ is also projective. Since f is a quasi-isomorphism the homology long exact sequence of this short exact sequence tells us that the complex B_{*} / A_{*} is acyclic. The lemma below shows that B_{*} / A_{*} is in fact a projective complex. Therefore we have $B_{*} \simeq A_{*} \oplus B_{*} / A_{*}$. So $F_{M}\left(B_{*}\right) \simeq F_{M}\left(A_{*}\right) \oplus F_{M}\left(B_{*} / A_{*}\right) \simeq F_{M}\left(A_{*}\right) \oplus$ $\bigoplus_{n} F_{M}\left(D\left(Z_{n-1}\left(B_{*} / A_{*}\right), n\right)\right)$. Here $Z_{*}\left(X_{*}\right):=\operatorname{ker}\left(d: X_{*} \rightarrow X_{*+1}\right)$ stands for the graded module of the cycles in a given complex X_{*}, and the complex $D(X, n)_{*}$ is defined as follows: To any R-module X and a positive integer n, one can associate a complex $\left\{D(X, n)_{k}\right\}_{k \geq 0}$,

$$
D(X, n)_{k}=\left\{\begin{array}{l}
0, \text { if } k \neq n, n-1 \\
X, \text { if } k=n, n-1
\end{array}\right.
$$

where the only nontrivial differential is the identity map.
It is a direct check that each $F_{M}\left(D\left(Z_{n-1}\left(B_{*} / A_{*}\right), n\right)\right)$ is acyclic, and therefore $H_{\mathrm{Ch}(\mathbb{Z})}\left(F_{M}(B)\right)$ is isomorphic to $H_{\mathrm{Ch}(\mathbb{Z})}\left(F_{M}(A)\right)$ in the homotopy category $\mathrm{Ho}(\mathrm{Ch}(\mathbb{Z}))$.

LEMMA 2.18. Let $\left\{C_{k}\right\}_{k>0}$ be an acyclic complex where each C_{k} is a projective R-module. Then $\left\{C_{k}\right\}_{k \geq 0}$ is a projective complex, i.e. any levelwise surjective chain complex map $D_{*} \rightarrow E_{*}$ can be lifted via any chain complex map $C_{*} \rightarrow E_{*}$.

Proof. It is easy to check that if X is a projective R-module then $D_{n}(X)$ is a projective complex. Let $C_{*}^{(m)}$ be the complex

$$
C_{k}^{(m)}=\left\{\begin{array}{l}
C_{k}, \text { if } k \geq m \\
Z_{k}(C), \text { if } k=m-1, \\
0 \text { otherwise }
\end{array}\right.
$$

Here $Z_{k}(C)$ denotes the space of cycles in C_{k}, and $B_{k}(C)$ is the space of boundary elements in C_{k}. The acyclicity condition implies that we have an isomorphism $C_{*}^{(m)} / C_{*}^{(m+1)} \simeq D\left(Z_{m-1}(C), m\right)$. Note that $Z_{0}(C)=C_{0}$ is a projective R-module and $C_{*}=C^{(1)}=C^{(2)} \oplus D_{1}\left(Z_{0}(C)\right)$. Now $D_{1}\left(Z_{0}(C)\right)$
is a projective complex and $C^{(2)}$ also satisfies the assumption of the lemma and vanishes in degree zero. Therefore by applying the same argument one sees that $C^{(2)}=C^{(3)} \oplus D\left(Z_{1}(C), 2\right)$. Continuing this process one obtains $C_{*}=D\left(Z_{0}(C), 1\right) \oplus D\left(Z_{1}(C), 2\right) \cdots \oplus D\left(Z_{k-1}, k\right) \oplus \cdots$ where each factor is a projective complex, thus proving the statement.

