Double Poisson gebras up to homotopy are pre-Calabi-Yau algebras

Johan Leray

GdR Algebraic Topology and Application Meeting - 25 October 2022

Nantes University

Contents

0 - Introduction

- 1 Double Poisson gebra up to homotopy
- 2 Pre-Calabi-Yau algebra

3 – Main theorem and consequences

0 – Introduction

What is noncommutative (derived) Geometry?

To an associative algebra A, one can associate a family of schemes called representation schemes

$$\operatorname{\mathsf{Rep}}_n(A): C \mapsto \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{AssAlg}}_k}(A, \mathscr{M}_n(k) \otimes_k C).$$

The Kontsevich–Rosenberg principle says that a noncommutative Poisson structure on A is a structure such that the affine scheme $\operatorname{Rep}_n(A)$ is Poisson.

(Shifted) Poisson Geometry

In algebraic (commutative) geometry, there is two ways to define a Poisson structure:

Polyvector field

field satisfying a Maurer–Cartan equation

Bracket

Poisson structure on a Poisson structure is a bivector commutative algebra is a bracket $\{-,-\}:A^{\otimes 2}\to A$ which satisfies some relations. encoded by the operad Pois

In derived (commutative) geometry:

Shifted Polyvector field

Shifted Poisson structure is a shifted bivector field satisfying a Maurer-Cartan equation [Calaque et al.]

Brackets

Homotopy Poisson structure is encoded by the operad $Pois_{\infty}$, resolution of Pois.

These two definitions coincide. [Melani]

Noncommutative Poisson structure

In 2006, Van den Bergh define the noncommutative Poisson structure, called *double Poisson structure*:

NC Polyvector field

NC Poisson structure is a nc bivector field satisfying a Maurer–Cartan equation.

Double bracket

Double Poisson structure on a associative algebra is a double bracket $\{\!\{-,-\}\!\}:A^{\otimes 2}\to A^{\otimes 2}$ which satisfies some relations. encoded by a properad

These two structures, which induce Poisson structure on $Rep_n(A)$, coincide if the underlying associative algebra is smooth.

Derived Noncommutative Poisson structure

There is two ways to define what is a derived noncommutative Poisson structure :

"Shifted NC Polyvector field"
Generalisation of nc bivector
field satisfying a Maurer–Cartan
equation

→ pre-Calabi–Yau algebra
(Kontsevich–Vlassopoulos)

Double brackets
Homotopy double Poisson structure $\longrightarrow \mathrm{DPois}_{\infty}\text{-}\mathbf{gebras}$ (L.)

Do these two structures coincide?

Yeung (and also Pridham) shown that a pre-Calabi–Yau structure on an associative algebra induces a shifted Poisson structure on its derived representation scheme (defined by Berest *et al.*).

Goal of this talk

The goal of this talk is to explain the following theorem

Theorem [L.-Vallette]

pre-Calabi-Yau algebras = curved homotopy double Poisson gebras.

This theorem follows some results in this direction:

- Iyudu-Kontsevich-Vlassopoulos shown that double Poisson gebras are pre-Calabi-Yau algebras.
- Fernández-Herscovich shown that infinity double Poisson gebras (defined by Schedler) and quasi-double Poisson gebras (defined by Van den Bergh) are pre-Calabi-Yau algebras.

This properadic description of pre-Calabi–Yau algebras has also some important consequences.

1 – Double Poisson gebra up to

homotopy

Double Poisson gebra

Definition (Double Poisson gebra)

A double Poisson gebra amounts to a data $(A, \mu, \{\!\{-, -\}\!\})$ made up of a dg associative algebra (A, μ) and a morphism called the double bracket

$$\{\!\{-,-\}\!\}:A\otimes A\longrightarrow A\otimes A$$
,

satisfying, for any $a, b, c \in A$

$$\{a,b\} = \pm \{b,a\}'' \otimes \{b,a\}'$$

$$\{\!\{a,\mu(b,c)\}\!\} = \pm \mu(b,\{\!\{a,c\}\!\}') \otimes \{\!\{a,c\}\!\}'' + \{\!\{a,b\}\!\}' \otimes \mu(\{\!\{a,b\}\!\}'',c)$$

and a relation called double Jacobi.

