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ABSTRACT: Numerous structural reliability studies deattwihe problem of estimating a
failure probability associated to the exceedance of a ggdavel by Monte Carlo simulation
approaches. In practice, engineering studies involve-ioresuming computer codes that make
the cost of such methods prohibitive. This paper deals vghproblem of developing accel-
erated Monte Carlo methods for such codes when the codetastpssumed to be monotone
with respect to the stochastic inputs. A noticeable gainigex by monotony is a deterministic
bounding of the failure probability, hence a conservatstngation. Several strategies for ex-
ploring the input space through designs of numerical erpants can be proposed, that involve
sequential optimization of criteria. This article provededescription of this framework and the
comparison of these strategies with more classical appesawith the help of toy examples
and real case-study.

1 INTRODUCTION consuming black boxes. Therefore exploring
the configurations of inputs leading to fail-

Computing the probability of undesirable, un- gg%’énosgrogagg%ﬂv; wﬁz&éﬁg;;gﬁp}grﬁnlmg
observed events is a common task in struc- ) i . :
tural reliability engineering. When dealing géasfgé%lc(gl:Jaﬁge'\gotgteef?groe%%Sr:ﬁnjr(;at‘ig?gt
with major risks occuring with low proba- P y P 9

bility, the lack of observed failure data of- linked to low probabilities since they require

ten requires to use so-called computer deterIOO high computational budgets. Therefore,

ministic functions (orcode$ reproducing the numerous sampling techniques has been pro-

phenomenon of interest. The simulation of poset_JI in the ”teraF“re to di_minish the com-
their uncertain inputs, being modeled as ran_putatlonal cost while ensuring the precision

dom variables, allows to compute statistical SL()eoS;Iirr?aggnﬁé rl:ﬂticz)jlt ct)fietheellénmgaetsboistﬁg gg_
estimators of the probability. Usually these sion. b gmagimizin én expected gain in in-
complex objects can be described as time- gn, by g p g



formation at each step. bility to estimate is

We consider the particular case of mono-
tone codes. Even without regularity assump-, — p(G(X) < 0) = / 1a)<oy fx (z)dz. (L)
tions on the code, it is possible to take advan- U
tage of monotonicity to provide deterministic
bounds (and thus conservative estimation) fo
the probability of failure when described as : * 0o o L
the probability that the output exceeds someVX eUvie[ldvee Ry, 3s € {11},
fixed limit. Furthermore, when the design is (
chosen stochastically, a statistical estimator of ~ '

the probability can be computed in parallel. Moreover, it is assumed that eadh are in-
Sequential designs can be built to refine thesglependent. Since any joint probability dis-
bounds and reduce the variance of this estimatribution function (pdf), as the product of
torwhen_ it gxists. This _article aims at defining marginal pdf, is increasingly bijective in con-
some criteria for carrying out such strategiestinuous cases, it is enough to consider that
and comparing the performances of the cors the uniform density ovet = [0,1]% (up to
responding designs, in terms of precision anda transformation). Defining the partial order
computational cost. X=y<eVic{l,. . . d},z; <y, an imme-
Two main methodologies are especially diate consequence is thatcan be bounded
emphasized. Making no prior assumption onusing any set of numerical experiments.
the frontier between safety and failure do- Indeed, lek, = {xi,...,x,} be distributed
main in the input space, the first approachon U and evaluated bgs. Then denot&;, =
considers the next element as the one thafx ¢ x, : G(x) < 0} and =} = {x € X, :
maximizes the minimal gain in information ((x) > 0}. Considering
(maximin strategy On the contrary, the sec-

rG is assumed to be monotone, i.e. :

e T+ Si€ o xg) < G, .., x).

ond approach uses classification tools for upU, = {x€U:3dyecZ ;x =y} (2)
dating sequentially a prior on the frontier
(classification-based stratepyin each case, U = {xeU:3ye=";x=vy}, (3)

an optimization task is needed at each step of o

the sequential strategy, that requires specifidWo exact (deterministic) bounds fprcan be
algorithms. The comparison task besides in-obtained:

volves Monte Carlo standard approaches and _ <t 4
engineering techniques standing on optimiza?’» =# = Pn> (4)
tion rather than sampling (FORM). They are where

conducted over a range of toy examples in

various dimensional settings. The interest ofp, = P(X € U,)), p; =1-P(X € U))

the study is finally highlighted by treating real

hydrodological and thermo-mechanical case-With X uniformly distributed onU,, (see for
studies. instance Fig. 1). After few calls t&, an ini-

tialization step is build such that;,pl €

10,1[ andU, & U. Bousquet (2012) consid-
2 A MONOTONE STRUCTURAL ered this framework and developed a stochas-

RELIABILITY FRAMEWORK tic one-step-ahead strategy based on a nested

uniform sampling of the next point of the
In this study, one assumés: U c R — Ris  design. In parallel to the progressive bounds
a monotonic numerical code which representg; ,...,p, and p;,...,p/, he proposed a
the physical comportment of a phenomenon stastistical M-estimator of, the variance of
The input vectorX = (X;,---,Xy) of G is  which being significantly lower than the vari-
considered as random with continuous jointancep(1l — p)/n of the usual Monte Carlo
density fx with supportU. The failure proba- estimator. However, the gain brought by this



W where, denotingy = 1 {¢p<0}»

- - €x,

Dn = Ppnaat 7o
! fn—l (Xn)
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and a conditional variance equal to

1 1
el e

with a,, = 2p — p | — p,_,. From condi-

{oy?

