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SURGERY ON THE NOVIKOV COMPLEX

AV.PAZHITNOV



Let MM be a manifold, n>6, ¢ be an epimorphism zq(M")—> Z.
Suppose, that Ker$ is a finitely presented group. Denote by A the group
ring ZrqM, by A;- the Novikov completion of this ring. Let C, be afree

based finitely generated complex over A; of the same simple homotopy
type, as the completed simplicial chain complex of the universal covering
M. Suppose that C* #0 only for 2 <x<n-2.

The main aim of this paper is to prove, that that C,.can be realized

(up to the terms in A; of arbitrary high degree) as a Novikov complex of

a Morse map fM->ST, belonging to the homotopy class ¢ .The precise
statement together with all the necessary definitions is contained in the
Introduction.

The present text contains every detail of the proof. The author
understands that sometimes it is overloaded. The reasonable way to read
it would be to read the Introduction, which contains all the background
material, as well as the main idea of the proof, and then consult the
principal text for details, when necessary. The author will be grateful for

every comment or remark.

A.V.Pazhitnov. Nantes, April 4,1992.
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SURGERY ON THE NOVIKOV COMPLEX
A.V. PAZHITNOV

0. INTRODUCTION

The classical Morse theory is initiated by Morse and
developed 1in 60s by differential topologists (Smale, Milnor
and others) is based on a geometric construction of a chain
complex, . associated with each Morse function. This
construction is due to Morse{ Thom, Smale (see [Mi2], {Sm])
and it was recently renewed by Witten [Wi]. It is basic for
our puréoses and we begin by a short expository account.

Let M" be a smooth manifold, f:M® —R be a Morse
functign, v be a gradient-like vector field for f (this
méans, we recall, that df(v) 1is strictly prositive except
for the critical peints of f and near each critical point
P of index there exists a neighbourhood U(p) with the
coordinates xl,...,x% , yl,...,y}l , Where A+ B =n, such
that in these coordinates f is (—(x§+_..+xi ) + (y%+...+¥; )
and v has the coordinates (—Xl ,...,—XA , yl,...,y u ). We
assume that the stable manifold D(p, wv) of any critical
point p 1s transversal to the unstable manifold D(g,-v)
of any other critical point a. Such vector fields ~will be
called perfect and oné can prove that in any neighbourhood
of a gradient-like vector field there existe a perfect one
(see, for example, [Pal, App.Bl]). It is easy to see, that
for a perfect vector field v the number of (-v)-

trajectories, joining p and g, where ind(p) = ind(q)+1, is
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finite and if we choose the orientations for all the stable
manifolds (these manifolds will be called descending discs
from now on) each trajectory obtains a sign + or -. The sum
of these signs is called the incidence coefficient n(p, q).
Consider now the chain complex C*(f,v) of free abelian

groups, such that Cp(f,v) is generated by the critical

points of f of index p and the differential is of the
form ap = 2 yN{p,qlg, where g runs through the critical
points of index {(ind(p) - 1).
2 .
Theorem 0.1. 2% = g and the homology Hy(Cy (fyv)) Is

Isomorphic to H (M, Z).

X(
(The proof can be extracted from [Miz2].)
From +this theorem one deduces easily the classical

Morse inequalities (as improved by Pitcher); that is the

matter of elementary algebra:

Corollary 0.2. The number mp(f) of critical points of
Index P oOFf any Morse function is not Iess than DP(N) +
qp (M) + qp_l(M), where bp (M) and qp(M) are, respectively,
rank and torsion number of Hp(M, Z).

The natural problem to pose is whether these

inequalities are optimal. The answer 1s due to Smale.

Theorem 0.3. (Smale (S71). If M =0, n 3 6, then

there exists a Morse function f:M — R, such that m_(f) =

bp(M) + qp(M) + qp_l(M) for any p.
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The demonstration is essentially that one eliminates
the ‘“spare" critical points. One of the corollaries of this
result is the h-cobordism theorem.

If the fundamental group J, (M) is non-—-zera, the

1
inequalities above are not optimal in general and to improve
the situation one considers the modified construction of the
Morse complex, which takes into account the homotopy classes
of (-v)-trajectories, joining the critical points, and,

thus, the fundamental group.

We shall formulate the result for the Morse functions

f on the connected cobordisms W, OW = voL)vl, such that
f lVO = const = min f, and flvl = const = max T, and the
critical points of f belong to W \ (VOlJ Vl). We denote by
W the universal covering of W, by U; - the preimage of
~
VvV in W.
o

Theorem 0}4. [Mil1] There exists a chain complex C*(f,v)

of free right finitely generated ZTer - modules, such that

1) the free generators of Cy(fyv) are the critical

points of f,

‘ 8 L~
2) C*(f,v) is simply homotopy equivalent to C*(N, VO).
Here A\ stands for any smooth triangulation of W, such
that VO i1s a subcomplex (see [Mul) and Ci ~ for the

corresponding simplicial chain complex.
The analogue of the optimality of the Morse—Pitcher
inequalities above is the following theorem, which is

difficult to attribute precisely.



Theorem ©.5. Assume that Vo, Vl are connected and the
. . n . . . .
Inclusions VO c W D Vl induce the isomorphisms 1in Wi .

Assume that n > 6.

Then each free based right I ﬂl W - complex {0 &« Dzé;—
...é—-Dn_z <=~ 0}, simply homotopy equivalent to C*(N, Vol 2s

the Morse complex of some Morse function.

One of the corollaries of this theorem is the s-
cobordism theorem of Barden—-Mazur-Stallings.

To deduce from this theorem the analogues of Morse-
Pitcher inequalities one should be able to find in the given
simple homotopy type {ci(ﬁ, Gg)} the chain complex with the
minimal possible number of generators in each dimension.
This number will play the role of bp (M) + g_(M) + g

p p
above. This idea is due to V.V.Sharko [Sh1]; later he

developed a general theory of such inequalities (see the

book [Sh21).

Having recollected these basic facts from standard
Morse theory, we naw pass to the Morse theory of maps M-$>Sl
= R/Z, which is the subject of our paper. Assume that f:M —>
Sl 1s the Morse map. One can show that there exists always
a gradient-like vector field v for f, such that all the
stable and unstable manitfolds of critical points of v are
transversal. That is a version of Kupka-Smale theorem; for

‘the proof see [Pall (this paper is actually the first part

of the present work). Assume that f*: Wim —_— ﬂiSl = 7 1is

epimorphic and consider the cyclic covering M —> M, where f

resolves to a Morse function TiM —> R, which 1s t-



equivariant, i.e.: f(xt) = f(x)-1 (Here t is a generator of
the structure group of the covering). The attempt to
construct an analogue of Morse complex in this situation

meets an obvious obstruction: the number of critical points

of f 1is infinite. The procedure of counting the critical
points (and the resulting construction) is due to Novikav
[Nol. For each «critical point X of f ane chooses a

lifting X  to M. One lifts also the field v to ™. For
ind{x) = ind(y)+1 the number of (-v)-trajectories, joining
the «critical points X and tl§ is finite for each fixed

i. We count them (with the signs, due to orientations) and

get the integer ni (X,v). Set by definition
i . 3
nix,y) = ZZ ny (x,y})t ;3 that is an element of the ring of
)
the Laurent power series f\.= Z[[t]][t—l]. Caonsider now the
A

free _[\_— module Cp(f,v) generated by critical points x of
index p and set ap(x) =Zi’n(x,y)y, where vy rumns through
the set of critical points of index (p-1). Denote by JAL the

group ring 2Z[Z].

Theorem 0.6. B O‘B = 0 and the homology H_(C_(f,v))
p-1 p por
of the resulting complex is isomorphic to Hp (ﬁ,Z) @)[& as
A A

a /\—modu]e. :

This theorem was anncunced in [No]. Al though the idea
of proof is rather clear, the details were not clarified,
and, for example, the papers [Frb]l and [Pa2]l used another

proof of the Novikov inequalities. Now the full proof 1is

written down (see [Pall).
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Corollary 0.7. ([Nol). The Morse number mp(f) of a
1

Morse map f:M — S Is not less, than bp(M,[f]) +
QP(N,[f]) + qp—l (M, (1), where [T] is a homotopy class of +
and b (M,[f1]), Qp (M, 0Ff]) are, respectively, rank and torsion

P

N~ - A
number of the /\-module H_ (M) @ /\ .
A
(Note that M depends on [f], so actually the good

notation should be M[f} .) These inequalities are optimal,

as proved by Farber [Frb].

Theorem ©.8. [Frbl. For any manifold Mn, n 2 6, Wi(Mn)=
Z and any class O %‘KGEHl(M,Z) there exists a Morse map f:M
—a»Sl, such that o & Y and for every p we have mp(f) =
bp(M, Y) + Qp(N, Yy o+ qp_l(M, ).

This theorem is the direct analegue of the result of
Smale, cited above. The interesting feature of Novikov
theory is that these inequalities are optimal even in the

case of the free abelian fundamental group for the

cohomology class "in general position'. This almost never

happens to the Morse functions (see (Sh11). The following
theorem was proved in [Pal] and [Pa3] under some
restrictions on the homotopy type of M; these restrictions

can be removed by means of the main theorem of the present

paper.

Theorem 0.9. ([Pal] + [Pa3] + present paper). For &

manifold Mn, n > 6, ﬂi(M) = Zm, there exists & finite

number of hyperplanes A&. - Hl(M,Z) = Zm, such that for
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each class 0 55'1 = Hl(M,Z)\LJ in there is a Morse map
i A v

f, such that mp(f) = gP(M>5)+qu@X)+qu<PBX~ The numbers

bp(M, 1 ), qp(M, X) do not depend on in every connected

component of the complement Hl(M,R)\ L) (‘Ai *» R).

1
(We shall comment on the proof later on.)

Now we shall formulate the analogues of theorems 0.4

and 0.5 for the case of Morse maps f:M —9-51. For that we

need some more notations. We denote ﬁi(M) by G. Let E:G —
Z be an epimorphism and denote ker§ by H. Denote G
by A | choose and fix some element & € G, such that §(6) =

—-1. We denote by J\; the ring of formal power series of the
type {a o I +.,..+ a + a0 + ...}, where a; & ZH. (1t
seems at the first glance that this ring depends on the
choice of © , but actually it does not and the invariant

definition, which is valid also for the homomorphisms from G

to R can be found in [Si]). Denote by U_ the group of units

_ 13
of the ring (55 s Wwhich are of the form (+ g)(1+ale +aua )y
where g &€ G, a, &€ ZH. Denote by Wh(G, E) the group
i
Kl([Lg)/U; . The term "complex" from now on will be reserved

for the finitely generated free right _[L; —caomplexes with
the fixed base. We say, that two complexes are simply
homotopy equivalent, 1f there exists such a homotopy

equivalence between ‘ them, that its torsion vanishes in

) -n
Wh(G, # ). We say, that two elements a_ne TeoeToal e

and b__© ...+ b +... oOf the ring'JX; are N-equivalent,

it a; = b, for i < N - 1. We say, that two complexes D,

D are N—equivalent, if there is a one—to-one
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correspondence between their bases and the elements aij(p)’-
/
éij(p) of the matrices of differentials B(P),‘B.(p) are N-

equivalent. From now on we assume that our Morse maps induce

the epimorphisms in Wi‘

Theorem 0.10. {Pall. For each Morse map f:M —> st and
a perfect gradient—like vector field v for f there
exists a complex C*(f,v) over j\; » where &= [f1l, such that

1) Cp(f,v) Is generated by the critical points of f

of index p

A

2) Cu(f,v) Iis simply homotopy equivalent to C*ﬁﬁ) ® Z\;
N
" This complex is called Novikov complex.
The analogue of the theorem 0.5 (which presents in a

sense a converse to the theorem 0.10) is the main aim of the

present paper.

Theorem 0.11. Assume that H = ker(g : jrl(M)—? Z) is &

finitely presented group; let n 3 6. Let D* = {0« D26— ..

<-'—Dn_2 <— 0} be a complex Dverlﬁ;, simply homotopy equivalent

A~ -
to C* (M) @)f&; and let N > O be a natural number.

VAN

Then there exists a Plorse map f:tM —> Sl, belonging
to f . and a perfect gradient—-like vector field v for f,
such that C*(f,v) is N-equivalent to D*.
This theorem is exactly the theorem 2.1 of the present

paper. The proof occupies the sections 3-8 of the present

'paper, the last step is contained in section 8.



Now we shall demonstrate the corollaries of this
theorem, afterwards we present the main ideas of the proof,
and we finish the introduction with the 1ist of problems

unsolved.

Corollary 0.12. Let MY pe a manifold, n » 6, f': Wi(M)
—> L be an epimorphism with a finitely presented kernel.
Then the class _5 & Hom( W1 (M, Z) can be realized by a
fibration If and only if_the complex Ce(ﬁ) @A;_ is simply
homotopy equivalent to zero. b

For brevity we éhall denote Cf(ﬁ)(@j\;: by C*(ﬁ,f ).

The condition of this corollary J?é equivalent to the
following: the homalogy of the complex C*ﬂﬁ,g ) vanishes,
hence the torsion of this complex is defined and it vanishes
in the group Wh(G, £ ). To rewrite the second condition in
more familiar terms one should be able to compute Wh(G,g ).
We shall do it for the simplest case G = Hx Z. In this
case Jl; = (ZH)[[t]][t_l ] and the exact sequence of
localization in K-theory [Gr] gives us the following exact
sequence:

Ky (£) = KUZHIIIt1D) — K, (A; ) —> K (G )
where (; is the category of finitely generated (ZH)[(t]]-
modules, which are annihilated by some power of t and
which have the projectiye resolution of length { 1. By means
qf algebra one deduces the follo@ing exact sequence:

whiH) L Wh(G, ¥ ) —> Nil(ZH) @ < ezH)

So, for vanishing of the torsion T o= TUC, (M, & )) in

Wh(G, f ) it  is necessary, that ©(T) = 0; in the latter
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case the element P—l(i') is defined in the group WhH and
vanishing of these two obstructions is equivalent to
vanishing of T . It is wvery probable, that these
obstructions are the same as those of Farrell and
Siebenmann, at least when they both are defined, i.e. the
homology of C*(M,.f ) vanishes and M is finitely dominated.
(I do not know whether these two conditions are the same or
different, it seems that they are the same for -abelian

groups.)

For the group Wi(M) = ™ the exact sequence abave

gives us Wh(Z™, ) = 0, and this implies in turn that for
the case of free abelian fundamental group every complex

D% = {O‘é—‘Dzékf... £<— D

equivalent to C (M, f ) can be realized as C (f,v). So to

n_zé?f-O},_which is simply homotopy
prove the theorem 0.9 above it suffices to find the
hyperplanes A:i s such that for each 1-dimensional
cohomology class » which does not belong to the union
of in, the complex C*fm,f') is simply homotopy equivalent
to some complex D*, such that Di =0 for i =0, 1, n-1, n,
and the number of generators of Dp equals bp(M, I+

rq;M, ¥ o+ qp_l(M, Y)- That is the matter of pure algebra and
it is done in [Pa3]. This algebra is based on the beautiful
theorem of J.-C. Sikorav, which states that the Novikov—-type
completion Jl; of the ring lﬂ~= Z[Z]Vwith respect to a
monomorphism g i1 —> R is euclidean (see [Pa2] for the

exposition of this theorem).
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These are the applications, which I had in mind, when I

started to write this paper, and now I proceed as to explain

the main ideas of the proof.

There exist already several theorems concerning the
number of critical points of Morse maps f:M —> 81. One
usually tries to get in a given homotopy class a function
with the minimal possible number of critical points. This
number in the casés considered by Browder—-Levine [BrL],
Farrell {(Farl, and Siebenmann [Si] 1is =zero, and in the
cases, considered by Farber [Frb] and myself [Pa2] is given
by the Novikov numbers. The strategy, proposed by Browder
and Levine 1is as follows. 0Oe constructs first some
submanifold N < M, dual to the class g = [f]. We now think
of the cyclic covering M as of thevunion of the similar
bricks W, each of which has two components of the boundary,
diffeomorphic to N (see pict. 0.1). Next one makes surgery
over N inside M, so as to obtain 4t the end the cobordism
(W, tN) with the desired homotopy properties, i.e. h-—
cobordism™ in the case of Browder-Levine and in the case of
Farrell, the cobordism with Betti and torsion numbers, equal
to the corresponding Novikov nubers in the case of Farber,
and, finally, the cobordism, such that in homotopy type
c*xw, tN) there 1s a chain complex with the number of
generators equal to the corresponding Novikov numbers in the

case of (PaZl. To do this there is an obstruction in the

case of Farrell, which belongs to Nil Z(H). Also in the case
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of ([Pa2] I succeeded to find such an N < M only under

additional restrictions on the homotopy type of M.

