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a b s t r a c t

We want to estimate an unknown finite measure µX from a noisy observation of
generalized moments of µX , defined as the integral of a continuous function Φ with
respect to µX . Assuming that only a quadratic approximation Φm is available, we define
an approximate maximum entropy solution as a minimizer of a convex functional
subject to a sequence of convex constraints. We establish asymptotic properties of the
approximate solution under regularity assumptions on the convex functional, andwe study
an application of this result to instrumental variable estimation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We tackle the inverse problems of reconstructing an unknown finite measure µX on a set X ⊂ Rd, from observations of
generalized moments of µX ,

y =


X

Φ(x)dµX (x),

where Φ : X → Rk is a given map. This problem has been notably studied in Econometrics models involving endogenous
variables, that can be stated in the question of recovering a function g from observations

Y = g(X) + U,

where the centered noiseU is correlatedwith the explanatory variable X , i.e.E(U|X) ≠ 0. Such problems can be solved using
an auxiliary variableW that is correlated with X but uncorrelated with the noise U . Indeed, the observation of a variableW
satisfying E(U|W ) = 0 provides some information on the function g in the form of linear constraints that can be used to
estimate g . Some of the main references on this topic are Chamberlain (1987), Hansen (1982) and Owen (1991).

The problem of recovering the unknown measure µX is said to be ill-posed, in particular, because a solution to the
equation y =


Φ dµX is not unique. For inverse problems with known operator Φ , regularization techniques have been

implemented in order to turn the problem into a convex optimization program for which a solution is uniquely defined.
Precisely, a solution is obtained as theminimizer of a convex functional ν → J(ν) subject to the linear constraint


Φdν = y

when y is observed, or more generally, subject to a convex constraint of the form


Φdν ∈ KY in presence of noise, for
some convex set KY . Several types of regularizing functionals have been introduced in the literature. In this general setting,
the inversion procedure is deterministic, i.e. the noise distribution is not used in the definition of the regularized solution.

∗ Corresponding author. Tel.: +33 561 55 63 71; fax: +33 561 55 60 89.
E-mail addresses: loubes@math.univ-toulouse.fr (J.-M. Loubes), rochet@math.univ-toulouse.fr (P. Rochet).

1 Tel.: +33 561 55 85 73; fax: +33 561 55 60 89.

0167-7152/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.spl.2012.02.006



Author's personal copy

J.-M. Loubes, P. Rochet / Statistics and Probability Letters 82 (2012) 972–978 973

Bayesian approaches to inverse problems allow one to handle the noise distribution, provided it is known, yet in general, a
distribution like the normal distribution is postulated (see Evans and Stark (2002) for a survey). However in many real-
world inverse problems, the noise distribution is unknown, and only the output y is easily observable, contrary to the
input to the operator. Consequently very few paired data are available to reliably estimate the noise distribution, thereby
causing robustness deficiencies on the retrieved parameters. Nonetheless, even if the noise distribution is unavailable to
the practitioner, she often knows the noise level, i.e. the maximal magnitude of the disturbance term, say η > 0, and this
information may be reflected by taking a constraint set KY of diameter 2η.

We focus on a regularization functional with grounding in information theory, leading to maximum entropy solutions to
the inverse problem. The method, known as maximum entropy on the mean (MEM), provides a very simple and natural
manner to incorporate constraints on the support and the range of the solution, as discussed in Gamboa and Gassiat
(1997). In a deterministic framework, maximum entropy solutions have been studied in Borwein et al. (2003), Borwein and
Lewis (1991), while some other studies exist in a Bayesian setting (Gamboa, 1999; Gamboa and Gassiat, 1997), in seismic
tomography (Fermin et al., 2006), in image analysis (Gzyl and Zeev, 2002) and in survey sampling (Gamboa et al., 2011).

In many actual situations, the map Φ is unknown and only an approximation Φm is available. In this paper, we introduce
an approximatemaximumentropy on themean (AMEM) estimate µ̂m,n of themeasureµX to be reconstructed. This estimate
is expressed in the form of a discrete measure concentrated on n points of X. In our main result, we prove that the
convergence in L2-norm of the sequence {Φm}m∈N toward Φ is sufficient to ensure the weak convergence at an explicit
rate of the estimator µ̂m,n to the solution of the initial inverse problem asm → ∞ and n → ∞. Moreover, this approximate
framework can be encountered when dealing with instrumental variables in Econometrics and we will provide a new
estimation procedure in this setting.

