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Abstract

The aim of this paper is to propose a methodology for testing general hypothesis in a
Markovian setting with random sampling. A discrete Markov chain X is observed at random
time intervals τk, assumed to be iid with unknown distribution µ. Two test procedures are
investigated. The first one is devoted to testing if the transition matrix P of the Markov chain
X satisfies specific affine constraints, covering a wide range of situations such as symmetry or
sparsity. The second procedure is a goodness-of-fit test on the distribution µ, which reveals
to be consistent under mild assumptions even though the time gaps are not observed. The
theoretical results are supported by a Monte Carlo simulation study to show the performance
and robustness of the proposed methodologies on specific numerical examples.

Keywords: Asymptotic Tests of Statistical Hypotheses ; Markov Chain ; Random Sampling.

1 Introduction

It has been widely recognized that discrete Markov chains are a powerful probabilistic tool
to study many real phenomena in different application fields. Interests from economics, finance,
insurance and also medical research are just few examples. From a theoretical point of view,
alternative technical frameworks have been defined and developed in the literature to perform
statistical inference in Markovian models: multiple Markov chains [2, 4], hidden Markov pro-
cesses [5, 6, 13], random walks on graphs [10] are well known mathematical settings used to
describe the evolution of real events.

In this paper, we investigate hypothesis testing issues in a Markov model with random sam-
pling. In the spirit of [3], a discrete homogenous Markov chain (Xm)m∈N is observed at random
times so that the only available observations consist in a sub-sequence of the initial process.
Hereafter we denote by (Yk)k∈N the observed process. The time gaps τk (i.e. the number of
jumps) between two consecutive observations are assumed non-negative, independent and identi-
cally distributed from an unknown distribution µ. A statistical methodology is proposed to test
specific hypothesis on the transition matrix P or the distribution µ having observed (Y1, ..., Yn).
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Our interest is to answer the following questions: can we test some specific hypothesis on the
transition matrix P of the initial chain X when neither the time gaps τk nor their distribution
µ are known? Additionally, can we perform a goodness-of-fit test on the distribution µ of the
time gaps in this framework?

As explained in [3], a typical application of this setting occurs when considering a continuous
time Markov chain Z = (Zt)t>0 observed at a discrete time grid t1 < ... < tn. In this situation,
X represents the jump process of Z and (τk)k∈N denotes the number of jumps occurring between
two consecutive observations, Yk := Ztk . If the discrete time grid is chosen independently from
the chain, the time gaps τk are independent random variables unknown to the practitioner.
Their distribution µ is Poisson if Z is observed at regularly spaced time intervals, but one can
easily imagine a different distribution µ if t1, ...tn are affected by undesired random effects. This
framework can describe many real phenomena: chemical reactions [1], financial markets [12],
waiting lines in queuing theory [9], medical studies [7].

In [3], the sparsity of P reveals to be a crucial assumption for the proposed estimation
methodology. In this paper, we extend the statistical setting defined in [3] by relaxing the spar-
sity assumption and working under a more general framework where the information about P
can be expressed in the form of affine constraints. It is then possible to incorporate some prior
information on P such as symmetry, reflexivity or even simply the knowledge of some of its
entries. The sparsity hypothesis considered in [3] can be retrieved as a particular case.

In our model, the observations Y1, ..., Yn are the realizations of an homogenous Markov chain,
with a transition probability Q that can be written as an analytic function of P . As in [3], nei-
ther the transition matrix P nor the distribution µ are known and the time gaps τk between two
consecutive observations Yk−1, Yk are unavailable. Our aim is now to perform hypothesis tests on
both the transition kernel P and the time gaps’ distribution µ. Theoretical results are separated
in two consecutive steps. As a first step, we describe how to build an hypothesis test on P to
study if the transition kernel P satisfies additional affine constraints. This framework can be
used to test a wide range of hypothesis such as symmetry, sparsity or even to test a particular
value of P or some of its entries. As a second step, we propose a procedure to test specific
values for the distribution of time gaps µ, considering an hypothesis of the form H0 : µ = µ0,
given some preliminary information on P . Both tests are asymptotically exact and rely on the
asymptotic normality of the empirical transition matrix Q̂. A Monte Carlo simulation analysis
is performed in order to highlight the performance of the proposed test.

