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ABSTRACT: Numerous structural reliability studies deal with the problem of estimating a
failure probability associated to the exceedance of a security level by Monte Carlo simulation
approaches. In practice, engineering studies involve time-consuming computer codes that make
the cost of such methods prohibitive. This paper deals with the problem of developing accel-
erated Monte Carlo methods for such codes when the code output is assumed to be monotone
with respect to the stochastic inputs. A noticeable gain provided by monotony is a deterministic
bounding of the failure probability, hence a conservative estimation. Several strategies for ex-
ploring the input space through designs of numerical experiments can be proposed, that involve
sequential optimization of criteria. This article provides a description of this framework and the
comparison of these strategies with more classical approaches with the help of toy examples
and real case-study.

1 INTRODUCTION

Computing the probability of undesirable, un-
observed events is a common task in struc-
tural reliability engineering. When dealing
with major risks occuring with low proba-
bility, the lack of observed failure data of-
ten requires to use so-called computer deter-
ministic functions (orcodes) reproducing the
phenomenon of interest. The simulation of
their uncertain inputs, being modeled as ran-
dom variables, allows to compute statistical
estimators of the probability. Usually these
complex objects can be described as time-

consuming black boxes. Therefore exploring
the configurations of inputs leading to fail-
ure, in a non-intrusive way, requires to run the
code over a design of numerical experiments.
Classical (quasi) Monte Carlo designs cannot
be practically used to explore configurations
linked to low probabilities since they require
too high computational budgets. Therefore,
numerous sampling techniques has been pro-
posed in the literature to diminish the com-
putational cost while ensuring the precision
of estimations. Most of them are based on
choosing sequentially the elements of the de-
sign, by maximizing an expected gain in in-



formation at each step.
We consider the particular case of mono-

tone codes. Even without regularity assump-
tions on the code, it is possible to take advan-
tage of monotonicity to provide deterministic
bounds (and thus conservative estimation) for
the probability of failure when described as
the probability that the output exceeds some
fixed limit. Furthermore, when the design is
chosen stochastically, a statistical estimator of
the probability can be computed in parallel.
Sequential designs can be built to refine these
bounds and reduce the variance of this estima-
tor when it exists. This article aims at defining
some criteria for carrying out such strategies
and comparing the performances of the cor-
responding designs, in terms of precision and
computational cost.

Two main methodologies are especially
emphasized. Making no prior assumption on
the frontier between safety and failure do-
main in the input space, the first approach
considers the next element as the one that
maximizes the minimal gain in information
(maximin strategy). On the contrary, the sec-
ond approach uses classification tools for up-
dating sequentially a prior on the frontier
(classification-based strategy). In each case,
an optimization task is needed at each step of
the sequential strategy, that requires specific
algorithms. The comparison task besides in-
volves Monte Carlo standard approaches and
engineering techniques standing on optimiza-
tion rather than sampling (FORM). They are
conducted over a range of toy examples in
various dimensional settings. The interest of
the study is finally highlighted by treating real
hydrodological and thermo-mechanical case-
studies.

2 A MONOTONE STRUCTURAL
RELIABILITY FRAMEWORK

In this study, one assumesG : U⊂ Rd → R is
a monotonic numerical code which represents
the physical comportment of a phenomenon.
The input vectorX = (X1, · · · ,Xd) of G is
considered as random with continuous joint
densityfX with supportU. The failure proba-

bility to estimate is

p = P(G(X) ≤ 0) =

∫

U

1{G(x)≤0}fX(x)dx. (1)

G is assumed to be monotone, i.e. :

∀x ∈ U,∀i ∈ J1, dK,∀ǫ ∈ R∗
+,∃si ∈ {−1,1},

G(x1, . . . , xi + siǫ, . . . , xd) ≤ G(x1, . . . , xd).

Moreover, it is assumed that eachXi are in-
dependent. Since any joint probability dis-
tribution function (pdf), as the product of
marginal pdf, is increasingly bijective in con-
tinuous cases, it is enough to consider thatfX
is the uniform density overU = [0,1]d (up to
a transformation). Defining the partial order
x � y ⇔ ∀i ∈ {1, . . . , d}, xi ≤ yi, an imme-
diate consequence is thatp can be bounded
using any set of numerical experiments.

