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Abstract. Trace monoids provide a powerful tool to study graphs, viewing walks as words
whose letters, the edges of the graph, obey a specific commutation rule. A particular class of traces
emerges from this framework, the hikes, whose alphabet is the set of simple cycles on the graph. We
show that hikes characterize undirected graphs uniquely, up to isomorphism, and satisfy remarkable
algebraic properties such as the existence and unicity of a prime factorization. Because of this, the
set of hikes partially ordered by divisibility hosts a plethora of relations in direct correspondence
with those found in number theory. Some applications of these results are presented, including an
immanantal extension to MacMahon’s master theorem and a derivation of the Ihara zeta function
from an abelianization procedure.
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1. Introduction. Several school of thoughts have emerged from the literature in
graph theory, concerned with studying walks (also known as paths) on graphs as algebraic
objects. Among the numerous structures proposed over the years are those based on walk
concatenation [3], later refined by nesting [13] or the cycle space [9]. A promising approach by
trace monoids consists in viewing the directed edges of a graph as letters forming an alphabet
and walks as words on this alphabet. A crucial idea in this approach, proposed by [5], is to
define a specific commutation rule on the alphabet: two edges commute if and only if they
initiate from different vertices. This construction yields a semi-commutative monoid which
allows for a great flexibility in the walk structure while preserving the ability to distinguish
between different walks composed of the same edges. A remarkable consequence of this
construction is the existence of a stable subset of traces, formed by collections of cycles: the
hikes. More specifically, hikes constitute a simplified trace monoid that carries most of the
relevant information pertaining to the graph structure and, in the case of undirected graphs,
all the information. We show that the simple cycles form the alphabet of the trace monoid
of hikes, while its independence relation is characterized by vertex-disjointness.

Of fundamental importance for the trace-monoid of the hikes is the hitherto underap-
preciated prime-property satisfied by the simple cycles. Recall that an element of a monoid
is prime if and only if, whenever it is factor of the product of two elements, then it is a
factor of at least one of the two. The importance of the prime property lies in that because
of it, the partially ordered set PG formed by the hikes ordered by divisibility is host to a
plethora of algebraic relations in direct extension to number theory. This includes identities
involving many more objects beyond the well-studied zeta and Möbius functions [5, 18], such
as the von Mangoldt and Liouville functions. In this respect hikes are natural objects to
consider, as most of their algebraic properties follow from analytical transformations of the
weighted adjacency matrix. The study of the algebraic structures associated with hikes is the
main subject of the present work. These structures provide an extended semi-commutative
framework to number theory from which both well-known and novel relations in general
combinatorics are derived as particular consequences.

The article is organized as follows. In Section 2, we present the theoretical setting
required for the construction of hikes as elements of a specific trace monoid. We discuss
some immediate consequences, such as the unicity of the prime decomposition, the hike
analogous of the fundamental theorem of arithmetic. Section 3 is devoted to the study of
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1



2 P.-L. GISCARD AND P. ROCHET

algebraic relations between formal series on hikes. In particular, we introduce the walk von
Mangoldt function Λ in §3.1 and establish various results relating it with the zeta function
of PG and the length of hikes. Further consequences of Λ concerning totally multiplicative
functions over the hikes are presented in §3.2. In particular, we obtain a closed form formula
for the inverse of such functions and show that this result yields an immanantal extension
to MacMahon’s master theorem as a special case. This is then illustrated in §3.3 via the
walk Liouville function. We establish the relation between these results and their number-
theoretic counterparts in §3.4, by showing that there exists a class of graphs on which PG is
isomorphic to the poset of integers ordered by divisibility.

In Section 4 we elucidate the connection between PG and the Ihara zeta function ζI
of the graph G. This connection suggests that PG holds more information than ζI , some-
thing we confirm in §4.2 by showing that PG determines undirected graphs uniquely, up to
isomorphism.

Future perspectives and possible extensions of our work are discussed in the conclusion.

2. General setting.

Let G = (V,E) be a directed graph with finite vertex set V = {v1, . . . , vN} and edge
set E, which may contain loops. Let W = (wij)i,j= 1,...,N represent the weighted adjacency
matrix of the graph, built by attributing a formal variable wij to every pair (vi, vj) ∈ V 2 and
setting wij = 0 whenever there is no edge from vi to vj . In this setting, an edge is identified
with a non-zero variable wij .

A walk, or path, of length ` from vi to vj on G is a sequence p = wii1wi1i2 · · ·wi`−1j

of ` contiguous edges. The walk p is open if i 6= j and closed (a cycle) otherwise. A walk p
is self-avoiding, or simple, if it does not cross the same vertex twice, that is, if the indices
i, i1, . . . , i`−1, j are mutually different (with the possible exception i = j if p is closed).

2.1. Partially commutative structure on the edges.

We endow the edges wij with a partially commutative structure which allows the per-
mutation of two edges only if they do not start from the same vertex. In this section, we
discuss in details the motivations and implications of this structure to study walks and cycles
on a graph. Most of the results are consequences of [5].

Commutation rule: Two different edges wij and wi′j′ commute if, and only if, i 6= i′.

The finite sequences of edges form a free partially commutative monoidM, also called trace
monoid, with alphabet ΣM := {wij : wij 6= 0} and independence relation

IM = {(wij , wkl) : i 6= k}.

This particular trace monoid is considered in [5]. A trace t, i.e. an element of M, can
be viewed as equivalence class in the free monoid generated by the edges. The equivalence
relation is then defined as follows: two sequences of edges s, s′ are equivalent if s can be
obtained from s′ upon permuting edges with different starting points. Different elements of
an equivalence class t ∈M will be referred to as representations of a trace.

In this setting, a walk (a sequence of contiguous edges) may have non-contiguous rep-
resentations. For instance, the walk w12w23 from v1 to v3 can be rewritten as w23w12 since
w23 and w12 start from different vertices. In fact, an open walk always has a unique con-
tiguous representation, as any allowed permutations of edges would break the contiguity.
Surprisingly, the unicity of the contiguous representation no longer holds for closed walks.
This consequence is an important feature of the partially commutative structure on the
edges: two closed walks starting from different vertices define the same object if they can be
obtained from one another by permuting edges with different starting points.

