Discrete Parabolic Anderson Model with Heavy Tailed Potential

F. Caravenna ${ }^{1}$, P. Carmona ${ }^{2}$ and N. Pétrélis ${ }^{2}$

${ }^{1}$ Università degli Studi di Milano-Bicocca
${ }^{2}$ Laboratoire Jean Leray, Université de Nantes
1 March 2011
(1) The Model
(2) Goals and former results
(3) Single site localization of the endpoint
(4) Path properties
(1) The Model

1.1) Configurations.

Let $d \in \mathbb{N} \backslash\{0\}$ and for $x \in \mathbb{Z}^{d}$ set $|x|=\left|x_{1}\right|+\cdots+\left|x_{d}\right|$.
Let $S=\left\{S_{k}\right\}_{k \geq 0}$ be a (lazy) nearest-neighbor RW on \mathbb{Z}^{d}, i.e.,

- $S_{0}=0$,
- $\left(S_{k+1}-S_{k}\right)_{k \geq 0}$ is i.i.d.,
- $\left\{x \in \mathbb{Z}^{d}: P\left(S_{1}=x\right)>0\right\}=\{0\} \cup\left\{y \in \mathbb{Z}^{d}:|y|=1\right\}$

1.2) The medium.

Pick $\alpha>d$ and let $(\xi(x))_{x \in \mathbb{Z}^{d}}$ be an i.i.d. field of Pareto-distributed random variables, i.e.,

$$
\mathbb{P}(\xi(0) \geq t)=\frac{1}{t^{\alpha}} \quad \forall t \geq 1
$$

1.2) The medium.

Pick $\alpha>d$ and let $(\xi(x))_{x \in \mathbb{Z}^{d}}$ be an i.i.d. field of Pareto-distributed random variables, i.e.,

$$
\mathbb{P}(\xi(0) \geq t)=\frac{1}{t^{\alpha}} \quad \forall t \geq 1
$$

2.3) Hamiltonian.

Given $\xi \in \mathbb{R}^{\mathbb{Z}^{d}}$, each RW trajectory S is associated with the Hamiltonian

$$
H_{N}^{\xi}(S)=-\sum_{i=1}^{N} \xi\left(S_{i}\right)=-\sum_{x \in \mathbb{Z}^{d}} l_{N}(S, x) \xi(x)
$$

1.4) Perturbed measure.

Given $\xi \in \mathbb{R}^{\mathbb{Z}^{d}}$, we let P_{N}^{ξ} be the perturbed law in size N, i.e.,

$$
\frac{d P_{N}^{\xi}}{d P}(S)=\frac{\exp \left(-H_{N}^{\xi}(S)\right)}{Z_{N}^{\xi}}
$$

and denote by p_{N}^{ξ} the law of S_{N}, i.e.,

$$
p_{N}^{\xi}(x)=P_{N}^{\xi}\left(S_{N}=x\right) \quad \forall x \in \mathbb{Z}^{d}
$$

(2) Goals and former results
2.1) Challenges.

Pick $N \in \mathbb{N}, \xi \in \mathbb{R}^{\mathbb{Z}^{d}}$ and notice that

$$
\mathcal{B}_{N}=\left\{x \in \mathbb{Z}^{d}: p_{N}^{\xi}(x)>0\right\}=\left\{x \in \mathbb{Z}^{d}:|x| \leq N\right\} .
$$

- Determine the smallest $\mathcal{A}_{N}^{\xi} \subset \mathcal{B}_{N}$ such that \mathbb{P}-a.s. in ξ,

$$
\lim _{N \rightarrow \infty} \sum_{x \in \mathcal{A}_{N}^{\xi}} p_{N}^{\xi}(x)=1
$$

- Determine the smallest $\mathcal{A}_{N}^{\xi} \subset \mathcal{B}_{N}$ such that \mathbb{P}-a.s. in ξ,

$$
\lim _{N \rightarrow \infty} \sum_{x \in \mathcal{A}_{N}^{\xi}} p_{N}^{\xi}(x)=1
$$

- Find a narrowed $\mathcal{W}_{N}^{\xi} \subset\left\{S: S_{N} \in \mathcal{A}_{N}^{\xi}\right\}$ which still satisfies that \mathbb{P}-a.s. in ξ,

$$
\lim _{N \rightarrow \infty} P_{N}^{\xi}\left(S \in \mathcal{W}_{N}^{\xi}\right)=1
$$

2.2) Two sites localization in continuous time.