We finish this example by computing the left derived functor. For any R-module N let $K(N, 0)$ be the chain complex concentrated in degree zero where there is a copy of N. Since every object is fibrant, a fibrant-cofibrant replacement of $K(N, 0)$ is simply a cofibrant replacement. A cofibrant replacement P_{*} of $K(N, 0)$ is exactly a projective resolution (in the usual sense) of N in the category of R-modules. In the homotopy category of $\operatorname{Ch}(R), K(N, 0)$ and P are isomorphic because by definition $\operatorname{Hom}_{H o(\operatorname{Ch}(R))}(K(N, 0), P)$ consists of the homotopy classes of

$$
\operatorname{Hom}_{\mathrm{Ch}(R)}\left(R Q K(N, 0), R Q P_{*}\right)=\operatorname{Hom}_{\mathrm{Ch}(R)}\left(P_{*}, P_{*}\right)
$$

which contains the identity map. Therefore by Proposition 2.15

$$
\mathbb{L} F(K(N, 0)) \simeq \mathbb{L} F\left(P_{*}\right)
$$

and $\mathbb{L} F\left(P_{*}\right)$ and the definition of total derived functor is isomorphic to $H_{\mathrm{Ch}(R)} F\left(P_{*}\right)=M \otimes_{R} P_{*}$. In particular,

$$
H_{*}\left(\mathbb{L} F(K(N, 0))=\operatorname{Tor}_{*}^{R}(N, M),\right.
$$

where $\operatorname{Tor}_{*}^{R}$ is the usual Tor_{R} in homological algebra. We usually denote the derived functor $\mathbb{L} F(N)=N \otimes_{R}^{L} M$. Similarly one can prove that the contravariant functor $N_{*} \mapsto \operatorname{Hom}_{R}\left(N_{*}, M\right)$ has a total right derived functor, denoted by $\mathrm{RHom}_{R}\left(N_{*}, M\right)$, and

$$
H^{*}\left(\operatorname{RHom}_{R}(K(N, 0), M)\right) \simeq \operatorname{Ext}_{R}^{*}(N, M)
$$

is just the usual Ext functor (see Remark 2.17).
2.0.1. Hinich's theorem and Derived category of DG modules. The purpose of this section is to introduce a model category and derived functors of DG-modules over a fixed differential graded \mathbf{k}-algebra. From now on we assume that \mathbf{k} is a field. The main result is essentially due to Hinich [Hin97], who introduced a model category structure for algebras over a vast class of operads.

Let $C(\mathbf{k})$ be the category of (unbounded) complexes over \mathbf{k}. For $d \in \mathbb{Z}$ let $M_{d} \in C(\mathbf{k})$ be the complex

$$
\cdots \rightarrow 0 \rightarrow \mathbf{k}=\mathbf{k} \rightarrow 0 \rightarrow 0 \cdots
$$

concentrated in degrees d and $d+1$.

Theorem 2.19. (Hinich) Let \mathbf{C} be a category which admits finite limits and arbitrary colimits and is endowed with two right and left adjoint functors (\#,F)

$$
\begin{equation*}
\#: C \rightleftarrows C(\mathbf{k}): F \tag{2.4}
\end{equation*}
$$

such that for all $A \in \operatorname{Obj}(A)$ the canonical map $A \rightarrow A \amalg F\left(M_{d}\right)$ induces a quasi-isomorphism $A^{\#} \rightarrow\left(A \amalg F\left(M_{d}\right)\right)^{\#}$. Then there is a model category structure on \mathbf{C} where the three distinct classes of morphisms are:
(1) Weak equivalences \mathcal{W} : $f \in \operatorname{Mor}(\mathbf{C})$ is in \mathcal{W} if $f^{\#}$ is a quasiisomorphism.
(2) Fibrations $\mathcal{F}: f \in \operatorname{Mor}(\mathbf{C})$ is in \mathcal{F} if $f^{\#}$ is (componentwise) surjective.
(3) Cofibrations $\mathcal{C}: f \in \operatorname{Mor}(\mathbf{C})$ is a cofibration if it satisfies the LLP property with respect to all acyclic fibrations $\mathcal{W} \cap \mathcal{F}$.

