HOMOTOPY GROUPS OF SOME EMBEDDING SPACES

Danica Kosanović (ETH Zürich)

@ La réunion annuelle du GDR Topologie algébrique, Nantes, October, 2022

Based on the joint work with Peter Teichner (MPIM Bonn) https://arxiv.org/abs/2105.13032

2 The main result today, and applications

3 Metastable homotopy groups

Motivation

• Consider compact smooth manifolds *V* and *M* with nonempty boundary, with $k := \dim V$, and $d := \dim M$ such that $1 \le k \le d$.

- Consider compact smooth manifolds *V* and *M* with nonempty boundary, with $k := \dim V$, and $d := \dim M$ such that $1 \le k \le d$.
- General goal. Study the homotopy type of the space

$\mathsf{Emb}_{\partial}(V, M)$

of smooth neat embeddings $K: V \hookrightarrow M$ which near ∂V agree with a fixed basepoint U: $V \hookrightarrow M$. We denote $\mathbf{s} := \mathbf{U}|_{\partial V}: \partial V \hookrightarrow \partial M$.

- Consider compact smooth manifolds *V* and *M* with nonempty boundary, with $k := \dim V$, and $d := \dim M$ such that $1 \le k \le d$.
- General goal. Study the homotopy type of the space

$\mathsf{Emb}_{\partial}(V, M)$

of smooth neat embeddings $K: V \hookrightarrow M$ which near ∂V agree with a fixed basepoint U: $V \hookrightarrow M$. We denote $\mathbf{s} := \mathbf{U}|_{\partial V}: \partial V \hookrightarrow \partial M$.

• Recall that a smooth map $K: V \to M$ is an embedding if it is *injective* and at any $v \in V$ the derivative $dK|_v$ is *injective*, and K is neat if it is transverse to the boundary and $K(V) \cap \partial M = K(\partial V)$.

- Consider compact smooth manifolds *V* and *M* with nonempty boundary, with $k := \dim V$, and $d := \dim M$ such that $1 \le k \le d$.
- General goal. Study the homotopy type of the space

$\mathsf{Emb}_{\partial}(V, M)$

of smooth neat embeddings $K: V \hookrightarrow M$ which near ∂V agree with a fixed basepoint U: $V \hookrightarrow M$. We denote $\mathbf{s} := \mathbf{U}|_{\partial V}: \partial V \hookrightarrow \partial M$.

• Recall that a smooth map $K: V \to M$ is an embedding if it is *injective* and at any $v \in V$ the derivative $dK|_v$ is *injective*, and K is neat if it is transverse to the boundary and $K(V) \cap \partial M = K(\partial V)$.

• For example, for (k, d) = (1, 3)

- Consider compact smooth manifolds *V* and *M* with nonempty boundary, with $k := \dim V$, and $d := \dim M$ such that $1 \le k \le d$.
- General goal. Study the homotopy type of the space

$\mathsf{Emb}_{\partial}(V, M)$

of smooth neat embeddings $K: V \hookrightarrow M$ which near ∂V agree with a fixed basepoint U: $V \hookrightarrow M$. We denote $\mathbf{s} := \mathbf{U}|_{\partial V}: \partial V \hookrightarrow \partial M$.

- Recall that a smooth map $K: V \to M$ is an embedding if it is *injective* and at any $v \in V$ the derivative $dK|_v$ is *injective*, and K is neat if it is transverse to the boundary and $K(V) \cap \partial M = K(\partial V)$.
- For example, for (k, d) = (1, 3) and (k, d) = (2, 3):

- Consider compact smooth manifolds *V* and *M* with nonempty boundary, with $k := \dim V$, and $d := \dim M$ such that $1 \le k \le d$.
- General goal. Study the homotopy type of the space

$\mathsf{Emb}_{\partial}(V, M)$

of smooth neat embeddings $K: V \hookrightarrow M$ which near ∂V agree with a fixed basepoint U: $V \hookrightarrow M$. We denote $\mathbf{s} := \mathbf{U}|_{\partial V}: \partial V \hookrightarrow \partial M$.