With a continuous time random walk on \mathbb{Z}^{d}
Theorem (Konig, Lacoin, Morters and Sidorova (2008))
Let $\alpha>d$. For all $t>0$ and $\xi \in \mathbb{R}^{\mathbb{Z}^{d}}$ there exist $z_{t, \xi}^{(1)}, z_{t, \xi}^{(2)} \in \mathbb{Z}^{d}$ such that

$$
\lim _{t \rightarrow \infty} p_{t}^{\xi}\left(z_{t, \xi}^{(1)}\right)+p_{t}^{\xi}\left(z_{t, \xi}^{(2)}\right)=1 \quad \mathbb{P} \text {-a.s. in } \xi
$$

Super-balistic localization :

$$
\left|z_{t, \xi}^{(1)}\right|,\left|z_{t, \xi}^{(2)}\right| \sim(t / \log t)^{1+q}
$$

with $q=d /(\alpha-d)>0$.
(3) Single site localization of the endpoint

3.1) Modified field.

Pick $x \in \mathcal{B}_{N}$ and $S: S_{N}=x$. The contribution of $\xi(x)$ to $H_{N}^{\xi}(S)$ is

$$
l_{N}(S, x) \xi(x) \leq(N+1-|x|) \xi(x):=(N+1) \psi_{N}(x)
$$

with

$$
\psi_{N}(x):=\left(1-\frac{|x|}{N+1}\right) \xi(x)
$$

$$
S_{|x|}=S_{|x|+1}=\ldots=S_{N}=x
$$

$L_{N}(S, x)=N+1-|x|$
$L_{N}(S, x)<N+1-|x|$

3.2) Order statistics of the modified field.

Set

$$
\begin{aligned}
z_{N}^{(1)} & =\operatorname{argmax}\left\{\psi_{N}(x): x \in \mathcal{B}_{N} \mid\right\}, \\
z_{N}^{(k)} & =\operatorname{argmax}\left\{\psi_{N}(x): x \in \mathcal{B}_{N} \backslash\left\{z_{N}^{(1)}, \ldots, z_{N}^{(k-1)}\right\}\right\},
\end{aligned}
$$

such that

$$
\psi_{N}\left(z_{N}^{(1)}\right)>\psi_{N}\left(z_{N}^{(2)}\right)>\cdots>\psi_{N}\left(z_{N}^{\left(\left|\mathcal{B}_{N}\right|\right)}\right)
$$

is the order statistics of the field $\left\{\psi_{N}(x)\right\}_{x \in \mathcal{B}_{N}}$.

3.3) Localization.

For all $\alpha>d, \xi \in \mathbb{R}^{\mathbb{Z}^{d}}$ and $N \geq 1$ set

$$
w_{N, \xi}:=: \operatorname{argmax}\left\{p_{N}^{\xi}(x): x \in \mathcal{B}_{N}\right\} .
$$

Theorem (One-site localization)

It comes that \mathbb{P}-a.s. in ξ

$$
\lim _{N \rightarrow \infty} p_{N}^{\xi}\left(w_{N, \xi}\right)=1
$$

and

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(w_{N, \xi}=z_{N, \xi}^{(1)}\right)=1
$$

Moreover,

$$
\mathbb{P}\left(w_{N, \xi}=z_{N, \xi}^{(2)} \text { for infinitely many } N\right)=1
$$

3.4) Behavior of $\left(z_{N}^{(1)}, z_{N}^{(2)}\right)$.

$\xi(Y)>\xi(X) \quad$ but $\quad\left(1-\frac{|Y|}{N_{1}+1}\right) \xi(Y)<\left(1-\frac{|X|}{N_{1}+1}\right) \xi(X)$
such that

$$
\psi_{N_{1}}(Y)<\psi_{N_{1}}(X)
$$

$$
\left(z_{N_{1}}^{(1)}, z_{N_{1}}^{(2)}\right)=(X, Y)
$$

$$
N_{2}=\inf \left\{n \geq N_{1}: \psi_{n}(X)<\psi_{n}(Y)\right\}
$$

$$
\left(z_{N_{1}}^{(1)}, z_{N_{1}}^{(2)}\right)=(X, Y) \text { and }\left(z_{N_{2}-1}^{(1)}, z_{N_{2}-1}^{(2)}\right)=(X, Y)
$$

$$
\begin{aligned}
& \left(z_{N_{2}-1}^{(1)}, z_{N_{2}-1}^{(2)}\right)=(X, Y) \text { and }\left(z_{N_{2}}^{(1)}, z_{N_{2}}^{(2)}\right)=(Y, X) \\
& \quad \xi(Z)>\xi(Y)>\xi(X) \text { but } \psi_{N_{2}}(Z)<\psi_{N_{2}}(X)<\psi_{N_{2}}(Y)
\end{aligned}
$$

$\left(z_{N_{2}}^{(1)}, z_{N_{2}}^{(2)}\right)=(Y, X)$ and $\left(z_{N_{3}}^{(1)}, z_{N_{3}}^{(2)}\right)=(Y, Z)$

$$
\psi_{N_{3}}(X)<\psi_{N_{3}}(Z)<\psi_{N_{3}}(Y)
$$

3.5) Heuristic.