As an application of Hinich's theorem, one obtains a model category structure on the category $\operatorname{Mod}(A)$ of (left) differential graded modules over a differential graded algebra A. Here $\#$ is the forgetful functor and F is given by tensoring $F(M)=A \otimes_{\mathbf{k}} M$.

Corollary 2.20. The category $\operatorname{Mod}(A)$ of $D G A$-modules is endowed with a model category structure where
(i) weak equivalences are the quasi-isomorphisms.
(ii) fibrations are level-wise surjections. Therefore all objects are fibrant.
(iii) cofibrations are the maps that have the left lifting property with respect to all acyclic fibrations.

In what follows we give a description of cofibrations and cofibrant objects. An excellent reference for this part is [FHT95].

Definition 2.21. An A-module P is called a semi-free extension of M if P is a union of an increasing family of A-modules $M=P(-1) \subset P(0) \subset \ldots$ where each $P(k) / P(k-1)$ is a free A-modules generated by cycles. In particular P is said to be a semi-free A-module if it is a semi-free extension of the trivial module 0 . A semi-free resolution of an A-module morphism $f: M \rightarrow N$ is a semi-free extension P of M with a quasi-isomorphism $P \rightarrow N$ which extends f.

In particular a semi-free resolution of an A-module M is a semi-free resolution of the trivial map $0 \rightarrow M$.

The notion of a semi-free module can be traced back to [GM74], and [Dri04] is another nice reference for the subject. A k-complex (M, d) is called a semi-free complex if it is semi-free as a differential k-module. Here \mathbf{k} is equipped with the trivial differential. In the case of a field \mathbf{k}, every positively graded \mathbf{k}-complex is semi-free. It is clear from the definition that a finitely generated semi-free A-module is obtained through a finite sequence
of extensions of some free A-modules of the form $A[n], n \in \mathbb{Z}$. Here $A[n]$ is A after a shift in degree by $-n$.

Lemma 2.22. Let M be an A-module with a filtration $F_{0} \subset F_{1} \subset F_{2} \ldots$ such that F_{0} and all F_{i+1} / F_{i} are semifree A-modules. Then M is semifree.

Proof. Since F_{k} / F_{k-1} is semifree, it has a filtration $\cdots P_{l}^{k} \subset P_{l+1}^{k} \cdots$ such that P_{l}^{k} / P_{l+1}^{k} is generated as an (A, d)-module by cycles. So one can write $F_{k} / F_{k-1}=\oplus_{l}\left(A \otimes Z_{k}^{\prime}(l)\right)$ where $Z_{k}^{\prime}(l)$ are free (graded) \mathbf{k}-modules such that $d\left(Z_{k}(l)\right) \subset \oplus_{j \leq l} Z_{k}(j)$. Therefore there are free \mathbf{k}-modules $Z_{k}(l)$ such that

$$
F_{k}=F_{k-1} \bigoplus_{l \geq 0} Z_{k}^{\prime}(l)
$$

and

$$
d\left(Z_{k}(l)\right) \subset F_{k-1} \bigoplus_{j<l} A \otimes Z_{k}(j) .
$$

In particular M is the free \mathbf{k}-module generated by the union of all basis elements $\left\{z_{\alpha}\right\}$ of $Z_{k}(l)$'s. Now consider the filtration $P_{0} \subset P_{1} \cdots$ of free \mathbf{k}-modules constructed inductively as follows: P_{0} is generates as \mathbf{k}-module by the z_{α} 's which are cycles, i.e. $d z_{\alpha}=0$. Then P_{k} is generated by those z_{α} 's such that $d z_{\alpha} \in A \cdot P_{k-1}$. This is clearly a semifree resolution if we prove that $M=\cup_{k} P_{k}$. For that, we show by induction on degree that for all α, z_{α} belongs to some P_{k}. Suppose that $z_{\alpha} \in Z_{k}(l)$. Then $d z_{\alpha} \in \oplus A . Z_{i}(j)$ where $i<k$ or $i=k$ and $j<l$. By the induction hypothesis all z_{β} 's in the sum $d z_{\alpha}$ are in some $P_{m_{\beta}}$. Therefore $z_{\alpha} \in P_{m}$ where $m=\max _{\beta} m_{\beta}$ and this finishes the proof.