The paper is organized as follows. Section 2 introduces some notations and the definition of the AMEM estimate. We
state our main result (Theorem 3.1) in Section 3 and an application to instrumental variables is studied in Section 4. The
Appendix is devoted to the proofs of our results.

2. The AMEM estimate

Let Φ be a continuous and bounded map defined on a subset X of Rd and taking values in Rk. We note B(X) the Borel
σ -field of X and M(X) the set of finite measures on X. Let µX ∈ M(X) be an unknown measure satisfying the constraint
y =


ΦdµX . Assume we observe a perturbed version yobs of y:

yobs =


X

Φ(x)dµX (x) + ε, (1)

where ε is an error term supposed bounded in norm from above by some positive constant η, representing the maximal
noise level. Such problems are encountered in various fields of sciences, like medical imaging, time-series analysis,
speech processing, image denoising, spectroscopy, geophysical sciences, crystallography, and tomography, see for example
Decarreau et al. (1992), Hermann and Noll (2000), and Skilling (1986). This problem has also been extensively studied in
the literature in Econometrics and more specifically in instrumental variable models that can be formalized using linear
moment constraints as in Chamberlain (1987), Hansen (1982) and Owen (1991).

As an alternative to standard regularization methods such as Tikhonov and Galerkin (see for instance Engl et al. (1996)),
we aim at reconstructing the measure µX with a maximum entropy procedure. In image analysis this measure may be
viewed as the intensity at each pixel of the image, blurred by an unknown filter. Other applications in seismic tomography
can be found in Fermin et al. (2006), while we discuss an application to Econometrics in Section 4.

Let us introduce some definitions and notations. For two probability measures ν, µ, we define the relative entropy of ν with
respect to µ by

H(ν|µ) =


log


dν
dµ


dν if ν ≪ µ, H(ν|µ) = +∞ otherwise.

Although the relative entropy defines a notion of proximity between measures, this quantity is not a distance (in particular
it is not symmetric). We denote by KY the closed ball of Rk centered at the observation yobs and of radius η. For P a measure
and g a function, we shall use the notation Pg =


gdP . The true measure µX is known to satisfy the moment condition

µXΦ ∈ KY , however, the map Φ being unknown, we consider the approximate moment condition
X

Φm(x)dµX (x) ∈ KY . (2)

Let us now explain the construction of the AMEM estimator. Let X1, . . . , Xn be a discretization of the space X, for which the
associated empirical measure Pn =

1
n

n
i=1 δXi is assumed to converge weakly to some distribution PX having full support

on X. The Xi’s may be i.i.d. realizations of a random variable X with distribution PX , or a deterministic design, in which case
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PX is known by the statistician.We search for an estimator ofµX which can bewritten as aweighted version of the empirical
measure Pn:

Ln(z) :=
1
n

n
i=1

ziδXi ,

for some vector z = (z1, . . . , zn)′ ∈ Rn. The objective is to find a suitable vector of weights z for which the associated
discrete measure Ln(z) is a good estimation of µX . The problem of estimating µX is then turned into a parametric problem
where the parameter of interest z is of dimension n.
Let Z = (Z1, . . . , Zn)′ be a vector of n i.i.d. realizations drawn from a measure νZ and consider the random measure Ln(Z).
From a Bayesian point of view, the measure ν⊗n

Z can be interpreted as a prior distribution on the parameter z. Define ν∗

as the probability measure minimizing the relative entropy H(·|ν⊗n
Z ) under the constraint that the approximate moment

condition (2) holds in mean,

Eν∗


X

ΦmdLn(Z)


=

1
n

n
i=1

Φm(Xi)Eν∗(Zi) ∈ KY .

The measure ν∗ may be seen as an a posteriori distribution from a Bayesian point of view. The estimator µ̂m,n is obtained as
the expectation of Ln(Z) under ν∗,

µ̂m,n = Eν∗ [Ln(Z)] =
1
n

n
i=1

Eν∗(Zi)δXi .

The existence of ν∗ requires the existence of a vector z0 in the convex hull of the support of ν⊗n
Z such that


ΦmdLn(z0) ∈ KY .