To illustrate this statement, consider the example pictured in Figure 1. There is
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Figure 1. The closed walks c1 = w34w45w53w31w12w23 and c2 = w31w12w23w34w45w53 are
different although composed of the same edges. Both are achievable starting from v3 but only c1 is
achievable from v1.

one closed walk starting from v1 that covers every vertex exactly once, namely c1 :=
w12w23w34w45w53w31. Since the only non-commuting edges are w31 and w34, the cycle
can be rewritten as starting from v3 by c1 = w34w45w53w31w12w23. On the other hand,
there are two closed walks starting from v3 covering every edge once, one is c1 and the other
is c2 := w31w12w23w34w45w53. One cannot go from c1 to c2 without permuting w31 and w34,
thus c1 6= c2. Here, the cycles w12w23w31 and w31w12w23 are equal since the permutations
of the edges to go from one to the other are allowed. More generally, the starting vertex of a
simple cycle never influences its value. This is no longer true if the cycle is not self-avoiding,
as illustrated in Figure 1.

2.2. Multiplication and factorization of hikes.

A closed walk can be characterized as a contiguous sequence of edges comprising the
same number of ingoing and outgoing edges for each vertex. A closed hike is obtained upon
relaxing the connectedness condition:

Definition 2.1. A closed hike (or simply hike) is a trace h = wi1j1 · · ·wi`j` ∈M whose
edges wikjk satisfy for all i = 1, . . . , N ,

∑̀
k=1

1{ik = i} =
∑̀
k=1

1{jk = i}, (2.1)

where 1{.} stands for the indicator function.

Remark 2.1. Closed hikes correspond to the partially commutative extension of
the homonymous objects introduced in [10]. While open hikes could be defined similarly as
particular traces inM, we choose to focus on closed hikes due to their more natural algebraic
structure. For now on, closed hikes will be simply referred to as hikes.

We denote by H the set of hikes, which is a subset of M. By convention, the trivial
walk 1 viewed as the empty sequence is considered to be a hike. We emphasize that, since
hikes are elements of M, they obey the partially commutative structure on the edges: two
hikes h and h′ are equal if, and only if, h′ can be obtained from h by permuting edges in h
with different starting point. In particular, while every cycle is a hike, a hike is a cycle only
if it has a contiguous representation. In this case we say that h is connected. Moreover, a
hike is self-avoiding if and only if all its edges commute.

The multiplication of two hikes h, h′, simply defined as the concatenation, yields a hike
and shall be denoted by h.h′ or simply hh′ in the sequel. We define hike division as the
reverse operation: d ∈ H left divides h ∈ H, which we write d|h, if there exists h′ ∈ H such
that h = d.h′. We shall use the standard division notation

h = d.h′ ⇐⇒ h′ =
h

d
.

Here the choice of left-division, rather than right-division, is only a matter of convention.
Remark that because the multiplication of hikes is not commutative, d|h does not necessarily
implies that h/d divides h.
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Theorem 2.2. Every non-trivial hike h has a representation as a product of simple
cycles h = c1 · · · ck. This decomposition is unique up to permutations of consecutive vertex-
disjoint simple cycles.

Proof. We start by showing that a non-trivial hike has at least one simple cycle as a
divisor. For vi in V (h), let j(i) denote the end vertex of the first edge starting from i in h. By
(2.1), we know that h contains an edge starting from j(i). Thus, the path wij(i)wj(i)j(j(i)) . . .
eventually returns to a previously visited vertex, resulting in a simple cycle c. Since the
edges composing this cycle start from the first occurrences of vertices in h, c divides h.

The simple cycles dividing h are vertex-disjoint. Indeed, if two simple cycles c, c′ have a
vertex in common, one can find different edges e ∈ c, e′ ∈ c′ starting from the same vertex,
so that c and c′ cannot both divide h. Thus, the maximal self-avoiding divisor s(h), defined
as the product of the simple cycles dividing h, is unique and we have

h = s(h).h′

for some hike h′. If h′ = 1, then h = s(h) and the result holds. Otherwise, the process can
be reiterated on h′ until all edges wij in h have been made part of a simple cycle.

The representation of hikes as products of simple cycles is actually a prime factorization.
Rigorously, an element p of a monoid is prime if and only if, whenever p is a factor of a.b,
then p is a factor of a or b or both. Prime hikes are directly identified using Theorem 2.2:

Corollary 2.3. A hike h is prime if and only if it is a simple cycle.

Theorem 2.2 thus indicates that the prime factorization of hikes always exists and is
unique. We emphasize that, because of the lack of commutativity, the prime factors of h,
i.e. the elements of the prime-decomposition, are different from its prime divisors. Switching
two different consecutive cycles in the prime-decomposition h = c1 · · · ck changes the value
of h as soon as V (ci) ∩ V (ci+1) 6= ∅. This property highlights that H forms a sub-monoid
of M, whose alphabet is the set of prime hikes ΣH := {c1, . . . , ck} and with independence
relation defined by

IH =
{

(ci, cj) : V (ci) ∩ V (cj) = ∅
}
. (2.2)

Self-avoiding hikes are the independence cliques in the commutation subgraph of H (see
[1, 5] for more details). The maximal self-avoiding divisor of a hike h, defined as the product
s(h) of its prime divisors, is the first clique in the Cartier-Foata decomposition of h. This
decomposition can be built recursively as follows. If h is self-avoiding, then s(h) = h and
h is its own Cartier-Foata decomposition. Otherwise, consider a collection of self-avoiding
hikes sk, initiated by s1 = s(h), and setting

sk+1 = s
( h

s1 · · · sk

)
until all edges of h are made part of a clique sk.

The prime-decomposition of a hike h = wi1j1 · · ·wi`j` can be obtained simply by con-
sidering the simple cycles as they are formed in the edge sequence. This construction is
somewhat similar to Lawler’s loop-erasing procedure [15] which divides a closed walk into
a finite sequence of simple cycles. By considering hikes, we argue that this decomposition
remains natural when relaxing the connectedness condition, the other important point to
our claim being that two consecutive cycles in the sequence can be permuted if they are
vertex-disjoint.

In the sequel, `(h) represents the length of a closed hike h while the number of elements
in its prime-decomposition is denoted by Ω(h). If h is self-avoiding, Ω(h) is equal to its
number of connected components. By convention, the trivial hike 1 is not prime and thus
Ω(1) = 0.
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2.3. Hikes incidence algebra.

The hikes on a (di)graph G, ordered by division, form a locally finite partially ordered
set, or poset, which we denote PG. The reduced incidence algebra on this poset is the set F
of real-valued functions on H endowed with the Dirichlet convolution

f ∗ g(h) =
∑
d|h

f(h)g
(h
d

)
, h ∈ H.

Here, the sum is taken over all left-divisors d of h, including h itself and the trivial hike 1.
One verifies easily that the Dirichlet convolution is associative and distributive over addition.
However, it is not commutative since d can divide h without it being the case for h/d. The
reduced incidence algebra is isomorphic to the algebra of formal series∑

h∈H

f(h)h , f ∈ F

endowed with hike multiplication. Indeed, for f, g : H → R, we have(∑
h∈H

f(h)h

)
.