Remark 2.23. If we had not assumed that \mathbf{k} is a field but only a commutative ring then we could still have put a model category structure on $\operatorname{Mod}(A)$. This is a special case of the Schwede-Shipley theorem $[\mathbf{S S 0 0}$, Theorem 4.1]. More details are provided on pages 503-504 of [SS00].

Proposition 2.24. In the model category of A-modules, a mapf $: M \rightarrow$ N is a cofibration if and only if it is a retract of a semi-free extension $M \hookrightarrow P$. In particular, an A-module M is cofibrant if and only if it is a retract of a semi-free A-module, i.e. if and only if it is a direct summand of a semi-free A-module.

Here is a list of properties of semi-free modules which allow us to define the derived functor by means of semi-free resolutions.

Proposition 2.25. (i) Any morphism $f: M \rightarrow N$ of A-modules has a semi-free resolution. In particular every A-module has a semi-free resolution.
(ii) If P is a semi-free A-module, $\operatorname{Hom}_{A}(P,-)$ preserves quasi-isomorphisms.
(iii) Let P and Q be semi-free A-modules and $f: P \rightarrow Q$ be a quasiisomorphism. Then

$$
g \otimes f: M \otimes_{A} P \rightarrow N \otimes_{A} Q
$$

is a quasi-isomorphism if $g: M \rightarrow N$ is a quasi-isomorphism.
(iv) Let P and Q be semi-free A-modules and $f: P \rightarrow Q$ be a quasiisomorphism. Then

$$
\operatorname{Hom}_{R}(g, f): \operatorname{Hom}_{A}(Q, M) \rightarrow \operatorname{Hom}_{A}(P, N)
$$

is a quasi-isomorphism if $g: M \rightarrow N$ is a quasi-isomorphism.
The second statement in proposition 2.25 implies that a quasi-isomorphism $f: M \rightarrow N$ between semi-free A-modules is a homotopy equivalence, i.e. there is a map $f^{\prime}: N \rightarrow M$ such that $f f^{\prime}-i d_{N}=\left[d_{N}, h^{\prime}\right]$ and $f^{\prime} f-i d_{M}=\left[d_{M}, h\right]$ for some $h: M \rightarrow N$ and $h^{\prime}: N \rightarrow M$. In fact part (iii) and (iv) follow easily from this observation.

The properties listed above imply that the functors $-\otimes_{A} M$ and $\operatorname{Hom}_{A}(-, M)$ preserve enough weak equivalences, ensuring that the derived functors \otimes_{A}^{L} and $\mathrm{RHom}_{A}(-, M)$ exist for all A-modules M.

Since we are interested in Hochschild and cyclic (co) homology, we switch to the category of DG A-bimodules. This category is the same as the category of DG A^{e}-modules. Therefore one can endow A-bimodules with a model category structure and define the derived functors $-\otimes_{A^{e}}^{L} M$ and RHom $_{A^{e}}(-, M)$ by means of fibrant-cofibrant replacements.

More precisely, for two A-bimodules M and N we have

$$
\operatorname{Tor}_{*}^{A^{e}}(M, N)=H_{*}\left(P \otimes_{A^{e}} N\right)
$$

and

$$
\operatorname{Ext}_{A^{e}}^{*}(M, N)=H^{*}\left(\operatorname{Hom}_{A^{e}}(P, N)\right)
$$

where P is cofibrant replacement for M.
By Proposition 2.25 every A^{e}-module has a semi-free resolution. There is an explicit construction of the latter using the two-sided bar construction. For right and left A-modules P and M, let

$$
\begin{equation*}
B(P, A, M)=\bigoplus_{k \geq 0} P \otimes(s \bar{A})^{\otimes k} \otimes M \tag{2.5}
\end{equation*}
$$

equipped with the following differential:

- if $k=0$,

$$
D(p[\quad] m)=d p[\quad] n+(-1)^{|p|} p[\quad] d m
$$

$$
\begin{aligned}
& \text { • if } k>0 \\
& \begin{array}{l}
D\left(p\left[a_{1}, \cdots, a_{k}\right] m\right) \\
= \\
= \\
= \\
= \\
d_{0}\left(p\left[a_{1}, \cdots, a_{k}\right] m\right)+d_{1}\left(p\left[a_{1}, \cdots, a_{k}, \cdots, a_{k}\right] m-\sum_{i=1}^{k}(-1)^{\epsilon_{i}} p\left[a_{1}, \cdots, d a_{i}, \ldots a_{k}\right] m\right.
\end{array} \\
& \quad+(-1)^{\epsilon_{k+1}} p\left[a_{1}, \cdots, a_{k}\right] d m
\end{aligned} \quad \begin{array}{r}
\quad+(-1)^{|p|} p a_{1}\left[a_{2}, \cdots, a_{k}\right] m+\sum_{i=2}^{k}(-1)^{\epsilon_{i}} p\left[a_{1}, \cdots, a_{i-1} a_{i}, \ldots a_{k}\right] m \\
\quad-(-1)^{\epsilon_{k}} p\left[a_{1}, \cdots, a_{k-1}\right] a_{k} m,
\end{array}
$$

where

$$
\epsilon_{i}=|p|+\left|a_{1}\right|+\cdots\left|a_{i-1}\right|-i+1 .
$$

Let $P=A$ and $\epsilon_{M}: B(A, A, M) \rightarrow M$ be defined by

$$
\left.\epsilon_{M}\left(a\left[a_{1}, \cdots, a_{k}\right]\right) m\right)=\left\{\begin{array}{l}
0, \text { if } k \geq 1 \tag{2.6}\\
a m, \text { if } k=0 .
\end{array}\right.
$$

It is clear that ϵ_{M} is a map of left A-modules if M.
Lemma 2.26. In the category of left A-modules, $\epsilon_{M}: B(A, A, M) \rightarrow M$ is a semi-free resolution.

Proof. We first prove that this is a resolution. Let $h: B(A, A, M) \rightarrow$ $B(A, A, M)$ be defined by

$$
h\left(a\left[a_{1}, a_{2}, \cdots a_{k}\right] m\right)=\left\{\begin{array}{l}
{\left[a, a_{1}, \cdots a_{k}\right] m, \text { if } k \geq 1,} \tag{2.7}\\
{[a] m, \text { if } k=0 .}
\end{array}\right.
$$

On can easily check that $[D, h]=i d$ on $\operatorname{ker} \epsilon_{M}$, which implies $H_{*}\left(\operatorname{ker}\left(\epsilon_{M}\right)\right)=$ 0 . Since ϵ_{M} is surjective, ϵ_{M} is a quasi-isomorphism. Now we prove that $B(A, A, M)$ is a semifree A-module. Let $F_{k}=\bigoplus_{i \leq k} A \otimes T(s \bar{A})^{\otimes i} \otimes M$. Since $d_{1}\left(F_{k+1}\right) \subset F_{k}$, then F_{k+1} / F_{k} is isomorphic as a differential graded A-module to $\left(A \otimes(s A)^{\otimes k} \otimes M, d_{0}\right)=(A, d) \otimes_{\mathbf{k}}\left((s A)^{\otimes k}, d\right) \otimes(M, d)$. The latter is a semifree (A, d)-module since $\left((s A)^{\otimes k}, d\right) \otimes_{\mathbf{k}}(M, d)$ is a semifree k -module via the filtration

$$
0 \hookrightarrow \operatorname{ker}(d \otimes 1+1 \otimes d) \hookrightarrow\left((s A)^{\otimes k}, d\right) \otimes_{\mathbf{k}}(M, d)
$$

Therefore $B(A, A, M)$ is semi-free by Lemma 2.22 .