Figure 1: In dimensior?, =g = {X1,X2,X5,Xs} and than(p,_, —p)(p — p,_1) > 0.
Eg = {X3,X4,X7,Xs}. Considering deterministic weights) =
(wl, ... ,wn) € [0, n]" such thaEZzl W =N,

tional Jensen inequality the variance is greater

naive strategy can strongly diminish when thethen a sequential importance sampling (unbi-

dimension increases and moreover, the biagsed) estimator of is
affecting the estimator should be removed by
bootstrap techniques in non-asymptotic set-. 1 _
tings. In the following, a sequential impor- Pn="
tance sampling approach is developed to im-

prove this first approach, by contouring more wjith optimized weights
accurately the failure surface
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3 SEQUENTIAL IMPORTANCE
SAMPLING

Assume that at step of one-step-ahead ex-
ploration of input spac#, the next poini,, ~ Now, we must notice thatp, is in the
of the design, at whict' is computed, is sam- convexe hull of {p,....p,}, i.e. p, €
pled from the importance distribution [min{p, ..., Pn}, max{pi,...,p,}|. Thatim-
pliesp,, cannnot be ifp;, , p;"[ with probabil-
~ = * 2 ity 1.
X fo1t SNal, 0 o) L,y (B) Denote ||.|| the euclidian norm inR,

where U, = U\ (U; UU;). The idea is Choosingf,—; as in (6) it can be rewrite like

to calibrate the distribution such that be oIl |12 /207
nearl” and the following statistical estimators f,_1(X) = e
present good convergence properties. A first Jo._.¢ dx
(conditionally) unbiased estimator is

o lx—x[12/202

Pn = (Dy, +Dy)/2 ()  ElelvxFRe (= p, )

n—1 "




according tou is uniformly distributed in 4 CRITERION
U,,_;. The probabilityP(p, € [p,_,,p,; ])is
equal to

112 o2 4.1 maximin
P <||x_x*||2 < —202log Ele~lu-x"I1?/20 ]) ’

and goes td aso goes to0. The last point  The firstapproach will be based on a maximin
holds sincek [||u — x*||?] do not depends of Criteria construct from the contribution of the
Ip,,,pt[ @andp,, do not approximate correctly
p. Otherwise, ifo is too large, one can have a
better approximation qgf by p,, but the gain of
information given by the knowledge &f will
be reduce since one simulate far of this opti-
mal point. It is necessary to come to a com-p"H(X)
promise in the choice of. In practice, one
chooser? = pf | —p, ;.

The variance op,, can be written as :

= P(U € Uz, ,(x)),

1 where

é E-1 [Var [ﬁk |]:k—1“ .

Var[p,] =

The quantities o, and E[ﬁﬁn_l]

can be estimate respectively by
2pn_1 — p;, — p,, and crude Monte _
Carlo method. 1 Uin(¥) = {zeU:3ye (5 ux)izzy}

U,a(x) = {zeU:3ye (5, Ux);z=y}

We purpose now two kinds of deterministic
strategies. In all cases, one wants to maximise
the information obtains from the knowledge
of the next point tested state. The first one will A irst function D is definied as
be based on maximin criterion and the second
one use an approximation bffrom a classi-
fier. The next poink* to evaluate is such that

X" = C(x 9 L _
argmax C () O D(x) = min(pr () — p 5 — 2 (X)),
where( is a function to maximize. From the (10)

form of U, it is difficult to evaluate all points

in this set by some functions. Few methods

are useful, simulated annealing or develop a

criteria and use a BFGS method. To reduceAssumeD(X) = p,.;(X) — p,,, then one can
the computation time one make the choice tosuppose=(x) < 0. To be near of" is equiv-

get the next poink* inyy = (y1,...,Yn), N alent to keep away frorfy;,. Then, one pur-
random variable uniformly distributed d),.  pose to maximisé(x) as first criterion.



When N is large enough it is clear thd? is

equivalent toD. Let C be D or D, then our
criterion is definied as

X* = argmax C'(X) (12)

XEYn

4.2 Classification

The second strategy is based on classification
criteria. Since the output af is binary, one
can thinks to the:-nearest neighbor method.
That is to class a point as failure or safe if
it has more neighbors in the failure space or
in the safety space. Two others tools com-
monly used are neural network and support
vector machine (Hastie, Tibshirani, & Fried-
man 2008) . Neural networks are ued as our
second criterion. Define_;(x) (resp.m (X))

the weight given by neural network associed
at x to be in the failure (resp. safety) space.
Then one construdD :

. DX) = 5 — pfa (.