(∑
h∈H

g(h)h

)
=
∑
h∈H

f ∗ g(h)h.

Important functions of the reduced incidence algebra include the identity δ(.) equal to one
for h = 1 and zero otherwise, the zeta function ζ(h) = 1 , ∀h ∈ H or the Möbius function,
the inverse of ζ through the Dirichlet convolution. We refer to [18] for a more comprehensive
study of the zeta and Möbius functions of arbitrary posets. It is one of the main results of the
present work that many more number-theoretic functions beyond ζ and µ have generalized
analogs in the reduced incidence algebra (F , ∗) and that these analogs satisfy the same
relations as their number-theoretic counterparts, see §3.

The next theorem gives the expression of the Möbius function on H. This result is
discussed in Remark 3.6 in [5]. Nevertheless, we provide an elementary proof for sake of
completeness.

Theorem 2.4. The Möbius function on H is given by

µ(h) :=


1 if h = 1

(−1)Ω(h) if h is self-avoiding
0 otherwise.

(2.3)

Proof. The Möbius function on H is the inverse of ζ, i.e. the unique function such that
µ(1) = 1 and

∀h 6= 1, µ ∗ ζ(h) =
∑
d|h

µ(d)ζ
(h
d

)
=
∑
d|h

µ(d) = 0. (2.4)

We need to verify that µ as defined in (2.3) satisfies this relation. Let h 6= 1 and s(h) denote
the largest self-avoiding divisor of h, i.e. the product of all its prime divisors. Since the self-
avoiding divisors of h are the divisors of s(h) and µ(d) = 0 whenever d is not self-avoiding,
it follows that µ∗ ζ(h) = µ∗ ζ(s(h)). So, it suffices to show the result for h self-avoiding. We
proceed by induction. If h = c is a simple cycle, then we verify easily the relation

µ ∗ ζ(c) = µ(1) + µ(c) = 1− 1 = 0.

Now, let c1, . . . , ck, ck+1 be vertex-disjoint cycles and assume that (2.4) holds for h = c1 . . . ck.
We have ∑

d|h.ck+1

µ(d) =
∑
d|h

µ(d) +
∑
d|h

µ(d.ck+1) =
∑
d|h

µ(d)−
∑
d|h

µ(d) = 0,
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ending the proof.

Theorem 2.4 confirms the characterization of H as the trace monoid generated by the
alphabet of simple cycles ΣH = {c1, . . . , ck} with independence relation defined in Equation
(2.2) (see Chapter 2.5 in [19]), i.e. H = Σ∗H/IH where Σ∗H is the Kleene star of ΣH. The
formal series associated to the Möbius function for H then appears in the identity

det(I−W) =
∑
h∈H

µ(h)h, (2.5)

a proof of which can be found in Theorem 1 of [17] on noting that for self-avoiding hikes,
the concatenation of edges coincides with the ordinary multiplication. Theorem 2.4 thus
provides a determinant formula for the Möbius function of H and the series associated to
the zeta function is obtained via the formal inversion

det(I−W)−1 =
1∑

h∈H µ(h)h
=
∑
h∈H

ζ(h)h =
∑
h∈H

h.

Remark 2.2 (Coprimality). The Möbius function is multiplicative on vertex-disjoint
hikes,

V (h) ∩ V (h′) = ∅ =⇒ µ(hh′) = µ(h)µ(h′). (2.6)

This identity is reminiscent of the multiplicative property of the number-theoretic Möbius
function µN for which µN(nm) = µN(n)µN(m) whenever n and m are coprime integers.
The fact that (2.6) only holds for vertex-disjoint hikes suggests a more general notion of
coprimality on H: two hikes are coprime if they share no vertex in common. In particular,
coprime hikes have different prime factors, but contrary to natural integers, this condition is
in general not sufficient. The two notions of coprimality coincide on a class of graphs where
µN is recovered from µ, see §3.4.

A determinantal expression for the Möbius function of certain trace monoidsM that is
similar to Eq. (2.5) was obtained in [6]. Nevertheless, these two results have different domains
of validity and arise from different constructions. In [6], the expression of the Mobius function
as det(I − X) involves a matrix X whose entries are polynomials in the letters of the trace
monoid. Furthermore, this formula holds if and only if the independence relation admits a
transitive orientation (see [8]).

The situation is different for Eq. (2.5) since the weighted adjacency matrix W involves
the edges of G, which are subdivisions of the simple cycles of G and thus subdivisions of the
letters of H. In this setting, a transitive orientation is not necessary anymore for Eq. (2.5) to
hold, since H is not necessarily transitively orientable (see Example 2.1 below). This means
that the determinant formula Eq. (2.5) holds in situations where the result of [6] does not
apply. On the other hand, the reverse is also true: there exist transitively orientable trace
monoids which do not constitute hike trace monoids. For instance, one can show with little
work that no digraph has the cycle on six vertices C6 as hike commutation graph, yet one can
easily construct a transitively orientable trace monoid with commutation graph C6. Thus,
our result and those of [6, 8] seem to be complementary. A complete characterization of hike
trace monoids is beyond the scope of this work.

Example 2.1 (Hike trace monoid with no transitive orientation and a determinantal
Möbius function). Let G be the cycle graph on 5 vertices illustrated in Figure 2. There are
seven simple cycles on G: a = w13w31, b = w24w42, c = w25w52, d = w14w41, e = w35w53,
f = w13w35w52w24w41 and g = w14w42w25w53w31.
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Figure 2. The bidirected cycle graph on 5 vertices (left) and its hike commutation graph (right).

Therefore, the hikes on G form the trace monoid H on seven letters ΣH = {a, b, c, d, e, f, g}
with independence relation

IH = {(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (d, e), (e, d), (e, a), (a, e)}.

The commutation graph of H, presented on Figure 2 (right), is not a comparability graph
since it contains a cycle of length 5 as an induced subgraph (see also Example 11.ii of [8]).
Consequently, IH does not admit a transitive orientation, yet Eq. (2.5) indicates that∑

h∈H

µ(h)h = 1− a− b− c− d− e− f − g + ac+ ad+ bd+ be+ ce,

= det(I−W) = det


1 0 −w13 −w14 0
0 1 0 −w24 −w25

−w31 0 1 0 −w35

−w41 −w42 0 1 0
0 −w52 −w53 0 1

 ,

that is, the Möbius function of H admits a determinantal form.