N

£N

Pict. 0.1

tw

The second stage is that one seeks for a Morse function
on the cobordism W, constant on N and tN, with the desired
number of critical points. In the case of 'Farrell, for
example, this is possible if the Whitehead torsion of h-
cobordism (W, tN) vanishes. In the cases of [BrL], [Frb] and
[Pa2] that is always possible, mainly because of vanishing
of all the K-theoretic groups.

Thus, the method breaks into two steps.  First we
improve N (which can be considered as a regular level of
some Morse map f:iM — Sl in our l-dimensional cechomology
class, but we forget this for a while). Afterwards we seek
for a Morse function with the desired number of critical
points on the resulting cobordism.

The method of the present paper 1is, in a sense, more

direct. We start with an arbitrary Morse function fo: M —751,
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which defines the Novikov complex C*(fo’ vo). The complex

Dx, which we want to realize as C*(f,v) (up to some N) is

simply homotopy equivalent to C*jm, E ) and, therefore, to

( ,vo). That implies, by the standard theary of simple

C% fo

homotopy type (we recall it in the section 1}, that D can

be obtained from C*(fo,vo) by a finite series of elementary

i
transformations, such as: adding a trivial direct summand

- id
{0 &— ng <« f\; <— 0}, cancelling such a summand, and
changing the base by the elementary transformations. So we
need to realize each of these operations (up to our N) on
the level of functions f and fields v. This can be done

and this occupies the sections 5-7 of the present paper. The

only thing which we demand from our initial furmction, is

-1

that Call the regular preimages fo (c) are connected,
f;l (c) < M induces a monomorphism of 7Tl(f;l (c)) onto
Ker'g = H and f has no critical points of irdices O, 1,
n—-1, Nn. This is possible, since H 1is finitely presented

(see [Farl]). This property will be preserved in course of
our transformations, since by §l we can choose our
elementary transformations “in  such a way, that all the
intermediate complexes have no generators in dimensions O,
1, n-1, n.

This is the method, which is usually employed for the
proof of theorem 0.5.

The main part of the proof is of course the
cancellation of the trivial direct summand. I shall explain

the main lines of this process. The instruments, used here,



14

are those of standard surgery theory: the Whitney trick faor
the functions on the cobordisms and the cancellation process
as described in [Mi2]. What we have to do is to reduce our
problem to the case when this instruments work and ~to
perform the operations in such a Way, that the other parts
of Novikov complex are not disturbed.

We need some some definitions and conventions. We say,
that a gradient-like vector field v is almost good, if ali
the descending discs D(p,v) are transversal to all the
ascending discs D(gq,-v) for ind(p) > ind(qg). We say that v
is good, i1f this holds also if ind(p) > ind(g) - 1, and we

say, that v is perfect, if that holds for all P, g. By

(Pall every gradient-like vector field v for some Morse
1

function fi:M —> S can be approximated by a perfect one.

For a Morse function h on a manifold, cobordism etc. the

Crhwill denote the set of critical points of h.

We shall assume, that our initial Morse function fi:M —>
1

S is regular, i.e. there are no critical points of indices
o, 1, n—-1, n, all the regular preimages f_l (c) are
connected and ﬁi(f—l(c)) - JE(M) is an epimorphism onto
Ker ( f : UE(M) —> ). All theroperations below can be

performed as to preserve this property.

If f:M :—~9 Sl is a regular Morse function, v is a
good gradient-like vector field for f, and we have chosen
and fixed the liftings of all the critical points of f to
M together with the orientations of all the descending

discs, the Novikov complex C*(f,v) is defined (see [Pall; in
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this paper we defined it for the perfect vector field Vv,
but it is easy to see, that for good vector fields the
construction works as well).
If %, vy are some critical points of the lifting fiM —

R, ind(x) = ind(y) + 1, ther for a good gradient-like vector
field v the incidence coefficients Q(x,y;v) & 7H are
defined and one shows easily, that if a,b & Crf, the
incidence coefficient n(a,b) in the Novikov complex is the
sum ZZZ(E,tSB)'GS s Wwhere a and b are the projections to
M of the fixed liftings 3,b € M. For x,y € Crf we denote
by N(x,y;v) the set of all (-v)—trajectories, joining a and
y (the trajectories, which differ by a parameter shift, are
identified). If ind(x) = ind(y) + 1 this set is finite. We
say, that N(x,y;v) and N(x,y;v') are homotopically the same,
1if they are in bijective correspondence, which preserves the
homotopy classes. In this case, obviously, V(X,y5v)

= ‘Q(x,y;v'). Note, that if v, v' are the good gradient-—

like fields for the same f, then for n{a,bj3;v) be N-
equivalent to nta,bsv') it suffices that Q(E,Bts;v)
= Q(S,Ets; v') - for a finite set of s (more precisely,

for all s, such that -(Jftay -t ¢ 2) ¢ s ¢ N-1).
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Step A. Whitney trick.

Theorem A (see th. 5.2 of _ 65). Let g:iM —> st  pe

regular, v be good. Let )1<‘9 be the regular values of'@:ﬁ—#
~?R, such that the only critical points of § in 5"1([/{, SED!
are p, g, g(p) > g(p), ind(p) = ind(q) + 1. Let Yl > Y, be
two trajectories, Joining p and q. Let K < Crg be any
finite set.

Then there exists a good gradient-like vector field v'
for g, such that:

Al)  The coefficients D(x,y;v) and V(x,y;v') are the
same for ind(x) = ind(y) + 1, X,y &€ K.

AZ2) The set N(p,q;v') 1Is homotopicallt the same as
N{p,g;v) \ { 71' XZ}.

R3) For x,y & K, ind(x) = ind(y) + 1, and x Is not &
t-shift of p and y is not a t-shift of q, the set
N{x,vy; v') Is homotopically the same as N(x,v; v).

A4) Assume that ind(p) 2 4. Then I¥ Y 1Is a critical
in K of iIndex ind(p) - 1, and y is not a t-shift of g,
then N(pts,y; V) 1s homotopically the same as N(pts,y; v')
for ptsé K.

A4 ) Assume that ind(p) § n-3. Then if X & K, ind(x)

= ind(p), X Is not a t-shift of p, the set N(x,qts,’v')

. . S
iIs homotopically the same as N{(x,qt ; v) for qts e K.

Sketch of proof. The basic idea is the following. We
apply the classical Whitney trick, but we choose the

embedding of 2-dimensional Whitney disc D2 in such a way,
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that ié is transversal to all the descending and ascending
discs 1in consideration. We perform the Whitney modification
and cancel our two trajectories of opposite sign. Consider

now the incidence coefficient n(x,y) for any two critical

points XY ind(x) = 1ind(y) + 1. There are no critical
points of indices O, 1, n, n-1, therefore either the
descending disc D{x,v) or the ascending disc D{(y, —-v) has

the dimension £ (n—-3), therefore does not intersect D2. This
implies, that either D(x,v), or D(y,—v) is the same as
before, and, therefore, n(x,y) has not changed.

0f course this idea does not work through directly
because of various subtleties. (For example, the Whitney
modification takes place in the neighbourhoodYof D7, SO we
should have Dix,v) M\ U= &, or D(y,-v) A UL = ;5 , which
actuaily can not be achieved in all the cases, and that is
the cause of the several subdivisions in the conclusions of

the Theorem A.)

Now we can expose the proof. Choose an integer N, such

that K g_l(EC,C+NJ) and denote by W  the cobordism

g_l (L ) 2N, Y + 2N}) and by Vv the preimage of some

regular value A - (n s, Y ). Denote ind(p) by r and denote

by N the (r — 1) — sphere D(p,v) N VvV, by L - the (n - r) -
sphere D(g,-v) M\ V. Recall, that r - 1 and n — r are
less than n - 3 and not less, than 1. The
intersections Yl(W v and XZ (N v are the points, say a

and b, which belong both +to D(p,v) and to D(g,-v), which

imply that they do not belong to any other descending or
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ascending disc of v in M. Now we choose a curve C in L,
joining a and b such that C 1is transversal to all the
descending discs D{x,v) of the paoints x & M, ind(x) < r,
x # p. (Note, that, therefore, C does not intersect these

D(x,v).) That is possible, since, by the assumption D(x,v)
is transversal to L = V f\ D(q,-v) and D(x,v) 1is the
submanifold of V of codimension 7 2 (see lemma 3.1.p.2)).
Similarly we choose the curve B in N, Joining a and b, such
that B does not intersect D(y,-v) for y & M, ind(y) > r - 1,
Y # qg. We can assume that C and B are expanded a bit to give

a classical picture of Whitney trick:

Pict. 02 Pict. 0.3

Note that C interéécts no disc D(y,-v) for y # qQ and,
similarly, B intersects no D(x,v) for x # p, for trivial
reasons. Hence B L]C does not intersect D(x,v) for ind(x) <
re x # p, and D(y,-v) for ind(y) > r-1, v # q.

Now (see the lemma 3.7 p.7) the union of all the D(x,v)
for ind(x) < r and x # p, intersected with 5"1([A,/J + 2NJ)

1s a compact set. Therefore, any small neighbourhood of B
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and C intersects with no disc D(x,v) for ind(x) { r, x # p,
x € W. Similarly, it intersects no disc D(y,-v) for ind(y) >
r-1, v # 9, vy € W.

By the standard Whitney argument (see [MiZ2, éé]; we
reproduce i1t in our paper for the sake of completeness, see
D. '3H‘-40q ) we construct a 2-dimensional thickening T of
B Uc and, afterwards, the Whitney-type embedding P of D%
to V (see pict. 0.3, all the details are given in § S5). We
can assume that this embedding 1is transversal to all the
D(x,v) for ind(x) < r, x # p, x &€ W and to all the discs
D(y,—v) for ind(y) > r-1, vy # g, Y & W, since T was
transversal to them. This implies, that LP(D2 ) intersects
neither D(x,v) for ind(x) £ min(r, n=3), x ¥ p, X € W, nor
D(y,-v) for ind(y) > max{(r, 3), v # p, y € W. Again by
compactness the same is true for any small neighbourhood U
of \P(D2 ) - Now we consider the standard Whitney—-type
thickening of D2 » that is, an embedding é? of D2 X Dr_l X
D" to V (see lemma 5.4), such that the image of P is
contained in the small neighbourhood of the Im(P . Next we
perform” the Whitney modification simultaneously in all the
neighbourhoods (Im é?-tﬂ), s &€ Z , and get a new t-—invariant
gradient-like vector field V' for g on M, hence also a
gradient-like field for g on M.

Note that from the very definition of U it follows that
for any critical point z € ﬁ, which is not a t—-shift ot p,

ind(z) ¢ r = ind(p), and 1nd(z) £ n=3 the intersection

D(z,v) F\a"l (Cz - 2N =1, z]1) is the same as D(z,v') Ng 1l(cz



20

- 2N -1, z]), and the vector fields v and v' coincide on
these sets. Similarly, if a critical point y &€ M is not a t-
shift of q and ind(z) > r—-1, ind(z) » 3, the intersection

D(y,-v) ) §_l (Ly,y + 2NJ]) is the same as D(y,-v') é_l([y,y

+ 2N1).

That implies immediately, that the restriction of v!
to the cobordism No = g_l([ M - N, VY + NI) is almost good.
Indeed, if X,y are critical points of g in wo, and ind(x)

& ind(y), then one checks up easily, that either
1) ind(x) £ min(r, n-3) and x is not a t-shift of p, or
2) ind(y) » max(r-1, 3) and y is not a t-shift of q.
In the case 1) the disc D(x,v) M NO has not changed,
therefore there are no (-v)-trajectories, joining x and Y3

similarly for the case 2).

Similarly if X,y & wo, ind(x) = ind(y) + 1, and
neither X 1s & t-shift of p nor vy 1is a t-shift of g,
we deduce N(x,y;v) = N(x,y;v') (just because either ind(x)

< n=3, or ind(y) » 3).

By the same reason if ind{(p) > 4 and v & Crg N No,
ind(y) is less by 1 than ind(p), and y 1is not a t-shift of
q, the sets N(pts,y;v) and N(pts,y;v') are the same for

tS W
p (S o-

The same argument applies for ind(p) £ n-3.

Next we perturb v' a bit to get a good gradient-like
field w for g and the homotopical stability of the sets

N(x,y3iv) under the small perturbations of v (see lemma

3.12) gives us the items A2 —-A4') of the theorem A.
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It 1is left to prove Al) for the case, when ind(x) =
ind(p). For that we need a special technical instrument.
That 1is, we define an incidence coefficient V(x,y;3V) for
ind({x) = 1ind(y) + 1 and for v being almost a good
gradient-like vector field for our Morse function. That is
done in $3 (see pages £0—380 ) and we prove that this
coefficient is invariant under small perturbations of v, and

coincides with the incidence coefficient for the case of

good gradient—like vector fields (lemma 3.10). This
coefficient 1s not changed, when we perform the Whitney
trick. For details see §3; the basic idea 1is that this

coefficient 1is defined as the intersection index of two
certain manifolds with non-intersecting boundaries. It
apﬁears that our version of the Whitney trick changes one of
these maenifolds by the isotopy with the compact support,
which does not intersect the boundaries. The other manifold
does not change, hence the intersection index is preserved.

The step A 1s done.

Step B. Preparations for cancelling.
Theorem B (see th. 5.1 of $5). Let f:Mm —> sl  be
regular, Y be good. Ltet N > 1 be an integer. Assume that

C - id -
C*(f,v) is N—equivalent to D, & {0 <«— _A_go&-—- _A_g <« 0},

where the Tirst copy Df_f&; is generated by b, the second -

by a, ind(a) = ind(b) + 1.
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Then there exists a regular g:M —> Sl with the same
critical points as f (always 1In our class glel(M, Z)), a
lifting §:M — R and a good gradient-like vector v for g,
such that

1) There are no (~v')—trajectories, Joining & and
’y‘ts, where y € Crg, y # b, ind(y) = ind(b), s < N.

2) There are no (-v')-trajectories, jéining X and
Bts, where x € Crg, x 2 b, ind(x) = ind(a), s < N.

3) §(b) < g(3) < g(b) + 1 and there is only one (-v')-
trajectory s Joining & and b. Moreover, ~ (a,b) = 1.

4) The complex C*(g,v') is N-equivalent to C*(f,v).

Sketch of proof.

We must distinguish two cases: a) ind(a) { n-3, and b)
ind(a} } 4. We present here the idea of the proof for the

first case, the second case is similar.

Using the assumptions and employing the Whitney trick

(étep R), we push the critical point a below all the
critical points ?ts, where ¥y runs through the critical
points of f of the same index as b, but different from
b, and s < N. We push it lower than Et—l as well. (The
term ‘“push” means the following. If there are two critical

points d,p  in M, ind(4) = ind(p) + 1, ;7[)5)<1{7(o()< ?{P)‘Fi
and N (d ,F ) = 0, we 'apply the Whitney trick several times
and afterwards there are no paths of steepest descent,
Jjoining ol and P s SO we can change the function f on the

cobordism ?_l(f?(F ) — &, F(F ) +&1) in such a way, that
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for the new function § . the point L is situated lower,
than ﬁ . We can keep the same vector field v as gradient-
like vector field.) This gives automatically the item 1) of
the conclusion of the theorem, as well as the first part of
the item 3). Note that our step A guarantees, that vi{a, B)

is the same as before, so we can apply the Whitney trick to

the pair a, b and get the second part of the item 3) as
well. Note that this operation does not spoil the item 1)
because the points 7ts, y # b, ind(y) = 1ind(b), s < N are

still higher up, than 3, b.

Now we want to push the point b upwards to make it
higher, than all the points ?t_N, where x runs through
the chitical points of f the same index as 3, but
different from &. Each time we apply our Theorem A to the
pair of critical points (Etm, B), where x # a. Thus.the set
N(3, b) as well as the sets N(F, yt5) for vy # b, sl < 2N

can be preserved. Note that the sets N(3, 7t5) are preserved
automatically, since a # x, y # b, but we must apply A4'}
and thus use ind(a)

£ Nn=3 in order not to deform N(a, b).