It is shown in Loubes and Pelletier (2008) that under the Assumptions of Theorem 3.1, this condition tends to be verified
with probability 1 as m → ∞ and n → ∞. Hence for m and n large enough, the AMEM estimate µ̂m,n is well defined with
high probability, and asymptotically with probability 1.

3. Convergence of the AMEM estimate

For all probabilitymeasure ν onR, we shall denote byΛν andΛ∗
ν the log-Laplace andCramer transforms of ν, respectively,

defined by:

Λν(s) = log


R
esxdν(x) and Λ∗

ν(s) = sup
u∈R

{su − Λν(u)}, s ∈ R.

The log-Laplace transform Λν is a twice differentiable convex function and Λ∗
ν is called its convex conjugate. Define the

functional

IνZ (µ|PX ) =


X

Λ∗

νZ


dµ
dPX


dPX if µ ≪ PX , IνZ (µ|PX ) = +∞ otherwise.

The quantity IνZ (µ|PX ) is called the f -divergence of µ with respect to PX associated to the convex function Λ∗
νZ
. The notion

of f -divergence was introduced by Csiszár as a generalization of the relative entropy. We refer to Csiszár (1967) for more
details.
We note by Cb the set of continuous bounded functions on X. For all g ∈ Cb, we denote by |·|g the semi-norm defined for
µ ∈ M(X) by |µ|g =

 gdµ
. We recall that the family of semi-norms {|·|g , g ∈ Cb} defines theweak topology: a sequence

{µn}n∈N converges weakly toward µ if, and only if, limn→∞ |µn − µ|g = 0, for all g ∈ Cb.
We make the following assumptions.

A1. The minimization problem admits at least one solution, i.e. there exists a continuous function g0 taking values in the
convex hull of the support of νZ such that


Φg0 dPX ∈ KY .

A2. The function Λ′′
νZ

is bounded.
A3. The approximating sequence Φm converges to Φ in L2(PX ). Its rate of convergence is given by

∥Φm − Φ∥L2 :=


E∥Φm(X) − Φ(X)∥2 = O(ϕ−1

m ),

for some growing sequence {ϕm}m∈N.
A4. The function G : x → supm∈N ∥Φm(x)∥ is square integrable:


G2dPX < ∞.

A5. For allm ∈ N, the components of Φm are linearly independent.

We are now in a position to state our main result.

Theorem 3.1 (Convergence of the AMEM Estimate). Suppose that A1 and A2 hold and let µ∗

X be the minimizer of the functional
µ → IνZ (µ|PX ) subject to the constraint


Φdµ ∈ KY .
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• The AMEM estimate µ̂m,n is given by

dµ̂m,n(x) = Λ′

νZ
(⟨v̂m,n, Φm(x)⟩)dPn(x),

where v̂m,n minimizes over Rk, Hm,n(v) = PnΛνZ (⟨v, Φm⟩) − infy∈KY ⟨v, y⟩.
• If A3–A5 also hold, µ̂m,n converges weakly to µ∗

X as m, n → ∞ and its rate of convergence is expressed as follows,

∀g ∈ Cb, |µ̂m,n − µ∗

X |g = O(ϕ−1
m ) + κm,n,

with supm∈N κm,n = OP(n−1/2).

The condition A2 is a rather strong requirement on the choice of the prior νZ . It is equivalent to assuming that ΛνZ is
dominated by a quadratic function. This condition is satisfied, for instance, for Gaussian priors or if νZ has compact support.
As a result, the function H : v → PXΛνZ (⟨v, Φ⟩) − infy∈KY ⟨v, y⟩ attains its minimum at a unique point v∗ belonging to the
interior of its domain R. If this assumption is not met, it is shown in Borwein and Lewis (1993) and Gamboa and Gassiat
(1997) that the minimizers of IνZ (·|PX ) over the set of finite measures satisfying the moment constraint may have a singular
part with respect to PX .

The construction of the AMEMestimate relies on a discretization of the spaceX according to the probabilityPX . Therefore
by varying the support of PX , the practitioner may easily incorporate some a priori knowledge concerning the support of the
solution. Similarly, the AMEM estimate also depends on the measure νZ , which determines the domain of Λ∗

νZ
, and so the

range of the solution.