- Recall that a smooth map $K: V \to M$ is an embedding if it is *injective* and at any $v \in V$ the derivative $dK|_v$ is *injective*, and K is neat if it is transverse to the boundary and $K(V) \cap \partial M = K(\partial V)$.
- For example, for (k, d) = (1, 3) and (k, d) = (2, 3):

• For $V = \mathbb{D}^k$, the setting with a dual: if there exists $G: \mathbb{S}^{d-k} \hookrightarrow \partial M$, such that G has trivial normal bundle and $G \pitchfork \mathbf{s} = \{pt\}$. Like pictures 2 and 3!

• **Remark.** Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions.

• **Remark.** Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence

 $\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M \setminus \mathbb{D}^{d}) \xrightarrow{- \cdot \nu_{0}} \mathsf{Emb}(\mathbb{S}^{k}, M) \xrightarrow{D_{0}} V_{k}(TM).$

- **Remark.** Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence $\operatorname{Emb}_{\partial}(\mathbb{D}^{k}, M \setminus \mathbb{D}^{d}) \xrightarrow{-\cdot\nu_{0}} \operatorname{Emb}(\mathbb{S}^{k}, M) \xrightarrow{D_{0}} V_{k}(TM).$
- For example, (classical) knot theory studies isotopy classes of circles embedded into the 3-space: this is the set of connected components $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$.

- **Remark.** Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence $\operatorname{Emb}_{\partial}(\mathbb{D}^{k}, M \setminus \mathbb{D}^{d}) \xrightarrow{-:\nu_{0}} \operatorname{Emb}(\mathbb{S}^{k}, M) \xrightarrow{D_{0}} V_{k}(TM).$
- For example, (classical) knot theory studies isotopy classes of circles embedded into the 3-space: this is the set of connected components $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$. But we have

$$\{\mathsf{knots}\}_{\mathsf{isotopy}} = \pi_0 \operatorname{\mathsf{Emb}}(\mathbb{S}^1, \mathbb{R}^3) \cong \pi_0 \operatorname{\mathsf{Emb}}(\mathbb{S}^1, \mathbb{S}^3) \cong \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^1, \mathbb{D}^3)$$

- **Remark.** Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence $\operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^k, M \setminus \mathbb{D}^d) \xrightarrow{-:\nu_0} \operatorname{\mathsf{Emb}}(\mathbb{S}^k, M) \xrightarrow{D_0} V_k(TM).$
- For example, (classical) knot theory studies isotopy classes of circles embedded into the 3-space: this is the set of connected components $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$. But we have

 $\{\mathsf{knots}\}_{\mathsf{isotopy}} = \pi_0 \operatorname{\mathsf{Emb}}(\mathbb{S}^1, \mathbb{R}^3) \cong \pi_0 \operatorname{\mathsf{Emb}}(\mathbb{S}^1, \mathbb{S}^3) \cong \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^1, \mathbb{D}^3)$

Note. Connected sum of knots is on arcs given by stacking cubes horizontally \implies well-defined on space-level (not true for circles)!

- **Remark.** Embeddings of closed manifolds can be reduced to the setting with boundary, modulo group extensions. E.g. use the fibration sequence $\operatorname{Emb}_{\partial}(\mathbb{D}^{k}, M \setminus \mathbb{D}^{d}) \xrightarrow{-:\nu_{0}} \operatorname{Emb}(\mathbb{S}^{k}, M) \xrightarrow{D_{0}} V_{k}(TM).$
- For example, (classical) knot theory studies isotopy classes of circles embedded into the 3-space: this is the set of connected components $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^1, \mathbb{R}^3)$. But we have

 $\{\mathsf{knots}\}_{\mathsf{isotopy}} = \pi_0 \operatorname{\mathsf{Emb}}(\mathbb{S}^1, \mathbb{R}^3) \cong \pi_0 \operatorname{\mathsf{Emb}}(\mathbb{S}^1, \mathbb{S}^3) \cong \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^1, \mathbb{D}^3)$

Note. Connected sum of knots is on arcs given by stacking cubes horizontally \implies well-defined on space-level (not true for circles)!

• Recently, intensively studied is the set of (long) 2-knots in a 4-manifold *M*: $\pi_0 \operatorname{Emb}_{2}(\mathbb{D}^2, M)$

This can be huge – for example, "spinning" a classical knot gives a 2-knot in $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{S}^2, \mathbb{R}^4) \cong \pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, \mathbb{D}^4).$

So after all, homotopy groups are irrelevant in low-dimensional topology?

