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0 – Introduction



What is noncommutative (derived) Geometry ?

To an associative algebra A, one can associate a family of schemes called
representation schemes

Repn(A) : C 7→ HomAssAlgk(A,Mn(k)⊗k C ).

The Kontsevich–Rosenberg principle says that a noncommutative Poisson
structure on A is a structure such that the affine scheme Repn(A) is
Poisson.
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(Shifted) Poisson Geometry

In algebraic (commutative) geometry, there is two ways to define a
Poisson structure :

Polyvector field
Poisson structure is a bivector
field satisfying a Maurer–Cartan

equation

Bracket
Poisson structure on a

commutative algebra is a bracket
{−,−} : A⊗2 → A which
satisfies some relations.

encoded by the operad Pois

In derived (commutative) geometry :

Shifted Polyvector field
Shifted Poisson structure is a

shifted bivector field satisfying a
Maurer–Cartan equation

[Calaque et al.]

Brackets
Homotopy Poisson structure is
encoded by the operad Pois∞,

resolution of Pois.

These two definitions coincide. [Melani] 3



Noncommutative Poisson structure

In 2006, Van den Bergh define the noncommutative Poisson structure,
called double Poisson structure :

NC Polyvector field
NC Poisson structure is a nc
bivector field satisfying a
Maurer–Cartan equation.

Double bracket
Double Poisson structure on a
associative algebra is a double
bracket {{−,−}} : A⊗2 → A⊗2

which satisfies some relations.
encoded by a properad

These two structures, which induce Poisson structure on Repn(A),
coincide if the underlying associative algebra is smooth.
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Derived Noncommutative Poisson structure

There is two ways to define what is a derived noncommutative Poisson
structure :

"Shifted NC Polyvector field"
Generalisation of nc bivector

field satisfying a Maurer–Cartan
equation

−→ pre-Calabi–Yau algebra
(Kontsevich–Vlassopoulos)

Double brackets
Homotopy double Poisson

structure
−→ DPois∞-gebras

(L.)

Do these two structures coincide?

Yeung (and also Pridham) shown that a pre-Calabi–Yau structure on an
associative algebra induces a shifted Poisson structure on its derived
representation scheme (defined by Berest et al.).
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Goal of this talk

The goal of this talk is to explain the following theorem

Theorem [L.–Vallette]
pre-Calabi–Yau algebras = curved homotopy double Poisson gebras.

This theorem follows some results in this direction :

• Iyudu–Kontsevich–Vlassopoulos shown that double Poisson gebras
are pre-Calabi–Yau algebras.

• Fernández–Herscovich shown that infinity double Poisson gebras
(defined by Schedler) and quasi-double Poisson gebras (defined by
Van den Bergh) are pre-Calabi–Yau algebras.

This properadic description of pre-Calabi–Yau algebras has also some
important consequences.
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1 – Double Poisson gebra up to
homotopy



Double Poisson gebra

Definition (Double Poisson gebra)
A double Poisson gebra amounts to a data (A, µ, {{−,−}}) made up of a
dg associative algebra (A, µ) and a morphism called the double bracket

{{−,−}} : A⊗ A −→ A⊗ A ,

satisfying, for any a, b, c ∈ A

{{a, b}} = ±{{b, a}}′′ ⊗ {{b, a}}′

{{a, µ(b, c)}} = ±µ(b, {{a, c}}′)⊗ {{a, c}}′′ + {{a, b}}′ ⊗ µ({{a, b}}′′, c)

and a relation called double Jacobi.

This structure is encoded by a properad.
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What is a properad ?

Definition (Properad [Vallette])
A properad is an algebra over the monad G of connected directed
graphs, which is equivalent to a monoid in the category of S-bimodules
with the monoidal product �.

A properad P = {P(s, e)}s,e∈N∗ is a S-bimodule where an element of
P(s, e) can be represented by

1 2 e

1 2 s

∈ P(5, 6)

equipped with a product P � P −→ P :

7→
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Two examples of properads

For A a dg vector space :

EndA =
{

Homk(A⊗e ,A⊗s)
}
s,e∈N∗

DPois =

G
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Proposition
A double Poisson structure on a dg vector space A corresponds to a
morphism of properads DPois→ EndA.
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Double Poisson gebra up to homotopy

A double Poisson structure up to homotopy is encoded by a cofibrant
replacement of DPois.