3. Algebraic relations between series on hikes.

In this section we show that a plethora of number theoretic relations find natural exten-
sions on the trace monoid of hikes. These provide powerful algebraic tools in a novel graph
theoretic context and yield further insights into well established results. For example, we find
in §3.2 that MacMahon’s master theorem and the Dirichlet inverse of totally multiplicative
functions over the integers both originate from the same general result about series of hikes.
Throughout this section, G designates a (di)graph and PG is the poset of hikes on G ordered
by divisibility.

Definition 3.1. We denote Sf(s) the formal series Sf(s) :=
∑
h∈H e

−s`(h)f(h)h as-
sociated to the function f ∈ F . In particular we define ζ(s) := S1(s).

Recall that because of the lack of commutativity between hikes, Dirichlet convolution
typically acts non-commutatively on functions on hikes g ∗f 6= f ∗g and thus hike-series also
multiply non-commutatively, i.e. Sf.Sg = S(f ∗ g) 6= Sg.Sf = S(g ∗ f). For convenience,
we write SfSg for the right multiplication with the inverse Sf.(Sg)−1.

We begin with two simple relations counting the left divisors and left prime divisors of
a hike:

Proposition 3.2. Let τ(h) be the number of left divisors of h ∈ H. Then

Sτ(s) = ζ2(s).

Let 1p be the indicator function on primes and ω(h) the number of prime divisors of h. Then

Sω(s) = S1p(s) . ζ(s).
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Proof. The results follow immediately from combinatorial arguments on the reduced
incidence algebra of PG. First, we have τ(h) =

∑
d|h 1 = (1 ∗ 1

)
(h) = ζ2(h). For the second

result, observe that (S1p . ζ)(h) = (1p ∗ 1)(h) =
∑
d|h 1p(d) counts the distinct left prime

divisors of h.

While the relations satisfied by the functions τ and ω stem from straightforward com-
binatorial arguments, more advanced algebraic concepts also have natural extensions on the
monoid of hikes. We begin with the von Mangoldt function on hikes.

3.1. Walk von Mangoldt function.

Definition 3.3 (Walk von Mangoldt function). The walk von Mangoldt function
Λ : H → N is defined as the number of connected representations of a hike that is, Λ(h) is
the number of walks in the equivalence class of the trace h.

Equivalently, Λ(h) is the number of possible contiguous rearrangements of the edges in
h, obtained without permuting two edges with the same starting point. For a non-trivial hike
h, the walk von Mangoldt function Λ(h) is the coefficient of h in the trace of the resolvent
R := (I−W)−1,

Λ(h) = (TrR)(h). (3.1)

This follows immediately from the definition of Λ together with the observations that the
trace Tr(W`) generates all closed walks of length ` and R =

∑
`≥0 W

`. By convention we set
the value on the trivial hike to Λ(1) = 0.

In Section 3.4 we show that the simple Definition 3.3 is enough to recover the number
theoretic von Mangoldt function on a special class of graphs. In this section we prove that
the walk von Mangoldt function introduced above satisfies the same relations as its number-
theoretic counterpart:

Proposition 3.4. Let G be a graph with ζ the zeta function of PG. Then

ζ′(s)

ζ(s)
= −

∑
h

e−s`(h)Λ(h)h, and log ζ(s) =
∑

h: `(h)6=0

e−s`(h) Λ(h)

`(h)
h, (3.2)

where ζ′(s) = dζ(s)/ds. Furthermore, the walk von Mangoldt function is the Möbius inverse
of the walk length

Λ = ` ∗ µ. (3.3)

Proof. We begin by proving Eqs. (3.2) of Proposition 3.4. Observe that

Tr[e−skWk] =
∑

w: `(w)=k

e−sk w =
∑

h: `(h)=k

e−s`(h) Λ(h)h,

where w is a walk. Then, since R(s) := (esI−W)−1, we have es TrR(s) = N+
∑
h e
−s`(h)Λ(h)h,

where N is the number of vertices of G. Now recall the relation between the trace of the
resolvent and χ(s) := det(esI−W), the characteristic polynomial of W [4],

TrR(s) = e−s
χ′(s)

χ(s)
,

with χ′(s) := dχ(s)/ds. Noting that ζ(s) = esN/ det(esI−W) = esNχ(s)−1 thus leads to

−
∑
h∈H

e−s`(h) Λ(h)h = N − es TrR(s) =
ζ′(s)

ζ(s)
, (3.4)
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where ζ′(s) := dζ(s)/ds. This is Eq. (3.2). To obtain the logarithm of ζ, we may integrate
Eq. (3.4),

−
∫
ds
∑
h∈H

e−s`(h) Λ(h)h = log ζ(s),

which gives log ζ(s) =
∑
h: `(h)6=0 e

−s`(h) Λ(h)
`(h)

h.

Eq. (3.4) also relates the walk von Mangoldt function to the length of individual walks.
Indeed

−
∑
h∈H

e−s`(h) Λ(h)h =
ζ′(s)

ζ(s)
⇒ −e−s`(h)Λ(h) =

(
ζ′(s)ζ−1(s)

)
[h],

⇒ Λ(h) =
∑
d|h

`(d)µ
(h
d

)
,

that is Λ = ` ∗ µ.

Example 3.1. To illustrate the relation Λ = ` ∗ µ, consider the following graph on 4
vertices:

Let p1 be the backtrack and p2 the triangle and let us calculate Λ(p1p2) and Λ(p2p1) from
` ∗ µ. Since the left divisors of p1p2 are 1, p1 and p1p2, we have

Λ(p1p2) = `(1)µ(p1p2) + `(p1)µ(p2) + `(p1p2)µ(1),

= 0× 0 + 2× (−1) + 5× 1 = 3.

We proceed similarly for Λ(p2p1):

Λ(p2p1) = `(1)µ(p2p1) + `(p2)µ(p1) + `(p2p1)µ(1),

= 0× 0 + 3× (−1) + 5× 1 = 2.

Let us now compare these results with a direct calculation of Λ, by way of counting all the
walks in the equivalence classes p1p2 and p2p1. We find

w21w12w23w34w42 ' p1p2, w12w23w34w42w21 ' p2p1,

w42w21w12w23w34 ' p1p2, w23w34w42w21w12 ' p2p1.

w34w42w21w12w23 ' p1p2,

This confirms that Λ(p1p2) = 3 and Λ(p2p1) = 2, as expected.

