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1.1) Configurations.

Let d ∈ N \ {0} and for x ∈ Zd set |x| = |x1|+ · · ·+ |xd|.

Let S = {Sk}k≥0 be a (lazy) nearest-neighbor RW on Zd, i.e.,

S0 = 0,
(Sk+1 − Sk)k≥0 is i.i.d.,
{x ∈ Zd : P (S1 = x) > 0} = {0} ∪ {y ∈ Zd : |y| = 1}
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1.2) The medium.

Pick α > d and let (ξ(x))x∈Zd be an i.i.d. field of
Pareto-distributed random variables, i.e.,

P(ξ(0) ≥ t) =
1

tα
∀t ≥ 1.

2.3) Hamiltonian.

Given ξ ∈ RZd , each RW trajectory S is associated with the
Hamiltonian

H
ξ
N (S) = −

N�

i=1

ξ(Si) = −
�

x∈Zd

lN (S, x) ξ(x).
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1.4) Perturbed measure.

Given ξ ∈ RZd , we let P
ξ
N be the perturbed law in size N , i.e.,

dP
ξ
N

dP
(S) =

exp
�
−H

ξ
N (S)

�

Z
ξ
N

,

and denote by p
ξ
N the law of SN , i.e.,

p
ξ
N (x) = P

ξ
N (SN = x) ∀x ∈ Zd

.
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2 Goals and former results
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2.1) Challenges.

Pick N ∈ N, ξ ∈ RZd and notice that

BN = {x ∈ Zd : pξN (x) > 0} = {x ∈ Zd : |x| ≤ N}.
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Determine the smallest Aξ
N ⊂ BN such that P-a.s. in ξ,

lim
N→∞

�

x∈Aξ
N

p
ξ
N (x) = 1,

Find a narrowed Wξ
N ⊂ {S : SN ∈ Aξ

N} which still satisfies
that P-a.s. in ξ,

lim
N→∞

P
ξ
N (S ∈ Wξ

N ) = 1.
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2.2) Two sites localization in continuous time.

With a continuous time random walk on Zd

Theorem (Konig, Lacoin, Morters and Sidorova (2008))

Let α > d. For all t > 0 and ξ ∈ RZd there exist z(1)t,ξ , z
(2)
t,ξ ∈ Zd

such that

lim
t→∞

p
ξ
t (z

(1)
t,ξ ) + p

ξ
t (z

(2)
t,ξ ) = 1 P-a.s. in ξ.

Super-balistic localization :

|z(1)t,ξ |, |z
(2)
t,ξ | ∼ (t/ log t)1+q

,

with q = d/(α− d) > 0.
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3 Single site localization of the endpoint



The model Goals and former results Single site Localization Path properties

3.1) Modified field.

Pick x ∈BN and S : SN = x. The contribution of ξ(x) to H
ξ
N (S) is

lN (S, x) ξ(x) ≤ (N + 1− |x|) ξ(x) := (N + 1)ψN (x)

with
ψN (x) :=

�
1− |x|

N+1

�
ξ(x) .

traj.pdf
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3.2) Order statistics of the modified field.

Set

z
(1)
N = argmax{ψN (x) : x ∈ BN |},

z
(k)
N = argmax

�
ψN (x) : x ∈ BN \ {z(1)N , . . . , z

(k−1)
N }

�
,

such that

ψN (z(1)N ) > ψN (z(2)N ) > · · · > ψN (z(|BN |)
N ),

is the order statistics of the field {ψN (x)}x∈BN .
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3.3) Localization.

For all α > d, ξ ∈ RZd and N ≥ 1 set

wN,ξ := : argmax
�
p
ξ
N (x) : x ∈ BN

�
.

Theorem (One-site localization)

It comes that P-a.s. in ξ

lim
N→∞

p
ξ
N (wN,ξ) = 1,

and
lim

N→∞
P
�
wN,ξ = z

(1)
N,ξ

�
= 1 .

Moreover,

P
�
wN,ξ = z

(2)
N,ξ for infinitely many N

�
= 1 .
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3.4) Behavior of (z(1)N , z
(2)
N ).