The paper is organized as follows: Section 2 provides a detailed description of the statis-
tical problem and discusses the identifiability issues encountered in this framework. Section 3
defines an asymptotically exact hypothesis test for the transition kernel P . Section 4 shows the
theoretical framework to build an hypothesis test on the distribution µ. Section 5 supports the
analysis of Sections 3 and 4 with numerical results from a Monte Carlo simulation study. Proofs
are postponed in the Appendix.
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2 The problem

We consider an irreducible homogenous Markov chain X = (Xm)m∈N with finite state space
E = {1, ..., N}, N ≥ 3 and transition matrix P . We assume that X is observed at random times
T1, ..., Tn so that the only available observations consist in the sub-sequence Yk := XTk , k =
1, ..., n. The numbers of jumps τk := Tk−1 − Tk between two observations Yk are assumed to
be iid random variables with distribution µ on N and independent from X. In this setting, the
resulting process Y = (Yk)k∈N remains Markovian (see [3]) with transition matrix

Q := Gµ(P ) =
∑
`≥0

P `µ(`), (1)

where Gµ : [−1, 1]→ R denotes the generator function of µ. We assume that some information
is available on P in the form of an affine constraint

Ap = b

where p = vec(P ) = (P11, ..., PN1, ..., P1N , ..., PNN )> is the vectorization of P , A ∈ Rr×N2
is a

known full ranked matrix and b ∈ Rr a known vector. This affine constraint defines the model

M := {m ∈ RN
2

: Am = b}, (2)

that is, the set of admissible values for p = vec(P ). Each additional affine condition satisfied
by P reduces by one the dimension of the model. Therefore, the rank r of A indicates the
information available on P . In the sequel, we denote by d the dimension of the modelM, given
by d = dim(M) = N2 − r.

Many different forms of information on the initial chain Xm can be expressed by affine
constraints, as described in the following examples.

a) P1 = 1, where 1 = (1, ..., 1)>, is an important information that can be expressed as an
affine constraint on P by

(1> ⊗ I) vec(P ) = 1,

where ⊗ stands for the Kronecker product.

b) In [7], the author investigates the progression of a disease using a Markov chain observed
at unequal time intervals. For this particular application, the transition matrix of the
chain is expected to be triangular: in this case the information can be represented with
N(N − 1)/2 linear conditions on P .

c) If the initial chain X cannot remain at the same state on two consecutive times, the
transition matrix P is known to have zero diagonal. This information can be expressed in
the form of N linear constraints on P .

d) More generally, if one or several state transitions are known to be impossible in the initial
chain (Xm)m∈N, the nullity of the corresponding entries can be expressed as a set of linear
conditions on p. The number of constraints is equal to the number of known zeros in P .
This situation is treated in [3].
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e) A symmetric transition matrix P corresponds to N(N − 1)/2 linear constraints on p =
vec(P ).

f) P is doubly stochastic, one can include the condition P>1 = 1 as N − 1 additional affine
constraints.

g) X is a reversible Markov chain, its transition matrix P satisfies the linear conditions
πiPij = πjPji for all i, j = 1, ..., N , where π = (π1, ..., πN ) is the invariant measure.
Although π is unknown in practice, it can be estimated directly from the observations
since it is also the invariant measure of Q.

h) The knowledge of some entries of P being equal, or equal to a known value c ∈ [0, 1] can be
expected in certain practical situations (e.g. the transition probability distribution from a
given state i is uniform). These are of course particular examples of affine constraints on
P .

The positivity of the entries of P appears to be more difficult to handle than affine con-
straints. Nevertheless, the positivity is somewhat less informative as it does not reduce the
dimension of the model. In this paper, we choose to neglect this information on P for simplicity.

To avoid critical situations, we assume that (Xm)m∈N is an aperiodic Markov chain, in
which case the transition kernel P has a unique invariant distribution π = (π1, ..., πN ), where
πi is positive for all i = 1, ..., N . From the relation Q = Gµ(P ), we know that, like P , Q is
aperiodic recurrent and they share the same invariant distribution. Thus, π can be estimated
consistently from the observations Yk, along with Q by the empirical estimators

π̂i =
1

n

n∑
k=1

1{Yk = i} , Q̂ij =

∑n−1
k=1 1{Yk = i, Yk+1 = j}∑n−1

k=1 1{Yk = i}
, (3)

for all i, j = 1, ..., N , provided that the state i has been observed at least once. It is known (see
for instance [11]) that Q̂ is asymptotically unbiased and q̂ = vec(Q̂) is asymptotically Gaussian,

√
n(q̂ − q) d−→ N (0,Σ).

The matrix Σ ∈ RN2×N2
can be deduced from the asymptotic behavior of the covariances

∀i, j, k, ` = 1, ..., N, lim
n→∞

n cov(Q̂ij , Q̂k`) =


Qij(1−Qij)/πi if (i, j) = (k, `),
−QijQi`/πi if i = k, j 6= `,

0 otherwise.
(4)

Remark that Σ is a singular matrix since q̂ − q can only take values in a linear subspace of
RN2×N2

.
Since the distribution of the time gaps τk is unknown, the main information available on P is

that it commutes with Q. Thus, given the model M, the possible values for p can be restricted
toM∩Com(Q), where Com(Q) is the commutant of Q. As in [3], we consider the commutation
operator m 7→ ∆(Q)m = vec(MQ−QM) where

∆(Q) = I⊗ Q−Q> ⊗ I .
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Of course, since Q is unknown, we use the empirical estimator Q̂ to retrieve some information
on P .