Theorem 1 (Space level light bulb trick [K-Teichner '21])

For any $1 \le k \le d$, in a setting with a dual,

Recall that setting with a dual means: we have a *d*-manifold *M* and embedding $\mathbf{s} = \partial \mathbf{U} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$, such that there exists $G \colon \mathbb{S}^{d-k} \hookrightarrow \partial M$ with trivial normal bundle and such that $G \pitchfork \mathbf{s} = \{pt\}$.

So after all, homotopy groups are irrelevant in low-dimensional topology?

Theorem 1 (Space level light bulb trick [K-Teichner '21])

For any $1 \le k \le d$, in a setting with a dual, any choice of $U : \mathbb{D}^k \hookrightarrow M$ leads to an (explicit) homotopy equivalence

```
\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M) \simeq \Omega \, \mathsf{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, X).
```

where $X := M \cup_{\nu G} h^{d-k+1}$.

Superscript ε means embedded disks are equipped with "push-offs"...

Theorem 1 (Space level light bulb trick [K-Teichner '21])

For any $1 \le k \le d$, in a setting with a dual, any choice of $U : \mathbb{D}^k \hookrightarrow M$ leads to an (explicit) homotopy equivalence

 $\mathsf{Emb}_{\partial}(\mathbb{D}^{k}, M) \simeq \Omega \, \mathsf{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, X).$

where $X := M \cup_{\nu G} h^{d-k+1}$. In particular, if d = 4 we have $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \cong \pi_1 \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, X)$.

The main result today, and applications

How to compute homotopy groups?

• Note. dim $X - \dim \mathbb{D}^{k-1} > \dim M - \dim \mathbb{D}^k$

How to compute homotopy groups?

- Note. dim $X \dim \mathbb{D}^{k-1} > \dim M \dim \mathbb{D}^k$
- $\implies \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, X)$ is easier than $\pi_n \operatorname{Emb}_{\partial}(\mathbb{D}^k, M)!$ We use the classical work of Dax to compute this in a range.

- Note. dim $X \dim \mathbb{D}^{k-1} > \dim M \dim \mathbb{D}^k$
- $\implies \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, X)$ is easier than $\pi_n \operatorname{Emb}_{\partial}(\mathbb{D}^k, M)!$ We use the classical work of Dax to compute this in a range.

Fix $\ell, d \ge 1$ such that $d \ge \ell + 3$ and $d - 2\ell \ge 1$. Let X be a smooth compact d-dimensional manifold with boundary, and fix $u : \mathbb{D}^{\ell} \hookrightarrow X$. Then

- Note. dim $X \dim \mathbb{D}^{k-1} > \dim M \dim \mathbb{D}^k$
- $\implies \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, X)$ is easier than $\pi_n \operatorname{Emb}_{\partial}(\mathbb{D}^k, M)!$ We use the classical work of Dax to compute this in a range.

Fix $\ell, d \ge 1$ such that $d \ge \ell + 3$ and $d - 2\ell \ge 1$. Let X be a smooth compact d-dimensional manifold with boundary, and fix $u : \mathbb{D}^{\ell} \hookrightarrow X$. Then

1. For $0 \le n \le d - 2\ell - 2$ we have $p_u : \pi_n(\operatorname{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell} X$.

- Note. dim $X \dim \mathbb{D}^{k-1} > \dim M \dim \mathbb{D}^k$
- $\implies \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, X)$ is easier than $\pi_n \operatorname{Emb}_{\partial}(\mathbb{D}^k, M)!$ We use the classical work of Dax to compute this in a range.

Fix $\ell, d \ge 1$ such that $d \ge \ell + 3$ and $d - 2\ell \ge 1$. Let X be a smooth compact d-dimensional manifold with boundary, and fix $u : \mathbb{D}^{\ell} \hookrightarrow X$. Then

