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1 Introduction

A random field X = (Xn)n∈Zd is usually said to exhibit long memory, or
strong dependence, or long-range dependance, when its covariance function
r(n), n ∈ Z

d, is not absolutely summable :
∑

n∈Zd |r(n)| = ∞. An alternative
definition involves spectral properties : a random field is said to be strongly
dependent if its spectral density is unbounded. These two points of view are
closely related but not equivalent.

Generalizing a hypothesis widely used in dimension 1, most studies on
long-range dependent random fields assume that the covariance function be-
haves at infinity as

r(h) ∼
h→∞

|h|−αL(|h|) b

(

h

|h|

)

, 0 < α < d , (1)

where L is slowly varying at infinity and where b is continuous on the unit
sphere of R

d, |.| denoting the l1-norm on R
d.

Even if the form (1) is not exactly isotropic because of the presence of the
function b defined on the unit sphere, the long memory is due to the term
|h|−α which depends only on the norm. So we will call isotropic this kind of
long-range dependence. Let us focus on the spectral domain to precise this
notion of isotropy.

Definition 1. A stationary random field exhibits isotropic long memory if it
admits a spectral density which is continuous everywhere except at 0 where

f(x) ∼ |x|α−dL

(

1

|x|

)

b

(

x

|x|

)

, 0 < α < d , (2)

where L is slowly varying at infinity and where b is continuous on the unit
sphere in R

d.
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Conditions (1) and (2) are linked by a result of [Wai65] who proved that
if the covariance of a random field satisfies (1) and if its spectral density is
continuous outside 0, then this random field exhibits isotropic long memory
according to definition 1.

Conditions (1) and (2) are regular ways for a random field to be strongly
dependent. Now, it is easy to build long memory random fields which fail to
satisfy these conditions, either by filtering white noises through unbounded
filters like some special AR filters or by aggregating random parameters short
memory random fields. Besides, non-isotropic long memory fields naturally
arise in statistical mechanics in relatively simple situations of phase transition.

So, the aim of the paper is to give a presentation as complete as possible
of isotropic or non-isotropic long memory random fields.

In the first section, we present families of models presenting different kinds
of long memory with special glance to Ising model and Gaussian systems in
the more specific domain of statistical mechanics.

In the second section, we present a review of the available limit theorems.
The first part is devoted to the convergence of partial sums and the second part
to the empirical process. We present some well-known results concerning the
isotropic long-memory setting : the asymptotic behaviour of the partial sums
investigated by [DM79] for Gaussian subordinated fields and by [Sur82] for
functionals of linear fields ; the convergence of the empirical process for linear
fields proved in [DLS02]. We also give the asymptotic behaviour of the partial
sums and of the empirical process in some non-isotropic long memory cases.
For these new results, we explain the scheme of proof, based on a spectral
convergence theorem. In both situations of isotropic and non-isotropic strong
dependence, we observe, like in dimension d = 1, a non standard rate of
convergence and a non standard limiting process.

2 Modeling long memory stationary random fields

We present two classes of long-memory stationary random fields. The first
class is a straightforward generalization of models now widely used for random
processes (d = 1). The second one comes from mechanical statistics and is for
that reason specifically adapted to dimensions d > 1.

2.1 Filtering and aggregation

Filtering white noises through unbounded filters or aggregating random coef-
ficients ARMA processes are the two main ways leading to long-memory pro-
cesses. Since the pioneer works of [GJ80], [Gra80] and [Hos81], these methods
have been generalized and improved, providing large families of long-memory
one-dimensional processes. See for instance [BD91] for filtered processes and
[OV04] for aggregation schemes. These methods are easily extended to di-
mensions d > 1. In fact they lead to rather close covariance structures, but
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the aggregation method produces only Gaussian random fields. Both provide
useful simulation methods.

Filtering

Let us consider a zero-mean white noise (εn)n∈Zd with spectral representation

εn =

∫

[−π,π]d
ei<n,λ>dZ(λ) ,

where the control measure of Z has constant density σ2/(2π)d on [−π, π]d,
and the random field X obtained from ε by the filtering operation

Xn =

∫

[−π,π]d
ei<n,λ>a(λ)dZ(λ) , (3)

where a ∈ L2([−π, π]d).
The spectral density of the induced field is

fX(λ) =
σ2

(2π)d
|a(λ)|2 , ∀λ ∈ [−π, π]d , (4)

and long-memory is achieved when a is unbounded at certain frequencies.

Example 1 (Long memory ARMA fields). ARMA fields are obtained when
a(λ) = Q

P (eiλ) where P and Q are polynomial functions. Denoting by Lj the
lag operator for index j , i.e.

LjXn1,n2...,nd
= Xn1,...,nj−1,nj−1,nj+1,...,nd

,

we can write an ARMA field in the most popular way

P (L1, . . . , Ld)Xn1,...,nd
= Q(L1, . . . , Ld)εn1,...,nd

. (5)

If P (eiλ) 6= 0 for all λ ∈ [−π, π]d, (5) admits a unique stationary solution (cf.
for instance [Ros85] and [Guy93]).

But contrary to the one dimensional case, this condition is not necessary
when d > 1, and there exist stationary fields having an ARMA representation
(5) with P (eiλ) = 0 at some frequencies λ. In this case, the induced field X
exhibits long memory since its spectral density, given by (4), is unbounded.

The following ARMA representation in dimension d = 5 is a trivial exam-
ple of this phenomena :

Xn1,...,n5−
1

5
(Xn1−1,n2,...,n5 +Xn1,n2−1,n3,n4,n5 +· · ·+Xn1,...,n5−1) = εn1,...,n5 .