3 Hypothesis tests on P

Given that the transition matrix P of the initial Markov process (Xm)m∈N belongs to some
model M of the form (2), we want to test additional affine conditions on p = vec(P ), via the
null hypothesis H0 : A0p = b0, where A0 ∈ Rk×N2

is a full ranked matrix, b0 ∈ Rk and k ≥ 1
is the number of new conditions to test. To avoid technical issues, the new constraints must be
compatible with the model, i.e. there exits at least one element m ∈ M such that A0m = b0.
Moreover, we assume without loss of generality that the new constraints are not redundant, in
the sense that each row of A0 brings a new information on P . Formally, this means that the
model under H0,

M0 := {m ∈ RN
2

: Am = b, A0m = b0} ⊂ M,

is of dimension d−k where we recall d = dim(M). Let φ1, ..., φd−k be a basis of ker(A)∩ker(A0),
extended by φd−k+1, ..., φd to form a basis of ker(A). The initial model M and the constrained
model M0 can be expressed as

M = {p0 + Φβ : β ∈ Rd} and M0 = {p0 + Φ0γ : γ ∈ Rd−k},

setting Φ = (φ1, ..., φd) ∈ RN2×d, Φ0 = (φ1, ..., φd−k) ∈ RN2×(d−k) and with p0 an element of
M0. Define the linear sets

E = Im(∆(Q)Φ) = {∆(Q)m : m ∈ ker(A)}
E0 = Im(∆(Q)Φ0) = {∆(Q)m : m ∈ ker(A) ∩ ker(A0)}
F = E ∩ E⊥0 ,

where E⊥0 stands for the orthogonal complement of E0 in RN2
. Note that since E0 ⊆ E, we

have E = E0 ⊕ F . Moreover, we shall denote by ΠE , ΠE0 and ΠF the orthogonal projectors in
RN2

onto E,E0 and F respectively. We make the following assumptions.

A1. The problem is identifiable under H0, i.e. Com(Q) ∩ ker(A) ∩ ker(A0) = {0}.

A2. The dimension of E is maximal over the set of stochastic matrices with the same support
as Q:

dim(E) = rank(∆(Q)Φ) = max
Q′:Q′1=1

supp(Q′)⊆supp(Q)

rank(∆(Q′)Φ).

The equivalence, stated in A1, between the identifiability and the matrix ∆(Q)Φ0 being of
full rank is mentioned in [3]. Here, the identifiability underH0 means that P is fully characterized
by the condition p ∈ M0 and the fact that P and Q commute. Theorem 3.2 in [3] ensures the
existence of a consistent estimator of p as soon as the hypothesis H0 is true. Remark that unlike
in [3], we do not require the initial model M to be identifiable, although if it is the case, the
two assumptions always hold.
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Though the assumption A2 is quite technical, it is very mild, since the set of matrices Q′

for which the rank of ∆(Q′)Φ is maximal is a dense open set. The argument is similar to the
one used in the proof of Lemma 2.1 in [3].

Hereafter we denote by χ2
G(W ) the centered generalized chi-squared distribution

χ2
G(W )

d
= ε>Wε,

where ε is a standard Gaussian vector in RN2
and W ∈ RN2×N2

. Remark that the above
distribution is simply a Dirac mass at zero if W is the null matrix.

Theorem 3.1 Suppose that A1 and A2 hold. Under H0 : A0p = b0, as n→∞ the statistic

S = n

(
inf

m∈M0

‖∆(Q̂)m‖2 − inf
m∈M

‖∆(Q̂)m‖2
)

converges in distribution to a χ2
G(W ) as n→∞ where

W := ΠF∆(P )Σ∆(P )>ΠF (5)

The proof is given in Appendix.

This result does not rule out the possibility that W is the null matrix (the limit distribution
is 0 in this case), however, it is of no use to perform the test in this situation.

Theorem 3.1 alone is not sufficient to build a test for H0 since the limit distribution is
unknown in practice. Nevertheless, W can be estimated consistently under H0 using estimates
of ΠF , P and Σ.

- An estimator of Σ can be easily obtained by using the plug in principle. We replace in
(4) the parameters π and Q by the empirical versions π̂ and Q̂ defined in (3) . Since πi is
positive for all i = 1, ..., N , the resulting estimator Σ̂ is consistent.

- In [3], the authors show that a consistent estimator of P can be obtained if the problem
is identifiable. In our framework, the identifiability under H0 assumed in A1 reduces to

{P} =M0 ∩ Com(Q).

From Lemma 6.1 in [3], this condition is actually equivalent to ∆(Q)Φ0 being of full rank,
in which case

p̂ =
(

I−Φ0

(
Φ>0 ∆(Q̂)>∆(Q̂)Φ0

)−1
Φ>0 ∆(Q̂)>∆(Q̂)

)
p0 (6)

is a consistent estimator of p under H0.
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- In the proof of Theorem 3.1 (see Appendix) an estimator of ΠF is obtained by considering
the linear space

F̂ = Im(∆(Q̂)Φ) ∩ Im(∆(Q̂)Φ0)
⊥.