Set for all S

$$
x_{N}(S)=\operatorname{argmax}\left\{\xi(x): l_{N}(S, x)>0\right\} .
$$

3.5) Heuristic.

Set for all S

$$
x_{N}(S)=\operatorname{argmax}\left\{\xi(x): l_{N}(S, x)>0\right\} .
$$

We can prove that \mathbb{P}-a.s. in ξ

$$
\lim _{N \rightarrow \infty} P_{N}^{\xi}\left(x_{N}(S) \notin\left\{z_{N}^{(1)}, z_{N}^{(2)}\right\}\right)=0
$$

3.5) Heuristic.

Set for all S

$$
x_{N}(S)=\operatorname{argmax}\left\{\xi(x): l_{N}(S, x)>0\right\} .
$$

We can prove that \mathbb{P}-a.s. in ξ

$$
\lim _{N \rightarrow \infty} P_{N}^{\xi}\left(x_{N}(S) \notin\left\{z_{N}^{(1)}, z_{N}^{(2)}\right\}\right)=0
$$

Let S^{*} be such that

$$
l_{N}\left(S^{*}, z_{N}^{(1)}\right)=N+1-\left|z_{N}^{(1)}\right|,
$$

3.5) Heuristic.

Set for all S

$$
x_{N}(S)=\operatorname{argmax}\left\{\xi(x): l_{N}(S, x)>0\right\} .
$$

We can prove that \mathbb{P}-a.s. in ξ

$$
\lim _{N \rightarrow \infty} P_{N}^{\xi}\left(x_{N}(S) \notin\left\{z_{N}^{(1)}, z_{N}^{(2)}\right\}\right)=0
$$

Let S^{*} be such that

$$
l_{N}\left(S^{*}, z_{N}^{(1)}\right)=N+1-\left|z_{N}^{(1)}\right|,
$$

and pick S such that $x_{N}(S) \notin\left\{z_{N}^{(1)}, z_{N}^{(2)}\right\}$.

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
H_{N}^{\xi}\left(S^{*}\right) \geq(N+1) \psi_{N}\left(z_{N}^{(1)}\right) \geq u_{N}=\frac{N^{1+d / \alpha}}{(\log \log N)^{1 / \alpha}}
$$

Set $v_{N}=\frac{N^{d / \alpha}}{(\log N)^{1 / \alpha}}=o\left(\frac{u_{N}}{N}\right)$ and then

$$
\begin{aligned}
& H_{N}^{\xi}(S) \leq \sum_{x: \xi(x) \geq v_{N}} l_{N}(x) \xi(x)+\sum_{x: \xi(x) \leq v_{N}} l_{N}(x) \xi(x) \\
& H_{N}^{\xi}(S) \leq \sum_{x: \xi(x) \geq v_{N}} l_{N}(x) \xi(x)+N v_{N} .
\end{aligned}
$$

Set $v_{N}=\frac{N^{d / \alpha}}{(\log N)^{1 / \alpha}}=o\left(\frac{u_{N}}{N}\right)$ and then

$$
\begin{aligned}
& H_{N}^{\xi}(S) \leq \sum_{x: \xi(x) \geq v_{N}} l_{N}(x) \xi(x)+\sum_{x: \xi(x) \leq v_{N}} l_{N}(x) \xi(x) \\
& H_{N}^{\xi}(S) \leq \sum_{x: \xi(x) \geq v_{N}} l_{N}(x) \xi(x)+N v_{N} .
\end{aligned}
$$

By definition of $x_{N}(S)$ it comes that

$$
H_{N}^{\xi}(S) \leq l_{N}\left(\left\{x: \xi(x) \geq v_{N}\right\}\right) \xi\left(x_{N}(S)\right)+o\left(u_{N}\right) .
$$

Set $v_{N}=\frac{N^{d / \alpha}}{(\log N)^{1 / \alpha}}=o\left(\frac{u_{N}}{N}\right)$ and then

$$
\begin{aligned}
& H_{N}^{\xi}(S) \leq \sum_{x: \xi(x) \geq v_{N}} l_{N}(x) \xi(x)+\sum_{x: \xi(x) \leq v_{N}} l_{N}(x) \xi(x) \\
& H_{N}^{\xi}(S) \leq \sum_{x: \xi(x) \geq v_{N}} l_{N}(x) \xi(x)+N v_{N} .
\end{aligned}
$$

By definition of $x_{N}(S)$ it comes that

$$
H_{N}^{\xi}(S) \leq l_{N}\left(\left\{x: \xi(x) \geq v_{N}\right\}\right) \xi\left(x_{N}(S)\right)+o\left(u_{N}\right)
$$