This representation admits a stationary solution since the filter a(λ1, . . . , λ5) =
(

1 − 1
5 (eiλ1 + · · · + eiλ5)

)−1
is in L2([−π, π]5), and the induced field X is

strongly dependent because its spectral density is unbounded at λ = 0.
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Example 2 (Fractional integration). Generalizing the FARIMA processes de-
fined by

(I − L)αXn = εn ,

we consider random fields of the form

(P (L1, . . . , Ld))
α

Xn1,...,nd
= εn1,...,nd

,

where P is a polynomial having roots on the unit circle and where α > 0 is

chosen such that a(λ) =
(

P (eiλ)
)−α ∈ L2([−π, π]d).

As an example, consider, for a fixed positive integer k, the model

(I − L1L
k
2)

αXn1,n2 = εn1,n2 ,

where 0 < α < 1/2. The spectral density of X is

fX(λ1, λ2) =
σ2

4π2

∣

∣

∣
1 − ei(λ1+kλ2)

∣

∣

∣

−2α

,

where σ2 is the variance of the white noise ε. The field X exhibits non-isotropic
long memory since fX is unbounded all over the line λ1 +kλ2 = 0 and fails to
satisfy (2). Using well known results on FARIMA processes (cf [BD91]) easily
leads to:

{

ρ(h, kh) =
∏

0<j≤h
j−1+α

j−α h = ±1,±2, . . .

ρ(h, l) = 0 if l 6= kh ,

where ρ denotes the correlation function of X . The field X has a non summable
correlation function in the direction l = kh since ρ(h, kh) is asymptotically
proportional to h2α−1. Compared to (1), this confirms that X is a non-
isotropic long memory random field.

Aggregation

Let us consider a sequence (X (q))q≥1 of independent copies of the field

P (L1, . . . , Ld)Xn1,...,nd
= εn1,...,nd

, (6)

where P is a polynomial function with random coefficients such that P has
almost surely no roots on the unit sphere and (εn)n∈Zd is a zero-mean white
noise with variance σ2.

The representation (6) admits almost surely the solution :

Xn =
∑

j∈Zd

cjεn−j , (7)

where (cj)j∈Zd are the coefficients of the Laurent expansion of P−1. The field
X given by (7) belongs to L2 if and only if
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∑

j∈Zd

E(|cj |2) < ∞ , (8)

and its spectral density is

f(λ) =
σ2

(2π)d
E
∣

∣P−1
(

eiλ
)∣

∣

2
. (9)

Now, from the central limit theorem, the finite dimensional distributions

of N−1/2
∑N

q=0 X
(q)
n converge as N → ∞ to the so-called aggregated field Z

Zn = lim
N→∞

1√
N

N
∑

q=0

X(q)
n , n ∈ Z

d .

This process is Gaussian and has the same second order characteristics as the
X(q)’s. In particular, its spectral density is (9) and long memory is obtained

when E
∣

∣P−1
(

eiλ
)∣

∣

2
is unbounded.

Example 3. Let us consider, in dimension d = 2, the AR representation

Xn,m − aXn−1,m − bXn,m−1 + abXn−1,m−1 = εn,m , (10)

where a and b are independant and where a (resp. b) has on [0, 1] the density

(1 − x)αΦ1(x) , (resp. (1 − x)βΦ2(x)) , (11)

where 0 < α, β < 1 and where Φj , j = 1, 2 are bounded, continuous at x = 1,
with Φ1(1)Φ2(1) 6= 0 .

It is easily checked that the above random parameters AR fields satisfy
all the required conditions to lead to an aggregated random field with long
memory (see for instance [OV04]). The spectral density of the aggregated field
Z is a tensorial product and

f(λ1, λ2) ∼ c|λ1|α−1|λ2|β−1 when λ → 0 ,

where c is a positive constant. Therefore Z exhibits long memory.

Example 4. Consider the AR representation

Xn,m − aXn+k,m−1 = εn,m , (12)

where k ∈ Z is fixed and where a is a random parameter on [0, 1] with density
(11).

The spectral density of the induced aggregated field Z is unbounded on
the line λ2 = kλ1 since

f(λ1, λ2) ∼ c |λ2 − kλ1|α−1 , as λ2 − kλ1 → 0

where c is a positive constant. Hence the long-memory is non-isotropic.
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We present two 2-dimensional models produced by aggregating N = 1000
autoregressive fields with random parameters. The first one (figure 1) is con-
structed according to the scheme of example 3, the parameters a and b having
the same density 3

2

√
1 − x.

The second model (figure 2) is constructed as in example 4 with k = −1
and where a has the same density as above. For both models, an image of
size 100 × 100 has been obtained where, at each point, the realization of the
random variable is represented by a level of gray.

Anisotropy clearly appears in figure 2. The strong dependence only occurs
in one direction and the long memory is non-isotropic. Its periodogram is
unbounded all over the line λ2 + λ1 = 0 and fails to follow (2). Moreover,
its covariance function decays slowly in only one direction and is not of the
form (1). In contrast, in the first model, strong dependence occurs along two
directions, with the same intensity. This is the reason why the phenomena of
anysotropy is less visible in figure 1.

2.2 Long memory in statistical mechanics

Statistical mechanics explains the macroscopic behaviour of systems of parti-
cles by their microscopic properties and provides interpretations of thermody-
namic or magnetic phenomena like phase transition. There is phase transition
when a system is unstable. For instance, it is the case during the liquid-vapour
transition of a gas or when a magnetic material is in transition between the
ferromagnetic and the paramagnetic phase. A rigorous mathematical formal-
ism of statistical mechanics can be found for example in [Geo88]. Our aim
is to underline the strong dependence properties of some systems in phase
transition by focusing on the Ising model and on systems based on quadratic
interactions.

Let us consider a system of particles on the lattice Z
d. The state of a

particle located on j ∈ Z
d is described by the spin xj , a random variable

with values in a polish space X . The pair potential Φ = (Φi,j)i,j∈Zd gives the
interactions between the pairs of particles.

