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Abstract

We consider the Stark Hamiltonian H = £ p? — 21 + V(z) which describes the
scattering of a quantum mechanical particle in IR™ by a short-range potential in the
presence of a constant electric field. We show that the electric potential V is uniquely
determined by the high energy limit of the scattering operator, if the dimension n > 3.
We prove our results using the Enss-Weder’s time-dependent method.

1 Introduction.

We study a short-range quantum mechanical scattering in the presence of a constant electric
field. For the sake of simplicity, we assume that the electric field acts in the e;-direction,

where e; = (1,0,...,0) € IR*, n > 2.
The corresponding Stark Hamiltonian defined on L?(IR"™) is given by :
(1.1) Hy = 5p"—a,

where p = —iV. It is well-known that Hy is essentially self-adjoint on C§°(IR"™), (see [11] for
example). We denote also by Hy the self-adjoint realization with domain D(H,).



Let us recall the Avron-Herbst formula [2] which describes the free time evolution :
o Y Y P
(1.2) e = TVe ML et I el

where p; is the first component of p = (p1,p'). Equation (1.2) shows that, up to a phase
factor, the evolution e~ consists of a translation by % units to the right in the e;-direction,
followed by the usual free time evolution without electric field.

Now, let H be a second Hamiltonian considered as a perturbation of Hy : H = Hy 4+ V().
We assume that V' is a short-range potential, i.e V € C*(IR") and it satisfies Yoo € IN" :

1
() | V(@) 1< Co <2 >, p> L
where < z >= (1 + ”02)% Actually, let us remark that in our paper we only need (H;) for o
with finite order, (for example | a |< n). It is well-known that under the asumption (Hi),
H is essentially self-adjoint with domain D(H) = D(Hy). Moreover, H has no eigenvalues
[2] and os. (H) = (), where o, (H) is the singular continuous spectrum of H, [10].

Under the asumption (H;) the wave operators :

(1.3) W* = s— lim ¢t ¢ itHo

t—too
exist and are complete, (i.e Ran W* = H@)(H), the later being the subspace of absolute
continuity of H), [2]. Actually, we can prove existence and completeness of W# with weaker
asumptions on the potential [2], but we need (H;) to solve the inverse scattering problem.

We denote S = S(V) = WH*W~ the scattering operator. The inverse scattering problem
consists of reconstructing the perturbation V from the scattering operator.

In this paper, we prove that in dimensions n > 3, the S-operator determines uniquely the
potential V. More precisely, it suffices to know the high energy limit of S, (cf Proposition
2). We need n > 3 in order to use the inversion of the Radon transform (or the Fourier
transform) on a hyperplane, (see section 2.3 for details).

Our main result is :

Theorem 1
Let Vi, Va be potentials satisfying (H1) and assume that n > 3. Then :

SV =8(Va) = Vi=V,,

A similar problem has been studied by Weder [12] by a time-dependent method; he obtained
the same result for n > 2 (with weaker conditions on the derivatives of V'), but he needed a
stronger decay condition on V' : he assumed p > %. In the last section, we prove that our
method allows to recover this result.



2 Proof of Theorem 1.

In this section, we study the high energy limit of the scattering operator using the Enss-
Weder’s time-dependent method : see [5] where they study the case of two-body Schrodinger
Hamiltonians H = % p* + V on L*(IR™). This method can be used to study Hamiltonians
with electric and magnetic potentials on L?(IR™) [1], the Dirac equation [7], the N-body case

[5] and the Aharonov-Bohm effect [13].

In [8], [9], a stationary approach is proposed to solve scattering inverse problems for Schrodinger
operators with magnetic fields or with the Aharonov-Bohm effect. Unfortunately, for the
Stark effect, this method is not easily applicable.

The method proposed below is very close to [5], [12].The main steps in the proof are :

a) we define an auxiliary wave operator Q% (a Dollard’s modified wave operator) which
coincides with W* up to an energy phase.

b) we study the high energy asymptotics of S (by means of %) in a direction orthogonal
to e;.

¢) using the high energy asymptotics of S and the fact that dim Il., > 2, where I, is
the orthogonal hyperplane to e;, we solve the inverse scattering problem.

2.1 Construction of an auxiliary wave operator.

In this section, we construct a modified wave operator QF which is close to the canonical
one W%, The advantage of using QF unstead of W¥ is that O admits sharper estimations
when the energy goes to infinity, (see Lemma 3 below, and [12] Lemma 2.2, Corollary 2.3).

First, let us define a free-modified dynamic Up(t) by :
(2.1) Up(t) = o~ itHo e_ifot V(sp'+yster) ds

This dynamic is close to the dynamic introduced in [14] for the long-range case. Note that
we take p’ unstead of p in the integral since Hy commutes with p'.