Within the framework presented here, the relation of Eq. (3.2) between the zeta function
and the walk von Mangoldt function gives rise to a generalized Riemann-von Mangoldt
explicit formula. This formula reduces to counting the walks on G from the spectrum of
its ordinary adjacency matrix A. Remarkably, we show in Section 3.4 that the number-
theoretic Riemann-von Mangoldt explicit formula can be interpreted in this way as well.
This suggests that counting walks provides non-trivial information on the primes. In the
spirit of the number-theoretic approach, one should be able to extract this information from
a form of log ζ that only involves the primes. In the case of the integers, total commutativity
implies that this form stems from the (relatively simple) Euler product. The situation is
much more complicated on arbitrary graphs, where the logarithm of the zeta function can
be shown to be a branched continued fraction over the primes.1

1This result will be presented in a future work and stems from [13].
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3.2. Totally multiplicative functions on hikes.

A consequence of the Möbius inversion between Λ and `, Λ = ` ∗ µ, concerns totally
multiplicative function on hikes f ∈ F . We say that f is totally multiplicative if and only if
f(hh′) = f(h)f(h′) for all h, h′ ∈ H.

Corollary 3.5. Let f be a totally multiplicative function on hikes. Define F (s) :=
Sf(s) =

∑
h∈H e

−s`(h)f(h)h and F ′(s) := dF (s)/ds. Then

F ′(s)

F (s)
= −

∑
h∈H

e−s`(h)Λ(h)f(h)h.

This corollary stems from a fundamental property of totally multiplicative functions over the
hikes:

Lemma 3.6. Let f be a totally multiplicative function and let F (s) := Sf(s). Then

F (s) =
1∑

h∈H e
−s`(h)µ(h)f(h)h

. (3.5)

Proof. This follows from a direct calculation:

F (s)
∑
h

e−s`(h)µ(h)f(h)h =
∑
h′

e−s`(h
′)f(h′)h′

∑
h′′

e−s`(h
′′)µ(h′′)f(h′′)h′′,

=
∑
h

e−s`(h)f(h)h
∑
d|h

µ(d),

= 1,

where
∑
d|h µ(d) = δ(h) and f(1) = 1 since f is totally multiplicative. Lemma 3.6 is

reminiscent of the inverse of totally multiplicative functions in number theory, f−1(n) =
µN(n)f(n), n ≥ 0, with µN the number-theoretic Möbius function. The relation between
these two results is explained in Section 3.4.

Now let F ′(s) := dF (s)/ds. Then using Eq. (3.5) for F (s) we obtain F ′(s).F−1(s) as

F ′(s)

F (s)
= −

∑
h′∈H

e−s`(h
′)`(h′)f(h′)h′

∑
h′′∈H

e−s`(h
′′)µ(h′′)f(h′′)h′′,

= −
∑
h∈H

∑
d|h

e−s`(h)`(d)µ
(h
d

)
f(h)h = −

∑
h∈H

e−s`(h)Λ(h)f(h)h,

where the last equality follows from Proposition 3.4, that is Λ = ` ∗ µ.

Lemma 3.6 giving the formal series of totally multiplicative functions on hikes constitute
an important extension to MacMahon’s master theorem. To see this, consider first a weighted
version of the graph G where all edges pointing to a vertex i are given a formal weight ti. The
adjacency matrix of this weighted graph is TA, with T the diagonal matrix where Tii = ti.
Now observe that a totally multiplicative function on hikes is completely determined by its
value on the primes (since f(hh′) = f(h)f(h′) regardless of the commutativity of h and h′).
We may therefore consider the totally multiplicative function which associates any prime p
with its weight,

f(p) = weight(p) = ti2 · · · ti`(p)ti1 . (3.6)

where {i1, · · · , i`(p)} is the set of vertices visited by p. Then Lemma 3.6 yields

Sf(1) :=
∑
h∈H

f(h)h =
1∑

h µ(h)f(h)h
=

1

det(I− TA)
, (3.7)
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where the last equality follows on noting that f is equivalent to a map sending all primes
to 1 on the graph with adjacency matrix TA. This is the non-commutative generalization of
MacMahon’s theorem discovered by Cartier and Foata [5]. MacMahon’s original result [16]
is then recovered upon letting all ti variables commute.

In general, totally multiplicative functions on hikes do not have to take on the extremely
restricted form of Eq. (3.6). In these cases Lemma 3.6 goes beyond even the non-commutative
generalization of MacMahon’s theorem. We present an explicit example illustrating this
observation in the next section, where Lemma 3.6 yields a permanent in relation with a
simple totally multiplicative function. More generally, Lemma 3.6 is capable of producing
any matrix immanant:

Definition 3.7. Let M = mij be a N × N matrix and χλ an irreducible character of
the symmetric group SN . Then the immanant of M associated with χλ is

ImmλM :=
∑
σ∈Sn

χλ(σ)m1σ(1)m2σ(2) · · ·mnσ(n).

Now let G be a (di)graph on N vertices, W its weighted adjacency matrix and fix χλ an
irreducible character of the symmetric group SN .

Corollary 3.8. Let f ∈ F be the totally multiplicative function on hikes which for any
prime p takes on the value f(p) := −χλ(p). Then

Sf(s) =
1

1− χλ(1) + e−sN Immλ(esI−W)
.

Proof. Since f is totally multiplicative for any non-trivial self-avoiding hike h, f(h) =
(−1)Ω(h)χλ(h). Now µ(h) = (−1)Ω(h) for a self-avoiding hike h, and thus for all non-trivial
self-avoiding hikes f(h)µ(h) = χλ(h). The case of the trivial hike is peculiar because f
being totally multiplicative we necessary have f(1) = 1, while in general χλ(1) 6= 1. Thus,
Lemma 3.6, indicates that

Sf(s)−1 = 1 +
∑
h6=1

h self avoiding

e−s`(h)χλ(h)h,

= 1− χλ(1) +
∑

h self avoiding

e−s`(h)χλ(h)h,

= 1− χλ(1) + e−sN Immλ(esI−W).

This gives the corollary.

Corollary 3.8 is an immanantal extension to MacMahon’s master theorem and holds
for all weighted adjacency matrices W, including W = TA. It should be noted however
that Lemma 3.6 does not reduce to this immanantal extension since totally multiplicative
functions may not be of the form f(p) = −χλ(p) for p prime and thus may not give rise to
an immanant.

3.3. Walk Liouville function.

The Liouville function of number theory is defined as λ(n) = (−1)Ω(n), where Ω(n) is
the number of prime factors of the positive integer n. We define the walk Liouville function
similarly:

Definition 3.9 (Walk Liouville function). The walk Liouville function λ(h) : H →
{−1, 1} is defined by λ(h) := (−1)Ω(h), where Ω(h) is the number of prime factors of hike h.
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The series Sλ(s) :=
∑
h∈H e

−s`(h)λ(h)h associated to the walk Liouville function has a
remarkably simple expression showing that calculating it is #P-complete on arbitrary graphs:

Proposition 3.10. Let G be a graph on n vertices with weighted adjacency matrix W.
Then the formal series Sλ satisfies

Sλ(s) = esN
1

perm(esI + W)
,

where perm designates the permanent.

