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Motivation



Spaces of embeddings

• Consider compact smooth manifolds V and M with nonempty boundary,
with k := dim V, and d := dimM such that 1 ≤ k ≤ d.

• General goal. Study the homotopy type of the space
Emb∂(V,M)

of smooth neat embeddings K : V ↪→ M which near ∂V agree with a fixed
basepoint U : V ↪→ M. We denote s := U|∂V : ∂V ↪→ ∂M.

• Recall that a smooth map K : V→ M is an embedding if it is injective and at
any v ∈ V the derivative dK|v is injective, and K is neat if it is transverse to
the boundary and K(V) ∩ ∂M = K(∂V).

• For example, for (k,d) = (1, 3)

and (k,d) = (2, 3):

• For V = Dk, the setting with a dual: if there exists G : Sd−k ↪→ ∂M, such that
G has trivial normal bundle and G ⋔ s = {pt}. Like pictures 2 and 3!
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Spaces of embeddings

• Remark. Embeddings of closed manifolds can be reduced to the setting
with boundary, modulo group extensions.

E.g. use the fibration sequence

Emb∂(Dk,M \ Dd) Emb(Sk,M) Vk(TM).
−·ν0 D0

• For example, (classical) knot theory studies isotopy classes of circles
embedded into the 3-space: this is the set of connected components
π0 Emb∂(S1,R3).

But we have
{knots}⧸isotopy = π0 Emb(S1,R3) ∼= π0 Emb(S1, S3) ∼= π0 Emb∂(D1,D3)

Note. Connected sum of knots is on arcs given by
stacking cubes horizontally =⇒ well-defined on
space-level (not true for circles)!

• Recently, intensively studied is the set of (long) 2-knots in a 4-manifold M:
π0 Emb∂(D2,M)

This can be huge – for example, “spinning” a classical knot gives a 2-knot in
π0 Emb∂(S2,R4) ∼= π0 Emb∂(D2,D4).
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So after all, homotopy groups are irrelevant in low-dimensional topology?

Theorem 1 (Space level light bulb trick [K–Teichner ’21])
For any 1 ≤ k ≤ d, in a setting with a dual,

any choice of U : Dk ↪→ M leads to
an (explicit) homotopy equivalence

Emb∂(Dk,M) ' ΩEmbε∂(Dk−1, X).

where X := M ∪νG hd−k+1. In particular, if d = 4 we have
π0 Emb∂(D2,M) ∼= π1 Embε∂(D1, X).

k, d = 1, 3

k, d = 2, 3
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k, d = 1, 3

k, d = 2, 3

3



So after all, homotopy groups are irrelevant in low-dimensional topology?

Theorem 1 (Space level light bulb trick [K–Teichner ’21])
For any 1 ≤ k ≤ d, in a setting with a dual, any choice of U : Dk ↪→ M leads to
an (explicit) homotopy equivalence

Emb∂(Dk,M) ' ΩEmbε∂(Dk−1, X).

where X := M ∪νG hd−k+1. In particular, if d = 4 we have
π0 Emb∂(D2,M) ∼= π1 Embε∂(D1, X).

k, d = 1, 3

k, d = 2, 3

3



The main result today, and applications



How to compute homotopy groups?

• Note. dim X− dimDk−1 > dimM− dimDk

=⇒ πn+1 Embε∂(Dk−1, X) is easier than πn Emb∂(Dk,M)! We use the classical work
of Dax to compute this in a range.

Theorem 2 [K–Teichner ’22]
Fix `,d ≥ 1 such that d ≥ `+ 3 and d− 2` ≥ 1. Let X be a smooth compact
d-dimensional manifold with boundary, and fix u : Dℓ ↪→ X. Then

1. For 0 ≤ n ≤ d− 2`− 2 we have pu : πn(Emb∂(Dℓ, X), u) ∼= πn+ℓX.
2. There is a short exact sequence of groups (sets if d− 2`− 1 = 0):

Z[π1X]⧸⟨1⟩ ⊕ relℓ,d ⊕ dax(πd−ℓ(X) πd−2ℓ−1(Emb∂(Dℓ, X), u) πd−ℓ−1X.
∂r pu

Dax

where the invariant Dax is defined on the image of the realisation map ∂r and is its
explicit inverse, and rel1,d := ∅ and relℓ,d := ⟨g− (−1)d−ℓg : g ∈ π1X⟩ if ` ≥ 2

• Therefore, we have (after a bit more work to account for ε-augmentations) a
(more or less) explicit description of πn Emb∂(Dk,M) for n ≤ d− 2k and
d ≥ 4, assuming there is a dual for the boundary condition s : Sk−1 ↪→ ∂M.

• We make this more explicit, and compute many classes of examples in K’ 21.
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Applications of the two theorems

The rest of the talk: We give some applications of the two theorems, and then
discuss Theorem 2.