A system configuration is an element ω = (xi)i∈Zd of the space Ω = XZ
d

.
The energy on each finite set Λ of Z

d involves not only the energy quantity
inside the set Λ but also the edges interactions:

EΛ(ω) =
∑

{i,j}⊂Λ

Φi,j(xi, xj) +
∑

i∈Λ
j∈Λc

Φi,j(xi, xj) . (13)

Now, consider on Ω an a priori measure ρ = ⊗i∈Zdρi (typically ρi is the
Lebesgue measure when X = R or a Bernoulli measure when X = {±1}). A
measure µ on Ω is called a Gibbs measure associated with the potential Φ
with respect to ρ if, for every finite set Λ, ωΛ and ωΛc denoting the restriction
of ω to Λ and to its complementary set,
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Fig. 1. [top] Long memory random field of a product form obtained by aggregating
random parameters AR fields of the form (10) with α = β = 0.5 [bottom-left] Its
periodogram [bottom-right] Its covariance function
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Fig. 2. [top] Non-isotropic long memory random field obtained by aggregating ran-
dom parameters AR fields of the form (12) with k = −1 [bottom-left] Its periodogram
[bottom-right] Its covariance function
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µ (dωΛ|ωΛc) =
1

ZΛ(ωΛc)
e−EΛ(ω)ρ(dω) , (14)

where ZΛ(ωΛc) is a normalizing constant.
A Gibbs measure is locally characterized by (14). This formalism, at-

tributed to Dobrushin, Landford and Ruelle, guarantees the coherence of the
conditional distributions.

For a given system, a fundamental question is whether a Gibbs measure
exists or not. Phase transition occurs when there exists several Gibbs mea-
sures. The set of all Gibbs measures is a convex set whose extreme elements
are the pure phases, the other Gibbs measures being mixtures of the pure
phases.

Now, consider the spins’ system equipped with the Gibbs measure as a
random field. When the second order moments exist, we can measure the
memory of the spins’ system via the covariance between two sites i and j,
r(i, j) = cov(xi, xj). In the following examples the field is stationary (r(h) =
cov(xi, xi+h)) and presents long-range dependence properties.

The Ising model

The well known Ising model has been introduced to study magnetism and
fluid dynamic. The state space is X = {−1, 1}, the a priori measure is the
Bernoulli measure 1/2(δ−1 + δ1) and the potential is restricted to the nearest
neighbors:

Φi,j(xi, xj) =

{

βxixj if |i − j| = 1
0 otherwise,

where β > 0 is a constant representing the inverse temperature.
In dimension d = 1, there exists a unique Gibbs measure for any β, there-

fore the system is never in phase transition. In dimension d ≥ 2, Gibbs mea-
sures exist and phase transition takes place if β is greater than a critical value
βc depending on the dimension d (see [Ons44] in dimension d = 2 and [Dob65]
in any dimension). When d = 2, βc = 1

2 ln(1 +
√

2) ≈ 0.441.
Let us consider the covariance function. In their physical approach of the

Ising model, [KO49] and [Fis64] obtain the asymptotic behaviour of r. When
β 6= βc, the covariance function decays exponentially but when β = βc the
rate of decay is slow and the covariance is not summable. We have

r(h) ∼
h→∞

{

|h|−1e−κ|h| if β 6= βc

|h|−(d−2+µ) ifβ = βc ,

where κ > 0 is the Boltzmann’s constant and µ ∈ [0, 2] is a critical parameter
which is 1/4 in case d = 2. The strong dependence at the critical point is
isotropic.

Remark 1. The long-range dependence structure of the Ising model at the
critical point was pointed out in [CJL78] where one can also find others models
exhibiting long memory.
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Remark 2. There exist some models, slightly more complex than the Ising
model, which exhibit long-range dependence without being in phase transi-
tion. This is the case for the XY model and for the Heiseinberg model : they
are never in phase transition when d ≤ 2 but their covariance function in
dimension d = 2 is not summable all over an interval of low temperatures (see
[KT78]).

Homogeneous Gaussian models

The state space is X = R, the a priori measure ρ is the Lebesgue measure
and the potential is

Φi,j(xi, xj) =

{

β
(

1
2J(0)x2

i + exi

)

if i = j
βJ(i − j)xixj if i 6= j,

where β and e are constants representing respectively the inverse temperature
and an external magnetic field and where (J(i))i∈Zd is a positive definite real
sequence with J(i) = J(−i) for every i and

∑

i∈Zd J(i) < ∞. We suppose for
simplicity that e = 0. Contrary to the Ising model, the temperature has no
influence on the appearance of phase transition. The main parameter is the
sequence J , improperly named potential.

This system was studied by [Kn80] and [Dob80]. All the results can be
found in [Geo88]. The pure phases are Gaussian and their characteristics are
directly linked to the potential J via its Fourier transform

Ĵ(λ) =
∑

n∈Zd

J(n)ei<n,λ> , λ ∈ [−π, π]d .

Theorem 1 (Künsch, Dobrushin). Under the above hypotheses on J and
in the case e = 0, the set of Gibbs measures is non empty if and only if

∫

[−π,π]d
Ĵ−1(λ)dλ < ∞ .

In this case, the pure phases are the Gaussian measures with covariance func-
tion

r(h) =

∫

[−π,π]d
Ĵ−1(λ)ei<h,λ>dλ (15)

and with mean vector a sequence (un)n∈Zd such that, for all k ∈ Z
d,

∑

J(n)uk+n = 0 .