Proof. Observe that since Ω(h) is totally additive, the walk Liouville function is totally
multiplicative. In addition, f(p) = −1 for all primes p, and f is therefore the totally
multiplicative function associated with the trivial character χ1 in Corollary 3.8. This gives
the proposition.

Since Sµ(s) =
∑
h∈H e

−s`(h)µ(h)h = e−sN det(esI−W) we can express the formal series

for the absolute value of µ as S|µ|(s) = e−sN
∑
h∈H e

−s`(h)|µ(h)|h, which is immediately

seen to be the permanent e−sNperm(esI+W). Hence, by Proposition 3.10 the walk Liouville
function is the inverse of S|µ|(s). We show in Section 3.4 that this implies the number
theoretic result concerning the Liouville function as the Dirichlet inverse of the absolute
value of the Möbius function.

3.4. Relation to number theory.

The unique factorization of hikes into products of hikes satisfying the prime property
is evidently reminiscent of the fundamental theorem of arithmetic. The difference between
these two results stems from the non-commutativity of the product operation between hikes.
Unsurprisingly then, on a graph where all prime cycles commute, the prime factorization of
hikes identifies with that of the integers and the poset PG becomes isomorphic to the poset
of integers ordered by divisibility PN.

Definition 3.11. Let GN be the class of all directed graphs with no isolated vertices and
comprising infinitely many simple cycles, all of which are vertex disjoint.

Since all simple cycles of any G ∈ GN are vertex-disjoint, the trace monoid H formed by
the hikes is free and Abelian.

Theorem 3.12. Let G ∈ GN. Then PG is isomorphic to PN. Furthermore, the reduced
incidence algebra of PG, (F , ∗), is isomorphic to the algebra of Dirichlet series equipped with
ordinary multiplication. The zeta and Möbius functions are sent by this isomorphism to

ζ −→ ζR(s) =
∑
n

1

ns
,

µ −→ ζR(s)−1 =
∑
n

µN(n)

ns
,

with ζR(s) the Riemann zeta function and µN(n) the number-theoretic Möbius function.

Proof. Let ϕ : H −→ N be a map such that h ∈ H is a prime hike if and only if ϕ(h)
is a prime integer. Since H is free Abelian, concatenation acts commutatively and ϕ is an
isomorphism between (H, .) and (N,×). Consequently, G ∈ GN ⇒ PG ' PN and the reduced
incidence algebras of PG and PN are isomorphic as well. Finally, the reduced incidence
algebra of PN is known to be isomorphic to the algebra of Dirichlet series [18].

In this context, all results obtained in Section 3 yield valid number theoretic results
on any G ∈ GN. For example, Proposition 3.2 entails the following well-known equalities
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between Dirichlet series at the formal level2

Dτ = ζ2
R(s), and Dω = ζp(s) ζR(s),

where Df :=
∑
n f(n)/ns designates the Dirichlet series associated with any function f over

the integers, τ(n) is the number of divisors of n and ζp(s) =
∑
p prime p

−s is the prime zeta
function. Remark that on G ∈ GN all primes are vertex-disjoint and thus commute. It
follows that all distinct prime factors of a hike are divisors of this hike and ω(h) is equal to
the number of distinct prime factors of h.

The walk von Mangoldt function also yields its number theoretic counterpart. Indeed
on G ∈ GN all closed walks are of the form pk with p a prime cycle and k an integer. Then
Eq. (3.1) yields Λ(pk) = `(p), i.e.

Λ(h) =

{
`(p), if h = pk, p prime

0, otherwise.

This is the number-theoretic von Mangoldt function provided we identify the length of a
hike with the logarithm of an integer, i.e. provided that for every prime hike on G ∈ GN,
the isomorphism from PG to PN sends `(p) to logϕ(p). Assuming this, the Riemann-von
Mangoldt explicit formula can be interpreted as counting the closed walks on any G ∈ GN.
Indeed such walks are of the form pk with p prime and therefore Proposition 3.4 gives
log ζ(s) =

∑
p

∑
k e
−sk log p 1

k
pk =

∑
w e
−s`(w)w, hence log ζR(s) = ϕ(

∑
w e
−s`(w)w).

4. Relation to the Ihara zeta and the characterisation of graphs.

The Ihara zeta function plays an important role in algebraic graph theory and network
analysis as it was shown to relate to some properties of the graph [20]. In this section, we
elucidate the relation between the zeta function of the poset of hikes ordered by divisibility
and the Ihara zeta function. We then show that the poset PG and its zeta function ζ(s)
determine undirected graphs uniquely, up to isomorphism.

4.1. Ihara zeta function.

The basic objects underlying the Ihara zeta function are certain equivalence classes
defined over the closed walks of a graph, called primitive orbits [20]. We begin by recalling
basic definitions pertaining to the primitive orbits.

Two closed walks are said to be equivalent if one can be obtained from the other upon
changing its starting point and deleting its immediate backtracks, e.g. w12w23w34w43w31 '
w23w31w12. The resulting equivalence classes on the set of all walks are called backtrackless
orbits.3 An orbit is primitive if and only if it is not a perfect power of another orbit, i.e.
po 6' p′ko , k > 1. The Ihara zeta function is then defined in analogy with the Euler product
form of the Riemann zeta function as

ζI(u) :=
∏

p̃o∈C̃G

1

1− u`(p̃o)
,

where C̃G is the set of backtrackless primitive orbits on G. In the following it will be
convenient to consider orbits for which immediate backtracks have been retained. In this
case, two walks represent the same orbit if and only if one can be obtained from the other
upon changing its starting point. In this situation w12w23w34w43w31 and w12w23w31 define
different (primitive) orbits. We denote by CG the set of primitive orbits including those with
immediate backtracks.

2That is, irrespectively of questions of convergence.
3Backtrackless orbits are necessarily connected and may still have one or more backtracks as

prime factors.
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Primitive orbits do not obey the prime property, that is a primitive orbit may be a factor
of the product of two walks w.w′ without being a factor of w or w′ and the factorization of
walks into products of primitive orbits is not unique. We further note that counting primitive
orbits is indeed much easier than counting prime cycles:4

Proposition 4.1. Let G be a graph and let πCG(`) be the number of primitive orbits of
length ` on G with immediate backtracks retained. Then

πCG(`) =
1

`

∑
n|`

µN(`/n) TrAn, (4.1)

where µN is the number theoretic Möbius function and A is the adjacency matrix of G.