- 1. For $0 \le n \le d 2\ell 2$ we have $p_u : \pi_n(\operatorname{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell}X$.
- 2. There is a short exact sequence of groups (sets if $d 2\ell 1 = 0$):

$$\mathbb{Z}[\pi_1X] (1) \oplus rel_{\ell,d} \oplus \mathsf{dax}(\pi_{d-\ell}(X) \xrightarrow[]{\partial \mathfrak{r}}{\underset{\mathsf{Dax}}{\to}} \pi_{d-2\ell-1}(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell},X),u) \xrightarrow{p_u} \pi_{d-\ell-1}X.$$

where the invariant Dax is defined on the image of the realisation map $\partial \mathbf{r}$ and is its explicit inverse, and $rel_{1,d} := \emptyset$ and $rel_{\ell,d} := \langle g - (-1)^{d-\ell}g : g \in \pi_1 X \rangle$ if $\ell \ge 2$

- Note. dim $X \dim \mathbb{D}^{k-1} > \dim M \dim \mathbb{D}^k$
- $\implies \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, X)$ is easier than $\pi_n \operatorname{Emb}_{\partial}(\mathbb{D}^k, M)!$ We use the classical work of Dax to compute this in a range.

Fix $\ell, d \ge 1$ such that $d \ge \ell + 3$ and $d - 2\ell \ge 1$. Let X be a smooth compact d-dimensional manifold with boundary, and fix $u : \mathbb{D}^{\ell} \hookrightarrow X$. Then

- 1. For $0 \le n \le d 2\ell 2$ we have $p_u \colon \pi_n(\mathsf{Emb}_\partial(\mathbb{D}^\ell, X), u) \cong \pi_{n+\ell} X$.
- 2. There is a short exact sequence of groups (sets if $d 2\ell 1 = 0$):

$$\mathbb{Z}[\pi_1 X]_{(1)} \oplus rel_{\ell,d} \oplus \mathsf{dax}(\pi_{d-\ell}(X) \xrightarrow[]{\partial \mathfrak{r}}{\underset{\mathsf{Dax}}{\leftarrow}} \pi_{d-2\ell-1}(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell},X),u) \xrightarrow{\rho_u} \pi_{d-\ell-1} X.$$

where the invariant Dax is defined on the image of the realisation map $\partial \mathbf{r}$ and is its explicit inverse, and $rel_{1,d} := \emptyset$ and $rel_{\ell,d} := \langle g - (-1)^{d-\ell}g : g \in \pi_1 X \rangle$ if $\ell \ge 2$

• Therefore, we have (after a bit more work to account for ε -augmentations) a (more or less) explicit description of $\pi_n \operatorname{Emb}_{\partial}(\mathbb{D}^k, M)$ for $n \leq d - 2k$ and $d \geq 4$, assuming there is a dual for the boundary condition $\mathbf{s} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$.

- Note. dim $X \dim \mathbb{D}^{k-1} > \dim M \dim \mathbb{D}^k$
- $\implies \pi_{n+1} \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{k-1}, X)$ is easier than $\pi_n \operatorname{Emb}_{\partial}(\mathbb{D}^k, M)!$ We use the classical work of Dax to compute this in a range.

Fix $\ell, d \ge 1$ such that $d \ge \ell + 3$ and $d - 2\ell \ge 1$. Let X be a smooth compact d-dimensional manifold with boundary, and fix $u : \mathbb{D}^{\ell} \hookrightarrow X$. Then

- 1. For $0 \le n \le d 2\ell 2$ we have $p_u : \pi_n(\operatorname{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell}X$.
- 2. There is a short exact sequence of groups (sets if $d 2\ell 1 = 0$):

$$\mathbb{Z}[\pi_1X] (1) \oplus rel_{\ell,d} \oplus \mathsf{dax}(\pi_{d-\ell}(X) \xrightarrow[]{\partial \mathfrak{r}}{\underset{\mathsf{Dax}}{\to}} \pi_{d-2\ell-1}(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell},X),u) \xrightarrow{p_u} \pi_{d-\ell-1}X.$$

where the invariant Dax is defined on the image of the realisation map $\partial \mathbf{r}$ and is its explicit inverse, and $rel_{1,d} := \emptyset$ and $rel_{\ell,d} := \langle g - (-1)^{d-\ell}g : g \in \pi_1 X \rangle$ if $\ell \ge 2$

- Therefore, we have (after a bit more work to account for ε -augmentations) a (more or less) explicit description of $\pi_n \operatorname{Emb}_{\partial}(\mathbb{D}^k, M)$ for $n \leq d 2k$ and $d \geq 4$, assuming there is a dual for the boundary condition $\mathbf{s} \colon \mathbb{S}^{k-1} \hookrightarrow \partial M$.
- $\cdot\,$ We make this more explicit, and compute many classes of examples in K' 21.