Remark 3. In the case e 6= 0, further hypotheses are needed for the existence
of a Gibbs measure.
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The occurrence of phase transition in the particular case e = 0 can be
deduced from Theorem 1 and is given in the following corollary. Note that,
despite the fact that the pure phases are Gaussian, all Gibbs measures are
not necessarily so. Phase transition can take place with one or several mea-
sures without second moment. Insofar as we are interested in the covariance
function, the corollary is stated in the L2 setting:

Corollary 1 (Künsch). Under the hypotheses of Theorem 1, there exist sev-
eral Gibbs measures with finite second moments if and only if Ĵ has at least
one root in [−π, π]d.

Therefore, when the system is in phase transition, every Gibbs measure
having a finite second moment is strongly dependent. Indeed Ĵ−1, which is
the spectral density of the pure phases, according to (15), is unbounded if
there is phase transition.

Example 5. In dimension d ≥ 3, the harmonic potential is a simple example of
finite range interaction leading to long-memory random fields. The potential
is defined by:

J(n) =







− 1
2d if |n| = 1

1 if n = 0
0 otherwise

and we have

Ĵ(λ) = 1 −
∑

|n|=1

1

2d
ei<n,λ> = 1 − 1

d

d
∑

k=1

cos(λk)

whose inverse is integrable on [−π, π]d since d ≥ 3. Hence, Theorem 1 guaran-
tees the existence of a Gibbs measure associated with this potential. Moreover
Ĵ(0) = 0 and according to Corollary 1, the system is in phase transition and
the second order Gibbs measures exhibit long memory. The long-range depen-
dence is isotropic in the sense of definition 1.

Example 6. In dimension d = 2, consider the potential :

J(k, l) =







∏

0<j≤k
j−1−α

j+α if l = pk, |k| > 1

1 if k = l = 0
0 otherwise

where p is a non null fixed integer and α ∈]0, 1/2[.
The sequence J(k, pk) corresponds to the autocorrelation function of an

integrated stationary process of order α, from which (see [BD91] )

J(k, pk) ∼ Γ (1 + α)

Γ (−α)
k−2α−1, when k → ∞ .
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This shows the summability of J . Moreover, using the well known properties
of the FARIMA processes,

∑

k∈Z

J(k, pk)eikλ Γ 2(1 + α)

Γ (1 + 2α)

∣

∣

∣

∣

2 sin

(

λ

2

)∣

∣

∣

∣

2α

.

Finally

Ĵ(λ1, λ2) =
∑

k,l∈Z2

J(k, l)ei(kλ1+lλ2) =
∑

k∈Z

J(k, pk)eik(λ1+pλ2)

=
Γ 2(1 + α)

Γ (1 + 2α)

∣

∣

∣

∣

2 sin

(

λ1 + pλ2

2

)∣

∣

∣

∣

2α

.

Since α ∈]0, 1/2[ , Ĵ−1 is integrable on [−π, π]2 and the existence of a Gibbs
measure is guaranteed by Theorem 1. In addition, Ĵ vanishes all along the line
λ1 + pλ2 = 0 which shows that the system is in phase transition according to
Corollary 1 and that the Gibbs measures exhibit non-isotropic long memory.

3 Limit theorems under isotropic and non-isotropic

strong dependence

We present some limit theorems for the partial sums process and the doubly
indexed empirical process of long memory random fields.

3.1 Partial sums of long memory random fields

Since the results for isotropic long-memory fields are nearly classical while
those related to non-isotropic long memory are newer and still incomplete,
we split this section in two parts according to the regularity of the strong
dependence. The first one is devoted to isotropic long memory: available re-
sults concern Gaussian subordinated fields and some particular functionals of
linear fields. In the second part, related to non-isotropic long memory, we first
present the spectral convergence theorem on which is based the convergence of
the partial sums. Then we apply it to some non-isotropic long memory fields.

In a third part, we give a tightness criterion for partial sums and we apply
it to situations needed for the doubly-indexed empirical process treated in the
next section.

In the sequel we adopt the notation An = {1, . . . , n}d and
fidi
=⇒ for the

convergence of the finite dimensional distributions.

Convergence of partial sums under isotropic long memory

The first study of partial sums is due to [DM79] who considered Gaussian
subordinated fields presenting isotropic long memory. Then the same results
for some functional of linear fields are obtained in [Sur82] and [AT87].
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Let us first introduce the so-called Hermite process Zm of order m which
is the limiting process we shall encounter here.

Zm(t) =

∫

Rmd

d
∏

j=1

e
itj

“

x
(1)
j +···+x

(m)
j

”

− 1

i
(

x
(1)
j + · · · + x

(m)
j

) ZG0(dx(1)) . . . ZG0(dx(m)) (16)

where ZG0 is the random Gaussian spectral field with control measure G0. The
spectral measure G0 depends on a parameter α and a function b continuous
on the unit sphere in R

d and it is given by

2d

∫

Rd

ei<t,x>
d
∏

j=1

1 − cos(xj)

x2
j

G0(dx) =

∫

[−1,1]d

b
(

x+t
|x+t|

)

|x + t|α
d
∏

j=1

(1 − |xj |)dx .

(17)
When d = 1 (16) simplifies because G0 admits a density proportional to |x|α−1

and in this case

Zm(t) = κ−k/2

∫

Rm

eit(x(1)+···+x(m)) − 1

i(x(1) + · · · + x(m))

m
∏

k=1

∣

∣

∣x(k)
∣

∣

∣

α−1
2

dW (x(k)) ,

where W is the Gaussian white noise spectral field and where κ =
∫

R
eix|x|α−1.

Let us now summarize the convergence results.

Theorem 2. [[DM79]] Let (Xn)n∈Zd be a zero-mean, stationary, Gaussian
random field. Let H be a measurable function such that

∫

R

H(x)e
−x2

2 dx = 0 and

∫

R

H2(x)e
−x2

2 dx < ∞ .