Under A1 and A2, we prove that the resulting projector ΠF̂ converges in probability to
ΠF as n→∞.

By plugging the estimates Σ̂, P̂ and ΠF̂ in (5), we build

Ŵ := ΠF̂∆(P̂ )Σ̂∆(P̂ )>ΠF̂ .

which is a consistent estimate of W under H0. As a result, the limit distribution of the statistic
S can be approximated by χ2

G(Ŵ ). This leads to the following result.

Corollary 3.2 Assume that A1 and A2 hold. Let û1−α denote the quantile of order 1 − α of
the χ2

G(Ŵ ) distribution for α ∈ (0, 1). If W 6= 0, we have under H0 : A0p = b0,

lim
n→∞

P(S > û1−α) = α.

Moreover, if ∀p′ ∈M0 : ∆(Q)p′ 6= 0, then lim
n→∞

P(S > û1−α) = 1.

The proof is given in Appendix.

Because the quantiles of the generalized χ2 distribution are not available in an analytic form,
they are approximated by Monte-Carlo methods, following [8].

4 Test on µ

The estimation of the transition kernel P is based on the property that P and Q commute,
which is due to the existence of an analytic function Gµ(·) such that Q = Gµ(P ) defined in
(1). However, no particular interest has been given so far to the actual value of Gµ(·), since the
knowledge of the distribution µ is not needed to build the test procedure on P̂ .

We emphasize that in our framework it is in general not possible to exactly recover the dis-
tribution µ, since different distributions µ and ν may lead to the same image Gν(P ) = Gµ(P ).
Nevertheless, questions regarding the number of jumps between consecutive observations, or
their distribution µ can naturally arise in practical cases. Suppose for instance that the obser-
vations Yi come from a continuous process (Xt)t≥0 observed at regular time intervals. Assuming
that nothing other than the Yi’s is known, one might be interested in checking if the underlying
process (Xt)t≥0 is a continuous time Markov chain. This hypothesis relies on the distribution
of the time intervals between two consecutive jumps of Xt. If the process (Xt)t≥0 is in fact
Markovian, the times between jumps are drawn from an exponential distribution, resulting in
Poisson random variables τk. In such a case, testing this hypothesis on µ reduces to verify if Gµ
is the generator function of a Poisson variable, that is, if Gµ(t) = eλ(t−1) for some λ > 0.
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In this section we consider hypotheses of the form H0 : µ = µ0. We assume that the model
is identifiable, in which case we can build a consistent estimator of p as follows

p̂ =
(

I−Φ
(
Φ>∆(Q̂)>∆(Q̂)Φ

)−1
Φ>∆(Q̂)>∆(Q̂)

)
p0.

From Theorem 3.2 in [3], we know that p̂ satisfies

√
n
(
p̂− p

)
=
√
n B

(
q̂ − q

)
+ oP (1), (7)

where B = Φ
[
Φ>∆(Q)>∆(Q)Φ

]−1
Φ>∆(Q)>∆(P ).

The procedure to perform a test on the hypothesis H0 : µ = µ0 relies on the comparison be-
tween Q̂ and Gµ(P̂ ). Since Q = Gµ(P ), the consistency of P̂ implies that Q̂−Gµ(P̂ ) converges in
probability to zero. Moreover, we can derive the asymptotic distribution of gµ(P̂ ) := vec(Gµ(P̂ )),
leading to the following result.

Proposition 4.1 If the time gaps distribution µ satisfies the moment condition Eµ(τ) < ∞,

then the matrix Γ =
∑

k≥1
(∑k

j=1(P
j−1)> ⊗ P k−j

)
µ(k) is well defined and

√
n
(
q̂ − gµ(P̂ )

) d−→ N
(

0,
(

I−ΓB
)
Σ
(

I−ΓB
)>)

.

The proof is given in Appendix.
Consequently we get, under H0,

n||q̂ − gµ0(P̂ )||2 d−→ χ2
G

(
(I−ΓB)Σ(I−ΓB)>

)
.

This result is not sufficient to build the statistical test on the distribution µ. So, we proceed sim-
ilarly as before by using consistent estimates of Γ, B and Σ to replace the unavailable true values
in order to approximate the limit variance. Then, the resulting test statistic has critical region
of the form {n||q̂− gµ0(P̂ )||2 > ũ1−α} where ũ1−α is the quantile of the χ2

G

(
(I−Γ̂B̂)Σ̂(I−Γ̂B̂)>

)
distribution.

5 Computational study

This section is devoted to a Monte Carlo simulation analysis for three hypothesis tests
proposed in this paper. We study two examples. The first one evaluates the performance of
the test procedure in a situation where X is a random walk. The second example deals with
identifiability conditions related to symmetry and bistochasticity.

5.1 Example 1

In this example, the initial Markov chain X behaves like a reflected random walk. The
chain takes values in some finite space having N = 10 states. Our ultimate aim is to test the
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assumption P = P0, where P0 is given by

P0 =



0 1 0 . . .