Remark 4.1. A similar result already exists for backtrackless primitive orbits, in this
case A is replaced by the edge-adjacency matrix, see [20].

Before we prove Proposition 4.1, it is instructive to relate the zeta function ζ(s) of PG
to the Ihara zeta function. We start with Eq (3.2),

log ζ(s) =
∑

h: `(h)6=0

e−s`(h) Λ(h)

`(h)
h.

Observe that Λ(h) is non-zero only if h is connected. Furthermore, a connected hike either
defines a primitive orbit or is a power of one, h = pko , k ≥ 1, where we write po for a primitive
orbit in order to avoid confusion with primes. Then we can recast Eq (3.2) as

log ζ(s) =
∑

po∈CG

∑
k>0

e−s`(p
k
o) Λ(pko)

`(pko)
pko , (4.2)

with CG the set of primitive orbits on G (including those with immediate backtracks). There
are `(po) walks in the equivalence class pko since two walks are equivalent if and only if one
can be obtained from the other upon changing its starting point. Then Λ(pko) = `(po) and
Eq. (4.2) gives

log ζ(s) =
∑

po∈CG

∑
k>0

1

k
e−sk`(po)pko , (4.3)

Exponentiating the series above necessitates some precautions: being hikes, primitive orbits
do not commute pop

′
o 6= p′opo as soon as po and p′o share at least one vertex. We will present

the result of this exponentiation in a future work as it is sufficient for the purpose of relating
ζ with ζI to bypass this difficulty by eliminating all formal variables. This is equivalent to
substituting W with A in Eq. (4.3). This procedure immediately yields

ζA(s) :=
esN

det(esI− A)
=

∏
po∈CG

1

1− e−s`(po)
,

this being an Abelianization of ζ(s). Defining u := e−s now gives

ζA(u) =
1

det(I− uA)
=

∏
po∈CG

1

1− u`(po)
. (4.4)

We separate the product above into a product over primitive orbits with no immediate
backtracks, yielding the Ihara zeta function, and the product ζb(u) :=

∏
pb∈CG

(1−u`(pb))−1,
involving primitive orbits pb with at least one immediate backtrack. This yields

ζA(u) = ζI(u)ζb(u),

4In contrast, just determining the existence of a prime cycle of length n on a graph on n vertices
is known to be NP-complete, being the Hamiltonian cycle problem.
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Figure 3. Two non-isomorphic directed graphs with isomorphic posets of hikes ordered by
divisibility and thus identical zeta functions. Note that this implies that these graphs are cospectral.

which indicates that the Ihara zeta function originates from the unlabeled, Abelianized ver-
sion ζA of the zeta function ζ(s). Thus, we may expect ζ(s) or PG to hold more information
on the graph G than the Ihara zeta function does. In the next section we prove that this is
indeed the case and that PG and ζ(s) determine undirected graphs uniquely.

Proof. [Proof of Proposition 4.1] Starting from Eq. (4.4) we have det(I−uA) =
∏∞
j=1(1−

uj)πCG
(j). Taking the logarithm on both sides yields

∞∑
i=1

1

i
ui TrAi =

∞∑
j=1

πCG(j)

∞∑
k=1

ukj

k
,

and the result follows upon equating the coefficients of z` on both sides. Remark that the
product expansion of ζA over the primitive orbits also yields a Lambert series for the ordinary
resolvent R(u) = (uI− A)−1 of G,

u−1 TrR(u−1) = N +
∑
`≥0

` πCG(`)
u`

1− u` , (4.5)

where πCG(`) is the number of primitive orbits of length ` on G. This follows from Eq. (3.2)
together with Eq. (4.4) for ζA(u).

4.2. The poset PG determines undirected graphs.

Theorem 4.2. Let G be an undirected graph, W its weighted adjacency matrix and ζ(s)
the zeta function of PG. Then both PG and ζ(s) determine G uniquely, up to isomorphism.

The requirement that G be undirected is essential: we show a counterexample to the
theorem involving directed graphs on Figure (3). This leads to the curious observation that
there exist pairs of non-isomorphic directed graphs with exactly the same sets of closed hikes
and in particular the same sets of closed walks. Such pairs are cospectral and, by Lemma 3.6,
all their immanantal polynomials are identical. It is a basic, rarely questioned, tenet of
network analysis that walks accurately reflect the properties of the network on which they
take place. Following this tenet most techniques used to distinguish networks are walk-based,
see e.g. [7, 11, 12] and references therein. Yet, the failure of Theorem 4.2 on directed graphs
shows that this tenet is incorrect, at least for closed walks, even if the graphs considered are
strongly connected. Consequences of this observation in network analysis as well as methods
to generate pairs of non-isomorphic digraphs with identical walk sets will be discussed in a
future work.

Proof. [Proof of Theorem 4.2] We prove the theorem by showing that when G is undi-
rected, PG determines the line graph L(G) of G. To this end, we prove that there exists an
isomorphism between two posets PG and PH that preserves the length of individual hikes
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if and only if the line graphs of G and H are isomorphic. We will conclude the proof by
relating ζ(s) and PG.

Central to our proof is a graph encoding the relations of commutations between primes,
which we call the γ-dual:

Definition 4.3. Let G be a graph and ΓG be the set of prime cycles on G. The γ-dual
γG of G is the graph defined as

i) every prime p ∈ ΓG corresponds to a vertex v(p) on γG;

ii) two vertices v(p) and v(p′) of γG share an edge if and only if [p, p′] 6= 0.

The γ-dual of G is the complement of the commutation graph of H defined in [1, 5]. Posets
of hikes ordered by divisibility and γ-duals are essentially the same objects.

Lemma 4.4. Let G and H be two graphs, PG and PH their posets of hikes ordered by
divisibility and γG and γH their γ-duals. Then

PG ' PH ⇐⇒ γG ' γH .