Denote by m its Hermite rank.
We suppose that (Xn) admits the following covariance function

r(k) = |k|−αL(|k|)b
(

k

|k|

)

,

with r(0) = 1, where 0 < mα < d and where L is a slowly varying function at
infinity and b is a continuous function on the unit sphere in R

d.
Then

1

Nd−mα/2(L(N))m/2

∑

k∈A[Nt]

H(Xk)
fidi
=⇒ cmZm(t) , (18)

where Zm is the Hermite process of order m defined in (16) and where cm is
the coefficient of rank m in the Hermite expansion of H.

The following theorem concerns linear fields. The class of functions H is
restricted to the Appell polynomials.
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Theorem 3. [[Sur82] and [AT87]] Let (εn)n∈Zd be a sequence of zero-mean
i.i.d random fields with variance 1 and finite moments of any order. Let
(Xn)n∈Zd be the linear field

Xn =
∑

k∈Zd

akεn−k ,

where

ak = |k|−βL(|k|)a
(

k

|k|

)

, d < 2β < d (1 + 1/m) , (19)

where L is a slowly varying function at infinity and a is a continuous function
on the unit sphere in R

d.
Let Pm be the mth Appell polynomial associated with the distribution of

X0. Then
1

Nd−m(β−d
2 )

∑

k∈A[Nt]

Pm(Xk)
fidi
=⇒ Zm(t) ,

where Zm is the Hermite process of order m defined by (16) and (17) in which
α = 2β − d and

b(t) =

∫

Rd

a

(

s

|s|

)

a

(

s − t

|s − t|

)

|s|−β |t − s|−βds .

Remark 4. Theorem 3 relates to isotropic long memory since condition (19)
implies that the covariance function of X has asymptotically the form (1).

Remark 5. One can find a presentation of the tools for proving Theorems 2
and 3 in [DOT03].

Convergence of partial sums under non-isotropic long memory

The proofs of Theorem 2 and 3 rely on the convergence of multiple stochastic
integrals. This method fails to work under non-isotropic long memory. So we
turn to a method based on convergence of spectral measures.

Starting from a filter a ∈ L2([−π, π]d) and a zero-mean random field ξ
having a spectral density fξ, we consider the linear field

Xn =
∑

k∈Zd

akξn−k , n ∈ Z
d (20)

where ak are the Fourier coefficients of a:

a(λ) =
∑

k∈Zd

ake−i<k,λ> .

The filter a is directly linked to the spectral density fX of X by the relation :
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fX(λ) = fξ(λ)|a(λ)|2 .

First, the partial sums are rewritten using the spectral field W of ξ. Since

ξk =

∫

[−π, π]d
ei<k,λ>dW (λ) , (21)

if the random measure Wn on [−nπ; nπ]d is defined for all Borel set A by

Wn(A) = nd/2W (n−1A) ,

we have

n−d/2
∑

k∈A[nt]

Xk =

∫

[−nπ,nπ]d
a

(

λ

n

) d
∏

j=1

eiλj [tjn]/n − 1

n(eiλj/n − 1)
dWn(λ) , (22)

where [nt] = ([nt1], . . . , [ntd]).
Hence, in order to investigate the convergence of the partial sums (22),

it suffices to handle stochastic integrals of the form
∫

ΦndWn where Φn ∈
L2(Rd). This is made possible by the spectral convergence theorem.

The spectral convergence theorem

Let (ξk)k∈Zd be a real stationary random field. We work under the following
assumptions :

H1 : The zero-mean stationary random field (ξk)k∈Zd has a spectral density
fξ bounded above by M > 0. Moreover, the sequence of partial sums of the
noise

Sξ
n(t) = n−d/2

∑

k∈A[nt]

ξk, t ∈ [0, 1]d , (23)

converges in the finite dimensional distributions sense to a field B.

Theorem 4. Under H1, there exists a linear application I0 from L2(Rd) into
L2(Ω,A, P) which has the following properties :

(i) ∀Φ ∈ L2(Rd) E (I0 (Φ))
2 ≤ (2π)dM ||Φ||22

(ii) I0

(

∏d
j=1

eitj λj −1
iλj

)

= B(t1, . . . , td)

(iii) If the sequence Φn converges in L2(Rd) to Φ, then
∫

Φn(x)dWn(x) con-
verges in law to I0 (Φ).

(iv) If ξ is i.i.d, then ∀Φ ∈ L2(Rd) I0(Φ) =
∫

ΦdW0, where W0 is the Gaus-
sian white noise spectral field.

Remark 6. When ξ is i.i.d, B is the Brownian sheet, property (ii) correspond-
ing to its harmonisable representation

B(t) =

∫ d
∏

j=1

eitjλj − 1

iλj
dW0(λ) ,
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and I0 becomes in this case an isometry from L2(Rd) into L2(Ω,A, P) which
can then be considered as the stochastic integral with respect to W0.

In the general case, point (i) shows that I0 might not be an isometry so
that I0 cannot be always viewed as a stochastic integral.

Remark 7. Although our purpose is only to investigate the convergence of the
partial sums, Theorem 4 appears to be a useful tool to obtain the asymptotic
properties of any linear statistic writable in the form

∫

ΦndWn.

Proof. The theorem is proved in [LS00] in dimension d = 1. The details of
the generalization to the context of random fields can be found in [Lav05a],
so we only give a sketch of the proof. Let us consider the field

Bn(t) =

∫

[−nπ, nπ]d

d
∏

j=1

eitjλj − 1

iλj
dWn(λ) . (24)

Denoting Φ̂ the Fourier transform of Φ, we prove after some integrations by
parts that

∫

[−nπ, nπ]d
Φ̂(x)dWn(x) =

(−1)d

(2π)d/2

∫

Rd

∂Φ(t1, . . . , td)

∂t1 . . . ∂td
Bn(t1, . . . , td)dt1 . . .dtd .