Theorem [L.]
The properad DPois is Koszul. Then the minimal cofibrant replacement
of DPois is

DPois∞ −→ DPois.
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Properad DPois∞ : the generators

The dg properad DPois∞ =
(
G
(
s−1DPois

¡)
, ∂∆

)
is the quasi-free

properad constructed on the dg coproperad DPois¡ :

• generated by

νλ1,...,λm =

1

λ1

2 ···

···

···1 λ1+1 ···λ1+λ2 ···

m

λ1+···+λm

,

with λi > 1 and with the cyclic symmetry

νλ1,...,λm = ±νλ2,...,λm,λ1 .
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Properad DPois∞ : the differential

• the differential is constructed with the partial coproduct ∆(1,1) of
DPois¡.

∆(1,1) (νλ1,...,λm) =

m∑
k=1

σ∈Z/Zm

∑
06p<λσ(m)
06q<λσ(k)

±

σ(1)

λσ(1)

σ(2)

λσ(2)

···

···

σ(k)

p q

q

λσ(k)

σ(k+1)

λσ(k+1)

···

···

σ(m)

p

λσ(m)

,
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Remark about coproperad

The S-bimodule DPois¡ is a coproperad, i.e. a comonoid for the
monoidal structure � : DPois¡ is equipped with a coproduct

∆ : DPois¡ −→ DPois¡
�DPois¡

7→
∑

Remark

The coproduct of DPois¡ is difficult to describe ...
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Two descriptions of DPois∞ gebras

Definition (Double Poisson structure up to homotopy)
A double Poisson structure up to homotopy on a dg vector space A is a
morphism of properads DPois∞ −→ EndA .

Proposition – Rosetta Stone [Vallette]

Homdg properads(DPois∞,EndA) ∼= MC (DPois)

where DPois is the Lie-admissible algebra

DPois =

 ∏
n,m>1

HomSop
m ×Sn

(
DPois

¡
(m, n),Hom

(
A⊗n,A⊗m

))
, ∂, ?


where f ? g = DPois

¡ ∆(1,1)−−−→ (DPois
¡
)�2 f�g−−→ (EndA)�2 µ−→ EndA
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2 – Pre-Calabi–Yau algebra



First definition

Definition ("Almost pre-Calabi–Yau algebra")
A structure of almost pre-Calabi–Yau algebra on a dg vector space A is
a cyclic A∞-structure on sA⊕ A∗ equipped with its canonical degree
−1 skew-symmetric pairing such that A is a sub A∞ algebra.
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Cyclic non symmetric operad

Definition (Cyclic non symmetric operad)
A cyclic non-symmetric operad is an algebra over the monad of planar
trees.

Let P a cyclic ns operad, that is a collection of dg vector spaces P(〈n〉)
with an action of Z/nZ where elements are represented by corollas . . .

1

2
3

4

5

6
7

8

∈P(〈8〉)
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Cyclic non symmetric operad

with several compositions maps

◦i : P(〈n〉)⊗P(〈n′〉)→P(〈n+n′−2〉) , for n > 2 , n′ > 1 , and 2 6 i 6 n .

n′ + i − 1

i − 1

1

2

n

i

n′ + i − 2

i + 1

Remark
A cyclic operad is not a monoid.
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Two examples of cyclic operads

• Let (V , dV , 〈 , 〉) be a differential graded vector space equipped with a
symmetric bilinear form of degree 0 . Its endomorphism cyclic
non-symmetric operad EndV is

EndV (〈n〉) = V⊗n

by the partial composition map

◦i (a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn′) =

± 〈ai , b1〉a1 ⊗ · · · ⊗ ai−1 ⊗ b2 ⊗ · · · ⊗ bn′ ⊗ ai+1 ⊗ · · · ⊗ an .

• Cyclic associative : As(〈n〉) = kµn with trivial Z/nZ action, for n > 3 ,
and As(〈2〉) = As(〈1〉) = 0 .