0.5 0 0.5
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0.5 0 0.5
. . . 0 1 0


. (8)

Assuming that nothing is known on the transition kernel P , we divide the hypothesis tests
on P into three steps. First, we want to test if the support of P is contained in that of P0,
i.e. if only the upper and lower diagonals of P have non-zero entries. Secondly, we investigate
the test procedure for the null hypothesis P = P0, under the assumption that the support of P
is restricted to that of P0. Finally, a third test is carried out for hypothesis on the distribution µ.

We perform the three tests for four sample sizes: n = 200, n = 500, n = 1000 and n = 2000.
Under the null hypothesis, we simulate the Markov chain X = (Xm)m∈N with transition matrix
P0 and the times gaps τk are drawn from a Poisson distribution µ = P(1). Thus, the available
observations are Yk := XTk where Tk =

∑k
j=1 τk for k = 1, . . . n. We recall that neither the

initial Markov chain X nor the time gaps τk are observed and the distribution µ of the τk is
unknown to the practitioner. The nominal significance level is fixed equal to α = 5% for all
numerical experiments.

Test 1.

We wish to test if the support of P is contained in that of P0, i.e. if only the upper and
lower diagonals of P have non-zero entries. The hypothesis is

H(1)
0 : supp(P ) ⊆ supp(P0),

and the model M(1) is maximal, i.e. it contains all stochastic matrices: M(1) = {vec(M) :
M1 = 1}. By Monte-Carlo method, the significance level is estimated for the four sample sizes
using 104 replications. Results are gathered in Table 4.

n 200 500 1000 2000

α̂
0.131

(0.0034)
0.064

(0.0024)
0.059

(0.0024)
0.056

(0.0023)

Table 1: Test for hypothesis H(1)
0 : supp(P ) ⊆ supp(P0) in the model M(1) = {vec(M) : M1 = 1}. The table

contains summary statistics of Monte Carlo simulation results obtained with P = P0 given in Eq. (8), for the

four different sample sizes n and for µ = P(1). The probability to reject H(1)
0 is estimated for a nominal size

α = 0.05, based on 104 replications. Standard errors are given in brackets.

Table 4 shows that the estimated significance level converges to the nominal size 5% as n in-
creases. It seems that the test is accurate as soon as the sample sizes is greater than 500.
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To evaluate the power of the test, we generate a Markov chain X with transition matrix
Pt = tP0 + (1 − t)C where C is a stochastic matrix with full support drawn randomly before-
hand (the same value of C is used during the whole simulation study). We estimate the power
for different values of t varying in (0, 1) with 0.1 increments. The empirical reject frequencies
under the alternative hypothesis are given in Figure 1.

Figure 1: Test of H(1)
0 : supp(P ) ⊆ supp(P0) in the model M(1) = {vec(M) : M1 = 1}. The graphs represent

the estimated power of the test under the alternative P = tP0 + (1 − t)C, for the four sample sizes n = 200
(top-left), n = 500 (top-right), n = 1000 (bottom-left) and n = 2000 (bottom-right). The power is estimated for
a nominal size α = 0.05, based on 104 replications.

For small sample sizes, e.g. n = 200, the estimated type I error probability (≈ 0.13 corre-
sponding to t = 1) is far from the nominal value α = 0.05. The test is not powerful in this
case as we can see that the power remains smaller than 0.4 for t ∈ (0, 1) and increases in a
neighborhood of 1, which indicates a bias. Nevertheless, the theoretical results are verified for
sample sizes as large as n = 500 and the test is no longer biased. Both the estimated powers
and significance level appear to converge to the expected values as n grows.

Test 2.

We investigate the test procedure for the hypothesis

H(2)
0 : P = P0,
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assuming that the support of P is restricted to that of P0. Note that in this case, the first and
last row of P are known since they contain only one non-zero element. The model is given by

M(2) =
{

vec(M) : supp(M) ⊆ supp(P0)
}
.

The estimated significance levels are given in Table 2.

n 200 500 1000 2000

α̂
0.255

(0.0044)
0.104

(0.0031)
0.075

(0.0026)
0.057

(0.0023)

Table 2: Test for the hypothesis H(2)
0 : P = P0 in the model M(2) = {vec(M) : supp(M) ⊆ supp(P0)}. The

table contains summary statistics of Monte Carlo simulation results obtained with P = P0 given in Eq. (8), for

the four considered sample sizes and for µ ∼ P(1). The probability of rejecting H(1)
0 is estimated for a significance

level α = 0.05, based on 104 replications.

The convergence seems slower in this case compared to the previous test procedure, with
an estimated significance level not quite in a two standard-deviation range of objective value
for n = 2000. The slow convergence is partly explained by the approximation of the limit
distribution by the generalized chi-squared χ2

G(Ŵ ) obtained with the estimated matrix Ŵ .
Nevertheless, the convergence in distribution of the test statistic to the χ2

G(W ) is clearly observed
in Figure 2.