Indeed, let̄xn = {x1, . . . ,xn} be distributed
onU and evaluated byG. Then denoteΞ−

n =
{x ∈ x̄n : G(x) ≤ 0} and Ξ+

n = {x ∈ x̄n :
G(x) > 0}. Considering

U−
n = {x ∈ U : ∃y ∈ Ξ−

n ;x � y} (2)

U+
n = {x ∈ U : ∃y ∈ Ξ+

n ;x � y}, (3)

two exact (deterministic) bounds forp can be
obtained:

p−n ≤ p ≤ p+n , (4)

where

p−n = P(X ∈ U−
n ), p+n = 1− P(X ∈ U+

n )

with X uniformly distributed onUn (see for
instance Fig. 1). After few calls toG, an ini-
tialization step is build such thatp−0 , p

+
0 ∈

]0,1[ andU0  U. Bousquet (2012) consid-
ered this framework and developed a stochas-
tic one-step-ahead strategy based on a nested
uniform sampling of the next point of the
design. In parallel to the progressive bounds
p−1 , . . . , p

−
n and p+1 , . . . , p

+
n , he proposed a

stastistical M-estimator ofp, the variance of
which being significantly lower than the vari-
ancep(1 − p)/n of the usual Monte Carlo
estimator. However, the gain brought by this
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Figure 1: In dimension2, Ξ−
8 = {x1,x2,x5,x6} and

Ξ
+
8 = {x3,x4,x7,x8}.

naive strategy can strongly diminish when the
dimension increases and moreover, the bias
affecting the estimator should be removed by
bootstrap techniques in non-asymptotic set-
tings. In the following, a sequential impor-
tance sampling approach is developed to im-
prove this first approach, by contouring more
accurately the failure surface

Γ = {x ∈ U : G(x) = 0}. (5)

3 SEQUENTIAL IMPORTANCE
SAMPLING

Assume that at stepn of one-step-ahead ex-
ploration of input spaceU, the next pointxn

of the design, at whichG is computed, is sam-
pled from the importance distribution

xn ∼ fn−1 ≡ Nd(x∗, σ2Id)1{x∈Un−1} (6)

where Un = U \ (U−
n ∪ U+

n ). The idea is
to calibrate the distribution such thatx∗ be
nearΓ and the following statistical estimators
present good convergence properties. A first
(conditionally) unbiased estimator is

p̄n = (p̄−n + p̄+n )/2 (7)

where, denotingξx = 1{G(x)≤0},

p̄−n = p−n−1 +
ξxn

fn−1(xn)
,

p̄+n = p+n−1 −
1− ξxn

fn−1(xn)
.

and a conditional variance equal to

1

4

(
E

[
1

f 2
n−1(xn)

|Fn−1

]
− α2

n

)
(8)

with αn = 2p − p+n−1 − p−n−1. From condi-
tional Jensen inequality the variance is greater
than(p+n−1 − p)(p− p−n−1) > 0.

Considering deterministic weightsω =
(ω1, . . . , ωn) ∈ [0, n]n such that

∑n
k=1ωk = n,

then a sequential importance sampling (unbi-
ased) estimator ofp is

p̂n =
1

n

n∑

k=1

ωkp̄k

with optimized weights

ωk = n
E−1 [Var [p̄k|Fk−1]]
n∑

i=1

E−1 [Var [p̄i|Fi−1]]

= n
E−1

[
1

f2

k−1
(xk)

− α2
k

]

n∑
i=1

E−1
[

1
f2

i−1
(xi)

−α2
i

]

Now, we must notice that̂pn is in the
convexe hull of {p̄1, . . . , p̄n}, i.e. p̂n ∈
[min{p̄1, . . . , p̄n},max{p̄1, . . . , p̄n}]. That im-
plies p̄n cannnot be in]p−n , p

+
n [ with probabil-

ity 1.
Denote ‖.‖ the euclidian norm inRd.