Now, we can define the modified wave operators (“Dollard’s modified wave operators”) :

(2.2) O =s— lim 7 Up(t) .

t—too

Since p > 1, it is clear that this limit exists and we obtain by (1.3) :

(2.3) OF = W 00

where
+oo 1

(2.4) gE(p) = / Vi(sp' + 58261) ds .
0



We set T'= Qt*Q~, and by (2.3) we deduce :

(2.5) G = 9t @) igm ()

2.2 High energy asymptotics of the scattering operator.

In order to formulate the main result of this section, we need additional notation.

e &, U are the Fourier transforms of functions in C§°(IR").
ewe S™INIIL, is fixed.
o by, = VNP, P, = Vg,

We have the following high energy asymptotics where < , > is the usual scalar product in
L*(IR™) :

Proposition 2

1 too 1
< [Syp] q)/\,w ) LI}A,(,«J > = ATz < (/ VV($+tW) dt) iiJ s Y > “+o0 ()\_5) .

In [12], Weder studied the same asymptotics; he also obtained Proposition 2 but with a
stronger decay condition on the potential V : p > %.

The main tool to prove Proposition 2 is the following lemma :

Lemma 3
For A > 1, we have :

1 L 1
(l) || <V(I) — V(tp/ _I_ §t2€1)) UD(t) elgi(p)q)/\7w || S C (1_|_ | t\/X |)_5_p ‘
(17) | (ea* - UD(t))eigi(p,)cpM = 0 ()\—%) . uniformly for ¢ € IR .

Proof of Lemma 3 (the case +).

() First, we need some notation :

Let xy € C®(IR*™") such that y(a') = 1if | 2’ [> L, x(a') = 0if | 2’ [< 1. Denote
!

Vii(z) = V(x) X(tz)\) where z = (z;,2') € IR*, and choose § € C;°(IR*™") such that

O(p') ® =, f € C5°(IR) such that f(p) ¢ = ©.

. oo o 1
At last , denote U%(¢,p') = T Visp'+ister) ds



Our strategy is close to Lemma 3.3 [5]. We have :
1 ——_
A(t,A) = || (vg) V(' + 57%1)) Up(t) €9 ®a, , ||
1 .
=1 (V@) = Vit + 5te)) e U )0 |
1 .
= 1 (Vi) = Vi + 5] < 0 = VAL U (1) ]
since w € I, and §(p’) ® = ®. Thus,
ALA) < (V@) = Vag(e)) e 005 — Vdw) UT(t,5) s ||
1 .
I (Viae) = Vit + 5%en) ) 0 0(p' = Vi) UF ()0 |
= (1) + (2).
Step 1 :
We remark that Supp (V —Vy,) C{z e R" :|2"|< @ }, so we have :

[tV
2

(1) < C|| F(|2' - tVow |> ) e o g(p! — V) Ut (t, )00 ||,

where F'(z € O) denotes the multiplication operator with the characteristic function on the

set 0. Thus,

VA : VA
(1) < 1) (e =1 2 L) o g -y < L2
V2
vol ez 2 e
= (a) + (b).
First, we estimate (a). Using the Avron-Herbst formula (1.2) we obtain :
VA b VA

(@) < Il F( = V8 |3 B it gy — i) (a1 L2

This term describes the free propagation for the free Hamiltonian % p'? into the classical
forbidden region. So, we have for all N and A > 1 (see [3]) :

(2.6) (a) <Cw (14| VAN

Now, we estimate (b) :

[tV
8

(b) = Cll<a' > F(la'|> ) <’ SN UL ||



SC A+ [tADN <2’ SN UL p) <2’ >V | .

Writing < 2’ >N Ut (t,p) < o' > N=U*(t,p) + [< o' >V, UT(t,p')] < ' >~V and using
standard pseudo-differential calculus, it is easy to show that

| <a' >N Ut(t,p') <2’ >N || < Cn uniformly for t € IR .
So, we obtain :

(2.7) () < Cy (14 [ tVX )N

Step 2 :
Since 8(p' — VAw) commutes with Hy, we have for A > 1,

1 .
@) =11 (Vacle) = Vil + 56%e0)) 1 00! = Vo) U010 ]
The Avron-Herst formula (1.2) implies :
y 1 2 / 1 2 / + /
@) = Il (Vaala +tp+ 50 = ielt' + 3t%e1) ) 007 = VAw) UF ()00 ]

where by definition g(x + tp) is equal to 'z?’ g(x) e~z7" for any borelian function ¢ .