4. Application to instrumental variable estimation

A natural field of application is given by nonparametric regression models involving instrumental variables. This kind
of problem has been extensively studied in the literature in Econometrics, we refer, for instance, to Florens (2003), Hansen
and Singleton (1982) and Newey (1990). In some cases, the instrumental variable estimation framework can be viewed as
an inverse problem with unknown operator that can be solved using the AMEM procedure.
Let X1, . . . , Xn be here a discretization of the space X such that the associated empirical distribution Pn converges weakly
toward a known distribution PX having full support on X. Let g : X → R+ be an unknown function for which we observe
a noisy evaluation at each point Xi,

Yi = g(Xi) + Ui, i = 1, . . . , n,

where the Ui’s are centered real valued random variables. Contrary to the classical regression framework, we suppose
here that the noises Ui are correlated with the Xi’s (i.e. E(Ui|Xi) ≠ 0), which causes identification issues. This kind of
model is used, for instance, to deal with simultaneous causality between supply and demand in economic markets. Assume
that we want to estimate nonparametrically the price Y of a good with respect to its production X , the noise U in the
corresponding model turns out to be correlated with X due to the mutual influence between the price and the production.
To overcome this difficulty, econometricians assume there exist instrumental variables, that affect the price only through the
produced quantity (for example, the amount of rain in the case of an agricultural product). Hence, we assume we observe
simultaneously with (Xi, Yi), an additional variable Wi ∈ Rk such that E(Wi|Xi) ≠ 0 and E(Ui|Wi) = 0. In particular, we
have the relation

y := E(WY ) = E(Wg(X)). (3)

In most cases, using the instrumental variable W is not sufficient to solve the identification issue, but it still provides some
information that may be rendered in the form of linear constraints on g . Indeed, setting Φ : x → E(W |X = x) and
dµX (x) = gdPX (x), x ∈ X, the Eq. (3) can be written as

y =


Φ(x)dµX (x).

Here, y is unknown but we observe a noisy version yobs = n−1 n
i=1 WiXi that is close to y with high probability and

asymptotically with probability one. The conditional expectation Φ is also unknown but can be estimated from the data
by nonparametric procedures, yielding a converging sequence {Φn}. As a result, it is possible to estimate the measure µX
by the AMEM procedure, considering an approximate moment condition of the form


Φndµ ∈ KY . We obtain a sequence

of estimators µ̂n, which is shown in Theorem 3.1 to converge weakly toward the minimizer µ∗

X of the convex functional
IνZ (·|PX ) subject to themoment constraint. Equivalently, themethod ensures the convergence in aweak sense of the density
ĝ = dµ̂n/dPn of theAMEMestimator toward the function g∗

:= dµ∗

X/dPX . In particular, the identification issue on g is solved
by incorporating some a priori knowledge on µX through the choice of the design X1, . . . , Xn and the limit distribution PX .
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Appendix

A.1. Technical lemmas

We use the following notations

v∗

m = argmin
v∈Rk

Hm(v) = argmin
v∈Rk


PXΛνZ (⟨Φm, v⟩) − inf

y∈KY
⟨v, y⟩


,

v̂m,n = argmin
v∈Rk

Hm,n(v) = argmin
v∈Rk


PnΛνZ (⟨Φm, v⟩) − inf

y∈KY
⟨v, y⟩


,

v∗
= argmin

v∈Rk
H(v) = argmin

v∈Rk


PXΛνZ (⟨Φ, v⟩) − inf

y∈KY
⟨v, y⟩


.

Lemma A.1. If Assumptions 1–5 hold,

sup
m∈N

∥v̂m,n − v∗

m∥ = OP(n−1/2).

Proof. For all x ∈ X, v ∈ Rk, set

hm(v, x) = ΛνZ (⟨Φm(x), v⟩) − inf
y∈KY

⟨v, y⟩.

The parameter v̂m,n is defined as the minimizer of the empirical contrast function v → Hm,n(v) = Pnhm(v, ·). To prove the
result, we need to show that hm(v, x) satisfies the conditions of Corollary 5.53 in van der Vaart (1998). First remark thatHm,n
is convex, which ensures the convergence in probability of its minimizer v̂m,n toward v∗

m. Since KY is the ball centered in yobs
and of radius η, we may write

hm(v, x) = ΛνZ (⟨Φm(x), v⟩) − ⟨v, yobs⟩ + η∥v∥.