Corollary 2.27. The map $\epsilon_{A}: B(A, A):=B(A, A, \mathbf{k}) \rightarrow \mathbf{k}$ given by

$$
\epsilon_{k}\left(a\left[a_{1}, a_{2} \cdots a_{n}\right]\right)=\left\{\begin{array}{l}
\epsilon(a), \text { if } n=0, \\
0 \text { otherwise }
\end{array}\right.
$$

is a resolution. Here $\epsilon: A \rightarrow \mathbf{k}$ is the augmentation of A. In other words $B(A, A)$ is acyclic.

Proof. In the previous lemma, let $M=\mathbf{k}$ be the differential A-module with trivial differential and the module structure $a . k:=\epsilon(a) k$.

Lemma 2.28. In the category $\operatorname{Mod}\left(A^{e}\right), \epsilon_{A}: B(A, A, A) \rightarrow A$ is a semifree resolution.

Proof. The proof is similar to the proof of the previous lemma. First of all, it is obvious that this is a map of A^{e}-modules. Let $F_{k}=\bigoplus_{i \leq k} A \otimes$ $T(s \bar{A})^{\otimes i} \otimes A$. Then F_{k+1} / F_{k} is isomorphic as a differential graded A-module to $\left(A \otimes(s A)^{\otimes k} \otimes A, d_{0}\right)=(A, d) \otimes_{\mathbf{k}}\left((s A)^{\otimes k}, d\right) \otimes(A, d)$. The latter is semifree as A^{e}-module since $\left((s A)^{\otimes k}, d\right)$ is a semi-free \mathbf{k}-module via the filtration $\operatorname{ker} d \hookrightarrow(s A)^{\otimes k}$.

Since the two-sided bar construction $B(A, A, A)$ provides us with a semifree resolution of A we have that

$$
H H_{*}(A, M)=H_{*}\left(B(A, A, A) \otimes_{A^{e}} M\right)=\operatorname{Tor}_{*}^{A^{e}}(A, M)
$$

and

$$
H H^{*}(A, M)=H^{*}\left(H o m_{A^{e}}(B(A, A, A), M)\right)=\operatorname{Ext}_{A^{e}}^{*}(A, M)
$$

In some special situations, for instance that of Calabi-Yau algebras, one can choose smaller resolutions to compute Hochschild homology or cohomology.

The following result will be useful.
Lemma 2.29. If $H^{*}(A)$ is finite dimensional then for all finitely generated semi-free A-bimodules P and $Q, H^{*}(P), H^{*}(Q)$ and $H^{*}\left(\operatorname{Hom}_{A^{e}}(P, Q)\right)$ are also finite dimensional.

Proof. Since A has finite dimensional cohomology, we see that $H^{*}(A \otimes$ $\left.A^{o p}\right)$ is finite dimensional. Similarly $P($ or $Q)$ has finite cohomological dimension since it is obtained via a finite sequence of extensions of free bimodules of the form $\left(A \otimes A^{o p}\right)[n]$. We also have $\operatorname{Hom}_{A^{e}}\left(A \otimes A^{o p}, A \otimes A^{o p}\right) \simeq A \otimes A^{o p}$, and $A \otimes A^{o p}$ is a free A-bimodule of finite cohomological dimension. Since $\operatorname{Hom}_{A^{e}}(P, Q)$ is obtained through a finite sequence of extensions of shifted free A-bimodules, we obtain that it has finite cohomological dimension.

CHAPTER 3 ∞-categories are dark and full of terrors

Bibliography

[Dri04] Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643-691.
[DS95] W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126.
[FHT95] Yves Félix, Steve Halperin, and Jean-Claude Thomas, Differential graded algebras in topology, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 829-865.
[GM74] V. K. A. M. Gugenheim and J. Peter May, On the theory and applications of differential torsion products, American Mathematical Society, Providence, R.I., 1974, Memoirs of the American Mathematical Society, No. 142.
[Hin97] Vladimir Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997), no. 10, 3291-3323.
[Hov99] Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999.
[SS00] Stefan Schwede and Brooke E. Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000), no. 2, 491-511.