It forms a cyclic non-symmetric operad once equipped with the following
partial composition maps

µn ◦i µn′ = µn+n′−2 .
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Algebra over a cyclic ns operad

Definition (Algebra over a cyclic non-symmetric operad)
An algebra structure over a cyclic non-symmetric operad P on a
differential graded vector space (V , dV , 〈 , 〉) equipped with a
symmetric bilinear form is given by the data of morphism of cyclic
non-symmetric operads P → EndV .

Example
Algebras over the cyclic non-symmetric operad As are cyclic associative
algebras, which are differential graded associative algebras (V , dV , ·)
equipped with a symmetric bilinear form 〈 , 〉 such that

〈a · b, c〉 = 〈a, b · c〉 ∀a, b, c ∈ V .
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Dual of As

To the cyclic operad As, we associate its (anti)-cyclic cooperad dual As¡,
i.e. the cyclic module As

¡
(〈n〉) = ksn−2, with partial decompositions

maps

δi : As
¡
(〈n + n′ − 2〉)→ As

¡
(〈n〉)⊗As

¡
(〈n′〉)

1

2
3

4

5

6
7

8

µ 7−→
∑

4

5

6
7

1

2
3

8

µ′′

µ′

,

satisfying some relations. 20



Cyclic A∞ algebra

Let (V , dV , 〈−,−〉) be a dg vector space with a symmetric bilinear form.

A cyclic A∞ structure on V is a Maurer–Cartan element of the following
Lie algebra

MC

∏
n>1

HomZ/nZ
(
As

¡
(〈n〉), EndV (〈n〉)

)
, ∂, {−,−}


where

{µ, ν} =
n∑

i=2

◦i (µ⊗ ν)δi − (−1)|µ||ν|
n′∑
j=2

◦j(ν ⊗ µ)δj
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Cyclic A∞ algebra on sA⊕ A∗

Let sA⊕ A∗ equipped with its canonical degree −1 skew-symmetric
pairing 〈f , sx〉 = (−1)|f |f (x).

Proposition
The shifted Lie algebra controlling cyclic A∞ structures is isomorphic to

s2
∏
N>3

N=n+m

 ⊕
16m<N

( ⊕
λ1+···+λm=n

A⊗ ((sA)∗)⊗λ1 ⊗ · · · ⊗ A⊗ ((sA)∗)⊗λm

)Z/mZ

⊕
(

((sA)∗)⊗N
)Z/NZ

)
with the bracket given by

{
s2a1 ⊗ · · · ⊗ aN , s2b1 ⊗ · · · ⊗ bN′

}
=

s2
N∑
i=2

±〈ai , b1〉 a1 ⊗ · · · ⊗ ai−1 ⊗ b2 ⊗ · · · ⊗ bN′ ⊗ ai+1 ⊗ · · · ⊗ aN

+ s2
N′∑
j=2

±〈bj , a1〉 b1 ⊗ · · · ⊗ bj−1 ⊗ a2 ⊗ · · · ⊗ aN ⊗ bj+1 ⊗ · · · ⊗ bN′ ,

with ak , bl ∈ A⊕ (sA)∗,
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Necklace Lie algebra

The generalised necklace Lie algebra associated to the dg vector space A

is the Lie algebra neckA with the underlying vector space

s
∏
N>3

N=n+m

 ⊕
16m<N

( ⊕
λ1+···+λm=n

A⊗ ((sA)∗)⊗λ1 ⊗ · · · ⊗ A⊗ ((sA)∗)⊗λm

)Z/mZ


Crucial point
The specific form of sA⊕ A∗ implies that the Lie bracket of neckA splits
into two.

X ∗ Y is the summand of {X ,Y } made up of the terms where one
applies the linear pairing 〈f , sx〉, where f ∈ A∗ comes from X and
x ∈ A comes from Y .

So the Lie bracket comes from the Lie-admissible product ∗:

{X ,Y } = X ∗ Y − (−1)|X ||Y |Y ∗ X .
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Curvature Necklace Lie algebra

The curvature necklace Lie-admissible algebra associated to the dg vector
space A is (cneckA, d , ∗) with the underlying dg vector space

s
∏
N>1

N=n+m

 ⊕
16m<N

( ⊕
λ1+···+λm=n

A⊗ ((sA)∗)⊗λ1 ⊗ · · · ⊗ A⊗ ((sA)∗)⊗λm

)Z/mZ
 .