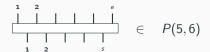
This structure is encoded by a properad.

What is a properad?

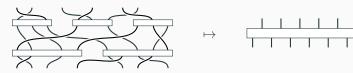
Definition (Properad [Vallette])

A properad is an algebra over the monad $\mathscr G$ of connected directed graphs, which is equivalent to a monoid in the category of $\mathfrak S$ -bimodules with the monoidal product \boxtimes .

A properad $P=\{P(s,e)\}_{s,e\in\mathbb{N}^*}$ is a \mathfrak{S} -bimodule where an element of P(s,e) can be represented by



equipped with a product $P \boxtimes P \longrightarrow P$:



Two examples of properads

For A a dg vector space :

$$\mathsf{End}_{\mathcal{A}} = \left\{\mathsf{Hom}_{k}(\mathcal{A}^{\otimes e}, \mathcal{A}^{\otimes s})\right\}_{s,e \in \mathbb{N}^{*}}$$

Proposition

A double Poisson structure on a dg vector space A corresponds to a morphism of properads $DPois \rightarrow End_A$.

Double Poisson gebra up to homotopy

A double Poisson structure up to homotopy is encoded by a cofibrant replacement of $\mathrm{DPois}.$

Theorem [L.]

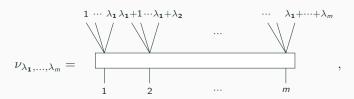
The properad DPois is Koszul. Then the $\mathit{minimal}$ cofibrant replacement of DPois is

 $\mathrm{DPois}_{\infty} \longrightarrow \mathrm{DPois}.$

Properad DPois_{∞} : the generators

The dg properad $\mathrm{DPois}_{\infty} = \left(\mathscr{G}\left(\mathrm{s}^{-1}\overline{\mathrm{DPois}}^i\right), \partial_{\Delta}\right)$ is the quasi-free properad constructed on the *dg coproperad* DPois^i :

• generated by

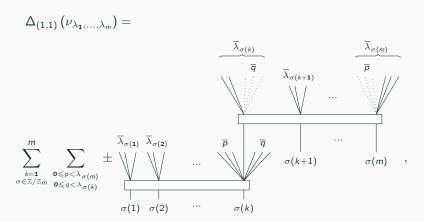


with $\lambda_i \geqslant 1$ and with the cyclic symmetry

$$\nu_{\lambda_1,\ldots,\lambda_m}=\pm\nu_{\lambda_2,\ldots,\lambda_m,\lambda_1}.$$

Properad DPois_{∞} : the differential

 \bullet the differential is constructed with the partial coproduct $\Delta_{(1,1)}$ of $\mathrm{DPois}^i.$



Remark about coproperad

The \mathfrak{S} -bimodule DPois^i is a *coproperad*, i.e. a comonoid for the monoidal structure $\boxtimes:\mathrm{DPois}^i$ is equipped with a coproduct

$$\Delta : \mathrm{DPois}^i \longrightarrow \mathrm{DPois}^i \boxtimes \mathrm{DPois}^i$$

Remark

The coproduct of DPois is difficult to describe ...

Two descriptions of $DPois_{\infty}$ gebras

Definition (Double Poisson structure up to homotopy)

A double Poisson structure up to homotopy on a dg vector space A is a morphism of properads $\mathrm{DPois}_{\infty} \longrightarrow \mathsf{End}_A$.

Proposition - Rosetta Stone [Vallette]

$$\mathsf{Hom}_{\mathit{dg properads}}(\mathrm{DPois}_{\infty},\mathsf{End}_{\mathit{A}})\cong\mathsf{MC}(\mathfrak{DPois})$$

where $\mathfrak{D}\mathfrak{Pois}$ is the Lie-admissible algebra

$$\mathfrak{DPois} = \left(\prod_{n,m \geqslant 1} \mathsf{Hom}_{\mathfrak{S}_m^{\mathsf{op}} \times \mathfrak{S}_n} \left(\overline{\mathrm{DPois}}^{\mathsf{i}}(m,n), \mathsf{Hom} \left(A^{\otimes n}, A^{\otimes m} \right) \right), \partial, \star \right)$$

where
$$f \star g = \overline{\mathrm{DPois}}^{\mathsf{i}} \xrightarrow{\Delta_{(1,1)}} (\overline{\mathrm{DPois}}^{\mathsf{i}})^{\boxtimes 2} \xrightarrow{f \boxtimes g} (\mathrm{End}_A)^{\boxtimes 2} \xrightarrow{\mu} \mathrm{End}_A$$