The step B 1is over.

Step C. = Cancelling

Theorem € (see theorem 6.1 of $6). Let F:M —> Sl be

reqular, v be good. Let N } 2 and assume, that the Novikov

complex C*(f,v) is N-equivalent to the direct sum of some Dﬁ
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— id - .
and of the complex {0 <«— jﬁg < Jq? <— 0}, concentrated in
dimensions k, k+1.
Then there exists a Morse function h:M —> Sl (belonging
to our class § ) and a good gradient-like vector field w

for h, such that Cylh,w) Is N-eguivalent to Dy.

Sketch of procf. We can assume that and v satisfy

the conclusions of the theorem B. Moreover, we can assume

that there are the regular values Ao ) of f, such
that n < vy, v - Al <1, and a, b are the only critical
points of f in the cobordism W, = F ([ BV D). ke
consider a small neighbourhood U < wo of the unique (~-v)-
trajectory ¥ » Joining 3 and b and apply to it the

cancellation procedure, described in (Miz, §5]. (0f course,
we apply it to all the t-shifts of U to get a t-invariant
vector field.) The critical points &y, b disappear. What we
must show is that the incidence coefficients ni(x,y), 1 ¢ N
have not changed for all the other generators X,y of

Co(fav).

-1
Consider the cobordism W = ¥ (Lp - A, vV + Al), where

A 1is sufficiently large positive integer. Similarly to the

proof of the theorem A we can show, that i7 only U is
Sufficienﬁly small, the modified vector field v’ will be
almost good and the rn;idence coefficient hi(x,y), 1N
.can Change only if ind(x) = k+1 (see lemma 6.8, p.1), 2)).

Here x,y are the critical points of f, x # a, vy # b.



25

Now we shall explain why 1t does not change even in

this case (see lemma 6.8, p.3)). For this we show that the
S — -

trajectories of (-v), joining X and t ¥, where X, tsy € W,

are the same as those of (-v'), and that they do not

intersect supp(v - v'). There is only a finite number of (-
v)-trajectories, joining X and ts7, and they obviously do
not intersect X y 50 they survive, if only u is small

enough. So we are to show, that we have not created a new

trajectory. Assume that we have. Look at the picture 0.4.
This new trajectory e must intersect some of the
. i : k m
neighbourhoods t"U. Suppose that tu and t U are
respectively the first and the 1last copies of u,
intersected by.© , k £ m. That means, that there exists a
. L m . S —
(-v)—-trajectory, joining tu with t vy, and a (—v)-—
- k
trajectory, joining X with t U. The simple compactness
argument shows that if u is sufficiently small, that

implies the existence of the (-v)-trajectory 91, joining x

k .
and t b, and 92 s joining tMa  and t% y. (See corollary
6.5; of course these 91, 62 need not be the parts of 6 .)
By our assumptions k > N, s - m 2 N, hence s > 2N > N,

contradiction. The step C is over.

Some open problems. .

A ~
We denote by h(g ) the homotopy type of C, (M) @ /& -

and by q(} ) — its simple homotopy type.
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Problem 1. Clarify the connection between 7 (f’ ) and
the obstructions of Farrell and Siebenmann. Is it true, that
for kerg finitely presented h(§ ) is zero If and only
if ﬁ, is finitely dominated (that can be verified for
abelian groups)?
The theorem 0.9 1leads to the following problem,

suggested by J.-C. Sikorav.

\—//&: W

a
&%‘

x
at

Pict. 0.4
Problem 2 (conical properties). Assume that ker(‘f )
Is always finitely presented (for example, G 15 abelian). Is

it true that the domain of vanishing of ?(5') (or h(;f)) is
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the union of polyhedral éones in the space Hl(M, Z’? What
is the connection between vanishing of 7(’} )  and fibering
properties 7Tor dim M = 3 ? (It is known by Thurston [Thil,
that the wunion of the classes j’é Hl(M3, Z), represented by

fibrations, Is the union of polyhedral cones).

The theorem 0.9 leads also to the optimality of
Novikov—-type inequalities for the open dense set of
cohomology classes ;'é Hl (M, R) (Eational or not), see
[PaZ2]. The argument is by perturbation of the result for the

rational forms, it works because the corresponding algebraic

properties are stable under small perturbations.

Problem 3. Extend the results of the present paper to
the case of the closed 1-forms with Morse singularities,

1
belonging to an irrational cohomology class [§ l]e H (M,R).

The next problem was posed by Novikov approximately 10
vears ago and was discussed in literature (see [Arl), though
it seems not yet solved. It can be reformulated in terms of
our paper as the problem of the realizability of the chain

complexes as the Novikov complexes up to infinity.

Problem 4. (Novikov conjecture). Show that the

incidence coefricients nk(x,y) have no more than

exponential growth in k.
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It is known that Farrell's theorem is true in dimension
5 in the topological category [Wei]. It seems that the
theorem 0.9 holds as well in the top category and if the
number ‘pp( 7 ) = bp( X ) + qp( X ) + qp_l ( X) is strictly
greater than zero, one can even obtain a smooth Marse map
f:lM —> Sl s, f 653’ with mp (f) =/up (¥ ). (I am greatly
indebted to M.Kreck for the discussions on this subject.)

For the dimension 4 nothing is known, except that the

Farrell's result is false even in topological category

[Weil.

Problem 5. What are the analogues of our results for

the dimensions 5 and 4 7

We have seen that the absence of critical points of
indices O, 1 was essential for us. It would be very
interesting to see what is going on when one can not do
without them. For Morse functions on the closed compact
manifolds that was done by V.V.Sharko [Sh2]1; the answer is
rather complicated and is given in terms of homotopy systems

of J.H.C. Whitehead.

Problem &. What is going on when the critical points of
index 1 are unavoidable? (The simplest case would be,

probably, the case of Ffree non-abelian fundamental group. )
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1. Algebraic preliminaries
n

We will Suppose that the free modules R ’ Rm are not
isomorphic if q # n.
Let R be any associative ring with unit. Let G be a

subgroup in the group R*—of invertible elements of R, There

is the standard homomorphism G —> Kl (R) and the
factorgroup of Kl(R) by the subgroup generated by the image
of G and by {+ 1) wilil be denoted as Kl(R;G). (If R is zG

and  we choose G itself to pe the subgroup of (ZG)* then we
get Wh(G)).

The following material is due essentially to
J.H.C.Nhitehead (Wh]l. The statements of the Propositions can
be found, for example, in [Shl. We reproduce it here for the
sake of Completeness, The basic reference for Us  1in what jig

is{Mi
Concerning the simple homotopy tyég\(and also [C—SJ) and we

We shall cConsider the complexes Ci, = (0 «— CO ... &
CS < 0} consisting of free finitely generated right R-
modules., If s { N we call Cy an N-restricted compfox. It
for every Ci there isg chosen a free basis in it)we call C,
2 based Complex.

The two free bases in a4 given free module F will be

called G—equivalent,if the transition matrix belongs tg

Kl(R' G).
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The isomorphism f:€ —> D of two free finitely
generated modules is called G-simple if T (f) vanishes in
KlGLG).If G = ({413, f is called simple.

The isomorphism f:C, —> D, of two complexes is called
G-simple if all the isomorphisms fn:Gn—? Dn are G-simple.

The homotopy equivalence f:Cp —>» D, is called a G-
simple homotopy equivalence (abbreviation: G - s.h.e.) if
the cone C(f) (which is an acyclic chain complex) has the
torsion, vanishing in Kl(R,G). The ( + li-simple hohotopy
equivalence will be called simple homotopy equivalence.

The main technical instrument which we use working

within simple homotopy theory is the following

Lemma 1.0 (Th. 3.1 of [Mil]). Suppose that O > Cx —> Cy
—$»C; —> 0 iIs an exact sequence oﬁs%g%;]exes, such that the
bases c” and c', chosen for Cy and C; compose together
to give & base Iin Cis equivalent to the chosen base «c in
Ch. Thew T(Cx)= wlcli)+T(C)

Our main aim in this section is to prove that the
complexes, G-simply homotopy equivalent to one angther can
be built one from another with the help of elementary
operations, listed below. .

-We call elementary operations on the complex Cy the
opefations of the following four types:
- 1) the multiplication of some element e of basis of

1

some Cj by an element g € G , o= g:-—i.
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2) the transition from the basis (=T SR
ej,..., ek) of some CS to the basis (el,..., Ei + ej-% .
s ej,..., ek), where R.

3) Forming the direct sSum with a complex of the
type I’is’k)= {0 «.,.. é—Rk ‘id Rk <—... O}, where the
two copies of Rk have the dimensions s and s+1,

k
respectively, and the bases in the two copies of R are the

Same .

s,k
The complexes é 1) are called also the trivial

acyclic complexes. We will omit the second index k 1f no

confusion can occur.

s,k
4) For the complexes D, of the form Cy C)[?i rk)

s,k

cancelling the summand Iﬂ: X
If €, 1is obtained from D* by the series of elementary
operations we say that Cx 1s E-equivalent to D, . That is

obviously an equivalence relation.

Lemma 1.1. Suppose that f:C, —> D, 15 an isomorphism
of based N-restricted complexes, so that fn:cn——? Dn is an
Isomorphism of based Tfree modules. Then T(f) = ‘t(fo)
= TF) 4 e+ (- NTr ).

1 N

Proof. We proceeq by induction in the length of the
complex C, (where the length of C* i1s by definition the
Bumber of non—-zero modules Ci). Indeed 1f the length of C,
{and hence - Dy) is 1, then the cone C(f) is " qust o <<——D,S

<— Cc, <« 0 and T(f) = (-1)°7T(f ). 1f the assertion is
S



proven for the length s let Cxy = (O« ... «<0 é—'Ck<%—...
<-Ck+s <— 04— 3}, Dy = {0O&... é—Dk~é—u..<?—Dk+Sér-...} be
the complexes of length s+1 and f:Cy —> D, be an
isomorphism. We cut off the last terms of the complexes Cx
and D, and denote the results by C; = {0 ... Ck,é-T"
Ck+s-1 < O €—...} and D, (which is similar). The map f:C.
——%‘D* being restricted to C; gives an isomorphism f':C; —_>
D; and the isomoarphism in factorcomplexes f“:C*/C;~?'D*/D;.
From the definition of the cone it follows that there exists
an exact sequence O —> C(f') —> C(f) —>C(f") — 0. Since
all the three chain maps involved are isomorphisms, all the
three complexes are acyclic and applying lemma 1.0 we get
T(t) = TA(f')Y + T(ft") and we are over by the induction
assumption.
The chain map f:C*——?-D* of two based complexes will
be called based embedding, if f is injective and the

chosen free generators of the Ci are carried to those of D;.

Note that D,/f(C,) is a based complex.

Lemma 1.2. Let f:Cy —>D, be a based embedding, which
is & homotopy eqguivalence. Then the torsion =T(f) equals the

torsion of D*/f(C*).

Proof. (See also, the proof of lemma 7.6 in [Mil).
Consider the cone C(f). The cone C(id) of the identical map

id:Cy, —7 C, admits obviously the based embedding to C(f) and
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the factor is Dy/7f(C.). The torsion of identity is zero and
applying -again the lemma 1.0 we get this lemma.

It 1is obvious also (by the same lemma 1.0) that the
torsion of the direct sum of homotopy equivalences is equal
to the sum of the torsions of the summands.

Note that the torsion of homotopy equivalences
o > Iﬂis); Fis) —> 0 vanishes.

Hence, by the previous remarks we obtain that the
result of any of elementary operations is G-simple homotopy

equivalent to the original complex.

Remark 1.3. Let C,, D, be acyclic based complexes and
f:Cy —> D, be any map. Then T(f) = T(CL) = T(D,).

(For the proof apply Th. 1.3 [Mi] to the exact sequence

O —> Dy —C(f,) — C*—l - 0 and note that 'T(C*_l )y =
= _T(C*))'
Lemma 1.4. The torsion T(f) 1is a homotopy invariant

of a chain map f.

Proof. Let f,g:C, —> D, be the homotopy equivalences
of based complexes and H be a chain homotopy between them,
Hn :Cn > Dn+l . The cones C(f)y, C(qg) are identical as
graded complexes; C(f)n = C(g)n = Dn @ Cn’iand differ by
differentials. The simple calculation shows  that the
map @? :C(f) —> C(g) given by 4?(x,y) = (x = H(y),y) is &

chain isomorphism which 1is given in each dimension by

the matrix 1 + (upper triangular matrix). So, by lemma



35

1.1, 'C(éﬁ) = 0, and by the preceding remark we get T(f)

= T(g).
Lemma 1.5, The torsion (g,f) of a composition of two
homotopy equivalences f:C, —> D, g:D*—%-E* Iis equal

to T(g) + TA(f).
Proof. Consider the auxiliary complex Gys defined by

Gn = En D Dn o Dn-l @ Ch—i (which is naturally based), where

the differential acts as: O(e d

. (Oe_ -
n n

n’ dn-—l ’ Cn—l)

gdp_1), ©dy - d ;] - fle,_ 1), —od -

n-1° Ch-1 ). There is an

embedding } of Cng) to G defined by (e ) =

n’ n * “n-1
(en, O, f(cn_l ) s —cn_l). The factorcomplex is easily seen to
be the cone C(idD) of id:Dy, -2 D,. Hence, H*(Gn) = 0, and
since the bases of (}gf) and C%idD) compose to give the
base, equivalent to that of Gn we apply the lemma 1.0 to

deduce ’Z(Gn) = T(gf).

On the aother hand, there is a based embedding I:C(f) -

G

% s defined by I(dn, Ch-1 ) = (0, d s O, ) and the

n “n-1
factor is exactly C(g). Applying again the lemma 1.0, we

are aqver.

Proposition 1.6. [Whl. Let f:C, —> D, be a G-simplie

homotopy equivalence between two based N—-restricted
complexes. Then there 1is a sequence of elementary
‘operations, starting at Dw and finishing with C.s such that

all the Intermediate complexes are N-restricted.
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Proof. The idea of the proof is as follows. We add to
D, some number of trivial acyclic N-restricted complexes in
order to get D, > D, and a based embedding f':C, —> Da
which will be a G-s.h.e. The factor D,/f'(C,) is an acyclic
complex with zero torsion. The particular case o©of our
proposition (lemma 1.9) shows that by a finite numﬁer of
elementary operations one can reduce this factor to zero.
Afterward we show that every elementary operation on the
factor can be lifted to an elementary operation of the
complex itself, preserving the embedded one, and this

finishes the proof.

Now we pass to details.

Lemma 1.7. The proposition 1.6 holds for the G-simple

isomorphisms T:C,—> D_.

Proof. Consider the isomorphism fo :CO-——? DO. Its
torsion vanishes, hence there is a free module RK s such
that fo @ id: CO @ Rk — DO(D Rk can be transformed to 1id
by means of elementary chahges of base of type 1) and 2).

So we add a trivial acyclic complex {0 —> Rk-? Rk -—>
0}, concentrated in the dimensions (0, 1), to Cy, and D, and
after applying some elementary changes of base of type 1),
2) we get f:Cy @>P£O)—~——4> D,® f“éo) which after the
changes of base in dimension zero respects the béses in

dimension zero. Proceeding further like that we get the map

1
F:C, —»> D, which respects the bases (that is C, and D! are
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the same) and such that C; is E-equivalent to Cis D; is E-

equivalent to Dg4. G.E.D.

Lemma 1.8. The proposition 1.6 holds for any

Isomorphism f:Cx —> D,, which is a G-s.h.e.

Proof. Realize the element (- 1f(fo)) & Kl(R) by some

ilsomorphism %o :Rk-——> Rk and consider the isomor-—

phism q% :I"(o,k) —_— [1(O'k) s defined as ? in both
o k k o

dimensions; ’C(é?o ) = 0. Let Cil), Dil) denote respectively

e @[% | 5 oe Com ang + @M (D) 5 (1)
isomorphism f C><Po . Note that ’C(f(l)) = 0, 7Z(f£l)) = 0,

¢ _
and ’C(fl ) = 'C(fl) TZ(fO)-
l))

.