By A2, we know there exists a K > 0 such that Λ′
νZ

(s) ≤ Ks + 1 for all s ∈ R. For all v1, v2 in a neighborhood N of v∗
m, we

have by the triangular inequality and the mean value theorem

|hm(v1, ·) − hm(v2, ·)| ≤
ΛνZ (⟨Φm, v1⟩) − ΛνZ (⟨Φm, v2⟩)

 +
⟨v1 − v2, yobs⟩ + η |∥v1∥ − ∥v2∥|


≤


K∥v2∥ ∥Φm∥ + 1 + ∥yobs∥ + η


∥v1 − v2∥

≤

Kδ G + 1 + ∥yobs∥ + η


∥v1 − v2∥,

where G is the function defined in A4 and where we set δ = supv∈N ∥v∥. Since v∗
m converges toward v∗, we may assume,

without loss of generality, that N and δ are fixed for m sufficiently large. Hence the function hm satisfies the first condition
of Corollary 5.53 in van der Vaart (1998),

|hm(v1, ·) − hm(v2, ·)| ≤ ḣ∥v1 − v2∥,

where ḣ : x → Kδ G(x) + 1 + ∥yobs∥ + η does not depend and m and is such that PX ḣ2 < ∞. For all v ∈ Rk, let Vm(v) be
the Hessian matrix of Hm at point v, which is well defined for all v ≠ 0. Assume that v∗

m ≠ 0, we need to prove that Vm(v∗
m)

is non-negative definite. The case v∗
m = 0 can be treated separately without difficulty using Theorem 5.52 in van der Vaart

(1998), by considering the derivative at 0+ of the functions t → Vm(tv), v ∈ Rk. Let ∂i be the derivative with respect to the
i-th component. For v ≠ 0, we have

[Vm(v)]ij = ∂i∂jHm(v) = PX [∂i∂jhm(v, ·)]

= PX [Φ
i
mΦ j

mΛ′′

νZ
(⟨Φm, v⟩)] + η ∂i∂jN(v)

where we set N : v → ∥v∥. Thus, Vm(v∗
m) can be split into the sum Am + ηBm, with

(Am)ij = PX [Φ i
mΦ j

mΛ′′

νZ
(⟨Φm, v∗

m⟩)], (Bm)ij = ∂i∂jN(v∗

m).

Am is a Gram matrix, therefore it is positive definite, by A5. Moreover, since the Am converge toward the positive-definite
matrix A = (PX [Φ iΦ jΛ′′

νZ
(⟨Φ, v∗

⟩)])1≤i,j≤k, we conclude there exist an integer M and a constant c > 0 such that, for all
a ∈ Rk,

inf
m≥M

aTAma ≥ c∥a∥2.

By convexity of the map N(·) on Rk
\ {0}, the matrix Bm is non-negative definite and so is Vm(v∗

m) = Am + ηBm. Hence, Hm
undergoes the assumptions of Corollary 5.53 in van der Vaart (1998), uniformly form ∈ N, which proves the result. �
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Lemma A.2. If Asssumptions 1–5 hold,

∥v∗

m − v∗
∥ = O(ϕ−1

m ).

Proof. Using successively the mean value theorem and Cauchy–Schwarz’s inequality, we find

|Hm(v) − H(v)| = |PX [ΛνZ (⟨Φm, v⟩) − ΛνZ (⟨Φ(x), v⟩)]|

≤ (K∥v∥
2
∥G∥L2 + ∥v∥)∥Φm − Φ∥L2 .

We deduce that Hm converges uniformly on every compact set toward H as m → ∞. By convexity of Hm, this warrants the
convergence of v∗

m toward v∗. Moreover,

∇Hm(v) − ∇H(v) = PX

ΦmΛ′

νZ
(⟨Φm, v⟩) − ΦΛ′

νZ
(⟨Φ, v⟩)


= PX


(Φm − Φ)Λ′

νZ
(⟨Φm, v⟩) + Φ[Λ′

νZ
(⟨Φm, v⟩) − Λ′

νZ
(⟨Φ, v⟩)]


.