2 - Pre-Calabi-Yau algebra

First definition

Definition ("Almost pre-Calabi-Yau algebra")

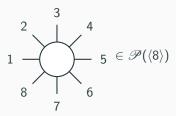
A structure of almost pre-Calabi–Yau algebra on a dg vector space A is a cyclic A_{∞} -structure on $sA \oplus A^*$ equipped with its canonical degree -1 skew-symmetric pairing such that A is a sub A_{∞} algebra.

Cyclic non symmetric operad

Definition (Cyclic non symmetric operad)

A cyclic non-symmetric operad is an algebra over the monad of planar trees.

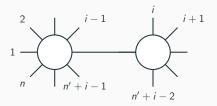
Let \mathscr{P} a cyclic ns operad, that is a collection of dg vector spaces $\mathscr{P}(\langle n \rangle)$ with an action of $\mathbb{Z}/n\mathbb{Z}$ where elements are represented by corollas . . .



Cyclic non symmetric operad

with several compositions maps

$$\circ_i:\ \mathscr{P}(\langle n\rangle)\otimes\mathscr{P}(\langle n'\rangle)\to\mathscr{P}(\langle n+n'-2\rangle)\ ,\ \text{for}\ n\geqslant 2\ ,\ n'\geqslant 1\ ,\ \text{and}\ 2\leqslant i\leqslant n\ .$$



Remark

A cyclic operad is not a monoid.

Two examples of cyclic operads

• Let $(V, d_V, \langle \; , \rangle)$ be a differential graded vector space equipped with a symmetric bilinear form of degree 0 . Its *endomorphism cyclic non-symmetric operad &nd_V* is

$$\operatorname{End}_V(\langle n \rangle) = V^{\otimes n}$$

by the partial composition map

$$\circ_i (a_1 \otimes \cdots \otimes a_n, b_1 \otimes \cdots \otimes b_{n'}) =$$

$$\pm \langle a_i, b_1 \rangle a_1 \otimes \cdots \otimes a_{i-1} \otimes b_2 \otimes \cdots \otimes b_{n'} \otimes a_{i+1} \otimes \cdots \otimes a_n .$$

• Cyclic associative : $\mathcal{A}(\langle n \rangle) = k\mu_n$ with trivial $\mathbb{Z}/n\mathbb{Z}$ action, for $n \geqslant 3$, and $\mathcal{A}(\langle 2 \rangle) = \mathcal{A}(\langle 1 \rangle) = 0$.

It forms a cyclic non-symmetric operad once equipped with the following partial composition maps

$$\mu_n \circ_i \mu_{n'} = \mu_{n+n'-2} .$$

Algebra over a cyclic ns operad

Definition (Algebra over a cyclic non-symmetric operad)

An algebra structure over a cyclic non-symmetric operad $\mathscr P$ on a differential graded vector space $(V,d_V,\langle\;,\;\rangle)$ equipped with a symmetric bilinear form is given by the data of morphism of cyclic non-symmetric operads $\mathscr P\to\mathscr End_V$.

Example

Algebras over the cyclic non-symmetric operad \mathscr{A} are cyclic associative algebras, which are differential graded associative algebras (V, d_V, \cdot) equipped with a symmetric bilinear form $\langle \ , \ \rangle$ such that

$$\langle a \cdot b, c \rangle = \langle a, b \cdot c \rangle \quad \forall a, b, c \in V.$$

Dual of As

To the cyclic operad \mathcal{A}_{i} , we associate its (anti)-cyclic cooperad dual \mathcal{A}_{i}^{i} , i.e. the cyclic module $\mathcal{A}_{i}^{i}(\langle n \rangle) = ks^{n-2}$, with partial decompositions maps

$$\delta_{i}: \mathcal{A}^{i}(\langle n+n'-2\rangle) \to \mathcal{A}^{i}(\langle n\rangle) \otimes \mathcal{A}^{i}(\langle n'\rangle)$$

$$\downarrow^{2}$$

$$\downarrow^{1}$$

$$\downarrow^{2}$$

$$\downarrow^{4}$$

$$\downarrow^{5}$$

$$\downarrow^{6}$$

$$\downarrow^{4}$$

$$\downarrow^{6}$$

$$\downarrow^{6}$$

$$\downarrow^{6}$$

satisfying some relations.