Now realize - ﬂf(f( by some isomorphism ?l:Rm'—€>Rm

1
and consider the isomarphism @?l :I?il’m)——%>fﬂ£l’m) detined

as ‘Pl in both dimensions;’t‘(éﬁ ) = 0. Add the fjil’m) to
Cil) and Dil) to get Ciz) and D*(z)and an isomorphism fiz) =
fil) @ gg : C£2)-> Diz) . Observe that Qj(f(2)) =
(2) = (2), _ (2), =
0O, f = £ = . = f - f
+ T o ) T 1 ) 0, 7T(f2 ) Tl 2) T ( l)

+ Qf(fo). We go on with that procedure and having added the

complex _PiN—l) to CiN_l) and to DiN—l) and constructed the

isomorphism £N71) o e that QT(fiN—l)) = 0 for O < i <

N-1 and ’t(f(an)) = T(f. ) — T (F ) + + T(f ) which
N N N-1 = e}

equals T (f) by lemmal 1.1 and hence vanishes in Kl(R,G).

Note that ¢ (N71) is E-equivalent to cC,; bp(N71) is

eguivalent to D,, and both are N-restricted. Now we apply,

lemma 1.7 to conclude that DiN_l) is E-equivalent to CiN—l)
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Lemma 1.9. The proposition 1.6 holds for the G-simple

homotopy equivalences f:C,—> 0.

Proof. It is obvious that every acyclic N-restricted
complex 1is isomorphic to a sum of N-restricted complexes of
the type {(Oe— [ e—i—q—— L‘s——O}, where L_, is a stable free
module. Therefore C, is E-equivalent to a complex C; which
is lsomorphic to some direct sum D of N-restricted
complexes Lqis). Both C; and D, are acyclic, hence the
torsion of this isomorphism equals 't(C;) - T(D,), which,
by assumptign, vanishes in Kl(R,G). Applying the lemma 1.8,

we get that C; is E-equivalent to D and, therefore, to

* 3

Zero.

Lemma 1.10. Suppose that O — A, —> B, —»C, —» 0 is

an exact sequence of N-restricted based complexes, such that
the bases (a) and(c) for say Qi and Ci give together a base
(?c))6~9quivalent to the fixed base in Bi' Suppose that C, Is
E-equivalent to Di«. Then there exists an exact sequence Q —»
A, —> F, =™ D, —> O such that Fye 15 E-equivalent to B, and

the bases for Ai p Di compose to the base G-equivalent to

that of F,.
1

Proof. By lemma 1.7 it suffices to prove our lemma for
the case when the base in B is composed from that of A, and
Cy - It 1is enough obviously to consider the case of D, 5

obtained from Cy by means of one of the elementary
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operations. For the operations 1), 2), 3) that is obvious.
Consider the operation 4). The assumptions imply that the

map "B:BS+1 -7 BS is of the follawing form. The BS and BS

+1
k k ]
decompose as Qs+l ® X®R and AS @Y ® R respectively,

where X and Y are based modules, Rk has the standard base

'+1’As

s+1°’ Bs'

and these bases compose together and with that of As

to give the bases equivalent to the fixed bases in B

Further, ~B(As+l) CTAS and the third coordinate of the map
k . . . . .

NB{R 1s 1identify. From the last property it follows that by

an elementary cperation 2), changing only the base elements

k

of R we can pass to the new base in B such that BS

S’

k . . 3
decompose as As @Y ® R and differential a:BS+l-*—? BS is
. 3 . i . . I (s.k)
identical on the third component. This implies that *
is a direct summand of B and can be split away with the help
of an elementary operation 4).

Now we proceed as to prove proposition 1.6 in its
generality. For each 0 ¢ i { N-1 we add to our D, . the
trivial acyclic complex (0O é’”‘Ci¢%g- Ci <— 0} concentrated
in dimensions i, i+l. The result is denoted E,- Thus EO =

D, ®C_, E; =Dy ®cC, ®&c,_ for 0 < i < N and E_ = D_0O

1 N N
CN . The natural projection Ex —> D, and embedding D, C Eu

are the s.h.e. We define the map LF:C* —> E, as follows. For

c E—Co let (f(c) = (f(c), c), for c E;Ci where 0 < 1 < N
let  @(c) = f(c), c, Oe), for «c CCy we let ¢(c) = (f(c),
éc). One checks easily that (F is a chain map, and
since Jlo %’ = T, kP 1s a homotopy equivalence. Moreover,

since ler 1s homotopic to identity, ? 1s homotopic to
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f, hence is also the G-s.h.e. Note that LF is injective.
Indeed, that 1is obvious for C;y if 1 < Nand if x & Cy is
such that (p(x) =0, that is Ox = 0, f(x) = 0, then  x
must be egual to © since T induces 1i1somorphism in
homology. Consider the factorcomplex E*/Lf(C*). For O < i <
N-1 the modules Ei/cP(Ci ) are isomorphic to D@ Ci—l ,
hence free. Since E*/LF(C*) is acyclic, the last module
EN /(P(CN ) is stably free. Adding to E, one more trivial
acyclic complex, concentrated in dimensions N-1, N, we get
E; together with natural base and the embedding tf Cp —> E;
such that E; is obtained from Dy, by adding several trivial
acyclic complexes, and that the factorcomplex is free.
Denote E;/C* by K4 and consider the exact sequence O <« C,; «—
ér-E; < K, <— 0. Adding if necessary some trivial acyclic
complexes to K, and choosing there appraopriate bases we can
assume that the base in Fy, and in C, give the base in E;,
equivalent to the mentioned above. Note that E; with this
new base is E-equivalent to E; with the former base by lemma
1.7. Note also that E; with the former base 1is obviously E-
equivalent to D,. By lemma 1.2 we have T(F,) = T (?);which
vanishes in Kl (R, G). By lemma 1.9 the complex K, is E-

equivalent to zero and by lemma 1.10 there exists a G-simple

isomorphism O <— C, <~ F, €«—0, where Fse 1s E-equivalent to

E, . Hence C%_ is E-equivalent to E; and proposition 1.6 is
proved.
Remark 1.11. The proof could be simpler if we would

not 1insist that all the intermediate complexes were N-
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restricted: instead of E, we could use p, ® C(id) where
C(id) stands for the cone of the identity C, —» C, . But we
will need precisely the above strong statement.

Remark 1.12. The above proof can be also simplified as

to give a (comparatively) new proof of Cockroft-Swan theorem
[C-S]: the homotopy equivalent complexes become isomorphic
after adding some number of trivial acyclic compiexes. The
length of these isomorphic ones can be assumed to be not

greater than the length of the original ones.
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2. The statement of the main theorem

We recall first the result of [Pall].

Let Mn be a closed manifold (that means smooth
component, connected and without boundary). Let f:M—ﬁ>Sl be
a Morse map. Denote by f the homotopy class of f as

] 1
belonging to Hom( UEM, Zy = H (My, Z). Denote by /X the

group ring Z{G] and by ./\;. the Novikov completicn of
(introduced by Novikov [Noll for the case of free abelian G
and by Sikorav [Si] for the general case). Let v be a
gradient-like vector field for f, such that all the stable
manifolds of critical points are transversal to the unstable
ones (the e#istence of such a vector field follows from an
appropriate version of Kupka—-Smale theorem, exposed in [Pal,
app. AJ). We denote by Wh(G, &) the group Kl(G)/l_)g
where U;‘ ' is the multiplicative group of units in 1&;'of
the type g + A , where supp\ € (x € Glj‘(x) < 0}. We
fix the littings of all the critical points of f to ™M and
for each critical point we fix an orientation of stable
manifold (descending disc).

To all theée data we have associated in [Pall the
complex C*(v,ﬁ3, which possesses the following properties

1) For each p . the module Cp(v, ﬁ) is a finitely
»generated free right module over JN;‘, and the number 5f

generators eguals the number of critical points of 4 (why

index p.
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2) The complex Cixklv, M) is homotopy equivalent to
~ - B .
Ci (M) @)Jﬁ_ via a homotopy equivalence of which the torsion
A z
vanishes in wh(G,f ).

The main aim of the present paper is to present a
theorem, which is in a sense a converse to this result. For
that we need some more definitions and notations.

The homomorphism : M ~—> 17 is called regular, if it
T

1s epimorphic and KEﬁE is a finitely presented group.
A Morse function fiW —> (a,bl where W is a
. - -1
cobordism, oW = v ) vy, f Ly = Vs T 7 (b) = Vi, and all

the critical points of f belong to W =W \ (V L}vl), is

called regular if there are no critical points of indices O,

1, m—-1, n all the regular preimages f (c) are connected
-1
and the inclusion induced homomorphism m&(f (c)) —%>ﬁ1(w)
is isomorphism.
1 . 1
A Morse map f:M —> S, belonging to a class §€H (M, Z)
b/
is called regular if there are no critical points of
indices O, 1, n-1, n all the regular preimages f—i(c) are
1

connected and the inclusion induced homomorphism Ji(f_ (c))—>

—ﬁ-Wi(M) i1s an injection onto the subgroup Ker( & : mim —>Z).

Lemma 2.1. In & regular class _f'é} Hl (M, Z) there

exists always a regular Morse map f:M'ﬁ>Sl.

The proof is due essentially to Farrell [Farl and will

be postponed until we state the main theorem.
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The gradient—like vector field v for f is called
perfect if all the stable manifolds of critical points are
fransversal to all the unstable ones. It is called good, if
the stable manifold of a critical point p i1s transfersal

to the unstable manifold of a critical point if only

T,
ind p < ind g - 1. The theorem from (Pal]l, stated before,is
actually wvalid for all the good gradient—-like vector fields
and the proof is just the same for this case as before.

We call a quadrup&, of objects (f, f, v, E) a regular
Morse quadrup&z belonging to § & Hl(M, Z) (abbreviation:
an r—quadrupee.) if:

1) f:M —~?'Sl is a regular Morse map, belonging to a
regular class & & Hl(M, Z).

2) T:M —® R is a Morse function on the cycli; coveriling
M —> M, induced by f from S, such that  f(xt) = f(x) — 1,
where t is a generator of a group Z, acting on ™M, and
quotient map of T by action of Z 1is f.

3) v 1is a good gradient-like vector field for f.

4) E is a system of liftings of critical paints of f
to the universal covering together with fixed oriemntations
of stable manifolds of critical points.

(Sometimes when the orientations do  pot cﬁahﬁe dur—
ing some section;we speak simply of’system of 1iftings" e,
as, for example, in ‘§5; b, 7.)

Note that the Novikév complex for a map f:M —» Sl 1s

defined in terms of the trajectories of the gradient—like

field Y and actually depends only on v and on the system
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of liftings and orientations. That is why we will denote it
Cylv, E) from now on, and 1uﬂne<§ £.in 4he nofation.

By a "complex" we mean a free finitely generated chain
complex of right _/i-—modules with a fixed base. Recall

§

that jx; consists of such power series A in the
variables g & G, that for any ¢ & R the intersection
supp A\ ﬂ{_?(g) > c) is finite.

We say that two complexes C,, b, over -/L; are simply
homotopy equivalent 5 if there exists a homotopy equiva-

lence ? : Cp — D, such that the torsion T%<f) vanishes 1in

Wh(G, g’ ) .
We denote by .fkg Kk the abelian subgroup 1in j\f .
14
consisting of all the power series % s such that

SUDD% < {f(g) { ~k}. (Note that Af& is not a subring).

Two complexes D, Cw will be called N-eguivalent: l),"v C

there 1is a bijective correspondence of their bases, such
that the matrices of differentials in these bases are the

same modulo J«.g_N. We shall say that Dy, C, are the same if
7

there exists an isomorphism between D, and C, , preserving
bases.
n .
Theorem 2.2. Let ™ be a closed manitold, n 3 b,
§': Tim —>Z be a regular homomorphism. Let D, = (0O é—-DZ «—

e & Dn—2 & 07} be a complex over (Sf simply homotopy

equivalent to Cy, (M) @L/\
A E

Then for any natural N > 0 there exists a Morse map

1
f:M —> S, belonging to ‘f » & good gradient-like vector
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field Y for f, and a system E of 1liftings and

orientations, such that D, and C, (v, E) are N-equivalent.

By lemma 2.1 there exist regular maps f:M —> Sl

3
belonging to 'g . Therefore, to prove this theocrem it

suffices to prove the follaowing.

Theorem 2.3. Let MW be a closed manifold, n 2 6, 5:;F1M

—> Z, be a regular class, © = (f, ?, v, E) be an -
quadruple, belonging to § s Dy = (0O ér-D2<r—... <+—Dn_2<?—0}

be a complex, simply homotopy equivalent to Ci(v, E), and

N > O a'natural number.

-—

Then there exists a new r—quadrgple (g, G, W, Eﬁ,
belonging to ; s such that Cuk(w, E!) is N-equivalent to D,.

The 1idea of the broof is as follows. By fl we know
that any complex, simply homotopy equivalent to C, (v, E) is
obtained from C_ (v, E) by a series of elementary operations
like elementary change of base, adding and cancelling of
trivial direct summand. We are, therefore, to show that each
operation like that can be realized (up to some N) by
changing the function and the vector field appropriately.
This will occupy the rest of the paper.

We start with the proof of lemma 2.1. By the argument
of Farrell [Far, p.325] there exists a smooth closed

. X .. n-1 .
ceoriented submanifold 1:N - Mn, such that N is connected,
; n- . L. . . ] :
1gs JTiN l—<> WiM 1s the injection with the image kehf and
the Pontryagin~Thaom construction, applied to N gives a map

1
M —> S, homotopic to ;' . We cut M along N and get a

connected cobordism W with two components of boundary VO and
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Vl’ such that VOC:'Vl and the inclusions Vocf W :>Vl induce
the isomorphism in 1- Since dim W =n > & there exists a
Morse function on the cobordism W without critical points of
indices 0, 1, n-1, n (see (K1 or apply directly the argument
from [Mi1i2, §EBJ.) Wwe can suppose that for any pair x,y of
the critical points ind x > ind vy we have f(x) > f(y).
Now our lemma will follow from the following simple remark
which will be frequently used in the sequel.

We call a Morse function f: W — [a, bl enumerating if
for every pair of critical points x,Y, such that ind x 2>

ind y we have f(x) > f(y).

n -
Remark 2.4. Let W' be a cobordism, oW = Vg U Vi, W,

Vor Vl are connected, n 2> 6, 'Wi(vo) —> Wi(w) é——JTi(Vl) are

isomorphisms, f:wn —_— (a,bl be an enumerating Morse

function, such that Tlay = v 7 by = v

o’ 17

Then f 1is regular.

Proof. Let a < ¢ <...<c < @ be a sequence of

N
regular values of f, separating all the critical values one
from another. Since there are no critical points of index
_ -1 » . 7
n—1, all the f (ci) are connected. Let Oy (resp.ct> denole,

kkg %h{t Cuﬁpf%&last)of the Ci» possessing the property that

311 the critical values of index 2 (resp. n—2) lie below

(resp- above) - cy - I1f we prove for every i the i1somor—
phisms 7r (f—l (c.)) —> T (f—l[c . c... < T (f—l (c, )
1 i 1 it i+l 1 i+l
then we are over. For i= 0 that is obvious
since wl(f—l(—l)) -_ Ii(w) is monic and f_l [co, Cl ] is

obtained from f-l(co) by attaching the 2-handles. Similarly
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it is obvious for all i & k-1 and for 27€ . For the rest

values of i it is even more obvious.

Remark 2.4.A. If f:M — Sl is a regular Morse function,

and c € R is a regular value of f:M 2R, then the inclusion

of the cobordism W, = f l([c, c+nl) < M induces iso in T -

Proof obvious.

Let C4 be a based free complex of right modules over

some ring R. Let .[& be a function, defined on the elements
’ *
of base of Cs with the values in R . Then we denote

by _/L(C*) the complex obtained from C, by the base change

ei Ff>ei-lX(ei).

Remark 2.5. Let (f, ?, v, E) be a regular quadruple,
1

belonging to a regular class H (M, Z). Here E is a

function g r—> (3§, Q(Q)) where q €Crf, G is some lifting

of qQ to M and 9 is some orientation of descending disc
D(g, v). Let 1«. be a function on Crf, such that j&(q)
= £(q) -a(q), where £(q) = +1, g(q) € 6 for every q€Crf.

Denote by Jﬁ(E) the new system of 1liftings of critical
points to ™ and orientations of descending discs, such that
§' =TF.g(g), ©'(g) = £(g)-6 (q).

Then Cilv, A(E)Y) is isomorphic, preserving bases,
to Acc,v, E)).