(25)
Besides, Bn − Sξ

n converges to 0 in L2, which leads to the finite dimensional
convergence of Bn to B. Then, extending to d > 1 a theorem of [Gri76] leads
to the convergence in law of (25) to

IB(Φ) = (−1)d

∫

Rd

∂Φ(t)

∂t1 . . . ∂td
B(t)dt .

Finally the linear application I0 of the theorem is defined by

I0(Φ) = IB(Φ̌) , (26)

where Φ̌ is the inverse Fourier transform of Φ in L2(Rd) and we have

E (I0(Φ))
2

= E
(

IB(Φ̌)
)2

≤ lim E

(

(2π)d/2

∫

[−nπ, nπ]d
Φ̂dWn

)2

≤ (2π)dM ||Φ||22 ,

which is (i) of Theorem 4.
Theorem 4.2 in [Bil68] implies that

∫

ΦdWn converges to I0(Φ). Hence
∫

ΦndWn converges to I0(Φ) as soon as Φn goes to Φ in L2(Rd). This proves
(iii).

The particular choice Φ̌ =
�

[0,t1]×···×[0,td] in (26) leads to (ii).
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Convergence of partial sums

In view of the spectral representation (22) and of Theorem 4, for proving the
convergence of the partial sums it is sufficient to check the L2-convergence of
a(x/n). This leads to several types of proofs according to the form of a.

The following propositions focus on filters which lead to non-isotropic long
memory random fields. Their proofs can be found in [Lav05a].

The first result concerns the simplest situation of a tensorial product.

Proposition 1. Let (ξk)k∈Zd be a noise satisfying H 1. Let (Xk)k∈Zd be the
random field defined by (20), constructed by filtering ξ through a filter of the
form :

a(λ1, . . . , λd) =
d
∏

j=1

aj(λj) , (27)

where the aj ’s satisfy:

aj(λj) ∼ |λj |−αj when λj → 0 ,

with 0 < αj < 1/2. Then

1

nd/2−(
P

d
j=1 αj)

∑

k∈A[nt]

Xk
fidi
=⇒ I0





d
∏

j=1

eitjλj − 1

iλj |λj |αj



 , (28)

where I0 is the linear application defined in Theorem 4.

Remark 8. When ξ is i.i.d, the limiting field (28) is the Fractional Brownian
sheet with parameters (αj , j = 1, . . . , d).

It is well known that, in dimension d = 1, only the spectral behaviour at
0 determines the asymptotic of the partial sums. This result still holds for
d = 2, as stated in the next proposition.

Proposition 2. Let (ξk)k∈Zd be a stationary random field satisfying H1. Let
(Xk)k∈Zd be defined by (20), constructed by filtering ξ through a.

(i) If the filter a ∈ L2([−π, π]d) is continuous at the origin with a(0) 6= 0,
then, for d ≤ 2,

1

nd/2

∑

k∈A[nt]

Xk
fidi
=⇒ a(0)B(t) , (29)

where B is the limit of the partial sums of ξ introduced in hypotheses H1.
(ii)If the filter a is equivalent at 0 to a homogeneous function ã, i.e. for all c,

ã(cλ) = |c|−α
ã(λ), with degree α ∈]0, 1[ such that a ∈ L2([−π, π]d), then,

for d ≤ 2,

1

nd/2+α

∑

k∈A[nt]

Xk
fidi
=⇒ I0



ã(λ)

d
∏

j=1

eitjλj − 1

iλj



 , (30)

where I0 is the linear application defined in Theorem 4.
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Remark 9. When ξ is i.i.d, the limiting process can be written as a stochastic
integral with respect to a Gaussian white noise measure (cf Remark 6).

Remark 10. Filtering a white noise through a filter satisfying the hypotheses
in (i) can produce a weakly dependent random field, for instance if a is contin-
uous on [−π, π]d. It produces non-isotropic long memory when a is unbounded
since the covariance function is then not absolutely summable. This memory
involves only non-zero singularities of the spectral density and, as expected,
does not modify the limit obtained under weak dependence.

Condition (ii) of Theorem 2 can be satisfied with isotropic as well as with
non isotropic long-memory. The memory is non-isotropic for instance when
the filter is a(λ1, λ2) = |λ1 + θλ2|−α, where 0 < α < 1/2 and θ ∈ R, θ 6= 0.

Unfortunately, probably due to the spectral method, these results cannot
be extended in dimension d ≥ 3 without further assumptions. We only give
an example of filters unbounded all over a linear subspace of [−π, π]d.

Proposition 3. Let (ξk)k∈Zd be a stationary random field satisfying H1. Let
(Xk)k∈Zd be the random field defined by (20).

Suppose that a has the following form :

a(λ) =

∣

∣

∣

∣

∣

d
∑

i=1

ciλi

∣

∣

∣

∣

∣

−α

,

where 0 < α < 1/2 and the ci’s are real constants.
Then, as long as

0 < 2α <
1

(d − 2) ∨ 1
, (31)

we have

1

nd/2+α

∑

k∈A[nt]

Xk
fidi
=⇒ I0



a(λ)

d
∏

j=1

eitjλj − 1

iλj



 , (32)

where I0 is the linear application defined in Theorem 4.

Remark 11. The condition (31) on α is a restriction only when d ≥ 4.

Tightness criteria for partial sums

So far, only the convergence of the finite-dimensional distributions of the
partial sums has been stated. In dimension d = 1, a convenient criterion for
tightness is given in [Taq75] from which the convergence in D([0, 1]) follows
easily.