Cyclic A_{∞} algebra

Let $(V, d_V, \langle -, - \rangle)$ be a dg vector space with a symmetric bilinear form.

A cyclic A_{∞} structure on V is a Maurer–Cartan element of the following Lie algebra

$$\mathsf{MC}\left(\prod_{n\geqslant 1}\mathsf{Hom}_{\mathbb{Z}/n\mathbb{Z}}\left(\mathscr{A}^{\mathsf{i}}(\langle n\rangle),\mathscr{E}nd_{V}(\langle n\rangle)\right),\partial,\{-,-\}\right)$$

where

$$\{\mu,\nu\} = \sum_{i=2}^{n} \circ_i (\mu \otimes \nu) \delta_i - (-1)^{|\mu||\nu|} \sum_{j=2}^{n'} \circ_j (\nu \otimes \mu) \delta_j$$

Cyclic A_{∞} algebra on $sA \oplus A^*$

Let $sA \oplus A^*$ equipped with its canonical degree -1 skew-symmetric pairing $\langle f, sx \rangle = (-1)^{|f|} f(x)$.

Proposition

The shifted Lie algebra controlling cyclic A_{∞} structures is isomorphic to

$$s^{2} \prod_{N \geqslant 3 \atop N = n + m} \left(\bigoplus_{1 \leqslant m < N} \left(\bigoplus_{\lambda_{1} + \dots + \lambda_{m} = n} A \otimes ((sA)^{*})^{\otimes \lambda_{1}} \otimes \dots \otimes A \otimes ((sA)^{*})^{\otimes \lambda_{m}} \right)^{\mathbb{Z}/m\mathbb{Z}} \right)$$

$$\oplus \left(((sA)^*)^{\otimes N} \right)^{\mathbb{Z}/N\mathbb{Z}}$$

with the bracket given by $\left\{ \mathrm{s}^2 a_1 \otimes \cdots \otimes a_N, \mathrm{s}^2 b_1 \otimes \cdots \otimes b_{N'} \right\} =$

$$s^{2} \sum_{i=2}^{N} \pm \langle a_{i}, b_{1} \rangle a_{1} \otimes \cdots \otimes a_{i-1} \otimes b_{2} \otimes \cdots \otimes b_{N'} \otimes a_{i+1} \otimes \cdots \otimes a_{N}$$
$$+ s^{2} \sum_{j=2}^{N'} \pm \langle b_{j}, a_{1} \rangle b_{1} \otimes \cdots \otimes b_{j-1} \otimes a_{2} \otimes \cdots \otimes a_{N} \otimes b_{j+1} \otimes \cdots \otimes b_{N'} ,$$

Necklace Lie algebra

The generalised necklace Lie algebra associated to the dg vector space A is the Lie algebra \mathfrak{nect}_A with the underlying vector space

$$\operatorname{s} \prod_{N \geqslant 3 \atop N = n+m} \left(\bigoplus_{1 \leqslant m < N} \left(\bigoplus_{\lambda_1 + \dots + \lambda_m = n} A \otimes ((\operatorname{s} A)^*)^{\otimes \lambda_1} \otimes \dots \otimes A \otimes ((\operatorname{s} A)^*)^{\otimes \lambda_m} \right)^{\mathbb{Z}/m\mathbb{Z}} \right)$$

Crucial point

The specific form of $sA \oplus A^*$ implies that the Lie bracket of \mathfrak{nect}_A splits into two.

X*Y is the summand of $\{X,Y\}$ made up of the terms where one applies the linear pairing $\langle f, \mathrm{s} x \rangle$, where $f \in A^*$ comes from X and $x \in A$ comes from Y.