Choosingfn−1 as in (6) it can be rewrite like

fn−1(x) =
e−‖x−x∗‖2/2σ2

∫
Un−1

e−‖x−x∗‖2/2σ2dx
,

=
e−‖x−x∗‖2/2σ2

E [e−‖u−x∗‖2/2σ2 ] (p+n−1 − p−n−1)
,



according tou is uniformly distributed in
Un−1. The probabilityP(p̄n ∈ [p−n−1, p

+
n−1]) is

equal to

P
(
‖x − x∗‖2 ≤ −2σ2 logE[e−‖u−x∗‖2/2σ2

]
)
,

and goes to1 asσ goes to0. The last point
holds sinceE [‖u − x∗‖2] do not depends of
σ. Hence, choosingσ too low implies p̄n ∈
]p−n , p

+
n [ and p̂n do not approximate correctly

p. Otherwise, ifσ is too large, one can have a
better approximation ofp by p̂n but the gain of
information given by the knowledge ofx∗ will
be reduce since one simulate far of this opti-
mal point. It is necessary to come to a com-
promise in the choice ofσ. In practice, one
chooseσ2 = p+n−1 − p−n−1.

The variance of̂pn can be written as :

Var [p̂n] =
1

n∑
k=1

E−1 [Var [p̄k|Fk−1]]
.

The quantitiesαn and E
[

1
f2

n−1
(xn)

|Fn−1

]

can be estimate respectively by
2p̂n−1 − p+n−1 − p−n−1 and crude Monte
Carlo method.

We purpose now two kinds of deterministic
strategies. In all cases, one wants to maximise
the information obtains from the knowledge
of the next point tested state. The first one will
be based on maximin criterion and the second
one use an approximation ofΓ from a classi-
fier. The next pointx∗ to evaluate is such that

x∗ = argmax
x∈Un

C(x), (9)

whereC is a function to maximize. From the
form ofUn it is difficult to evaluate all points
in this set by some functions. Few methods
are useful, simulated annealing or develop a
criteria and use a BFGS method. To reduce
the computation time one make the choice to
get the next pointx∗ in ȳN = (y1, . . . ,yN), N
random variable uniformly distributed onUn.

4 CRITERION

4.1 maximin

The first approach will be based on a maximin
criteria construct from the contribution of the
next point to reduce the bounds. Let

p±n+1(x) = P(U ∈ U±
n+1(x)),

where

U−
n+1(x) = {z ∈ U : ∃y ∈ (Ξ−

n ∪ x); z � y}

U+
n+1(x) = {z ∈ U : ∃y ∈ (Ξ+

n ∪ x); z � y}.

A first functionD is definied as

D(x) = min(p−n+1(x)− p−n , p
+
n − p+n+1(x)).

(10)

AssumeD(x) = p−n+1(x)− p−n , then one can
supposeG(x) ≤ 0. To be near ofΓ is equiv-
alent to keep away fromU−

n . Then, one pur-
pose to maximiseD(x) as first criterion.
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Figure 2: Illustration of the criterionD. Up : black
points represents candidates to bex∗. Dot (resp.
dashed) lines delimite the volume contribution of up-
per (resp. lower) bound. Down : we keep the mini-
mum of contribution for each candidates. The encir-
cled point is choose asx∗.

The computation of the bounds can be time
consuming when the dimension is high. An
alternative criterioñD is proposed to acceler-
ate the algorithm. Let

c−n+1(x) = #{y ∈ ȳn : y � x}

c+n+1(x) = #{y ∈ ȳn : y � x}.

where#A represent the number of elements
in the setA.
Then,

D̃(x) = min(c−n+1(x), c
+
n+1(x)). (11)

WhenN is large enough it is clear that̃D is
equivalent toD. Let C beD or D̃, then our
criterion is definied as

x∗ = argmax
x∈ȳn

C(x) (12)

4.2 Classification

The second strategy is based on classification
criteria. Since the output ofG is binary, one
can thinks to thek-nearest neighbor method.
That is to class a point as failure or safe if
it has more neighbors in the failure space or
in the safety space. Two others tools com-
monly used are neural network and support
vector machine (Hastie, Tibshirani, & Fried-
man 2008) . Neural networks are ued as our
second criterion. Defineπ−1(x) (resp.π1(x))
the weight given by neural network associed
at x to be in the failure (resp. safety) space.
Then one constructD :

D(x) = [p+n − p+n+1(x)]π1.

and

x∗ = argmax
x∈ȳn

D(x) (13)

5 NUMERICALS STUDIES

A first toy exemple is defined as follow : in
dimensiond, let X = (X1 . . . ,Xd) with Xi ∼
Γ(i+ 1,1) andFi the pdf ofXi. Denote :

Zd =
X1

d∑

i=1

Xi

∼ Beta(2, (d+ 1)(d+ 2)/2− 3)

Let qd,p be thep-order quantile ofZd, and
define

G(X) = Zd − qd,p.