Figure 2: Histograms of the 104 realizations of the test statistic for the test of H(2)
0 : P = P0 in the model

M(2) = {vec(M) : supp(M) ⊆ supp(P0)}. The histograms are obtained for n = 500 (left), n = 1000 (center) and
n = 2000 (right) with the density of the limit distribution χ2

G(W ) added in straight line.

Test 3.

We now focus on the distribution µ of the random sampling (τk)k. We want to test the
hypothesis

H(3)
0 : µ = µ0 = P(1),
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in the model M(2). This means that we perform the test to see if µ is a Poisson distribution
with parameter 1, knowing that the support of P is contained in the upper and lower diagonals.
This model satisfies the identifiability assumption A1.

We estimate the probability of rejecting the null hypothesis when the time gaps τk are
distributed from a Poisson distribution P(λ), with the parameter λ varying in (0.5, 1.5) with 0.1
increments. Table 6 provides the empirical rejection frequency under the null hypothesis λ = 1.
Figure 3 gives the estimated power of the test as function of the parameter λ.

n 200 500 1000 2000

α̂
0.269

(0.0044)
0.081

(0.0027)
0.056

(0.0023)
0.054

(0.0023)

Table 3: Test for the hypothesis H(3)
0 : µ = P(1) in the model M(2) = {vec(M) : supp(M) ⊆ supp(P0)}. The

table contains summary statistics of Monte Carlo simulation results obtained with P = P0 for the four sample
sizes under the null hypothesis. The nominal size of the test is α = 0.05, based on 104 replications.

Figure 3: Test for the hypothesis H(3)
0 : µ = P(1) in the model M(2) = {vec(M) : supp(M) ⊆ supp(P0)}. The

graphs represent the estimated power under the alternative µ = P(λ), for λ in (0.5, 1.5) and for n = 200 (top-left),
n = 500 (top-right), n = 1000 (bottom-left) and n = 2000 (bottom-right). The power is estimated for a nominal
size α = 0.05, based on 104 replications.

The power of the test is not satisfactory for n = 200 but it increases significantly with n.
Although the time gaps are not observed, this simulation confirms that performing a goodness-
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of-fit test on their distribution is still possible in this framework. In particular, the intensity
of the process assuming a Poisson distribution can be recovered from the indirect observations.
The hypothesis test turns out to be rather satisfactory provided the number of observations is
sufficient.

5.2 Example 2

In this example, we consider a four-state Markov chain X with transition matrix P and we
are interested in testing whether P is doubly-stochastic, and ultimately, symmetric. We assume
X can only take 4 different values, the true transition matrix of X is chosen as

P = P0 =


0.8 0 0.1 0.1
0.2 0.4 0.3 0.1
0 0.1 0.2 0.7
0 0.5 0.4 0.1

 . (9)

Remark that P0 is doubly-stochastic but not symmetric. Thus, testing if P is doubly-stochastic
aims to measure the accuracy of the test under the null hypothesis while the test on the symme-
try should evaluate the power. To avoid the technical considerations of the identifiability under
the null hypothesis (assumption A1), we will assume that the diagonal entries of P are known.
This condition ensures the problem to be identifiable since, while the bistochasticity certainly
provides some information on P , it does not help making the problem identifiable. This is due
to the fact that the bistochasticity property (and symmetry as a matter of fact) is preserved
by the transformation Q = Gµ(P ). In particular, this hypothesis could be tested directly on
Q. Nevertheless, this example shows that the test can be carried out successfully on P in this
context.

In this example, the initial model M is of dimension 8 as it contains all stochastic matrices
with fixed diagonal. The first hypothesis (bistochasticity) reduces the model dimension to 5 while
the symmetry assumption only preserves 2 degrees of freedom. As previously, we perform the
tests for four sample sizes: n = 200, n = 500, n = 1000 and n = 2000. Under the null hypothesis,
we simulate the Markov chain X = (Xm)m∈N with transition matrix P0 and the times gaps τk
are drawn from a Poisson distribution µ = P(1). Only the sequence Y = (XTk)k=1,...,n, with

Tk =
∑k

j=1 τk, is observed and the distribution µ of the τk is unknown to the practitioner. The
nominal significance level is fixed equal to α = 5% for all numerical experiments.

Test 1.

We wish to test if P is bistochastic, knowing its diagonal entries. The initial model M(1)

and the model under H(1)
0 are given by

M(1) : {vec(M) ∈ R16 : M1 = 1, diag(M) = diag(P0)}

M(1)
0 : {vec(M) ∈ R16 : M1 = M>1 = 1,diag(M) = diag(P0)}

By Monte-Carlo method, the significance level is estimated for the four sample sizes using 104

replications. Results are gathered in Table 4.
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n 200 500 1000 2000

α̂
0.050

(0.0022)
0.043

(0.0020)
0.045

(0.0020)
0.046

(0.0021)

Table 4: Test for hypothesis H(1)
0 : “P is bistochastic” in the model M(1) = {vec(M) : M1 = 1, diag(M) =

diag(P0)}. The table contains summary statistics of Monte Carlo simulation results obtained with P = P0 given

in Eq. (9), for the four different sample sizes n and for µ = P(1). The probability to reject H(1)
0 is estimated for

a nominal size α = 0.05, based on 104 replications, with standard errors in brackets.