So the Lie bracket comes from the Lie-admissible product *:

$${X, Y} = X * Y - (-1)^{|X||Y|} Y * X$$
.

Curvature Necklace Lie algebra

The curvature necklace Lie-admissible algebra associated to the dg vector space A is (cneck, d, *) with the underlying dg vector space

$$\operatorname{s} \prod_{\substack{N \geq 1 \\ N = n + m}} \left(\bigoplus_{1 \leq m < N} \left(\bigoplus_{\lambda_1 + \dots + \lambda_m = n} A \otimes ((\operatorname{s} A)^*)^{\otimes \lambda_1} \otimes \dots \otimes A \otimes ((\operatorname{s} A)^*)^{\otimes \lambda_m} \right)^{\mathbb{Z}/m\mathbb{Z}} \right) .$$

Remark

The extension of the product from $N\geqslant 3$ to $N\geqslant 1$ corresponds to the surjection $c \mathcal{A}^i \twoheadrightarrow \mathcal{A}^i$ where $c \mathcal{A}^i$

Definition (Almost pre-Calabi-Yau algebra)

A structure of an almost pre-Calabi–Yau algebra on a graded vector space A is a Maurer–Cartan element in the curved necklace Lie-admissible algebra

Higher Hochschild complex

Recall that there is a canonical inclusion

$$\begin{array}{ccc}
W \otimes V^* & \hookrightarrow & \operatorname{Hom}(V, W) \\
 & \times \otimes f & \mapsto & (v \mapsto xf(v)),
\end{array} \tag{1}$$

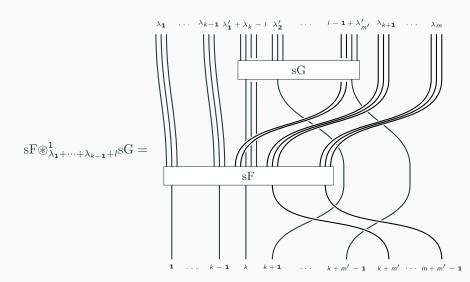
Definition (Higher Hochschild complex)

The higher Hochschild complex associated to a dg vector space A is the Lie-admissible algebra $\mathfrak{hhc}_A = (hhc, \partial, \circledast)$ where hhc is

$$\mathrm{s} \prod_{N \geq 1 \atop N = n+m} \left(\bigoplus_{1 \leqslant m < N} \mathsf{Hom}_{\mathbb{Z}/m\mathbb{Z}} \left(\bigoplus_{\lambda_1 + \dots + \lambda_m = n} \bigotimes_{j=1}^m (\mathrm{s}A)^{\otimes \lambda_j}, A^{\otimes m} \right) \right) \ ,$$

and
$$sF \circledast sG = \sum_{i=1}^{n} sF \circledast_{i}^{1} sG$$
.

Lie admissible product of \mathfrak{hhc}_A : an illustration



Pre-Calabi-Yau algebra

Proposition

The inclusion (1) induced the following inclusion of Lie admissible algebras

$$\operatorname{cneck}_A \hookrightarrow \operatorname{hhc}_A$$
.

Definition (Pre-Calabi-Yau algebra)

A structure of a pre-Calabi–Yau algebra on a graded vector space A is a Maurer–Cartan element in the higher Hochschild Lie-admissible algebra \mathfrak{hhc}_A ,

3 - Main theorem and

consequences

Main theorem

Theorem (L.-Vallette)

For any dg vector space A, there is a canonical and functorial isomorphism of dg Lie-admissible algebras

$$\mathfrak{cDPois}_A \cong \mathfrak{hhc}_A$$
 .

Remark

The letter $\mathfrak c$ of $\mathfrak c\mathfrak D\mathfrak P\mathfrak o\mathfrak i\mathfrak s_A$ denotes the addition of a curvature in the double Poisson up to homotopy structure. Also, we have the embedding of Lie-admissible algebras $\mathfrak D\mathfrak P\mathfrak o\mathfrak i\mathfrak s_A\hookrightarrow\mathfrak c\mathfrak D\mathfrak P\mathfrak o\mathfrak i\mathfrak s_A$.