Then,

p = P(G(X) ≤ 0) = P(Zd ≤ qd,p).

The function G is increasing in his first
direction and decreasing in the others.



In first, the comparison beetween the three
differents strategies proposed in this paper
is sumarized in table 1 : volume-maximin
(V-Maximin), quick-maximin (Q-Maximin),
classification(C-Maximin) tools and the one
proposed by Bousquet(2012)

One presents the results obtains with
FORM method and crude Monte Carlo with
monotonic hypothesis (M-MC) in the table 2.

The estimator construct from Monte Carlo
monotone is build as follow. Given sayN
calls toG, and letx be uniformly distributed
in U. Then, at stepn, if x is in U−

n−1 or U+
n−1

it is not necesseray to testG(x). Then the es-
timator of Monte Carlo method is given by

p̂MC =
1

M

∑

k≤M

H(xk)

where

H(xk) = 1{xk∈Uk−1;G(xk)≤0} + 1{xk∈U
−

k−1
},

andM represent the number of points such
that one knows the state afterN calls toG. It
is clear thatM is greater or equal toN . The
second term of the right hand of the last equa-
tion do not depend ofG, then a call ofG is
useless with probabilityp+k−1 − p−k−1, andM
can be see as a random variable sincex is uni-
formly distributed inU. Hence

P(M > N) = 1−
N∏

k=1

(p+k − p−k ) −→
N→+∞

1.

This last equation shows that Monte Carlo
under monotony is more accurate, with high
probability, than clasical Monte Carlo method
without assumption.

Table 1: Comparison of criteria.
d = 3 d = 5 d = 6

p = 10−4 p = 10−4 p = 10−3

Methods n = 200 n = 250 n = 300

MLE
p̂n (×p) 1.20 0.99 1.07

p−n (×p) 0.44 0.14 0.70

p+n (×p) 3.68 14.7 24

CV(%) 12 14 18

Q-Maximin
p̂n 3.072 9.1 11.7

p−n 0.43 0.02 0.02

p+n 4.88 15.4 22.9
CV(%) 15 14 14

C-Maximin
p̂n 1.64 4.3 7.01

p−n 0.20 0.1 0.03

p+n 2.1 6.0 11.9
CV(%) 14 14 14

Table 2: Comparison of two classical methods.
d = 3 d = 5 d = 6

p = 10−4 p = 10−3 p = 10−3

Methods n = 200 n = 250 n = 300

FORM
p̂n (×p) 0.86 1.39 0.84

p−n (×p) 0.26 0.16 0.08

p+n (×p) 24 198 283

CV(%) 18 12 16

M-MC
p̂n (×p) 1.76 2.28 0

p−n (×p) 0.07 0.018 0

p+n (×p) 24 163 313

CV(%) 46 70 ∞
M n+ 25030 n+ 740 n+ 427

About the bounds, the first method which
uses a geometrical criteria seems to be equiv-
alent to a uniform sample and do not im-
plies a gain in information. The second one
which make an evaluation of the failure sur-
face seems to be really better and reduce
significantly the width of the exact interval
around p. The new estimator is not really
good. This problem come from the construc-
tion of p̄n, a better way will be to choose aλn

such that̄pn = λnp̄
−
n + (1− λn)p̄

+
n .



6 CONCLUSIONS

In this paper we purposed two criteria to
accelerate the convergence of deterministic
bounds. The first one use geometrical prop-
erty of the non dominated space, one sees in
numerical examples that the gain is equiva-
lent to the one proposed by Bousquet (2012).
The second one approximates the failure sur-
face by neural network. In practice, the use of
these methods seems to reduce significantly
the wide of the interval containing the fail-
ure probability. An other approach, not study
here, is to create a meta-modelĜ (e.g. gaus-
sian process) no time consuming to remplace
G and choose a pointx such thatĜ(x) = 0.
An other possible way was to construct just
one estimator whith a good convex linear
combination of the bounds.

The quantities use to construct the estima-
tor can be difficult to estimate. In particular
the choice of a good candidate to beσ in
the importance distribution. Here, one make
a compromise with stay near ofx∗ and keep a
low variance.
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