Proof. We prove the forward direction. Two posets P1 and P2 are isomorphic, denoted
P1 ' P2, if and only if there exists an order preserving bijective map Φ from P1 to P2, that
is for all x, y ∈ P1, x ≤P1 y ⇐⇒ Φ(x) ≤P2 Φ(y). Then PG ' PH implies that there exists
an order-preserving bijective map Φ : PG → PH . In particular:

i) Φ maps primes to primes: p ∈ ΓG ⇐⇒ Φ(p) ∈ ΓH . Posets of hikes ordered by
divisibility are graded, the gradation being Ω(h) the number of prime factors of
h ∈ H. Since Φ is order preserving, it must be rank preserving Ω(h) = Ω(Φ(h)) and
thus maps primes to primes. Consequently Φ is a bijection between the prime sets
ΓG and ΓH .

ii) Φ preserves the commutation relations between primes: p1, p2 ∈ ΓG, [p1, p2] 6=
0 ⇐⇒ [Φ(p1),Φ(p2)] 6= 0. Suppose the opposite, i.e. there exists at least one pair
of non-commuting primes p1, p2 ∈ ΓG with Φ(p1p2) = Φ(p2p1). Since Φ is order
preserving p1 ≤ p1p2 implies Φ(p1) ≤PH Φ(p1p2) and similarly Φ(p2) ≤PH Φ(p2p1).
Then Φ(p1p2) = Φ(p2p1) entails that both Φ(p1) and Φ(p2) lie under Φ(p1p2) in
PH , that is Φ−1

(
Φ(pi)

)
, i = 1, 2, are under p1p2 in PG. Φ being a bijection between

ΓG and ΓH , Φ−1
(
Φ(pi)

)
= pi and both p1 and p2 are left prime factors of p1p2, a

contradiction. Similarly, supposing that there exists at least one pair of commuting
primes p1, p2 ∈ ΓG with Φ(p1p2) 6= Φ(p2p1) leads to a contradiction.

From point i) it follows that Φ is a bijection between the sets of vertices of γG and γH ; and
by point ii) this bijection preserves adjacency. Thus γG and γH are isomorphic graphs.

The backward direction works similarly, γG ' γH implies that there exists an adjacency-
preserving bijective mapping φ between the vertices of γG and γH . We verify easily that φ
induces an order preserving isomorphism between PG and PH .

We now turn to a specific class of isomorphisms between posets of hikes: those that
preserve the length of individual hikes. That is, for two graphs G and H we say that PG and
PH are length isomorphic, denoted PG '` PH , if and only if there exists an order preserving
bijective map Φ from PG to PH and such that for all hikes h ∈ H, `(h) = `(Φ(h)). Since the
length is totally additive, it is completely determined by its value on the primes. Thus, we
may reflect the additional information carried by length-preserving isomorphisms on labeling
the vertices of γG with the length of the corresponding primes. That is, for p ∈ ΓG, v(p) is
given the label `(p). We denote `γG the resulting labelled γ-dual.

By Lemma 4.4 a length-preserving isomorphism between PG and PH induces an isomor-
phism between labelled γ-dual graphs, i.e.

PG '` PH ⇐⇒ `γG ' `γH .
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This isomorphism in turn induces an isomorphism between the line graphs L(G) and L(H)
since these are the induced subgraphs of `γG and `γH comprising all vertices with labels ”1”
or ”2”. It is known [14] that L(G) ' L(H)⇒ G ' H as long as G,H 6= K3, K1,3. This last
condition can be dispensed with on noting that while L(K3) and L(K1,3) are isomorphic,
the labeled γ-duals `γK3 and `γK1,3 are not. Thus, PG '` PH ⇒ `γG ' `γH ⇒ L(G) '
L(G)⇒ G ' H.

We complete the proof of the theorem by showing that PG can be recovered from ζ(s)
alone. The zeta function determines the primes, their lengths and the relations of coprimality
since

ζ(s)−1 =
∑

h: self avoiding

e−s`(h)(−1)Ω(h)h. (4.6)

This (trivial) observation becomes false if one replaces W with A in ζ(s) since we then lose
the labels and the ability to identify the primes that comes with them.

5. Conclusion. Our results demonstrate that an “algebraic theory of hikes” can be
developed in close parallel to number theory. Although hikes only form a semi-commutative
monoid, an equivalent to the fundamental theorem of arithmetic holds on it and implies a
plethora of relations between formal series, with consequences in both general combinatorics
and number theory. For example, we found that MacMahon’s master theorem and the
number-theoretic inverse of a totally multiplicative function f over the integers f(n)−1 =
f(n)µN(n) [2], both originate from the same general result concerning hikes.

We believe that our approach also offers a novel perspective on outstanding open prob-
lems of enumerative combinatorics on graphs. Most notably, proving asymptotic estimates
for the number of self-avoiding paths on infinite regular lattices corresponds to establishing
the prime number theorem for hikes. In this respect, an “algebraic theory of hikes” would
find itself in the situation of number theory in the mid 19th-century. Accordingly, partial
progress towards asymptotic prime-counting may be possible via a better understanding of
the relation between the zeta function of PG and the primes.

Some results pertaining to this relation have been left out of the present study because
of length considerations and will be presented in future works. In particular, i) there exists
an exact relation between ζ and the ordinary generating function of the primes; ii) ζ admits
an infinite product expansion giving rise to a functional equation on at least some types of
graphs; and iii) its logarithm is a branched continued fraction involving only the primes.
Furthermore, ζ-based systematic procedures for enumerating certain types of hikes are read-
ily available. Observe indeed that Eq. (3.2) indicates that the set of hikes with non-zero
coefficient in log ζ, called the support of log ζ, is the set of connected hikes (i.e. the walks).
In fact, the logarithm of ζ is one of the simplest member of an infinite family of hypergeomet-
ric functions of ζ, whose supports are sets of hikes obeying precise connectivity constraints.
For example, the support of 2 (ζ − log ζ − 1)ζ−1 is the set of hikes h = p1 · · · pn for which
there exists a prime pi such that h = p1 · · · pi−1pi+1 · · · pn is non-connected. In every case,
exploiting the spectral decomposition of ζ provides explicit Riemann-von Mangoldt formulas
counting the hikes of the support from the spectrum of A.

A more straightforward extension of our work concerns open hikes, defined similarly by
relaxing the connectedness condition of open walks. Commutative versions of open hikes
are studied in [10], where they are shown to appear naturally from manipulations of the
weighted adjacency matrix, e.g. in Lemma 2.2. In our partially commutative framework,
a characterization of open hikes would be the following: h is an open hike from vi to vj
if, and only if, hwji is a closed hike (although this definition requires that wji be given a
non-zero value even if vj is not incident to vi in the digraph). Due to this simple connection,
the algebraic structure on open hikes can be understood from the properties of closed hikes.
In particular, the prime factorization of an open hike always exists and is unique, up to
permutations of consecutive vertex-disjoint simple cycles. This factorization involves one self-
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avoiding path, the remainder of Lawler’s loop-erasing procedure. Nevertheless, the slightly
more complex algebraic structure of open hikes seems to exhibit less connections with number
theory, diverting us from our original motivations.
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