General conditions for tightness in D([0, 1]d) of a sequence of random fields
are given in [BW71]. The following lemma, a corollary of Theorems 2 and 3
in [BW71], is very useful for proving tightness of the partial sums of strongly
dependent fields.
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Lemma 1. Let us consider a stationary random field (Xk)k∈Zd and its nor-
malized partial sum process

Sn(t) = d−1
n

[nt1]
∑

k1=0

· · ·
[ntd]
∑

kd=0

Xk1,...,kd
, t ∈ [0, 1]d .

If the finite-dimensional distributions of Sn converge to those of X and if
there exist c > 0 and β > 1 such that for all p1, . . . , pd ∈ {1, . . . , n}

E

(

d−1
n

p1
∑

k1=0

· · ·
pd
∑

kd=0

Xk1,...,kd

)2

≤ c

(

d
∏

i=1

pi

n

)β

, (33)

then

Sn

D([0,1]d)
=⇒ X .

Moreover the field X admits a continuous version.

The details of the proof can be found in [Lav05b].
In the next section, we study the doubly-indexed empirical process of long

memory random fields and we investigate its asymptotic behaviour for the long
memory Gaussian subordinated fields of Theorem 2 and for the non-isotropic
long memory situation of Proposition 3. For this, we need the convergence
of the partial sums in D([0, 1]d) in both settings. Since the convergence of
their finite-dimensional distributions has already been stated, only tightness
is missing, which is the subject of the next results. Their proofs, based on the
tightness criterion presented in Lemma 1, can be found in [Lav05b].

Proposition 4. Under the hypothesis of Theorem 2, the partial sums process

1

Nd−mα/2(L(N))m/2

∑

k∈A[Nt]

H(Xk)

is tight and convergence (18) takes place in D([0, 1]d).

Proposition 5. Under the hypothesis of Proposition 3, the partial sums pro-
cess

1

Nd/2+α

∑

k∈A[Nt]

Xk

is tight and convergence (32) takes place in D([0, 1]d).

3.2 Empirical Process of long memory random fields

We study the asymptotic behaviour of the empirical process
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∑

j∈A[nt]

[ �

{G(Xj )≤x} − F (x)
]

, (34)

where G is a measurable function and where F is the cumulative distribution
function of G(X1), (Xk)k∈Zd being a long-range dependent stationary random
field.

Our presentation relates to Gaussian subordinated random fields and to
(non necessarily Gaussian) linear random fields.

In the first situation, we prove a uniform weak reduction principle and
apply it to different situations of strong dependence. We present the conver-
gence of (34) in D(R × [0, 1]d) when X is Gaussian with isotropic long-range
dependence, generalizing in dimension d > 1 the result of [DT89]. In the non-
isotropic long memory setting, we give the convergence of (34) in D(R×[0, 1]d)
when the random field X is linear, Gaussian, and when the Hermite rank of

�

{G(Xj)≤x} − F (x) is 1.
In the situation of (non necessarily Gaussian) linear random fields a uni-

form weak reduction principle is more difficult to obtain. The only available
results are those proved in [DLS02] where the authors obtain the convergence
of (34) for t = 1, when G is the identity function, and in the situation of
isotropic long-memory.

In each situation described above, the limiting process is degenerated in-
sofar as it has the form f(x)Z(t) where f is a deterministic function and Z
a random field. This asymptotic behaviour of the empirical process is a char-
acteristic property of strong dependence in dimension d = 1. It seems to be
also the case with random fields even if the strong dependence is anisotropic
such as in Corollary 3 below.

Empirical process of Gaussian subordinated fields

The main tool to obtain the convergence of the empirical process is the uni-
form weak reduction principle introduced in [DT89] which allows to replace in
most cases the empirical process by the first term in its expansion on the Her-
mite basis. We present an inequality generalizing this principle to dimension
d > 1. Then we specify the dependence structure of the random field in two
corollaries. The first one refers to the isotropic long-range dependent Gaussian
fields of Theorem 2. The second one relates to non-isotropic long memory. It
focuses on the random field of Proposition 3 which is in addition supposed
here to be Gaussian. The proofs of this section are detailed in [Lav05b].

Let (Xn)n∈Zd be a stationary Gaussian random field with covariance func-
tion r such that r(0) = 1.

Let G be a measurable function. We consider the following expansion on
the Hermite basis :

�

{G(Xj)≤x} − F (x) =

∞
∑

q=m

Jq(x)

q!
Hq(Xj) ,
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where F (x) = P(G(X1) ≤ x). Hq is the Hermite polynomial of degree q and

Jq(x) = E
[ �

{G(X1)≤x}Hq(X1)
]

.

Let

Sn(x) =
∑

j∈An

[

�

{G(Xj)≤x} − F (x) − Jm(x)

m!
Hm(Xj)

]

.

Now, we formulate the inequality leading to the uniform weak reduction
principle. Its proof follows the same lines as in [DT89].

Theorem 5. Let

d2
N = var





∑

j∈AN

Hm(Xj)



 = m!
∑

j,k∈A2
N

rm(k − j) .

If dN −→ ∞, we have, for all η, δ > 0 and for all n ≤ N ,

P

(

sup
x

d−1
N |Sn(x)| > η

)

≤ CN δd−2
N

∑

j,k∈A2
N

|r(k − j)|m+1 +
d2

n

N2d
, (35)

where C is a positive constant depending only on η.

If the limit of d−1
N

∑

j∈A[Nt]
Hm(Xj) is known, inequality (35) provides the

asymptotic behaviour of the empirical process (34) if the upper bound in (35)
vanishes when N goes to infinity.

The first corollary below relates to the Gaussian subordinated fields of
Theorem 2.