Proof. It is enough to prove the assertion for the case
when _[X i1s equal to 1 for all the elements g & Crf,
except one Q, and f&(qo) = g or J&(qo) = ~1,.

1y AN(g,) = -1. Recall that the differential in the

Novikov complex _Bm: Cm (v, E) — Cm (v, E) 1s defined on

-1
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the base elements by the formula Bei

ij' n(ei fj))

where e; is an element of Crf of index m and
f. runs through the elements of Crf of index m—1. The
J

element nie,, fj) in  turn is the sum %‘ ECY) gl ¥ )
where ¥ runs through the (-v)-trajectories in M, Joining
e; with fj, E(Y ) 1is the sugn of intersection of the

(oriented) disc D( el v) with the (cooriented) disc D¢ fj,’4r>

and g( K ) is defined from the condition that the 1ift-

~

ing Yy of ¥ to ™, starting at gi’ finishes at ?5 -gly).

If we change orientation of a generator =P then the value
of n(ei, fj) will change only when cne of e; ,fT. coincides

with Qs @nd then the new n' differs from n by sign. Thus

the map LF:C*(V,, E) —>C,(v, A(E)) which sends all e. to

1
themselves, except Q, and p(qb) = 49 commutes with
differentials. That is, the complex C (v, E) is isomorphic

-1
to Z\. (C*(v,j\ég) which is equivalent to our statement.
2) j\(qb) = g. It follows from the definition that the

new n'(ei,fj ) equals the old one if e; # S fj # A - If

e = G, then n'(ei,fj) = n(ei,fj)g; if fj = ag» then
n'(el ,fj) = g_ n(ei,fj). One easily checks up that the
map \f:C* (vo BE) —> C,(v , A (E)), which sends all ei to
themselves, except A which goes to %" g~l, commutes with
differentials. That 1s, the complex C,lv, E) is isomorphic,

preserving bases to .A:l(C*(v, A(E)), which is equivélent to

our statement.

Now we list some definitions to be used in the sequel.
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If f is a Morse function on M (with values in R or in

Sl) we denote by Crf the set of critical points of f.

If f:M —> Sl is a function, [f] = f and E 1is some

finite set in M we denote by ex(g, f) the number max’?(x)
X,yetg
- f(y)| , where ¥f:M —> R is some lifting of f. (It

is obvious, that ex(E, f) does not depend on the particular

choice of lifting f.).
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3. Preliminaries on Morse functions

This section contains some lemmas on stable and
unstable manifolds of critical points of Morse functions.

First some notations.

We denocte by Dz(D) (resp. Bg (0)) the closed (resp.

. N .. . S
open) disc of radius r around the origin in R . If the

dimension is clear from the context, we omit it.

Let f:W —> [a,b] be a Morse function on the compact

£1 (a), v; = 71 (b). we

assume that all the critical points of f belong to wo =

cobordism W, oW = VO(J Vi s Vg =
W\ (VOL)Vl). Let v be any gradient-like vector field for
f. If p is a critical point of f, we.denote by D(p,v) the
union of all v-trajectories X s such that X(t) —> p, when
t — +o00. We call this &nion the descending disc, although
in general i1t is not a disc and even not a manifold.
(Respectively, D(p,—-v) stands for the union of all (—v)~-
trajectories , such that X(t) —>p, when t —> +o0).

If p is & critical point of f then (by abuse of
notations) we denote by Dd‘(p)y resp. Bs(p) the image of
closed (resp. open) 8-disc under the standard coordinate
system (assuming that & is so small,that DS(D) belongs to

together with its open

the domain of the mapping 3

neighbourhood). We denote’BDS {p) by 86(p). We assume that O
is so small that Dg(p) N (Vo{) Vl)==Q§ . We denote by
- - + + ) .
DS(D)’ Bd(p) (resp. Dé(D), BG(O)) the images of the negative

(resp. positive) closed and open o-disc.
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Lemma 3.1. 1) The intersection D(p,v) N wo Is a smooth

submanifold of NO.

2) The intersection D(p,v) N Vo Is & smooth submanifold

of VO; the closure D(p,v) N Vo equals D(p,v) f\vo.

Proof. 1) Let «x é;wo, Xx & D(p,v). That implies that

there exists a point Xo - D§ (p) and a (+v)-trajectory,
starting at x and finishing at X5 at a moment -
Consider a small ball ?p (xo), contained in Ds(p), and a
diffeomorphism q% of shift by along (-v). We can assume

that %?(Dp (xo)) ' NO . Note that a point z belongs to
D(p,v) if and only if Q?(z) belongs to D(p,v). Note also
that D(p,v) N DP(XO ), = Dﬁ(xo A D;(O). (See App. 1,
corollary A.2). That implies that Q§ gives a diffeomorphism
(Dp(xo ), DP(XO) N Dé(O)) — (U, U A D(p,v)) where U is a
neighbourhood q?(?P(xo)) Dfé@(xo), which is a definition of

a submanifold.

The first part of p. 2) is proved similarly. To prove

the second we note that D(p,v) N Vo . D(p.v) F\vo obviously

and to prove the 1inverse inclusion consider any sequen-—

ce gJi & D(p,v) converging to aZEE VO. Note that a; =

f( Ji) ——> & and therefore tere are no critical points of f
in [a, ai], which means that the <df, v> 1is bounded-from

below by, say, 8 in some domain)containing all the &i

This implies that the (-v)—trajectory)starting at o<i)reach—
P a2
48

es the boundary VO at the moment 21 —>» 0, hence the
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ends .Pi of these trajectories belong to 'Vo and‘converge to
a, Q.E.D.

Now we need more notations. Let c &€ R be a regular
value of f =W —»[a,bl] and assume that § >0 is so small,
that if a critical point p belongs to f"l([a,c_), then
D8 (p) belongs also to f—l (fa, ©)). We denote by VC(S,V),
resp. UC(S,V) the wunion of all (-v)-trajectories, starting
at some point z of some disc D6(p) (resp. Bd(p)), where p
is a critical point in f—l([a,c]). The notations VC(S,—V),
I%JSD-V) are now clear without explanations. If ¢ = a, then

we abbreviate Vc(é,v) to V(d,v) (resp. UC(S,V) to U(S,v)).
The union of all D(p,v) for p < f—l([a,c]) will be denoted
Kc(v), and if ¢ = a, then simply K(v). The notations KC(—V),

K(-v) are now clear without explanation.

Lemma 3.2. Let c &la,bl be a regular value and & > O

be small enough. Then:
1) UC(S,V) is open.
2) VQ(S,V) 1s compact and UC(B,V) = VC(S,V).

3) Kc(v) is compact.

4) VO(S,V) eguals (\ UC(E/,V).
NP
3) K (v) eqguals fw UC(S/,V).
$'>0
&) For every open neighbourhood U of VQ(S,V) there

exists &7 > 8, such that Uc(é/,v) < U.
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7) For every open neighbourhocod U of Kolv) there exists

84 > 0, such that ucuS/,v) < u.

Proof. 1) Let 2z & Uc(ﬁ,v). We must find an open
neighbourhood S of Z, belonging to UC(S, V). We do it
for 2z € W, for z & Ve the argument is similar. Find a
critical point p & f—1([a,c]) and a point z, & Bs(p), such
that the’(—v)—trajectory X » starting at Z, ,arrives at 4
at a moment T . Take a neighbourhood S of Z, S0 small, that
S’ < B (p) and the diffeomorphism é@ of shift by ¢ along
(=v) carries S’ to a set, belonging to Wy . We can set
s = P(s.

4) The inclusion Vc(é,v) e JTEU (8/,v) is obvious. 0On

) >
the other hand, let x //\ Us (87,v). Consider the v
trajectory 9 sy Starting at x§>?kere are two possibilities:
a) either 8(7T ) —> P where T —> o9, p is some critical
point, f(p) < c, b) B reaches the level f'—i(c) at some
momen t T, > 0. In the first case x < Kc(v) () Vc(é,v). In

the second the intersection of 8 with 'f—i([a,C]) is

compact, which intersects, by our assumption,with

the [\ U Borp) =U N By - U b (), g.e.a.
8 pegt(tae))  poss F

3) The proof is the same as that of 4).

Note  that 4) and .5) imply Vo(d,v) = N Vo (&' ,v) and
M &5 8
—_— ]
Kotv) = cy'><5vc(‘5 V).
2) Denote by pl,...,pk the critical points in

f_l([a,cj). We choose 5 SO small that P, are contained in
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f l ((a,c)) together with Do(pi). Denote by P the union of
Dé\(pi) . Denote by Q the set of such points x € W, that «x
does not belong to aﬁy of Bd(pi) and the v-trajectory Y
starting at X intersects the union \J SQ(pi)' Note that

Vékhv) = P U Q; P is obviously compagé and we are only to

prove that Q is compact. Suppose that x. & Q. Denote by Yw

n

the v—trajectory, starting at Xn and by Ty the first
moment when Xn intersects USd\ (pi). Note that the sequen-—
v
ce T, 1is bounded from above. Indeed, if we denote by ¢ the
-1

infimum of <df, v> on the domain ([a,c]) N L)Bo(pi)),
then <2 &< T ot i -

en ‘Cn 2 —€- {because yx\ 0, T, 1 does not inter
sect Bds(pi). Denote by Yn the points of intersection b/n (’l‘n)
and denote by Bn the (-v)-trajectory, starting from Xn(’['n).

The wunion U SC;\ (pi) is compact, hence, passing to a subse-
1

0.

quence we can assume that I A U S(S(pi)’ ’Cn —T >
1

Consider now the (-v)-trajectory B8, starting at vy I claim
that it is defined on the segment [0,7T 1. (We can assume T
0.) Indeed, the opposite would mean  that for some v,

0O <V < =T the trajectory =) is defined on [0, Vv 1

T+V
= -

The trajectories Bn are defined an [O,’C’n], hence an(wl ) is

and B( vV ) & VO. From some number N on we have Tp> V+

defined and converge to 8(V ); hence f(an( Yy )) —> a. Note

now that the points 8n(t) belong to f_l([a,t:]) \ UDd (pi)
. 1

. — T-v :

T.or' 0 < t < Ch - Therefore f(Bn( v o+ 5 }) < 'f(Bn(\)))
T-V . .

- —5 E which contradicts f(Bn( Y )) —> 0. Then

by the standard theorems we have en(Th) — 8(T), but 8(t )

obviously belongs to Q.
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J——

To finish with 2) we are to show, that U(6 v) 2 V(&) (the inverse
inclusion is due to the compactness of V4(8,v)). Let xeV(&,v). Then there
exists a point y, belonging to a disc Dg (p}), such that the (-v)-trajectory
starting at y, reaches x at some moment ©. We take a sequence y, € Bé\(pi),
converging to y. Then one easily shows, that the sequence Yu(tn) converge
to x, where §, is the (-v)-trajectory, starting at y,,, and t; is the minimum
of - and the moment, when ¥, crosses V.

3) follows from Ke = [} Ve(&'v).

>0
The properties 6) and 7) foliow from the following obvious general

statement: If KcM are compacts and U is an open neighbourﬂgod of Kin M

and V42VoD .. DKis a sequence of compacts, such that () V; = K, then
iz 1

there exists n, such, that V, < U. '
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Next we study the behaviour of the sets VC(S,V),
UC (§,v) under small perturbations of v. We call the vector
field v/ an g-regular perturbation of v, 1f supp(v' - V)
does not intersect with Da(pi) for evry critical point p,.

Wwe shall need the standard lemma, stating that the
trajectories of the vectof field depend continUougly on the
vector field and the initial value,. ‘Ne state it here

without proof.

Lemma 3.3. Let ™M be &2 C™® —mpanifold without boundary,
v be a C>* -vector field on M, ¥ (0, t1 —> M be @&
trajectory of Y o A be a neighbourhood of the 1ima-—
= y([D,t]), B be a neighbourhood of Y(t).

Then there exists a neighbourhood c of X(O) and a
neighbourhood AVJ of v in the space of C*~ -vector fields,
such that for any x &C and Vv' & V7 the trajectory X'

of v', starting at x 1is defined on [0, tl1, the image {7'

= X'([O’ t1) belongs to A, the end X'(t) belongs to B.

Lemma 3.4. Let E> O be small enough and let cC € [a,b]
be a regular value of fT. Then for all sufficiently small S
the following holds:

1) If U 1Is some neighbourhood or VC(S, v), then for
every E-regular pertufbatioh v’ of v, close enough to Vv,

the set VC(S,V') is contained in U.
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2) If QO is some cempact, belonging to Uc{c9, v}, then
for every £-regular perturbation v' cf v, close enough to

v, the set UC (3, v') contains Q.

Proof. We can assume c <b, since Vb(é" v) = Vc(éj, v)
for b-c¢ >0 sufficiently small and for & > 0 sufficiently
small. We demand & «<¢ . By lemma 3.2. 6) it suffices to pro-
V& our assertion for U = UC(S', v) where & « 5'<£, . Assume
that it is not true. Then there exists a seguence vy, —>V of
£ —regular perturbations of v, and for each v, there exists
Xy €V, (3, Vil X & UC(§', v). Let Pys-++sp, denote the
critical points of f in f"l([a, c]). We have xné: Bd" (pi).
Since Vn —>V there exists an £>» 0, such that df(vn);-, £
in the complement f_l([a, c] )~ é Dcﬁ‘(pi)‘ Passing to a sub-
Sequence if necessary we can assu;n;i that X, ~> X. Obvious-
ly x é;vl, and we can assume x %:VO. Since UC{§’, v} is
open we have x & UC(S', v). That implies, that the {-v)-
trajectory Y » starting at x , does not intersect the bhalls
Bg7(p;) and since Pj are the only critical points in £ 1 [a,c] 2,

it arrives at fhl(c) at a moment T< E-;-‘-l- . The image
= %([O,'CJ) is g compact, which does not intersect
u ch(pi). Hence there is an cpen neighbourhood A of [T in
7
W, such that & N ¢ (L) Dd'(Pi” = @/ Choose the open neigh-

bourhood B of Y{r) in W so small that £f | B is

strictly greater, that max f{x}). By our assumptions
e WO. Therefore we can arply our lemma 3.3 and

deduce that for n sufficiently big the trajectory Xﬂ
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of o starting at Xn is defined on [0, T ], belongs to A,
and gIﬁ’t) € B. That implies that the trajectory‘ Xn; will
never intersect any of DG(pi)’ contradiction.

2) Pick up a' > a such that the segment [a,a'] is re-
gular. It suffices to prove our assertion for two cases: a)
@ €t lta',el), ) o €t ra,at).

a) By definition for each x € @ the (+v)-trajectory ¥
starting from X 1s at some moment 7T in some Bg(pi)’ De-
note X(/t) by 'y and choose the neighbourhood U(x) of x
and the neighbourhood 7V;/ of v so small, that the diffeo-

morphism of T-shift along (+w) is defined for every

zZ € U(x) and wé€ and carries UT?} to Ba(pi). Choose a fi-
nite covering of K from {U(x)}. The intersection of corres-—
ponding ’7F; is & neighbourhood of v, which satisfies the
conclusion.

b) Pick up a" > a' such that [a, a"] is regula}.'Pick

up & C” -function h on R, such that 0 ¢ h {1, h{(t) =1

for t ¢ a' and h(t) = 0 for t > &". For any gradient-like
vector field v for f define a new gradient-like vector
field vV by v = jigfﬁéﬂl v + (1 - h{f(x)))v. The vector-
d L)
field <+ satisfied df(V) = 1 for x e_f“l([a,a']) and ¥V = v
for X E;f_l([a“,b]). If v and w are close to each other,
then V.and w are close7 Note that the set UC(J,V) is the
same as UC(S,V). This implies, that it suffices to prove our
assertion for the vector fields v, such that df(v) = 1 1in

f—l([a, a'l). Consider the diffeomcrphism é@ V, La, a'l -

f-l(fa, a’l), such that éﬁ—l(v) = (0, 1), foéb = o
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the projection onto the second coordinate). We need an easy

lemma.

Lemma. For any point x e_VO and any neighbourhood U
of X In Vo there exists a neighbourhood V< U of" X In Vo’
and a neighbourhood “7”/0f vV, such that if w & AV—Jand the
second coordinate of w I1s 1 and v & V,x[a,a'])then the w-
trajectories, starting at VXILO0, 11 stay in UXx [0, 17.

(For the proof choose' the coordinate system near .
Then the first coordinate of w-trajectory is given by a non-
autonomic differential equation in R® with small righthand
part.)