Remark
The extension of the product from N > 3 to N > 1 corresponds to the
surjection cAs

¡
� As

¡ where cAs
¡

Definition (Almost pre-Calabi–Yau algebra)
A structure of an almost pre-Calabi–Yau algebra on a graded vector
space A is a Maurer–Cartan element in the curved necklace
Lie-admissible algebra
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Higher Hochschild complex

Recall that there is a canonical inclusion

W ⊗ V ∗ ↪→ Hom (V ,W )

x ⊗ f 7→
(
v 7→ xf (v)

)
,

(1)

Definition (Higher Hochschild complex)

The higher Hochschild complex associated to a dg vector space A is the
Lie-admissible algebra hhcA = (hhc, ∂ ,~) where hhc is

s
∏
N>1

N=n+m

 ⊕
16m<N

HomZ/mZ

 ⊕
λ1+···+λm=n

m⊗
j=1

(sA)⊗λj ,A⊗m

 ,

and sF~ sG =
∑n

i=1 sF~1
i sG .
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Lie admissible product of hhcA : an illustration

sF~1
λ1+···+λk−1+lsG =

k + 1 k + m′ − 1

λ1 λk−1 λ′1 + λk − l λ′2 l − 1 + λ′
m′

λk+1 λm

1 k − 1 k· · · · · · · · ·

· · · · · · · · ·

k + m′ m + m′ − 1

sF

sG
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Pre-Calabi–Yau algebra

Proposition
The inclusion (1) induced the following inclusion of Lie admissible
algebras

cneckA ↪→ hhcA.

Definition (Pre-Calabi–Yau algebra)
A structure of a pre-Calabi–Yau algebra on a graded vector space A is a
Maurer–Cartan element in the higher Hochschild Lie-admissible algebra
hhcA,

27



3 – Main theorem and
consequences



Main theorem

Theorem (L.–Vallette)
For any dg vector space A, there is a canonical and functorial
isomorphism of dg Lie-admissible algebras

cDPoisA
∼= hhcA .

Remark
The letter c of cDPoisA denotes the addition of a curvature in the
double Poisson up to homotopy structure. Also, we have the embedding
of Lie-admissible algebras DPoisA ↪→ cDPoisA.
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"Proof" of the main theorem – 1

Recall that

cDPoisA =
∏

m>1,n>0

HomSop
m ×Sn

(
cDPois¡

(m, n),Hom
(
A⊗n,A⊗m

))
,

where cDPois¡ is cogenerated by νλ1,...,λm of degree λ1 + · · ·+ λm − 1

νλ1,...,λm =

1

λ1

2 ···

···
···1

λ1+1···λ1+λ2 ···

m

λ1+···+λm

with νλ1,...,λm = ±νλ2,...,λm,λ1 then

cDPoisA ∼= s
∏
N>1

N=n+m

 ⊕
16m<N

HomZ/mZ

 ⊕
∑
λi=n

m⊗
j=1

(sA)⊗λj ,A⊗m

 = hhcA
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"Proof" of the theorem – 2

k+1 m

λ1 λk−1 λk λk+1 λm···

···

···

···1 k−1 k

sF

sG

sF ? sG

←→

k + 1 k + m′ − 1

λ1 λk+1 λm

1 k − 1 k· · · · · · · · ·

· · · · · · · · ·

k + m′m + m′ − 1

sF

sG

sF~ sG

The most difficult part of the proof is to check the signs.
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Why this result is nice ?

The description of pre-Calabi–Yau structure in terms of properadic ones
gives us a notion of ∞-morphism between pre-Calabi–Yau algebras,
using [Hoffbeck–L.–Vallette 2020].