Corollary 2. Under the above notations, we suppose that the Gaussian field
(Xn)n∈Zd admits the covariance function

r(k) = |k|−αL(|k|)b
(

k

|k|

)

, r(0) = 1 , (36)

where 0 < mα < d, where L is slowly varying at infinity and where b is
continuous on the unit sphere in R

d.
Then

1

Nd−mα/2(L(N))m/2

∑

j∈A[Nt]

[ �

{G(Xj )≤x} − F (x)
] D(R̄×[0,1]d)

=⇒ Jm(x)

m!
Zm(t) ,

where the convergence takes place in D(R̄× [0, 1]d) endowed with the uniform
topology and the σ-field generated by the open balls and where Zm, defined in
(16), is the Hermite process of order m.
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Proof (Sketch of proof). From (36), as N → ∞

d2
N ∼ N2d−mα(L(N))m ,

and
∑

j,k∈AN

|r(k − j)|m+1 = O(N2d−(m+1)αL(N)m+1) + O(Nd) .

Hence the upper bound in (35) goes to zero for small values of δ.
Moreover Theorem 2 gives the convergence of d−1

N

∑

j∈A[Nt]
Hm(Xj) to the

Hermite process, this convergence taking place in D([0, 1]d) from Proposition
4. Now, Jm is bounded and so :

Jm(x)d−1
N

∑

j∈A[Nt]

Hm(Xj)
D(R̄×[0,1]d)

=⇒ Jm(x)Zm(t) . (37)

The measurability of the empirical process is obtained if D(R̄ × [0, 1]d), en-
dowed with the uniform topology, is equipped with the σ-field generated by
the open balls. Finally (37) and (35) give the convergence claimed in the
corollary.

The next corollary focuses on the non-isotropic random field of Propo-
sition 3 based on Gaussian noise. Since this Proposition only gives the limit
distribution of d−1

N

∑

j∈A[Nt]
Xj , we restrict ourselves to functions G such that

the Hermite rank of (34) is 1.

Corollary 3. Let (εn)n∈Zd be a stationary Gaussian field with a bounded spec-
tral density. We consider the linear field

Xn =
∑

k∈Zd

akεn−k , (38)

where the (ak)’s are, up to a normalisation providing var(X1) = 1, the Fourier
coefficients of

a(λ) =

∣

∣

∣

∣

∣

d
∑

i=1

ciλi

∣

∣

∣

∣

∣

−α

, 0 < α < 1/2 , (39)

where (c1, . . . , cd) are real valued parameters.
We suppose that the Hermite rank of

�

{G(Xn)≤x} − F (x) is 1.
If

0 < 2α <
1

(d − 2) ∨ 1
, (40)

then
1

nd/2+α

∑

j∈A[nt]

( �

{G(Xj )≤x} − F (x)
) D(R̄×[0,1]d)

=⇒ J1(x)R(t) ,



Long memory random fields 23

where J1(x) = E[
�

{G(X1)≤x}X1], and where the convergence takes place in

D(R̄× [0, 1]d) endowed with the uniform topology and the σ-field generated by
the open balls.

When ε is a white noise, the limiting field is defined by

R(t) =

∫

Rd

a(u)

d
∏

j=1

eitjuj − 1

iuj
dW0(u) ,

where W0 is the Gaussian white noise spectral field.

Remark 12. As in Proposition 3, the condition (40) is not a restriction when
d ≤ 3.

Proof (Sketch of proof). From (39), d2
n ∼ nd+2α when n → ∞ and

if 0 < 2α < 1/2 ,
∑

j,k∈A2
n

r2(k − j) = O(nd) ,

if 1/2 < 2α < 1 ,
∑

j,k∈A2
n

r2(k − j) = O(nd−1+4α) .

Therefore the upper bound in (35) tends to zero if δ is small enough. Since
Proposition 3 and Proposition 5 prove the convergence of the partial sums of
X in D([0, 1]d), the convergence of the empirical process follows.

Empirical process of long memory linear fields

Without the Gaussian assumption, a general uniform weak reduction principle
as in Theorem 5 is not yet available. This has been done in [DLS02] in the
particular case of the isotropic long memory linear random fields of Theorem
3. These authors obtain the convergence of the empirical process (34) for t = 1
and when G is the identity function.

Theorem 6 ([DLS02]). Let ε be a zero-mean i.i.d random field with variance
1. Assume that there exist positive constants C and δ such that

∣

∣Eeiaε0
∣

∣ ≤ C(1 + |a|)−δ , a ∈ R ,

and
E|ε0|2+δ < ∞ .

Let X be the linear field defined by

Xn =
∑

k∈Zd

akεn−k , n ∈ Z
d

with
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ak = |k|−αb

(

k

|k|

)

, k ∈ Z
d ,

where d/2 < α < d and where b is continuous on the unit sphere in R
d.

Then, with Z ∼ N (0, 1) a standard Gaussian variable,

1

n3d/2−α

∑

k∈An

[ �

{Xk≤x} − F (x)
] D(R)

=⇒ cf(x)Z ,

where c is a positive constant, F denoting the cumulative distribution function
of X1 and f = F ′.

Remark 13. In [DLS02], the authors actually studied the convergence of the
weighted empirical process

∑

k∈An

γn,k
�

{Xk≤x+ξn,k} ,

where supn maxk∈An
(|ξn,k| + |γn,k|) = O(1). They obtain the same result.

4 Conclusion

All the above results confirm some specificities of the long memory compared
with the short one : particularly a non standard normalisation and a degen-
erated limit for the empirical process. However, the study is far from being
complete and should be extended for instance in the direction of seasonal
phenomena, as it is done in dimension d = 1 ([OH02]), where the correct
approximation of the empirical process might not be based on the first term
of the Hermite expansion.

Finally, all results on the empirical process are a first step towards the
study of U-statistics, Cramer Von Mises or Kolmogorov Smirnov statistics,
and of M and L-statistics. They are the object of a current work.
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