Index

$B_{i}(C), 9$
$E_{n}(K), 48$
$K^{\infty}, 47$
$N\left(d^{i}\right), 27$
$N\left(s^{i}\right), 27$
$N \mathcal{C}_{n}, 26$
$S_{n}(X), 9$
$T(X), 29$
$Z_{i}(C), 9$
Func $(C, D), 28$
$\Gamma(C)_{*}, 22$
$\Gamma, 22$
Hom $n, 27$
$K^{(n)}, 47$
$\Upsilon, 6$
$\Upsilon_{n}, 6$
$\Delta^{n}, 2$
$\Delta_{n}, 5$
$\Delta, 2$
hom $(X, Y), 24$
$\partial \Delta_{n}, 6$
$\partial, 9$
$\partial_{i} \Delta_{n}, 6$
$\partial_{i} \Delta_{n}, 31$
$\pi_{n}\left(K, x_{0}\right), 34$
Sing $(X), 31$
Sing $(X), 3$
Sing, 3
sSet, 4
$\tilde{H} C_{k}, 50$
$\tilde{H}_{k}, 50$
$\tilde{K}_{n}, 34$
$f^{*}, 2$
$f_{*}, 2$
n-connected, 51
fundamental category functor, 30
simplicial chain complex, 8
Adjunction, 11,25

$B_{i}(C), 9$
$L_{n}(K), 48$
$N\left(d^{i}\right), 27$
$N\left(s^{i}\right), 27$
$N \mathcal{C}_{n}, 26$
$S_{n}(X), 9$
$T(X), 29$
$Z_{i}(C), 9$
Func(C, D), 28
$\Gamma(C)_{*}, 22$
$\Gamma, 22$
$\operatorname{Hom}_{[n]}, 27$
$K^{(n)}, 47$
$\Upsilon, 6$
$\Upsilon_{n}, 6$
$\Delta^{n}, 2$
$\Delta_{n}, 5$
$\Delta, 2$
$\mathrm{m}(X, Y), 24$
$\partial \Delta_{n}$,
$\partial_{i} \Delta_{n}, 6$
$\partial_{i} \Delta_{n}, 31$
$\pi_{n}\left(K, x_{0}\right), 34$
$\operatorname{Sing}(X), 31$
Sing $(X), 3$
Sing $_{n}, 3$
$\tilde{H C}{ }_{k}, 50$
$\tilde{H}_{k}, 50$
$\tilde{K}_{n}, 34$
$f, 2$
n-connected, 51
fundamental category functor, 30
simplicial chain complex, 8
Adjunction, 11, 25
basepoint, 34
Boundaries, 9
cartesian product of simplicial sets, 7
category of an ordered set, 27
codegeneracy, 2
codegeneracy map, 4
coface, 2
coface map, 4
compatible sequence, 30
cosimplicial set, 2
cosmplicila, 27
counit, 12, 13
cycles, 9
degeneracy map, 4
degenerate subcomplex, 18
Eilenberg-McLane space, 48
face map, 4
fibration long exact sequence, 42
Geometric realization, 14
geometric simplex, 2
horn, 31
Hurewicz map, 50
ideal point, 14
Internam hom, 24
Kan complexe, 30
Kan fibration, 40
Minimal compmlex, 42
Nerve of a category, 26
nondegenerate complex, 18
normalized complex, 18
Postnikov system, 47
product of simplicial sets, 7

Reduced homology, 50
relative Hurewicz map, 50
simplicial chain complex, 10
simplicial object in a category, 8
simplicial set, 2,4
singular chain complex, 9
Singular complex, 3
Singular simplices, 3
Skeleton, 6
Substitution principal, 49
unit, 12, 13
Yoneda lemma, 5