Recall that X := M ∪νG hd−1.

k = 1 : Emb∂(D1,M) ' ΩEmbε∂(D0, X) ' ΩSd−1 × ΩX

d = 2 : The map amb is “point-pushing”:
{arcs in a surface M, with ends fixed on two components of ∂M}/isotopy
∼= Z⊕ π1(M ∪G h2).

d = 3 : This recovers the classical LBT:
{arcs in a 3-manifold M with ends on two components of ∂M,
one of which is S2}/isotopy
∼= π1(M ∪G h3)

=⇒ any knot in the chord to which a light bulb attaches can be unknotted!
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Applications of the two theorems

k = 2 : Emb∂(D2,M) ' ΩEmbε∂(D1, X).

d = 4 : π0 Emb∂(D2,M) ∼= π1 Embε∂(D1,M ∪νG h3).
=⇒ We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.
=⇒ We recover (and generalise) LBT for spheres of Gabai ’20 and

Schneiderman–Teichner ’21.
• Moreover, we get an (unexpected) group structure on π0 Emb∂(D2,M)! It is
usually nonabelian!

k = d−1 : Emb∂(Dd−1, S1 × Dd−1) ' ΩEmb∂(Dd−2,Dd)

d = 4 : π0 Emb∂(D3, S1 × D3) ∼= π1 Emb∂(D2,D4), cf. Budney–Gabai.

k = d : Recovers a theorem (and proof) of Cerf ’68: There is a homotopy
equivalence Diff+

∂ (D
d) ' ΩEmb∂(Dd−1,Dd). In particular,

π0 Diff
+
∂ (D

4) ∼= π1(Emb∂(D3,D4);U).

Open problem
Is π0 Diff+

∂ (D
4) trivial? Compute it.

See Budney-Gabai, Gay, Watanabe for some candidate diffeomorphisms.
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Metastable homotopy groups



Stable, metastable, meta2stable...(?)

A generic smooth immersion Vℓ ↬ Xd has transverse self-intersections only of
multiplicity n ≤ d

d−ℓ
.

• Whitney ’40s: stable range ` < d
2 .

=⇒ n < 2 ⇐⇒ generically no double points.
• Can show: Emb(V, X) ↪→ Imm(V, X) is (d− 2`− 1)-connected.

• Haefliger ’60s and Dax ’70s: metastable range ` < 2d
3 .

=⇒ n < 3 ⇐⇒ generically no triple points.
• Dax upgraded this to:

Emb(V, X) ↪→ P2(V, X) is (2d− 3`− 3)-connected,
for a certain space P2(V, X) built out of pairs of points in X.

• Goodwillie–Klein–Weiss embedding calculus.

• Construct a tower of spaces Pn(V, X), n ≥ 1, with:
P1 = Imm(V, X) and P2(V, X) = the Haefliger–Dax space.

• Emb(V, X) → Pn(V, X) is (nd− (n+ 1)`− (2n− 1))-connected (hard!).
• Use homotopy theoretic tools to study Pn(V, X).
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About the lowest degree in the metastable range

• Therefore, part 1) in Theorem 2, which said
pu : πn(Emb∂(Dℓ, X),u) ∼= πn(Imm∂(Dℓ, X),u) ∼= πn+ℓX, for 0 ≤ n ≤ d−2`−2.

is just the well-known computation of homotopy groups of immersions,
using Smale–Hirsch theory.

• For n = d− 2`− 1 we still have a surjection
πd−2ℓ−1 Emb∂(Dℓ, X) ↠ πd−2ℓ−1 Imm∂(Dℓ, X) ∼= πd−ℓ−1X.

Dax tells us how to compute its kernel.

• Firstly, study the relative homotopy group

πd−2ℓ−1(Imm(V, X),Emb(V, X))

∼= Z[π1X]⧸relℓ,d

• Then study the image of the map

δImm : πd−2ℓ Imm(V, X) → πd−2ℓ−1(Imm(V, X),Emb(V, X))

It turns out this is given as the image of a certain homomorphism

dax: πd−ℓX → Z[π1X∖ 1].

• The desired kernel is the cokernel of δImm .
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δImm : πd−2ℓ Imm(V, X) → πd−2ℓ−1(Imm(V, X),Emb(V, X))
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About the lowest degree in the metastable range

Theorem [Dax ’72]
There is an isomorphism πd−2ℓ−1(Imm(V, X),Emb(V, X),u) ∼= Ω0(Cu; θu), the
degree 0 normal bordism group of a certain space Cu with a stable normal
bundle θu over it.

Theorem [K–Teichner ’22]

There is an isomorphism Dax: πd−2ℓ−1(Imm(V, X),Emb(V, X),u) → Z[π1X]⧸relℓ,d
given as follows:

represent a relative class by a “perfect” map
F : (Id−2ℓ−1, Id−2ℓ−2 × {0}, Id−2ℓ−2 × {1} ∪ ∂Id−2ℓ−2 × I) → (Imm,Emb,u)

i.e. F is smooth and its track
F̃ : Id−2ℓ−1 × V→ Id−2ℓ−1 × X, (~t, v) 7→ (~t, F(~t, v)),

has no triple points and double points (~ti, xi) ∈ Id−2ℓ−1 × V for i = 1, . . . , r are
isolated and transverse. Then Dax([F]) =

∑r
i=1 ε(⃗ti,xi)g(⃗ti,xi) is the sum of signed

double point loops of F̃.
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The realisation map and the Dax invariant

• Moreover, the inverse of Dax can be made explicit: for g ∈ π1X∖ 1 the
relative homotopy class ∂r(g) is given by

• Finally, for V = Dℓ we can describe im(δImm) as 〈1〉 ⊕ im(dax) where
dax: πd−ℓX→ Z[π1X∖ 1], dax(a) = Dax(Ã),

where we represent a ∈ πd−ℓX by a map A : Id−2ℓ × Dℓ → X.

• We can compute this in many classes of examples! See [K ’21].
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Thank you!
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