Now we consider the compact K', which consists of all
points 2 é{f_l([a,a']), lying on some v-trajectory, inter-
secting with K. Obviously K < K'C Uc(§,v). Denote UC(§,
V) f\f—l(a') by Ugy, that is an open set in f—l(a'). Now we
identify f_l([a,a']) with VgX[a,a'l by means of @ The
compact k' 1s a product E-><[a,a'] with K compact, K < UO.
For each | X € K we choose a neighbourhood U(x) of X in Vo

such that U(x) < Uy and a neighbourhood V(x) such that for

every field w with the second coordinate'l, close enough
to v, the w-trajectories starting at Vix)X [a,a'] rest in
U(x)>xX fo, 1]. Choose from (V(x)} a finite covering {V(xi)},

and denote by ~VﬁJ the corresponding finite intersection of
neighbourhoods of vector field v. For each w & WVN,with the
second coordinate 1 we have that the w-trajectories starting

at K X [a,a']l rest at &j U(xi ) X [a,a'l, hence the
z
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intersections of these trajectories with Vo X at rest

in U U{x;) xa'. Denote by K the compact KgU( X3) X a'< f-’l(a.’),

FFcr every w close engugh to v we have'? CZUc(él W) -
by the part Qc{ our leﬁma. So, diminishing our neighbourhoocd
further we get that for some 7/' and for all w 5-7/J£ith the
second coordinate 1 , all the w-trajectories, starting at K'
intersect £t (a') at the point, belonging to U_(S, w).
g.e.d.

We shall need the definition of incidence coefficients
ni{x, v} for the gradient-like vector fieldé, which are a bit

more general than good gradient-like f's.

Definition 3.5. A gradient-like vector field v for

f:wlﬂﬁ9' ta,bl is called almost good gradient—-like vector

field (abbreviation: a.g.g.-l.v.f.) if for every pair (p, Q)
of critical points, such that p £ q, ind p € ind q, the
descending disc D(p,v) does not intersect the ascending

disc D(qg, —-v).

Note that if v  is an agglvf Ffor f, then (=-v) is an

agglwvf for (~f).

temma _3.6. Let f:W —> [a,bl be a Morse function and v
be an almost good gradient—-like vector field for f.

Then there exists an Enumerating.functian ? W —>[a,b]
for which

1) v is still a gradient-like vector field for tp -

2) (f colincides with f wup to a constant in the small

neighbourhoods of critical points,
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3) LF induces a given order on the set of all critical
points of a fixed index.

If f is regular, then (P can be chosen regular.

Proof. The ordinary proof, given in [Mi] th. 4.1, works
as well in our situation,since if there 1is a pair of
critical points P,a, f(p) > f(q), ind p £ 1ind g and there
are  no critical values in (f(g), f(p)), then D(p,v) /) D(q,-Ar)

= Q)/ by assumption)and the usual trick works.

If f is regular then (10 is automatically regular as
shown in )52, remark 2.4.

We need more notations. Let o{,)g & [a,bl be the regu-
lar values of f. Let § > O be small enough,so that the
closed o-ball Dg (p) belongs to I, ’P )), if p is a
critical point in f t(¢ o(,JB )) .

For a critical point p & f_l([ 4 ,P 1) we denote by
Dg(p;l o , B 3 V) the set of points z & f—l([ 4 ,}3 1),
belonging to some (-v)-trajectory, starting at some point of
Dds (p). Similarly we denocte by Bo(p;[ L, ﬁ lJ; v) the set of
points z ¢ f_l([c(,ﬁ]), belonging to some (-v)-trajectory,

starting at some point of Bé\ (p). We denote by D(p;[ & ,p ];’u’)

the intersection of descending disc D(p,v) with
~1
f (['OZ, IP-J)'
We denote by Vg (830 -“/6 1; v) the union of

Dé(p;(o(, P Ji v) over all critical points p in f_l([ol,tg 1)

of index 5. We denote by K< [ < ,(g Jiv) the union of
<3 S

Di(p;[ £ ,’B liv) over all critical points p in f—l([o/ ,)g 1)
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of index ¢ 5. Similarly we form the sets Ugs {(S;Eo{,P};v).
If 5 = dim W we omit it from notations.
Similarly we form the sets V;S(S;Co{, 2 13vi, uzs(cS’;['_az,Pj;qr')
and [, p];v).
1f [D{,F, 3 = fa, Dl,we omit it from notations.

Similarly we form the sets V(S((S;[oi,r_',};-—v} etc.

Lemma 3.7. Let fiWw —> fa, bl be a Morse function, v be
an almost good gradient-like vector field for f, o{'(rﬁ be
the regular wvalues for f. Then for all 45, sufficiently
smalli:

1} UQSES;["Z »p 33v) and U?S(S;fod » B I5v) are open.

-
S

Z)VS(S;[oL » p 1iv) is compact and UESE§;£¢,F:];V):
N Sit e, 515 v
4) For any critical point p in f—l(E ol ,[3 1) of indes
(s+1) the set Vss(g;[c,{ 1 p Tiv) UDé(p;[J,F, J;v) is compact.
S) The set V S(:S;[o{, B liv} equals the intersection of
all U S((S';[o&,{};];vl over all &' > 8.
&) For every open neighbourhcod U of V_gs(cS;[o(f s B 35V
there exists o' > 5, such that Vss(é';[cé,F} Jsvy < UL
7 Kss([oé , F;];v) is compact; for every critical point
1

P in 77 (Led,p1) of index s+l the set K (Teds g 15vIV

UDED;E:J,F; liv) iIs compact; Kss(foé,rg I3v) =gr\uss(85f°i-P3;U)-
. >0

8] Let U Be a nzighbourhood of VSS(CS‘;[DZ s fe J,vi. Then

Tor  any £~reguiar perturbation of ' close enough to v

A -

the set Voo (331 aZ,F. 1l;v") is contained in U. The same holds
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if instead of V.. (&30« » £ 15v") we substitute Kcs([qf,P 15v)
Or  Keg(Eesp15v) U Dipsid,pl5v) or v;gﬁ(é;[A,P];vJ U DS(p;[J,Pj;yﬁl

-1
where p < f ‘([J,F]} is a critical point of inaex

s+1.

?) Let K be ary compact in UgS{S;[J,P liv) (resp.
Uas(g;[d.,P];vD. Then for any £-regular pertubation v* of v,
sufficiently close to v we have K Cluﬁsiﬁ;[d,@J;v’J (resp.
U, (B3 TeLipT5v7 00,

Proof. If suffices to prove our lemma for [J,P] = [a,
bl. We prove 4) for example, We choose an enumerating
function £ on W in such a way that there exist a regular

values Cl’CE & [a,bl, such that ¢ < c2, all the critical

1

points of index = lie below cl and there is only one

critical point among =5 and €5 namely p. For such a @ and

§ sufficiently smail the set Voo (030a,015v) LJDS(D;[J.ﬁjva

is exactly the set Vc. (S; V) in the notztion of lemma 3.2
2

with respect to the function %3. This set is campact.

The only assertion which does not follow directly in

this manner from 3.2 and 3.4 is the part of 9), conmcerning
U;S(S;[J,P 1iv). To do this we note that lemma 3.4. 2) is va-
tid  with Be(p,v) instead of U_(dv) (the demonstration is
the same), Afterwards the compact K can be presenterd as a

finite wunion of compacts Ki’ each of which helongs to some
Bd~(p,v) for some critical polint of index { 5 and we are

aver .

Mow we proceed to  the definitions of the incidence

coefficient,
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Let f:W —> [a,b] be a regular Morse function, let v be

an almost good gradient-like vectar field for f, and p,q be

the «critical points of f, ind(p) = ind (g)+ 1. Fix the
liftings P, G of p, g to the universal covering W and the

orientations of D(p), D(g). We now define the incidence
coefficient Q(p,q) €& Zir (where J= W}(N)) with respect to
these data.

Pick wup a regular enumerating Morse function (f on W
with the same g.-l.v.f.v. Denote by C any regular value
of (f which separates the critical points of index < ind(q)

from that of index » ind(q) + 1. The intersections D(p,v)D

_ —_ l .
f l(C); D{(g,-v) O f (c) are smooth spheres of complementary
dimensions in the manifold f—l (c). First one is oriented,
second one - coocriented. Both can be lifted to the universal

covering [f_l(c)]ﬁ' s since both are contractible in W and ?
is regular. The particular liftings will be chosen by
lifting to W the discs D(p,+v), D(q,-v) as starting at p, g.
Now the standard definition gives us the intersection coef-
ficient Q(D,q) & Zs1 which will be called incidence coeffi-

cient of p, g. If we want to stress the dependence on v we

wrrite V(p,q;v).

Lemma 3.8. 1) The coeffjcient\kp,q) does not depend on
the choice of ¢ .

2): If v is good, then 9(p,q;v) coincide with  the
.standard incidence coefficient as defined ,for example, 1in

(Pal, p.45].
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3) A small £ —regular perturbation v’ of any almost

good gradient-like vector v for f is again an a.g.g.—-l.v.f.

ror f and Q(p,q;v) = Q(p,q;v/).

Proof. The property 2) is obvious. To prove 3) note
that ! is still a gradient—like vector field for ?, hence
v' is almost good. Then 3) follows from standard properties

of intersection coefficient. To get 1) we perturb v to get a
good g.-l.v.f.v/ and then apply 2) and 3). g.e.d.

We shall need one more definition of Y(p,q) in terms
of our original function f. For that we recall some standard
facts on intersection coefficients.

Suppose that N is a comnected compact manifold without
boundary, X,Y_;Z N  are compacts, X NY =,Z{; L is a compact
connected submanifold of N, oL < Y, LAX = Q§ ;3 X is a

compact manifold with boundary ‘BK, &V:K —>N is a smooth map

such that %(K)f\Y:=Q§ ’ (P(BK)<C X3 K and L have compie—
mentary dimensions: dim K + dim L = dim N. Moreover, we
assume that f *(VTlK) = {13, im( ITyL ~?JTlN) = {1}, that K

1s oriented and L cooriented ( or vice versa) and that there
are fixed the liftings of (f:K —> N and id:L— N totﬁ.
Let %':K —> N be any smooth small pertﬁrbation
/ . / / /.
of (P:K —> N, such that LP’BK = CF(\GK, Im<\0 N Y =5Z) . tlo is
transversal to L. Then a usual :TlM—counting procedure defi-

/
nes for us an intersection number i(<f L) &€ 7 I; M. The

proof of the following is standard.
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Lemma 3.9. The index i(LPf,L) satisfies the following
properties: 1) It does not depend on the particular cholce
of a small perturbation q)/, and thus Is dencted i(LP,L).

2 If ? ,%f:K —> N are two maps, homotopic via hiK X1 —7
>N, such that Im h O\Y =@ , Im(h [OKxI) < X, then L0y, L)
i,

3) If @:iK —> N is a smooth embedding, then 1(@,L)

Il

= i{id:L =-—» N, C?EK)). This indices are dencoted then by
I(K, by = £{L, Ky *>»,

4 The Intersection index i tP,L) does not depend on
the palir X,Y, I1In the sense that if X7,Y7 are ather com
pacta, such that XNy’ = Qf =kKnY = X" N L, oKcx/,
DL <= Y7, then the Iindex, defined with respect to xf, ¥

colncides with that corresponding te X, Y.

5) If¥ K< K’/ are two manifolds, K¢ 1nfx’. ?:K/ —> N
& map, satisftying the above properties and such that ?\ (Kf\|<)c:}{

then it ,L) = i(cflK,L}.

Mow we return to Morse theory. As before let p.g be
the c¢critical points of a regular Morse function Ti1W —>
fa,83, inc () = ind{g?+ 1 and v be an agglvfi for f. Fix
the liftings T, 4 to W and the crientations of Dipy, D(g).
This gives as the coorientation of D{g,~v), as well as the
orisntation of D(p)ﬂ?ﬂfﬁ4{q ) and coarientation of

*» The absence of usual sign in this formula 1s due to
the fact that one c©f our manifolds is oriented and other is

coorliented.
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D(g,-v) N f—'l( ) for any regular \ .

If f(p) & f(gq) we set naturally vY(p,q) = 0. Otherwise
wWe proceed as following. Denote f(p) by d, f{(q) by c, ind p
by s.

Since v is almost 300&. the sets Kss-l(V) and K),s (—v)
do not intersect, which by lemma 3.7, p. 2), 3) implies that
for all 8 sufficiently small the sets vss—l (55 vy, V;S(S;~U)

do not intersect.

Furthermore, Kss (v) ﬂ K;s (-v) = ﬁ, hence by the same
argument, Kss(v) N V;S(S; -v) = Qf for all & sufficiently
small; in particular, D(p, v) (\v%(cS; -v) = Q’

Similarly, Kss—l (vhi N Ig/s_l(—v) =& . hence for & suf-
ficiently small, D(q,-v) N \és_l(é‘; v) =;D/.

Fix now any regular value Qxé(c, d).

. The above implies that for R} sufficiently small D(p,'\f)/‘)

MW E A B13=v) = Dip,v) N v (S50 2 ,bIsv), and Dip,a)N
Nk A, @];~v) = D(p,v) N Kss_l(tﬁ,g Js5-v), and the same
for the sets of type U. Similarly, D(qg,-v) ) ViSiLa, N\ 1;v)
= D(g,.,-v) N V}/S(S;Ca, 2 15v), and D(g,-v) /N K(fa, % I:v) =
D(g,-v) N K)/S (Ca, A15v) and the same for the sets of type U.
Now we fix § > o0 sufficiently small so that the above
conditions hold.

Let J RS (A, d) be a regular value of f, so close to d,
that ( ﬁ, s d) contains no critical values. Denote by SF> the
iﬁtersection of D(p, v) with f_l(‘s ). That is the sphere of

dimension s—1. The intersection SP N ket A, bl;-v) 1is a

compact set and the set Sﬁ n U(c?;[ A, bl;j-v) is the open
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neighbourhood of it (arbitrary small if & # 0, by lemma
3.7, p-4). So the set Sg\ U(d;L 2, & 1;-v) is a compact in-
side the open set Sﬁ \ K([LA,% 3;-v). By the smoath parti-
tion of unity thegrem there exists a compact neighbourhood
P of SF> \ U[é;[ Y zP Js—v) in ?F NKIEL % ,P J3—v) with a
smooth boundary OP. Thus 0P S 5 D U@s;Ea,p 15-v).
Recall now that for any x e_f{L((%, b)), ><¢-K(E %,gjj*v)
there exists a unigque (~v)—-trajectory, starting at
and finishing at some point vy é—fhl ( 2). The carrespodence
x > y determines a smooth map 1+; : f_l(( A, Bl N K(L %,%],—&r)
-_— f_l ( A ) which is obvipusly injective when

restricted to the level surface fﬂl( H YN KO A,bli—-v) for

E regular, 31& (X, br. Note that by definition of the
_l .

set MLS-I (5;[ N ,bl;—v) it belongs to 1 ((X,b1) andg its

image \P;[HQS_l(S;[ %, BY;—-v) N K(L D, bl;-v)l belongs to

1

Vool (&30 A,bl3+vy ) £ 5 (A). By prop. 2) of lemma 3.7 this

set is compact. We denote it by X
2,8
Note that the manifold P belongs to the domain of 1}7
and XP; maps 1t smoothly and injectively to f_l{} ). More—

over,—BP Ll SP N Ued;t 2\ ,P Js—v) = SPf] u (5;[ 5, F 13—-vy,

<4-4
sirCce Sﬁ(:'D(p, v). By the above the image QP;(8P) beiongs %o

an . The imsge \P;(PJ will be denoted F

10

A

Now we perform the similar procedure from the ogther
end. Namely, let o = 2) be a regular value of T, =0 close
to ¢, that thnere are no critical values of f im (c, o ).
Denote by S, the intersection D{(g, -v) N f-iW £33 that is a

csphere of dimension Nn-s. The set S&_m Kiia, }];v) 1s a com—
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pact set and the set SaLm Utdi;la, A13v) is a neighbourhood
of 1t. Consider a compact neighbourhood G of a compact set
Sy N Ud;la, d I;v) in the set S, \ K(fa, X1;v), such that Q

is a smooth manifold with boundary 3G C U(d,fa, Aliv) N Sd .