Since S visits at least $\left|x_{N}(S)\right|$ distinct sites it comes

$$
l_{N}\left(\left\{x: \xi(x) \geq v_{N}\right\}\right) \leq N-\left|x_{N}(S)\right|+\left|\left\{x \in \mathcal{B}_{N}: \xi(x) \geq v_{N}\right\}\right| .
$$

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
\left|\left\{x \in \mathcal{B}_{N}: \xi(x) \geq v_{N}\right\}\right| \leq(\log N)^{2}
$$

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
\left|\left\{x \in \mathcal{B}_{N}: \xi(x) \geq v_{N}\right\}\right| \leq(\log N)^{2} .
$$

Thus, for N large

$$
H_{N}^{\xi}(S) \leq\left(N+1-\left|x_{N}(S)\right|\right) \xi\left(x_{N}(S)\right)+(\log N)^{2} \xi\left(x_{N}(S)\right)+o\left(u_{N}\right)
$$

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
\left|\left\{x \in \mathcal{B}_{N}: \xi(x) \geq v_{N}\right\}\right| \leq(\log N)^{2} .
$$

Thus, for N large
$H_{N}^{\xi}(S) \leq\left(N+1-\left|x_{N}(S)\right|\right) \xi\left(x_{N}(S)\right)+(\log N)^{2} \xi\left(x_{N}(S)\right)+o\left(u_{N}\right)$.

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
\max \left\{\xi(x): x \in \mathcal{B}_{N}\right\} \leq N^{d / \alpha} \log N
$$

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
\left|\left\{x \in \mathcal{B}_{N}: \xi(x) \geq v_{N}\right\}\right| \leq(\log N)^{2} .
$$

Thus, for N large
$H_{N}^{\xi}(S) \leq\left(N+1-\left|x_{N}(S)\right|\right) \xi\left(x_{N}(S)\right)+(\log N)^{2} \xi\left(x_{N}(S)\right)+o\left(u_{N}\right)$.

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
\max \left\{\xi(x): x \in \mathcal{B}_{N}\right\} \leq N^{d / \alpha} \log N
$$

Therefore

$$
H_{N}^{\xi}(S) \leq(N+1) \psi_{N}\left(x_{N}(S)\right)+o\left(u_{N}\right)
$$

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
\left|\left\{x \in \mathcal{B}_{N}: \xi(x) \geq v_{N}\right\}\right| \leq(\log N)^{2} .
$$

Thus, for N large
$H_{N}^{\xi}(S) \leq\left(N+1-\left|x_{N}(S)\right|\right) \xi\left(x_{N}(S)\right)+(\log N)^{2} \xi\left(x_{N}(S)\right)+o\left(u_{N}\right)$.

Remark: \mathbb{P}-a.s. in ξ and for N large enough,

$$
\max \left\{\xi(x): x \in \mathcal{B}_{N}\right\} \leq N^{d / \alpha} \log N
$$

Therefore

$$
H_{N}^{\xi}(S) \leq(N+1) \psi_{N}\left(x_{N}(S)\right)+o\left(u_{N}\right)
$$

and $x_{N}(S) \notin\left\{z_{N}^{(1)}, z_{N}^{(2)}\right\}$, then

$$
H_{N}^{\xi}(S) \leq(N+1) \psi_{N}\left(z_{N}^{(3)}\right)+o\left(u_{N}\right)
$$

Remark: \mathbb{P}-a.s. in ξ,

$$
\psi_{N}\left(z_{N}^{(3)}\right)=o\left(\psi_{N}\left(z_{N}^{(1)}\right)\right)
$$

Remark: \mathbb{P}-a.s. in ξ,

$$
\psi_{N}\left(z_{N}^{(3)}\right)=o\left(\psi_{N}\left(z_{N}^{(1)}\right)\right) .
$$

Therefore, for every $S: x_{N}(S) \notin\left\{z_{N}^{(1)}, z_{N}^{(2)}\right\}$

$$
H_{N}^{\xi}(S)=o\left(H_{N}^{\xi}\left(S^{*}\right)\right)
$$

4 Path properties

For all S, let $\tau_{N, \xi}:=\inf \left\{n \geq 0: S_{n}=w_{N, \xi}\right\}$. Set

$$
\begin{aligned}
& \mathcal{C}_{N, \xi}:=\left\{S: S \text { is injec. on }\left[0, \tau_{N, \xi}\right],\right. \\
& \tau_{N, \xi} \leq\left|w_{N, \xi}\right|+o(N), \\
& \xi(S)<\xi\left(w_{N, \xi)}\right) \text { on }\left[0, \tau_{N, \xi}\right] \\
& \left.\quad S=w_{N, \xi} \text { on }\left[\tau_{N, \xi}, N\right]\right\},
\end{aligned}
$$

We then have the following result.

Theorem

It comes that \mathbb{P}-a.s. in ξ,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{N, \xi}\left(\mathcal{C}_{N, \xi}\right)=1
$$