"Proof" of the main theorem -1

Recall that

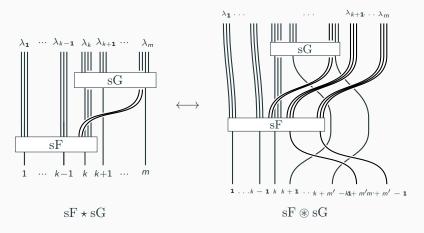
$$cDPois_{\mathcal{A}} = \prod_{m\geqslant 1, n\geqslant 0} \mathsf{Hom}_{\mathfrak{S}_{m}^{\mathsf{op}} \times \mathfrak{S}_{n}} \left(cDPois^{\mathsf{i}}(m, n), \mathsf{Hom} \left(A^{\otimes n}, A^{\otimes m} \right) \right),$$

where $\mathrm{cDPois}^{\mathsf{i}}$ is cogenerated by $\nu_{\lambda_1,\ldots,\lambda_m}$ of degree $\lambda_1+\cdots+\lambda_m-1$

with $\nu_{\lambda_1,...,\lambda_m} = \pm \nu_{\lambda_2,...,\lambda_m,\lambda_1}$ then

$$cDPois_A \cong \operatorname{s} \prod_{N \geqslant 1 \atop N = n+m} \left(\bigoplus_{1 \leqslant m < N} \operatorname{\mathsf{Hom}}_{\mathbb{Z}/m\mathbb{Z}} \left(\bigoplus_{\sum \lambda_i = n} \bigotimes_{j=1}^m (\operatorname{s}A)^{\otimes \lambda_j}, A^{\otimes m} \right) \right) = hhc_A$$

"Proof" of the theorem - 2



The most difficult part of the proof is to check the signs.

Why this result is nice?

The description of pre-Calabi–Yau structure in terms of properadic ones gives us a **notion of** ∞ -**morphism between pre-Calabi–Yau algebras**, using [Hoffbeck–L.–Vallette 2020].

Remark

Kontsevich—Takeda—Vlassopoulos gave a notion of morphism between pre-Calabi—Yau algebras, but their first definition was "perfectible".

∞ -morphism of DPois_{∞} -gebras

A ∞ -morphism $f:(A,\alpha) \leadsto (B,\beta)$ of DPois_{∞} -gebras is a collection

$$\left\{f_{s,e}: \mathrm{DPois}^{\mathsf{i}}(s,e) \longrightarrow \mathsf{End}_{B}^{A}(s,e) = \mathsf{Hom}_{k}(A^{\otimes e}, B^{\otimes s})\right\}_{s,e \in \mathbb{N}^{*}}.$$

which satisfies $\partial(f) = f \triangleright \alpha - \beta \triangleleft f$, where

$$\beta \lhd f : \overline{\mathrm{DPois}}^{\mathsf{i}} \xrightarrow{\Delta_{(*)}} \overline{\mathrm{DPois}}^{\mathsf{i}} \lhd_{(*)} \mathrm{DPois}^{\mathsf{i}} \xrightarrow{\beta \lhd_{(*)} f} \mathrm{End}_{B} \lhd_{(*)} \mathrm{End}_{B}^{A} \longrightarrow \mathrm{End}_{B}^{A}$$

$$f\rhd\alpha\colon \overline{\mathrm{DPois}}^{\mathsf{i}} \xrightarrow{\ (*)^{\Delta}} \mathrm{DPois}^{\mathsf{i}}_{\ (*)}\rhd \overline{\mathrm{DPois}}^{\mathsf{i}} \xrightarrow{\ f_{(*)}\rhd\alpha} \mathsf{End}_{B\ (*)}^{A}\rhd \mathsf{End}_{A} \longrightarrow \mathsf{End}_{B}^{A}$$



Composition of two ∞-morphisms

The composite of ∞ -morphisms is defined by

$$g \odot f : \operatorname{DPois}^{\mathsf{i}} \xrightarrow{\Delta} \operatorname{DPois}^{\mathsf{i}} \boxtimes \operatorname{DPois}^{\mathsf{i}} \xrightarrow{g \boxtimes f} \operatorname{End}_{C}^{B} \boxtimes \operatorname{End}_{B}^{A} \longrightarrow \operatorname{End}_{C}^{A}$$
.