The shift along the v-trajectories determines a smooth

map CP1= f_lifa, AN K(Ca, Adzv) —> ¢ Ly X3 CEA is injec-

tive,when restricted to f l( ¥ ) N Kifa, Al;v), for ¥ regu-

lar. By definition thecil—image of V}S

belongs to V;s (S3fa, X 1;-v) 0N f_l(’}\) This set is

compact and will be denoted by‘Y;S.

Ei

The manifold @ belongs to the domain of C?% and éﬁg
maps 1Lt smoothy and 1njectively to f_l( 5. Moreover,
‘aa s, N s, ra, N I1;v) = S&QUM(S;[a; 215v), hence CPQ(BG)C_
Y . 1 1

5,8 The image ‘%a{ﬂ) will be denoted GA
. / : =
Note also that since Dip,v) O\ V (S.—v):=;5, P, Ny =
25 p A8
= and similart Q X = .
Now the manifolds P1 s 02 are submanifoldes of

complementary dimensions s-1, n-s inm the manifold f_l( A

P> is oriented, G} is cocriented {recall that we have
thosen the orientations of the descending discs). The 1ift-
- I R ~ . N

ings of Py g to W determine the liftimgs to W of D(p, vJ,
Dig, -v) which determine in turn the liftings of P , O to
S 1

f (%N ), since the latter is just the preimage of f (21 in
o~

W.

Now we can cefine the intersection index i(P?, G))Q

z jim and we call it by definition the incidence coeffici-

(850a, A 1:v) N\ K([a,AT;v)
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ent Yip, g). (To image all the stuff, lpok at the picture
3.2.)

This index depends on a number of choices, namely, A .
g, oL ,\P , P, G. IT we want to underline this dependence we
include the corresponding parameter in the notations,
like v)(p, Q). The vector Tfield v can also be included
intc the not;tions like Qk(p, q; v). We now proceed as to
show that it actually does not depend on that ambiguity.

For a while we fix } (the independence on N is a mat-
ter of lemma 3.10).

. First cf all we fix 3,& ﬂ? and show that the index
does rnot depend on particular choice of P, G, It suffices to
consider P. For the given Pl’ PZCS,E’ N OK([ A, bl; —v) consi-
der the compact R = F’lLJF‘ZLJ(SJb N U(S,[% .013-v})), belonging
to Sﬁ NOK(L A s DIi—v). By the smooth partition of unity
there exists a campact nelighbourhood P C S}’ VKD A, bli-v),
int [P)containing R, with the semooth boundary OF U(S;E}\,@J;—ﬂf)

Now the manifolds .%gtpl), \y;(Pz ) are contained
in \P; (FP), and applving the lemma 3.9, 5) we get the inde-
pendence on P, Q.

Now we shaw that for the fixed § the index does not
depend on ol ,P . It suifices to consider_ﬁ - Let p < ﬁ’ be
two regular values of f, such that p/ < d and there are no
critical values of f in the interval (F, d). The shift alonag
(-vi-trajectories gives a diffeomorphiSm'\%’:f—lﬂp/) ‘a-{lté)
which carries SP, to S,, K(L A, bli=vy O ‘r'_l(p‘) to K([ﬁ,@j;ﬁ)")ﬂ

A
ﬂf_lE(S) and UeSse %, b3: vy N L ()5/) to
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Piel. 5.2

i L>.%
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1
S0 XN, bBl;-v) N f qS). Moreover, the map q#g
=

L)

introduced above, being restricted to f-l &F/) i a

composition of WH: and ”42 ] f_ltp). So if we choose any Pﬂ

satifying the conditions above for ‘ﬁ’, the manifold P =

’ ; ; D4 g Fy =

\LC{P } satisfies the conditions above for p, %(F“ ) =
’\P;(F-") . This proves the i1ndependence of OZ , fS

Now let 0 < &7 < & We fix o , 5 and the manifolds

S, P < Sﬁﬂutéf;[ N ,bl;—v) and @ Csﬁd,ﬁa c Soiﬂutcg/;{a_,()«]j'l
so as to compute the incidence coefficient with

respect to 37 By the above we can use P, O alsa for 3 and

the only difference in definitions of indices is that ig;(P,Q)

G) i1s computed with respect to the compacts XS;?‘; YEI,A ,» and
3 ’

iS(F’, Q) is computed with respect to the compacts XSF'A; YS;?‘-
But by lemma 3.9, p.4) these indlces are the same.

Mow we are to show that our indices do not depend cn :X

Lemna  3.10. 1) For any perturbation v/ of v small

enought  the Incidence coefficients ﬁafp,q;v) and ‘%ﬁp,q;v/)
corncide.

2) If the vector field v 15 a good gradient—-Ilike
vector ftield for f, thén thp,q;v) is an ordinary iIncrdence
coefficient as defined for exampie 1n [Pal, app.BJ.

3) For an almost good gradient—like vector field v

the incidence coefficient N (p,q;v) does not depend on

Froof., First of all note that 371 foliows immediately

from 1) and 2} because in  the eguality ‘O*D,Q;VJ = \J(D,Q;UJ)
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(where v is an agglvf and v/ a small perturbation of
v , being a gglvf) the 1lefthand side does not depend on v7,
and the righthand side on %
To prove 2) we choose 8, ol Fr Py, @ to define ‘Q}(p,q;'u’),
Consider now the set of {(—-vi-trajectories , such that
\g(— o) = p, ¥(+ 09 } = g. This set Is in ore-to-opne corres—
pondence with the set f_l(?\] N op, vi N D(g, -v), hence
the latter is finite. The vector field v 1s good, hence
B(p, v A‘\ Dlg., —-v) and since both are transversal to f_l(R),
we have (D(p, v) N £ 1(D ) A, v ARy, 15 S 0,
e, Q, ,ﬁ Satisf\j the conditions above, necessary for
definition of \?A{D’q; v}, the manifolds \'{/;(P), Ci),)‘((}) are
submanifolds of the same dimension of Dip,v) f_l( 2, D(q,"‘tf)f‘i
ﬂf—l(')\) and  such that f_l(;\) N Dip, vy N Dlg, —-v)
=\g:U3)P\§1(D). This implies our assertion.
Now we proceed as to prove 1), Note first of all that
if v is a perturbation of v, close enough to v, then v/
is again an aqglvf for f, by lemma 3.8, p.3). Fix some

regular Q% e(c, d).

We choose same é\ > O so small that the sets V(S;[ %,@];;t-\)’)

bl: +v), vieds  fa, ™1 +v) are well defined and the
sets \és_ic?; v, V>§[r5'; —v) do not intersect, and alzo
K V) Vo o(d; - = = K - y S; v).
<tV N NI & pe i N <5495 V)

Now we fix any SO > 0, such that cpo < 8. For v/ = v

small encough the set v$3_1(80 P v 1s contained in V‘{SHl(é; v )
as well as W ) D2 ,bl;v’) is contained in V (S ;-:9\,@]"1}")
<s-1 ° £s-1 "o ’

{by lemma 3.7, 4), 5)} and VZS (5‘0; -v7] is contained
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in V (é; vy (as well as V (5\ sLa, ™ ];—v’) is containec
Z5 > 58 O

. ; ; : o . uf
Vo e (83fa,™ I;v)). That implies that Vs‘s_l(é;. v/ N Vs

S

Further, for v/-v small enough the set Kﬁs (v’
. . . . L -
still contained in W A\ Uas (S, v}, and sfs—l( v’) is s
contained in W N\ %5—1(8; -v). Therefore the descending
D(p, v’) does not intersect the set V (5g;[a, 2 3i-v))
. 2S
the ascending disc D(q,—v’} does not intersect % l(ﬁo;
- 5

[f we denote the set ¥ (J ;0 %,bls+v/) /1 £1 (0

£5-{ o
X (v’) and, respectively v (& ;La, 2 1;-v1 N
2,8, 258 ©

Y} S{v/) we can rewrite the above as following: 1) D{p,-
» 8o

X%So (v/) does nmnot intersect Y%Jb(v;) and 2) X (v}

3, 6,

not intersect D(q,—v/)tJ Y v/,

£
rArs\ﬂ
Next we take of (resp.‘p) so  close to d, that &b
D(p,v) N I ) (resp. Dig,v) N £77( L)) is contain

the neighbourhood of p (resp. g) where v = v’ .
Next we fix a compact neighbourhood P of Sﬁ \ U[é;
in Sﬁ \OK(L N ,bl;-v), such that P is a smooth
£01d with the boundary BF. Note that 1) k(L A, € Ti-v)
and  2) S, N\ int P& U(S 30N, € 15-v). Similarly we

P

compact neighbourhood Q@ C 5, with the smooth boundary

ol
that 1) kK({a, Aliv) < S, \ B, 2) §, \ int 0O cu<5o;[a,>

For v/ - small enough these four propertie
preserved by lemma 3.7, 3), &). This 1mplies tha
manifolds P, @ can be taken as the initial data to

ne V}(P,G;v) as well as QQP,Q;V') wilith respect to a
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cSO and the levels , ,F. The first is the intersection index
of \P‘;(v)(P) and CP)‘(V)(Q), calculated with respect to the pair

of compacts } 5, (v), YQ\ 3 (v). The second is that of V(v

an <p(v )@ calculated with respect to the pair of compacts
X (v, Y (v/).
2,8 TS,
Consider now the pair of compacts X 8.(v), Y} F(V)' From
Pl

the above we know that X% X(v) contains X) g(v } (and of cour-
J

se it contains X?«,S,,(v)); similarly YAX(V)D 38‘( ) U Y, S'
Recall that \P;(v)(P)n Yo s (V) =g = @(v)(@) N x g(v), and
)

the boundaries EP,BQ satisfy the relations r\{/;(v (oP) <
X (v, @ (vi(oq) < Yo 5(\/)
N

Recall now that the set U(SO;[Q\ ,bl;-v) N S'5 = U£5-1(SO;EA’€J).—U’)

nSP i1s open in SP and, therefore, the set

(5 ;O jS].—V) N S)B) \ (K (cg\ 5T ,F];—v) N SJB) is open in S, \

€44 £
K<5 y (c? s C >\ F]. -v), thus its image Llﬂdel"\V(V is open and

sov(v (oP) is contained in the interior of XAS’ . (Similar-

v oo

,'\-(/;(v)(AaQ) is contained in the interior of Y)S' .)
290

This implies that for v/ —v sufficiently small the ma-

nifold \K(v/)(P) does not intersect Yg g(v) and the bounda-

r‘y‘w—(v’)(aP) belongs to X'AS' (similarly, @ (v @y \ X 8\(v)..

A
= ¢ and @(V ) (QP) < YQ\S) Moreover ’\V(v )(P) i1s homoto-

pic to '\If(v)(F’) in the class of maps, satisfying these rest-

rictions (same for Q). Now we apply lemma 3.9.2) and finish
the proof.
Remark 35.11. If the vector field v is good, then the

compact Sﬁﬂ K(LA.bls;-v) is nowhere dense in Sﬁ' In general,

however, it isg not, and it well can happen for example, that
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SPC:K([ " ,bl;=v). In this case the only choice for P will be
ﬁj, and hence,by lemma 3.10, Y(p,q) = 0. That implies, for
example, that in this case the index Y(p,q;v’) vanishes for
all the agglvf v/ close enough to v. One checks this up
like following. If §ﬁ<: K(C %,b];—v), then by the above, sﬁ <
K$5—1(['>\;b];—v). We choose JS close to d so that Sﬁ(V)

= ?ﬁ(V/)' Fix some & which satisfies the conditions of the

definition of V(p,q), and some é: < d. By the lemma
< — / . oy’

3.7 Sp(v) = Sﬁ(v ) belongs to vﬁé_«(é;,[ 2 ,$13-v7) for all
v/ close enough to v and this set in turn is contained in

Vey 495 [TX,b15 =v) for v/-v  small enough. That implies

/
Patvy < v (850 N,b15 v). But D(q,~v) C v55_1(60;c&,b1;—ﬂf)
which belongs to v%_1($;[ Asbl; -v) for v-v/ small and :
this implies @ (v/)C V| 4(cY;[ 2,035 -v) thus D(p,v) () Dig,)=(F
>4
q.e.d.

From time to time we shall need to consider all the set
of trajectories, joining two given points p, g and not only

the index ‘Q(D, q).

tet F:W —> [a,b] be a Morse function on a cobordism W,

and let Ps qQ be two critical points, ind p = ind q. Let v
be any gradient-like vector field for f. Assume that the
orientations of D(p, v), D(g, v) are chosen. Assume that the

discs D(p, v) and D(g,-v) are transversal.

Then we denote by . N(p,g: v) the set of all pairs
( % s E(X )) where Y is a (-v)-trajectory, joining p and q
and £ ( M ) 1s the sign of intersection of D(p,v) and D(d,—v)

along X . Here we imply that the trajectories 34, KQ’ which
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differ one from another by a change of time t—>t + C,

are identified.

Each trajectory Y is uniquely expanded to a map -?:R —>

—»>M, where R 1is the compactification of R by two points: - oo

and +p9. The (- p) is carried to p, (+00) - to q. The class
of homotopy with fixed ends of 3 does not depend of the
choice of parameter and will be denoted [~K].

If g:W —» [c,d] is another Morse function with a gra-
dient-like field v/, such that in some neighboutrhoods Ui (p)
and U2 (g) the fields v and v’/ coincide and f, g coincide
up to constants, and D(p, v/) A\ D(qg, —v/), we say that the
sets N(p,q;v), N(p,q;v/) are the same if they coincide as
sets.

Suppose now that M, M7 are two sets of pairs ays

where K is a map R — M, which can be expanded

-_— _—

to f iR —>M, such that 7 (-pd) = p, Y (+00) = q, and £ =
+1. We say that M and M/ are homotopically the same if there
is a bijection é? M —> M7, such that ey ) = &.(éﬁ(z’)) and

¥y and %;(Z} are homotopic with the fixed ends.

The basic example is M = N(p,g3v), M7 = N(p,gs;v’ ).

€(sz}

Lemma 3.12. Assume that \ is almost good, and Dip,v) Aﬁ

/#\D(q,-v), where ind (p)= ind(q\+ 1. Then the set N(p,q;v) is
finite and for every E-regular perturbation v/ and Vi,
close enough to v we have again D(p,v/)/h D(g,-v”) and the

sets N(p,qg;v), N(p,q;v/) are homotopically the same.
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Proof. Since v is almost good,there exists a Morse
function %>:w —> [c,dl, such that v 1is a gradient-like
vector field for ? s %)equals f up to a constant in the
neighbourhoods of critical pdints, (P( P) > (p (q) and there
exist regular Q\,/J &e(c,d), such that in ?_l([),‘#d) there
are only two critical points: p and g. We denote by Wo the

cobordism Lp—l([ A, ul) and choose a regular value & e;(A,}n

such that }P(q) < 8 < ?(p). The intersection D(p,v)()%;l(g)

is a smooth compact submanifold P(v) of q;ﬂS), diffeomor-
phic to a sphere SDXiPh% The intersection D(q, -v)f\Lﬁl(Q)
is a smooth compact submanifold G(v) of %;(8), diffeomorphic
to a sphere Sn—hkip_ Since v 1is transversal to qfl(e) we

have P(v) d\ Q(v) and the points of intersection are in one-
to-one correspondence with the elements of N(p,giv) (the
signs are also the same). Therefore, N(p,g;v) is finite.

We choose £ £ so small, that Da(p) and DS(q) are both
contained in f_l (( 6\,/4)). We demand that v/ is so close to
Vs that it 1is also a gradient—-like field for ¢ and for

x €W N\ (DS(p) U Dg(q)) we have d¢(v) % 8 > o, d (v/)

8 > o.

The standard transversality arguments imply that for v/

Close enough to v the set A{v) = D(p.v) f\ D(a,-v) is in
one—to-one correspondence Q with A(v/) = D(p,v/) f\D(q,
such that X “and <{(x) are arbitrarily close. For

each x & A(v), <{(x) Eav’) we choose the (-v)-trajecto-
ryy’joining p and g anrnd passing through x in such a way,

that X(O) = X. Similarly we choose the parameter on the
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(—v/)—trajectory X/, joining p and q and passing through
{p (x) so that X/(O) = (p(x). We denote by K the v-
trajectory, starting at x and by Q/ - the (v/)—trajectory,
starting at Y(x). Note that Y s X/, n ?/ are defined on

- -
(=00, © ). Note also that iz( —g—_ ) and !z/( 49—/)‘

- -
B&(p); similarly ¥ (4%5— ) and X( A%;‘ ) belong to Ba(q) (by

) belong to

corollary A.2 of App. A and by the choice of 8).
We choose the riemannian metric on W, such that in the
neighbourhoods of critical points it is euclidean in the

standard coordinate system.