The estimated significance level converges to the nominal size 5% as n increases. The test is
surprisingly accurate for a small sample size n = 200, although the extreme precision in this case
is probably only coincidental. For larger sample sizes, the significance level seems to stabilize
around its nominal value.

Test 2.

We perform a test on the symmetry of P , considering the null hypothesis H(2)
0 : P = P>. In

this example, we assume that P is known to be bistochastic. We thus define

M(2) =M(1)
0 = {vec(M) : M1 = M>1 = 1, diag(M) = diag(P0)}.

The constrained model, i.e. the model under H(2)
0 is given by

M(2)
0 =

{
vec(M) : M1 = 1,M = M>

}
.

Because the true value P = P0 is not symmetric, this simulation study evaluates the power of
the test in this particular framework. The estimated values are given in Table 2.

n 200 500 1000 2000

β̂
0.413

(0.0049)
0.916

(0.0028)
0.995

(0.0007)
1

(0)

Table 5: Test for the hypothesis H(2)
0 : P = P> in the model M(2) = {vec(M) : M1 = M>1 = 1, diag(M) =

diag(P0)}. The table contains summary statistics of Monte Carlo simulation results obtained with P = P0 given
in Eq. (9), for the four considered sample sizes and for µ ∼ P(1). The power of the test is estimated for a
significance level α = 0.05, based on 104 replications.

The result are quite satisfactory for middle sample sizes with the test procedure rightfully
ruling out the symmetry of P in more than 91% of the cases from n = 500, and more than 99%
of the time for n ≥ 1000.
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Test 3.

We are now interested in knowing if the distribution µ of the random sampling (τk)k is
Poisson distributed. We are thus interested in the null hypothesis

H(3)
0 : µ = µ0 = P(1).

We assume here that P is known to be bistochastic, choosing the model

M(3) =M(1)
0 = {vec(M) ∈ R16 : M1 = M>1 = 1, diag(M) = diag(P0)}.

The identifiability assumption, necessary for this procedure, is thus verified. The results are
very similar to that of the previous example. For instance, the significance level gets close to its
nominal size α = 0.05 for relatively small samples, as illustrated in Table 3.

n 200 500 1000 2000

α̂
0.056

(0.0023)
0.040

(0.0019)
0.0042

(0.0020)
0.048

(0.0021)

Table 6: Test for the hypothesis H(3)
0 : µ = P(1) in the model M(3) = {vec(M) : M1 = M>1 = 1, diag(M) =

diag(P0)}. The table contains summary statistics of Monte Carlo simulation results obtained with P = P0 for the
four sample sizes under the null hypothesis. The nominal size of the test is α = 0.05, based on 104 replications.

The significance level is satisfactory for n = 200 but only seems to stabilize for greater sample
sizes. Here again, this simulation confirms that, while the time gaps are not observed, we are
still able to extract some information on their distribution.

6 Conclusion

We develop an hypothesis testing methodology on the transition matrix P and the distri-
bution µ of time gaps in a Markovian model with random sampling. The original contribution
consists in the construction of a testing procedure for affine hypothesis on P in this framework
as well as a test on the distribution µ of the observation times. This setting requires additional
information on P to make the model identifiable. The information is expressed in the form of
affine constraints on P , thus extending the framework considered in [3] in which P is assumed
to be sparse.

We show that the different forms of information on P , formalized via affine constraints, can
be sufficient to recover the true distribution µ of the time gaps, or at least to build a consistent
testing procedure on specific values of µ. The simulation study confirms that a goodness-of-fit
test on µ can be carried out successfully despite the fact that the time gaps τk are not observed.
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7 Appendix

Proof of Theorem 3.1. We use the fact that, for A an affine subset of an Euclidean space,

inf
a∈A
‖a‖2 = ‖(I−ΠAlin

)a0‖2,

for all a0 ∈ A, with ΠAlin
the orthogonal projector onto Alin = {a − a′ : a, a′ ∈ A}. Define the

linear sets Ê = Im(∆(Q̂)Φ) and Ê0 = Im(∆(Q̂)Φ0), we get

inf
m∈M0

‖∆(Q̂)m‖2 − inf
m∈M

‖∆(Q̂)m‖2 = ‖(I−ΠÊ0
)∆(Q̂)m0‖2 − ‖(I−ΠÊ)∆(Q̂)m0‖2

for any m0 in M0 and in particular, for m0 = p under H0. Since Ê0 ⊆ Ê, the Pythagorean
theorem yields, under H0,

inf
m∈M0

‖∆(Q̂)m‖2 − inf
m∈M

‖∆(Q̂)m‖2 = ‖(ΠÊ −ΠÊ0
)∆(Q̂)p‖2 = ‖ΠF̂∆(Q̂)p‖2,

setting F̂ = Ê ∩ Ê⊥0 . Write ΠF̂∆(Q̂)p = ΠF∆(Q̂)p+ (ΠF̂ −ΠF )∆(Q̂)p, we have

√
n ΠF∆(Q̂)p = −

√
n ΠF∆(P )q̂

d−→ N
(
0,ΠF∆(P )Σ∆(P )>ΠF

)
,

yielding n‖ΠF∆(Q̂)p‖2 d−→ χ2(W ). So, to prove the result, it remains to show that

n
(
‖ΠF∆(Q̂)p‖2 − ‖ΠF̂∆(Q̂)p‖2

)
= oP (1).