Proposition [Hoffbeck-L.-Vallette 2020]

Homotopy double Poisson gebras equipped with their ∞ -morphisms and the composite \odot form a category.

∞ -quasi-isomorphism

Definition (∞-quasi-isomorphim)

A ∞ -morphism f is a ∞ -quasi-isomorphism $f_{1,1}(I): A \to B$ is a quasi-isomorphism of dg vector space.

Homotopy Transfer Theorem [Hoffbeck-L.-Vallette 2020]

For any contraction of dg vector space A

$$h \subset (A, d_A) \stackrel{p}{\underset{i}{\longleftarrow}} (H, d_H)$$

and any homotopy double Poisson gebra structure on A, there exists homotopy double Poisson gebra structure on H and extensions of the chain maps i and p into ∞ -quasi-isomorphisms.

∞-quasi-isomorphism

Theorem [Hoffbeck-L.-Vallette 2022 ?]

Two homotopy double Poisson gebra structures (A, α) and (B, β) are ∞ -quasi-isomorphic if and only if they are related by a zig-zag of (strict) quasi-isomorphisms of homotopy double Poisson gebras:

$$\exists \infty \text{-quasi-isomorphism} \iff \exists \text{zig-zag of quasi-isomorphisms} \\ (A, \alpha) \xrightarrow{\sim} (B, \beta) \iff (A, \alpha) \xrightarrow{\sim} \cdot \xrightarrow{\sim} \cdot \xrightarrow{\sim} (B, \beta)$$

Extension to pre-Calaby-Yau algebras

All these notions/results extend to pre-Calabi–Yau algebras under assumption of completeness of the underlying dg vector space for a degree-wise decreasing filtration.

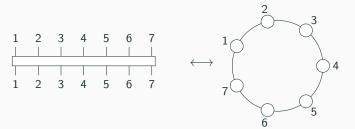
Description of the coproduct of DPoisⁱ: a new combinatorics

Recall that

the coproduct of DPoisⁱ is difficult to describe ...

... but we give a new underlying combinatoric for this description.

As $\mathrm{DPois}^i \cong \mathrm{DLie}^i \boxtimes \mathrm{Ass}^i$, one can just describe the coproduct of DLie^i . We encode the cyclic symmetry in the combinatorics.



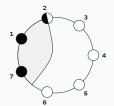
Elementary coloured cutting

Definition

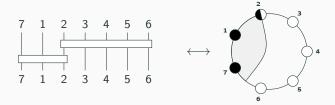
An *elementary coloured cutting* of a bangle is defined by the following two-steps construction.

Cutting choose a bead of the bangle and cut the bangle into two parts, that is draw a line starting from the bead, splitting it into two, to an edge between two beads, such that each half-bangle contains at least one bead.

Colouring colour the beads on the clockwise side of the half-bean in white and the other ones, as well as the entire sector, in black.



New combinatorics for partial coproduct of DLieⁱ



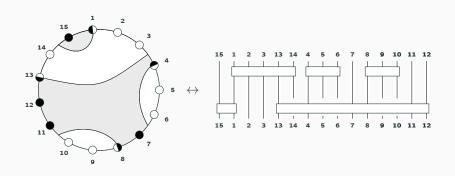
Proposition [L.-Vallette]

The terms appearing in the infinitesimal decomposition map of the coproperad DLieⁱ are in one-to-one correspondance with the elementary coloured cuttings of bangles.

New combinatorics for coproduct of DLie

Proposition [L.-Vallette]

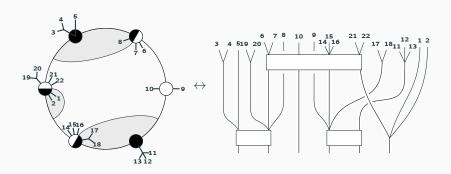
The various terms appearing in the decomposition map of the coproperad $\mathrm{DLie}^{\mathrm{i}}$ are in one-to-one correspondance with partitioned bangles.



New combinatorics for coproduct of DPoisⁱ

Proposition [L.-Vallette]

The various terms appearing in the decomposition map of the coproperad DPois^i are in one-to-one correspondance with hairy partitioned bangles.



Thanks for your attention.