Remark
Kontsevich–Takeda–Vlassopoulos gave a notion of morphism between
pre-Calabi–Yau algebras, but their first definition was "perfectible".
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∞-morphism of DPois∞-gebras

A ∞-morphism f : (A, α) (B, β) of DPois∞-gebras is a collection{
fs,e : DPois¡

(s, e) −→ EndA
B(s, e) = Homk(A⊗e ,B⊗s)

}
s,e∈N∗

.

which satisfies ∂(f ) = f � α− β � f , where

β � f : DPois
¡

DPois
¡
�(∗) DPois¡

EndB �(∗) EndA
B EndA

B ,

f � α : DPois
¡

DPois¡
(∗)� DPois

¡
EndA

B (∗)� EndA EndA
B

∆(∗) β�(∗)f

(∗)∆ f (∗)�α

ν1 ν2 ν3

µ
∈ DPois

¡
�(∗) DPois¡
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Composition of two ∞-morphisms

The composite of ∞-morphisms is defined by

g } f : DPois¡ DPois¡ �DPois¡ EndB
C �EndA

B EndA
C .∆ g�f

Proposition [Hoffbeck–L.–Vallette 2020]
Homotopy double Poisson gebras equipped with their ∞-morphisms and
the composite } form a category.
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∞-quasi-isomorphism

Definition (∞-quasi-isomorphim)
A ∞-morphism f is a ∞-quasi-isomorphism f1,1(I ) : A→ B is a
quasi-isomorphism of dg vector space.

Homotopy Transfer Theorem [Hoffbeck–L.–Vallette 2020]
For any contraction of dg vector space A

(A, dA) (H, dH)
p

h
i

and any homotopy double Poisson gebra structure on A, there exists
homotopy double Poisson gebra structure on H and extensions of the
chain maps i and p into ∞-quasi-isomorphisms.
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∞-quasi-isomorphism

Theorem [Hoffbeck–L.–Vallette 2022 ?]
Two homotopy double Poisson gebra structures (A, α) and (B, β) are
∞-quasi-isomorphic if and only if they are related by a zig-zag of
(strict) quasi-isomorphisms of homotopy double Poisson gebras:

∃ ∞-quasi-isomorphism

(A, α) (B, β)∼ ⇐⇒
∃ zig-zag of quasi-isomorphisms

(A, α) • • • • (B, β)∼ ∼ ∼ ∼ .

Extension to pre-Calaby–Yau algebras
All these notions/results extend to pre-Calabi–Yau algebras under
assumption of completeness of the underlying dg vector space for a
degree-wise decreasing filtration.
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Description of the coproduct of DPois¡ : a new combinatorics

Recall that

the coproduct of DPois¡ is difficult to describe ...

... but we give a new underlying combinatoric for this description.

As DPois¡ ∼= DLie¡
�Ass¡, one can just describe the coproduct of DLie¡.

We encode the cyclic symmetry in the combinatorics.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

←→
1

2
3

4

5
6

7
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Elementary coloured cutting

Definition
An elementary coloured cutting of a bangle is defined by the following
two-steps construction.

Cutting choose a bead of the bangle and cut the bangle into two
parts, that is draw a line starting from the bead, splitting
it into two, to an edge between two beads, such that each
half-bangle contains at least one bead.

Colouring colour the beads on the clockwise side of the half-bean in
white and the other ones, as well as the entire sector, in
black.

1

2
3

4

5
6

7
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New combinatorics for partial coproduct of DLie¡

7

7

1

1

2

2

3

3

4

4

5

5

6

6

←→
1

2
3

4

5
6

7

Proposition [L.–Vallette]
The terms appearing in the infinitesimal decomposition map of the
coproperad DLie¡ are in one-to-one correspondance with the elementary
coloured cuttings of bangles.

1

2

3
∆(1,1)

1

2

3

1

2

3

1

2

3+ +
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New combinatorics for coproduct of DLie¡

Proposition [L.–Vallette]
The various terms appearing in the decomposition map of the
coproperad DLie¡ are in one-to-one correspondance with partitioned
bangles.

1 2

3

4

5

6

7

89
10

11

12

13

14

15

↔

15

15

1

1

2

2

3

3

13

13

4

4

7

7

8

8

11

11

12

12

14

14

5

5

6

6

9

9

10

10

9

9

10

10

11

11

12

12
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New combinatorics for coproduct of DPois¡

Proposition [L.–Vallette]
The various terms appearing in the decomposition map of the
coproperad DPois¡ are in one-to-one correspondance with hairy
partitioned bangles.

4

3

5

22
21

1
2

20
19

161514

18

17

910

8
7 6

13 12
11

↔

10
43 5

8
2019

76 9
181716

15
14 13

12
11

2221 21
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Thanks for your attention.
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