1.pdf
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ξ(Y ) > ξ(X) but
�
1− |Y |

N1+1

�
ξ(Y ) <

�
1− |X|

N1+1

�
ξ(X)

such that ψN1(Y ) < ψN1(X)

(z(1)N1
, z

(2)
N1

) = (X,Y )
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N2 = inf{n ≥ N1 : ψn(X) < ψn(Y )}

(z(1)N1
, z

(2)
N1

) = (X,Y ) and (z(1)N2−1, z
(2)
N2−1) = (X,Y )
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(z(1)N2−1, z
(2)
N2−1) = (X,Y ) and (z(1)N2

, z
(2)
N2

) = (Y,X)

ξ(Z) > ξ(Y ) > ξ(X) but ψN2(Z) < ψN2(X) < ψN2(Y )
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(z(1)N2
, z

(2)
N2

) = (Y,X) and (z(1)N3
, z

(2)
N3

) = (Y, Z)

ψN3(X) < ψN3(Z) < ψN3(Y )
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3.5) Heuristic.

Set for all S

xN (S) = argmax{ξ(x) : lN (S, x) > 0}.

We can prove that P-a.s. in ξ

lim
N→∞

P
ξ
N (xN (S) /∈ {z(1)N , z

(2)
N }) = 0.

Let S
∗ be such that

lN (S∗
, z

(1)
N ) = N + 1− |z(1)N |,

and pick S such that xN (S) /∈ {z(1)N , z
(2)
N }.
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Remark : P-a.s. in ξ and for N large enough,

H
ξ
N (S∗) ≥ (N + 1) ψN (z(1)N ) ≥ uN = N1+d/α

(log logN)1/α
.
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Set vN = Nd/α

(logN)1/α
= o(uN

N ) and then

H
ξ
N (S) ≤

�

x : ξ(x)≥vN

lN (x) ξ(x) +
�

x : ξ(x)≤vN

lN (x) ξ(x)

H
ξ
N (S) ≤

�

x : ξ(x)≥vN

lN (x) ξ(x) +NvN .

By definition of xN (S) it comes that

H
ξ
N (S) ≤ lN ({x : ξ(x) ≥ vN}) ξ(xN (S)) + o(uN ).

Since S visits at least |xN (S)| distinct sites it comes

lN ({x : ξ(x) ≥ vN}) ≤ N − |xN (S)|+ |{x ∈ BN : ξ(x) ≥ vN}|.
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Remark : P-a.s. in ξ and for N large enough,

|{x ∈ BN : ξ(x) ≥ vN}| ≤ (logN)2.

Thus, for N large

H
ξ
N (S) ≤ (N + 1− |xN (S)|)ξ(xN (S)) + (logN)2ξ(xN (S)) + o(uN ).

Remark : P-a.s. in ξ and for N large enough,

max{ξ(x) : x ∈ BN} ≤ N
d/α logN.

Therefore

H
ξ
N (S) ≤ (N + 1)ψN (xN (S)) + o(uN ),

and xN (S) /∈ {z(1)N , z
(2)
N }, then

H
ξ
N (S) ≤ (N + 1)ψN (z(3)N ) + o(uN ).
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Remark : P-a.s. in ξ,

ψN (z(3)N ) = o(ψN (z(1)N )).

Therefore, for every S : xN (S) /∈ {z(1)N , z
(2)
N }

H
ξ
N (S) = o

�
H

ξ
N (S∗)

�
.
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4 Path properties
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For all S, let τN,ξ := inf{n ≥ 0: Sn = wN,ξ}. Set

CN,ξ :=
�
S : S is injec. on [0, τN,ξ],

τN,ξ ≤ |wN,ξ|+ o(N),

ξ(S) < ξ(wN,ξ) on [0, τN,ξ],

S = wN,ξ on [τN,ξ, N ]
�
,

We then have the following result.

Theorem

It comes that P-a.s. in ξ,

lim
N→∞

PN,ξ(CN,ξ) = 1.
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