Thus,

1 1
(2) < <VA¢(5’3 +ip+ 575261) — Wai(tp + 575261)) O(p" — \/XW) U (t,p")®rw ||

1 1
# I (Vaaltn o+ gtten) = Vaultd + 501)) 007 = VAe) U (1) |1
= (a) + (b).
First, we estimate (a). Using the following formula given in [4] :

1 1 1 1
(2.8) Vislz +tp + §t2€1) —Vis(tp + §t2€1) = /0 (VVis)(sz +tp+ §t2€1).fﬁ

_% (AV/\,L‘)(SI + tp + §t2€1) ds ,
as well as the estimate | 8% Vi () |< Cy (14 | tV/X [)777121, we obtain
(a) < CA+tVA)7 Jl<a>Ut(tp) <z >

Thus, since ||< > Ut (¢,p') < x >7'||= O(1) uniformly for ¢ € IR by using the standard
pseudo-differential calculus (see Step 1), we have :

(2.9) (a) < C (1+|tVA])~ L
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Now, we estimate (b). We use again that w is orthononal to e;. First, we see that :

1 1 1 1
Vii(tp + §t2el) — Vau(tp' + §t2€1) = ( /0 t (Vi) ((stpr + §t2)€1 +tp) ds) pL .

So, since w € 1l ,

B) =11 ([ 1@ (st +5%es +19) ds ) puf(on) 00 = Vi) UF (6 8) s ]

I/
X

Using that, in Fourier representation, | (stp; 4+ $t%)e; + tp' |[> C(#2+ | tv/A ]), we obtain :

On the other hand (0, Vi) (z) = 0,V (z) x( ), hence | (01Vi,) (z) | < C <z >17,
(B)SC L] (P+ VX +D)T0<C L] (P4 [V +1)77 (P4 [ VX +1)757

thus

(2.10) (b) <C (| tVN]+1)7577 .

Then, (i) follows from (2.6) — (2.10).

(12) Arguing as in Corollary 3.4, [5], we have :

eTtHQF = _Tl—i>1:|—noo e ] 17 (1)
= 5 — TETOO T Up(t+T).

So,
. +oo 1
Ot Up(t) = i [ T8 <V(:c) V(T + ) + 5((ff+t)261)) Up(T +1) dt .
0
Thus,

. . , +oo
(e @ —Up(t) ) @ | <

— 00

1 oy
Il <V(x) —Vi(sp'+ 58261)) Up(s) eis™ (P Oy, || ds.
Using (z), we obtain :

| (e QF — Up(t)) €9 @, || = O(A™%) uniformly for t € IR . O

Proof of Proposition 2.
We denote F(A,w) =< [59,p] Prw, Yiu >. Using (2.5), we have :

F(hw) =< [e‘igﬂp’) T eig_(p’),p] Oy, Ui >

7



— < [T,p] eig‘(p’)q)AM 7 eig+(p’)q;k7w >

— < [T —1,p— V] e o, . e¢g+(p’)q;A7w >
= < (T —1) 7 (pa), ., | €¢g+(p’)q;A7w >

— < (T=1) Dy, I pw), , >

= Fi(\w) — Fy(\w).

We study Fi(\, w) at first. Writing 7' — 1 = (27 — Q7)*Q~ and using

(2.11) Ot —Q = /j: ¢t (V(;z;)—\/(tp’+%t2@1)) Up(t) dt ,
we obtain :

(2.12) T—1=— /_+: Up(t)” (V(:c) V(4 %thl)) Q"
Thus,

o[t —itH (— ig—(p) r Lo it ()
R =—i [ <o), (Vie) = Vi +5ta)) Up(t) e 00, > di

— 00

3 e ig= (7 L ig* (7)
=i [ < Up() o), (Vi) = Vit +58e)) Up(t) 700, > d

‘|‘ Rl()‘7w) ’

where

+co R .
(2.13) Ri(\w) = —i/ < (7 Q- — Up(t)) €9 ) (pd),, |

1 : /
<V(x) —V(ty + §t261)) Up(t) €700, > di .

Now, by Lemma 3, we have easily R;(A,w) = O (A™!). Thus,

¢ t oo ¢ ig™ (p")
Q1) FOw) = /_Oo < Un( ) 70 (p®)s.
t L, t igt(p") -1

Denote by fi(t, A,w) the integrand of the (R.H.S) of (2.14). By Lemma 3 (i),
[ At A @) | <C A+t

So, by Lebesgue’s theorem, to obtain the asymptotics of Fi(A,w), it suffices to determine
/\lir_{l filt,\,w) , Vt € IR.
—+400