Since
√
n‖∆(Q̂)p‖ = OP (1), it suffices to show that ΠF̂ converges in probability to ΠF in view

of

n
(
‖ΠF∆(Q̂)p‖2 − ‖ΠF̂∆(Q̂)p‖2

)
≤ n‖(ΠF −ΠF̂ )∆(Q̂)p‖

(
‖ΠF∆(Q̂)p‖+ ‖ΠF̂∆(Q̂)p‖

)
≤ ‖|ΠF −ΠF̂ ‖| × 2n‖∆(Q̂)p‖2,

where ‖|.‖| denotes the operator norm. Recall that ΠF̂ = ΠÊ − ΠÊ0
with Ê = Im(∆(Q̂)Φ) and

Ê0 = Im(∆(Q̂)Φ0). By A1, ∆(Q)Φ0 is of full rank and

ΠÊ0
= ∆(Q̂)Φ0

(
Φ>0 ∆(Q̂)>∆(Q̂)Φ0

)−1
Φ>0 ∆(Q̂)>

clearly converges in probability to ΠE0 . Moreover, we know by A2 that dim(Ê) = Im(∆(Q̂)Φ) ≤
dim(E), so that the convergence of ∆(Q̂)Φ to ∆(Q)Φ is sufficient for ΠÊ to converge to ΠE .
Thus, ΠF̂ converges in probability to ΠF as n→∞ which ends the proof.

Proof of Corollary 3.2. By continuity of the map (ε,W ) 7→ ε>Wε, Slutsky’s lemma ensures
the convergence in distribution of χ2

G(Ŵ ) to χ2
G(W ) and therefore, the convergence of the

estimated quantile û1−α to the true quantile u1−α of the χ2
G(W ) distribution. It follows that
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limn→∞ P(S > û1−α) = P(S > u1−α) = α. Now, if ∀p′ ∈M0 : ∆(Q)p′ 6= 0, we show easily that
infm∈M0 ‖∆(Q̂)m‖2 does not converge to zero as n grows to infinity, while we still have

inf
m∈M

‖∆(Q̂)m‖2 ≤ ‖∆(Q̂)p‖2 P−→ 0.

Hence, S = n
(

infm∈M0 ‖∆(Q̂)m‖2 − infm∈M ‖∆(Q̂)m‖2
)

diverges in probability in this case,
and thus the result follows.

Proof of Proposition 4.1. To show that the matrix Γ exists, it suffices to show that the series is
normally convergent. We use that ‖|(P j−1)> ⊗ P k−j‖| ≤ ‖|P j−1‖| ‖|P k−j‖| ≤ 1 to get

∑
k≥1

( k∑
j=1

‖|(P j−1)> ⊗ P k−j‖|
)
µ(k) ≤

∑
k≥1

kµ(k) = Eµ(τ),

which is finite by assumption. We now compute the differential of gµ at P . For H ∈ RN×N such
that ‖|H‖| ≤ 1, we have

lim
t→0

1

t

(
Gµ(P + tH)−Gµ(P )

)
= lim

t→0

1

t

∑
k≥1

[
(P + tH)k − P k

]
µ(k)

= lim
t→0

1

t

[∑
k≥1

t

( k∑
j=1

P j−1HP k−j
)
µ(k) + o(t)

]

=
∑
k≥1

( k∑
j=1

P k−jHP j−1
)
µ(k).

Applying the vectorization yields, in view of vec(ABC) = (C> ⊗A) vec(B),

lim
t→0

1

t

(
gµ(P + tH)− gµ(P )

)
=

∑
k≥1

( k∑
j=1

vec
(
P k−jHP j−1

))
µ(k)

=

[∑
k≥1

( k∑
j=1

(P j−1)> ⊗ P k−j
)
µ(k)

]
vec(H)

= Γ vec(H).

It follows from Cramer’s theorem that,
√
n
(
gµ(P̂ )− q

)
=
√
n Γ
(
p̂− p

)
+ oP (1).

Using (7), we deduce that
√
n(gµ(P̂ )− q) =

√
n ΓB(q̂ − q) + oP (1), which leads to

√
n
(
q̂ − gµ(P̂ )

)
=
√
n
(

I−ΓB
)
(q̂ − q) + oP (1),

and the result follows.
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