In the same way as previously, we find

∥∇Hm(v) − ∇H(v)∥ ≤ ∥Φm − Φ∥L2∥v∥

K∥Φm∥L2 + 1 + ∥Φ∥L2∥Λ′′

νZ
∥∞


,

which proves that ∇Hm converges toward ∇H , uniformly on every compact set. Noticing that ∇H(v∗
m) = ∇H(v∗

m) −

∇Hm(v∗
m), it follows that |∇H(v∗

m)| = O(ϕ−1
m ). Note V (v∗) the Hessian matrix of H at v∗. We know it is positive definite

by a similar reasoning as in the proof of Lemma A.1. Writing the Taylor expansion

∇H(v∗

m) = V (v∗)(v∗
− v∗

m) + o(∥v∗
− v∗

m∥),

we conclude ∥v∗
− v∗

m∥ = O(ϕ−1
m ). �

A.2. Proof of Theorem 3.1

The first part of the theorem is proved in Theorem 3.1 in Loubes and Pelletier (2008). We here focus on the proof of the
second part. We use the following notations

µ̂m,n = Λ′

νZ
(⟨v̂m,n, Φm⟩)Pn and µ∗

m = Λ′

νZ
(⟨v∗

m, Φm⟩)PX .

For g ∈ Cb, write
µ̂m,n − µ∗

X


g ≤

µ̂m,n − µ∗
m


g +

µ∗
m − µ∗

X


g . We shall bound each term separately. We haveµ̂m,n − µ∗

m


g =

Λ′

νZ
(⟨Φm, v̂m,n⟩)Pn − Λ′

νZ
(⟨Φm, v∗

m⟩)PX

g

≤
Λ′

νZ
(⟨Φm, v̂m,n⟩)Pn − Λ′

νZ
(⟨Φm, v∗

m⟩)Pn

g
+

Λ′

νZ
(⟨Φm, v∗

m⟩)Pn − Λ′

νZ
(⟨Φm, v∗

m⟩)PX

g
.

We obtain for all x ∈ X,

|Λ′

νZ
(⟨Φm(x), v̂m,n⟩) − Λ′

νZ
(⟨Φm(x), v∗

m⟩)| ≤ ∥Λ′′

νZ
∥∞∥Φm(x)∥ ∥v̂m,n − v∗

m∥,

by Cauchy–Schwarz’s inequality. We getΛ′

νZ
(⟨Φm, v̂m,n⟩)Pn − Λ′

νZ
(⟨Φm, v∗

m⟩)Pn

g

≤ ∥g∥∞∥Λ′′

νZ
∥∞∥v̂m,n − v∗

m∥ PnG.

Using Slutsky’s lemma and Lemma A.1, we conclude

sup
m∈N

Λ′

νZ
(⟨Φm, v̂m,n⟩)Pn − Λ′

νZ
(⟨Φm, v∗

m⟩)Pn

g

= OP(n−1/2).

The rate of convergence of the term
Λ′

νZ
(⟨Φm, v∗

m⟩)Pn − Λ′
νZ

(⟨Φm, v∗
m⟩)PX


g
follows directly from the uniform law of large

numbers. We obtain

sup
m∈N

µ̂m,n − µ∗

m


g = OP(n−1/2).

The second step is to bound the term
µ∗

m − µ∗

X


g . We follow the same guidelines,µ∗

m − µ∗

X


g =

Λ′

νZ
(⟨Φm, v∗

m⟩)PX − Λ′

νZ
(⟨Φ, v∗

⟩)PX

g

≤
Λ′

νZ
(⟨Φm, v∗

m⟩)PX − Λ′

νZ
(⟨Φm, v∗

⟩)PX

g
+

Λ′

νZ
(⟨Φm, v∗

⟩)PX − Λ′

νZ
(⟨Φ, v∗

⟩)PX

g
.

In the same way as previously, the first term is bounded as followsΛ′

νZ
(⟨Φm, v∗

m⟩)PX − Λ′

νZ
(⟨Φm, v∗

⟩)PX

g

≤ ∥Λ′′

νZ
∥∞∥g∥∞ E∥Φm(X)∥ ∥v∗

m − v∗
∥,
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which is shown to be of order O(ϕ−1
m ) in Lemma A.2. For the last term, we have in the same wayΛ′

νZ
(⟨Φm, v∗

⟩)PX − Λ′

νZ
(⟨Φ, v∗

⟩)PX

g

≤ ∥v∗
∥ ∥Λ′′

νZ
∥∞ ∥g∥∞ E∥Φm(X) − Φ(X)∥.

Regrouping all the terms, we getµ̂m,n − µ∗

X


g = κm,n + O(ϕ−1

m ),

where κm,n ≤
µ̂m,n − µ∗

m


g satisfies supm∈N κm,n = OP(n−1/2).
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