We have :

it t
(2.15) At A w) = < vrth U 57) P2

1 t

t —i-tHy 774 /
o) — 1, ()
(v(r) Vi + o e1>) I U () >

Using the Avron-Herbst formula (1.2), we deduce that :

it _p2 _ t
(216) fl(t,)\,w) =<e 2P U (ﬁ7p/) (pq))AM?
V(;c—l-ite) V(—= ! p—l—itQG) e A U"’(i PV, >
2\ 1 \/X 2\ 1 \/X’ Aw .
Then, we obtain :
it w)2 _ t
(2.17) At A w) = < e mAEHAD =V w) pd
VA
1 it w
(V(m—l—ﬁt%ﬁ (T(p +Vw) + —thl)) e TivE YW U"’(\/X,p +Vw)
Since
2.18 TR it it migisr
(2.18) ,
we have
it _p2 _ t
(2.19) filt, \w) =< e 3 U (ﬁ,p’—l—\/Xw) P |
V(e +tw+ itQG ) — V(tw + ip + L752 1) e_iﬁprz U""(L P+ \/Xw) |\
2N VAL T2 %
Since | V(s(p' + VIw) + 1s%e1)) | < C (s* + 1) € LY(IR, ds), it is easy to show by
Lebesgue’s theorem that :
2
(2.20) s— lim Ui(ﬁ,p’%—ﬁw) —1
Then,
(2.21) 1_1)21 filt, yw) =< p®, (V(z+itw)—V(iw)) ¥ > .
So, we have obtained
(2.22) Fu(\,w) L0 </+OO(V( Flw) - V(t ))dt)\Il>—|— ()
: Ww) = —— < pd, T+ tw) — V(tw o(—),
1 \/X P . \/X



In the same way, we obtain

(2.23) P(hw) = —% <o (/_T: (V (e + tw) — V(tw)) dt) p@>—|—0(%),
(2.24) FOhw) = Fi(hw) — F(\w)
1

O

= <o (/:: YV (z + tw) dt))xp>+o(%).

2.3 Uniqueness of the potential.

In this section, we use Proposition 2 to prove Theorem 1.

Let V; and V3 be potentials satisfying (H;) such that S(Vi) = S(V2). By proposition 2, we
have :

+co
(2.25) / VV(r+tw)dt = 0, Yee IR", Ywe I, 05"

where V = V; — V4. Now, fix a € IR and define for 2’ € 1., V,(2') = V(ae; + ). Using
(2.25), we have Voo € IN"™! with | a |> 1 :

+oco
(2.26) / DoVi(a +tw) dt = 0, Vo' e I, , Ywe I, NS,

— 00

Now, we can easily prove that V, = 0.

First, remark that for n > 3, dim I, N1, =n —2 > 1. Let ¢ € 1I., N1l and consider for
| @ |>n — 1, the Fourier transform in L'(I.,) :

(227) %(5/) — / e—’iaz‘.fl Ilall‘/a(x/) del .
.,
Writing @’ = y 4 tw where y € II., N 11, we have by (2.26)

— L +oo ,
(2.28) a2V, (&) = / — ( / 92 Va(y + tw) dt) dy = 0.
M., NI, -

(o)

Varying w, by the uniqueness of the Fourier transform in L(IL,, ), we have 02V, = 0. So V,
is polynomial and goes to zero at infinity. We deduce that V, =0, Va € IR. Then V = 0. O

Remark.

In [12], Weder proved uniqueness of the potential by using the inversion for the Radon
transform (see [6]).
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3 Comments.

With the method proposed above, we can recover Weder’s result [12]. Actually, in [12], he
showed this result with weaker conditions on the derivatives of the potentials.

Theorem 4 ([12], Theorem 2.4 )
Let Vi, Va be potentials satisfying (Hy) with p > % and assume that n > 2. Then :

SVi) =5(Va) = Wi=V,.
Sketch of proof.

Let w € S"! fixed such that | w.e; |< 1. We easily show that if | p — vAw |[< C, (in Fourier
representation) , there exists C'; > 0 such that :

1
(3.1) Vie IR, Vse[0,1], VA> 1, | (stp + §t2)el +tp' |>Cy (B4 [tV ) .
Now, following the proof of Lemma 3 and using (3.1) in the Step 2 (b), we obtain :
1 o
(32) || (V)= Vit + 58a)) Up(t) 00, (| < C (14| 0/h )71

+CO V| (1 | 8VN | 2371,
Then, using the same arguments as in Lemma 3 (ii), we have for § < min (p,1) :
(3.3) | (7 HQF — Up(t)e* )y, || = O (A7~%) , uniformly for t € IR .
With the notation of the proof of Proposition 2, we obtain easily :
(3.4) Ri(\w) = O(N'7%) .

So, if p > %, Proposition 2 is valid. By a standard continuity argument, we have (2.25) for
all w € S"7! and using the same arguments as in the section 2.3, we obtain Theorem 4. O
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