X* = argmax D(X) (13)

XEVn

5 NUMERICALS STUDIES

{0y . . . .
Figure 2: lllustration of the criteriorD. Up : black A first t_oy exemple is defined as .fOHOW - 1n
points represents candidates to ke Dot (resp. dimensiond, letX = (X, ..., Xy) with X; ~
dashed) lines delimite the volume contribution of up- I'(¢ + 1, 1) and F; the pdf of X;. Denote :

per (resp. lower) bound. Down : we keep the mini-

mum of contribution for each candidates. The encir- 7 X
d f—
d

>

i=1

cled point is choose as. ~ Beta(2,(d+1)(d+2)/2 - 3)

The computation of the bounds can be time
consuming when the dimension is high. An

alternative criteriorD is proposed to acceler- L€t da, be thep-order quantile oz, and

ate the algorithm. Let define
(X)) = #{yeV,:y=2x} G(X) = Za — qap-
Then,

(X)) = #{yeva:y=x}
where# A represent the number of elements? = P(G(X) < 0) =P(Zy < qap).

in the setA. : . L
Then, The function G is increasing in his first

direction and decreasing in the others.
D(x) = min(c;, 1 (X), ¢ 1(X)). (11)



In first, the comparison beetween the threelable 1: Comparison of criteria.

differents strategies proposed in this paper

is sumarized in table 1 : volume-maximin
(V-Maximin), quick-maximin (Q-Maximin),
classification(C-Maximin) tools and the one
proposed by Bousquet(2012)

One presents the results obtains with
FORM method and crude Monte Carlo with
monotonic hypothesis (M-MC) in the table 2.

The estimator construct from Monte Carlo
monotone is build as follow. Given say
calls toG, and letx be uniformly distributed
in U. Then, at step, if xisinU,_, orU;} ,
it is not necesseray to teSt(x). Then the es-
timator of Monte Carlo method is given by

. 1
Puc = 57 > H(x)

where
H(Xg) = L ieeviii6x) <0y + 1{xkeIUk‘,_l}v

and M represent the number of points such
that one knows the state aftarcalls toG. It
is clear that)M is greater or equal tdV. The

d=3 d=5 d=06
p=10"* p=10"* p=10"*°
Methods n=200 n=250 n=2300
MLE
P (Xp) 1.20 0.99 1.07
p,, (xp) 0.44 0.14 0.70
Pt (xp) 3.68 14.7 24
CV(%) 12 14 18
Q-Maximin
Pn 3.072 9.1 11.7
o 0.43 0.02 0.02
p;: 4.88 15.4 22.9
CV(%) 15 14 14
C-Maximin
Pn 1.64 4.3 7.01
o 0.20 0.1 0.03
o 2.1 6.0 11.9
CV(%) 14 14 14

Table 2: Comparison of two classical methods.

second term of the right hand of the last equa- CV(%)

tion do not depend of7, then a call ofGG is
useless with probability,” , — p,_,, and M
can be see as a random variable sixceuni-
formly distributed inU. Hence

P(M>N)=1-]]wi )

k=1

— 1.
N—+o00

This last equation shows that Monte Carlo g - thap, = A

under monotony is more accurate, with high
probability, than clasical Monte Carlo method
without assumption.

d=3 d=5 d=6
p=10"%* p=10"3 p=10-3
Methods n =200 n =250 n =300
FORM
Pn (Xp) 0.86 1.39 0.84
p, (xp) 0.26 0.16 0.08
pt (xp) 24 198 283
CV(%) 18 12 16
M-MC
Pn (xp)  1.76 2.28 0
p, (xp) 0.07 0.018 0
pr(xp) 24 163 313
46 70 00
M n+25030 n+740  n+427

About the bounds, the first method which
uses a geometrical criteria seems to be equiv-
alent to a uniform sample and do not im-
plies a gain in information. The second one
which make an evaluation of the failure sur-
face seems to be really better and reduce
significantly the width of the exact interval
aroundp. The new estimator is not really
good. This problem come from the construc-
tion of p,,, a better way will be to chooseXg,

Py + (1= An)Dy -



6 CONCLUSIONS

In this paper we purposed two criteria to

accelerate the convergence of deterministic
bounds. The first one use geometrical prop-
erty of the non dominated space, one sees in
numerical examples that the gain is equiva-
lent to the one proposed by Bousquet (2012).
The second one approximates the failure sur-
face by neural network. In practice, the use of
these methods seems to reduce significantly
the wide of the interval containing the fail-

ure probability. An other approach, not study

here, is to create a meta-modél(e.g. gaus-
sian process) no time consuming to remplace

G and choose a point such thatG(x) = 0.
An other possible way was to construct just
one estimator whith a good convex linear
combination of the bounds.

The quantities use to construct the estima-
tor can be difficult to estimate. In particular
the choice of a good candidate to bein
the importance distribution. Here, one make
a compromise with stay near gf and keep a
low variance.
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