For all 7/ close enough to v we have, therefore,

. HM-X u-n
that the curves X and X'/, restricted to [-— < *5—'] are
Close to each other and the starting points (resp. the

endpoints) belong to Be(p) {(resp. Be(q)). That implies that
zX s X/ are homotopic and the homotopy leaves the starting
points &t Bg(p) (resp. Bs(q)). After that the homotopy is
expanded to the homotopy of 5’(§‘to X/,ﬁ in the standard
way. Therefore gfv?/, g.e.d.
Assume now thatW is connected and denote JRN by H. Fix
some lifting ?5, E’ of p and g to the universal covering E.
Then each (-v)-trajectory X s Joining p and g,determines an
element h( Y ) in H, namely the lifting of ? to W, starting
at Eﬁ finishes at fa.h(x ). So if D(p}v)/h D(g,~-v) and N(p,%)va
is finite we define V(p,qiv) to be Ye(y )he y) & zH,
where X runs through the (-v)-trajectories, joining p and
q. Note that if v 1s good then the assumptions are

satisfied and this < is & standard incidence coetficient.
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We say that N(p,g3v) and N(p,q;v’) are homologically
the same if Q(p,q;v) = V(p,q;v/). {Note that this notion
does not depend on the particular choice of liftings p and

q)-

Corollary 3.13. Let f:W —> [a,b] be a Morse function
on & connected cobordism W, v is an almost good gradient—
like vector field for f, p and qQ are critical points of f,
ind(p)= ind(q)+ 1. Assume that D(p,V)/h D{(g,-v).

Then for every € —regular perturbation v/ of v we have
again D(p,v )N D(g,~v); N (p,g;3v) and YN(p,g;v’) are well

defined and are equal.
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Appendix A.

n m k
Lemma A.1. Let R = R @R with coordinates (X, y).

2 .

Denote by f the function —l?dz' + l'y’l + c, where c is a
constant. Denocte by v = (—2%’, +2Y) the gradient vector
field in the standard metrics. Assume that a = (xo, yb) be—
"longs to 06(0).- Denote by Y the v-trajectory, starting
at a.

Then either 1) ?o = 0 and ¥T) stays forever In

—_—
Dg(O) N (¥ = 0} and Y(T) —>0 when T —> o,
botd .
or 2) vy, # 0, and there exists o 3 O such that Y (T )

belongs to Dg (0) if and only if Tel0,el], and (¢ @ ))

> c.
Proof. The trajectory X(t) has the coordinates
(;:; . e_2t, ?:- e2t). If ’\,7: = 0, then the assertions of the

part 1) are obvious. If not, then the condition \X(’C W ¢ &

-_—
_ _ 2 82 [z | % 4T
1s equivalent to M T SR H + —_—,—L\< O, where M = e
| %l 13 |
This condition holds for A= 1 (i.e. T= 0),

/
which implies that there exists o 2

2 1 such that for oo > 1

it holds if and only if u g L7, Set L= (1n L7)/4. 1t is
left only to prove that Oy (o)) > c. But Y (£ ) =
R A G LD EACS I A
o .
= - =t 1_{3‘ 04/', wher‘e {7 is the biggest root of the
2 2 ¢
equation Al —i—lz).L-t-[( |Z: 0. To prove f(y(oi)) > c it
o (2 |
suffices to show o{" >/ _,o . For that it is
, Pl [ |*
enough to show that the polynom t - —_ ¢t + is non-—

FAIL

[]
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l
\

|
AT

!

positive when evaluated at t =

from O 3 |'>2’|2+ \7:)\2. @.E.D.

|

This follows

i

A

O

Corollary A.2. In the notations of lemma 3.1 we have

D(p,v) (N Dg(p) = Dé(p).

Proof. We assume that for some 5/ > g > O there 1is a

diffeomorphism \V of DG' (0) onto a neighbourhood of p, such
2 z _

that f- V¥ is equal to c - \7\ +\7\ , ana ¥V "1(v) is the

euclidean gradient (-2X, 2Y ). Now the inclusion D_é(p) <

D(p,v) m Ds(p) follows from lemma A.1. 1). To prove the
inverse let z & Ds(p) \ D—é(p). That means that z = (?o’—g‘:>)

\?0‘75 O. Then by lemma A.l1 there exists a segment [O,ol])
oL » 0 such that the v-trajectory Y(t),starting at z,
stays at Dg(p) when t e [0,4 1 and T( Y (£)) 2 c. Sin-
ce \‘/( .,( ) # 0 and v is a gradient-like field for f there
exists o(/>°( such that f( 7Y ( A /)) > c. Hence the equality

lim X(’C) = p 1is impossible and zé:-D(p,v), g.e.d.
T 400

Corollary A.3. Let p be a critical point of T (we
Imply the notations of 555). Suppose that a point z &€ W does
not belong to Dd\ (p). Denote by b/ the v—trajectory, starting

at z.

Then one and only. one of the following alternatives

hold:

1)y ¢T) N Dgp) =¢.
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2) There exist numbers ‘Z'g ,Tl such that O <'Z‘(’) <’L'1 and
.X(’Z’)GD(S(D) If and only .z'fTé['z—o,"('l].
3) There exist A > O such that ¥(T) €Dy (p) I7 and
only if T L

The condition z € D(p, v) Is equivalent to 3).

Proof. Assume that YT (\Dd\(p) # Q/ Consider the
minimal possible Ty > O such that X (T,) < Dg ( P ). (This
exists since Dé(p) is compact and since z & D§ (p).) Now we
distinguish two cases. A) B(’(:O) € D;S(p). Then by lemma A.1
Case 1) the trajectory X stays forever in Dg(p) after T, and
our case 3) holds.

B) X (’CO) ¢ D;‘\ (p). Then >by lemma A.1 case 2) there
exists > 0, such that X(’C) belongs to Dcs(p) when 'Cé[’(c),’t‘o+52_]

and f( K (’Z;)Jr L)) 2 C. Since Da(p) Eelongs to the
standard coordinate system together with some neighbourhood
of Dd(p) the case 2) of lemma A.1 implies also that there
exists some & > O, such that %(’C ) q’Z Dd‘ for
T € (To+d, T, +ol + £).

Now I set Tl =’Zfo+o[ and I claim that the alternative 2)
holds. Indeed, suppose that there exists Y > ’Co*- oZ s such
that Y (v ) €Dg(p). Note that ¥ 3 T + o +&. Choose the mi-
nimal possible \70 » satisfying this condition (which is pos-—
sible, since Dslp) is ;:ompac't). Again ‘70>To+o[ '+ €. On the
interval [ T +o,T, +o + €1 the derivative <df, > is

— —

hence f( Y (Vy)) > c. The point Y (V) = (x5, V)

belongs to the boundary BDé(p), and the vector \6 ( \70) points
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inside Dy (p) or is tangent to Bodg(p). But that is

impossible, since the scalar product of *(\%) with the out-

ward pointing normal toﬁaDé(p) equals <v( y ( vo)), (;;,.?;)>
= <(=2X, 27, ), (R, T = —2]%\"‘+ 2\70‘\&: fOY(V)) = c o>
0.

Now we are only to note that 1)-3) exclude one another
obviously and that z € D(p,v) contradicts 1) and 2). Q.E.D.

The same argument as used while considering the case 2)

of the above corollary proves the following.

Corollary A.4. Suppose that Py se-aPyp are the

-1
critical points of f, belonging to one critical level f gS).
Suppose that z & W does not belong to D6(pl)LJ...L)D6(Dk).
Denote by X (T ) the v-trajectory, starting at =z.

Then Z intersects at most one of D(Di)-
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1

4. Preliminaries on regular Morse maps M — S

In this section we return to the framework of § 2 and
collect here some definition and simple lemmas, which will

be used in what follows.

We fix a reqular class_fé?Hl(H, Z) once and for good.

- . N . r~ -
The universal covering M —» M is factored as M — M — M

where M '~ is an infinite cyclic covering, corresponding
to Kerf = H.

We shall change the Morse maps M —> Sl in such & way
that 1in the neighbourhoods of critical points nothing

changes. More precisely:

Definition 4.1. Let (f, f, v, E) be an r-quadruple. An

—

r-quadruple (g, g, w, E7) is called an admissible
modification of (f, f, v, E) if

1) Cr f = Cr g

2) for every critical point x &M of f there exists
a neighbourhood U(x) of x, such that in this neighbourhood

v = W and T - g = const.

The simplest example of an admissible modification in

given by the following procedure. It will be of permanent

use.

—

Let (f, f, v, E) be an r—quadruple and c &R be a regu-

lar value for f. Let d &R be another regular value such

that © < d-c < 1. Consider the cobordism W = %—l ([c, dl).
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Let h:W —>» [c,d] be another regular function on the
cobordism W with the same gradient-like field v, and such
that h =+ in the neighbourhoaods of ¥—l(c), ¥_l (d) and
h - f is constant in the neighbourhoods of critical points.
Then we glue from h and T a new Morse function on f—l([c,C+1l>
expand it equivariantly to M and factor it to get a

new Morse map M —> Sl s which is called a result of
rearranging procedure.

Most o{fen we apply this procedure when there are only "’

two critical points X, ¥y in f “(Lc,d]) and h changes the

order, that is hix)

I

fly), h{y) = f(x). Recall that a
Morse function f On a cobordism W is called enumerating if
for every pair of critical points Xy ¥ such that ind x <
ind vy we have f(x) < f(y). If for the rearranging we take
the enumerating function h:Nc —> ic, c+1] (which exists by
[Mil, f 3] and is automatically regular by remark 2.4), we
call the procedure renumerating.

The example of the renumerating procedure is given by

the following lemma, which will be useful in ‘57.

Lemma 4.2. (Let R = (f, f. v, E) be an r-—quadruple.

Let a, b be two critical points of T in ﬁ, ind a = ind b
and f(a) < F(b). Then there exists an admissible modifica-—
tion (g, g, v, E) of 2% ,.such that g(a) > g(b).

Proof. Induction in s = (f(b) - f(a)].

1) s = 0. That implies f(a) £ f(b) <€ f(a) + 1. Choose a

regular c, such that c < fla) F(b) < c+l1 and apply to f
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a Fenumerating procedure with respect to c. We demand that
hib) > E(a) (this can be arranged since v is almost good).
By the above the ‘t—quadruple (h, R, v, E) satisfies the
conclusion.

2) s > 0. Note that T(b) 3 T(t “a), and [F(b) ~
;‘_(t—S a)]l = 0. Apply the above and get the renumerating £Z,=
(h, A, v, E), such that h(b) < h(t Sa). If h(a) > h(b) we
are over, 1if not, note that h(b) - F}a) < s and apply the
induction assumption to get an admissible modification

(9,§, v, E) of %, such that g(a) > gt(b), g.e.d.

In §5 we shall need to interchange the values of two
critical points x, vy, ind x = ind y + 1, f(x) > ?(y) under
the assumption that there are no (-v)-trajectories, joining

x and y. For that we shall need a following lemma

Lemma 4.3. Suppose that %3 is a Morse function on the
cobordism Y, ~OY =‘BOYIJ’81Y, such that:

1) To(Y) = Tg(dpY) = T(d1Y) = (1}, the inclusions S,Y G
C;‘(g)ﬁalY induce the Isomorphisms in 7 -

2) n = dim Y > 6.

3) (P has only two critical points x, Yy such that
n-2 2 ind %, ind y » 2, ind x = ind v - 1, and <f(x) > ?(Y).

Then ? 1s regular.

Proof. The only ease which is to be considered is that
of ({(x) > Le(y), ind x < ind y (and this is exactly what we
need). Denote %)TBOY) by a, T{E1Y) by b, f(y) =4, kP(x)

= )F and let ¢ belong to J,,]S). We are to prove
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that LP—l(c) is connected and the inclusion (P l(c);irY indq;
ces the isomorphism in Jrl. The first is obvious since ind vy
> 1.

For the second denote %;l([a,c]) by Yo,q;l([c,b]) by Y. .
Since ind vy > ind x 2 2, the inclusion -BOY C_Yo induces the
iso' in JTl. Since ind x > 2, the inclusion Yo C Y induces
epimorphism in ﬂjf But ﬁi(BoY) —9gWiY is iso, hence WiYo-—a
JTlY_ is also iso. Applying the same argument to the function
(- Y ) we get that lel ——ﬁ>ﬂ1Y 1s an iso. Now since ind x +
(n - ind y) = n-1 > 5, one of these numbers is >2 which
implies that either f—l(c) C.Yl, or f—l(c) C:YO induces the
iso in Wi and we are over. -

Now we want to rewrite the formula for differential in
.the Novikov caomplex in terms of M rather then ﬁ:

Let (f, ¥, v, E) be an rF-quadruple, belonging to ? It

—

P, 9 are critical points of f in M we consider any regular
value ¢ of ?, such that p, g € ?—l ([c, c+n1) for some
n & N. By remark 2.4.A the Jrl(f_l([c, c+nl)) — 7 (M) is an
ilsomorphism. Following the end of § 3 we define the set N(p,q;ﬁj,
It is obvious that this set does not depend on
'C or n.
Now the set of liftings E determines the liftings p—a’E
of all critical points P & Cr ¥ totﬁ in the following way.

The projection Q(e) are lifting to e, where e & E and the

S
element Q(e)t is lifted to eBS. So for each curve B’ in

— -

M which joins P.Q Cr f the index ht X) E H is determined,
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S
For our specific choice of liftings we have h{ Xt

S
8 h(y)8° (obvious).

Let now x, ¥ be any two critical points of f in M,
ind (x)= ind (y)+ 1. Denote by X, Yy their liftings to M, de-
termined by E, and by X, ¥ the projections of X ? to M.
Denote by no(x, y) the element V (%, ?ts; v) & ZH. Recall

that nix, v) & 4«’§ stands for an incidence coefficient in

Novikov complex C, (v, E).

Lemma 4.4. nix, y) = ZZZ SS n _(x, ¥Y).
_— s
SEZ

Proof. The incidence coefficient ni{x, y) as defined in

{Pall is the formal sum 2 , n_(x, ¥)g. Here n _(x, v) & Z
geG g g9

and is the sum of orientation signs, counted over all the

{(-v)—trajectories in M, joining %X and
Now ZE: g° Ng (x, y) is equal to AE: Z:&( Y ) 'h(x ))

seN seN
where ¥y runs through the (- v)~trajectorles on M, joining X

and .7ts. The internal sum equals the sum 22: ECy)aly )
where X runs through all the trajectories in M Jjoining X
and vgl( Y RE g(g(.y Y) = =-s. The resulting sum 1is equal,
obviously, ZE: n _(x, v)-g.

gec 9

Corollary 4.5. Let X,y €Cr f, ind x = ind y + 1, and
let v. v/ be two good gradient-like fields for f. Assume
that N(X, 7ts 3 v) and N(Xx, 7ts, -v?) are homotopically the
same for all s €1, such that N } s » -ex(E, f) - 2.

4

Then n(x,y; v) iIs N-equivalent to ni(x,y; v’)
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Proocf. By the definition of ex(E, f) (see the end of
$2)  |f(x) - ()] ¢ ex(E, f) + 1, therefore if s g ~ex(E,£)-2,
we have f(X) < f(?ts ) and therefore for these
values of =3 we  have’ ns(x,y; v) = ns(x,y; v’) = 0. Far
N > s } —ex(E, f) - 2 we have n_{(x, y; v) = ns(x,y; v/)rby
the condition; therefore n (X,¥3 V) = n (x,y: v’) for all

- o0< s & N, g.e.d.

Corollary 4.6. Let N be any natural number. Let

.

(f’;:v, E) be a regular quadruple, belonging to g’ . Then for
every good gradient—like vector field v’ for f which is an

« E-regular perturbation of v, sufficiently close to v, we

have Cil(v, E) ~ Cyx(v’/, E).
N

Proof. We apply corollary 4.5 and caorollary 3.13 to the

cobordism W = ¥—l([c, c+nl) where <c 1is a regular value of
F, n &N and c and n  are chosen in such a way, that W
contains all the %S where x € Cr f, and N > s >

ex(E, f). qg.e.d.