Recall that $X := M \cup_{\nu G} h^{d-1}$.

The rest of the talk: We give some applications of the two theorems, and then discuss Theorem 2.

Recall that $X := M \cup_{\nu G} h^{d-1}$.

k = 1: $\mathsf{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \, \mathsf{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{0}, X) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$

Recall that $X := M \cup_{\nu G} h^{d-1}$.

$$k = 1$$
: $\operatorname{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{0}, X) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$

 $\begin{aligned} d &= 2: \text{ The map } \mathfrak{amb} \text{ is "point-pushing":} \\ & \{ \arccos \text{ in a surface } M, \text{ with ends fixed on two components of } \partial M \} / \text{ isotopy} \\ & \cong \mathbb{Z} \oplus \pi_1 (M \cup_G h^2). \end{aligned}$

Recall that $X := M \cup_{\nu G} h^{d-1}$.

$$k = 1$$
: $\operatorname{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{0}, X) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$

- $$\begin{split} d &= 2: \text{ The map } \mathfrak{amb} \text{ is "point-pushing":} \\ & \{ \text{arcs in a surface } M, \text{ with ends fixed on two components of } \partial M \} / \text{isotopy} \\ & \cong \mathbb{Z} \oplus \pi_1 (M \cup_G h^2). \end{split}$$
- d = 3: This recovers the classical LBT:

{arcs in a 3-manifold *M* with ends on two components of ∂M , one of which is \mathbb{S}^2 }/isotopy

 $\cong \pi_1(M \cup_G h^3)$

Recall that $X := M \cup_{\nu G} h^{d-1}$.

$$k = 1$$
: $\operatorname{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{0}, X) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$

- $$\begin{split} d &= 2: \text{ The map } \mathfrak{amb} \text{ is "point-pushing":} \\ & \{ \text{arcs in a surface } M, \text{ with ends fixed on two components of } \partial M \} / \text{isotopy} \\ & \cong \mathbb{Z} \oplus \pi_1 (M \cup_G h^2). \end{split}$$
- d = 3: This recovers the classical LBT:

{arcs in a 3-manifold M with ends on two components of ∂M ,

one of which is \mathbb{S}^2 /isotopy

 $\cong \pi_1(M \cup_G h^3)$

 \implies any knot in the chord to which a light bulb attaches can be unknotted!

Recall that $X := M \cup_{\nu G} h^{d-1}$.

$$k = 1$$
: $\operatorname{Emb}_{\partial}(\mathbb{D}^{1}, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{0}, X) \simeq \Omega \mathbb{S}^{d-1} \times \Omega X$

- $\begin{aligned} d &= 2: \text{ The map } \mathfrak{amb} \text{ is "point-pushing":} \\ & \{ \arccos \text{ in a surface } M, \text{ with ends fixed on two components of } \partial M \} / \text{isotopy} \\ & \cong \mathbb{Z} \oplus \pi_1 (M \cup_G h^2). \end{aligned}$
- d = 3: This recovers the classical LBT:

{arcs in a 3-manifold M with ends on two components of ∂M ,

one of which is \mathbb{S}^2 /isotopy

 $\cong \pi_1(M \cup_G h^3)$

 \implies any knot in the chord to which a light bulb attaches can be unknotted!

k = 2: $\operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, X).$

 $k = 2: \operatorname{Emb}_{\partial}(\mathbb{D}^{2}, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{1}, X).$ $d = 4: \pi_{0} \operatorname{Emb}_{\partial}(\mathbb{D}^{2}, M) \cong \pi_{1} \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^{1}, M \cup_{\nu G} h^{3}).$ k = 2: $\operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, X).$

 $d = 4: \ \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, M) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3).$

 \implies We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.

- k = 2: $\operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, X).$
 - $d = 4: \ \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, M) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3).$
 - \implies We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.
 - ⇒ We recover (and generalise) LBT for spheres of Gabai '20 and Schneiderman–Teichner '21.

- k = 2: $\operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, X).$
 - $d = 4: \ \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, M) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3).$
 - \implies We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.
 - → We recover (and generalise) LBT for spheres of Gabai '20 and Schneiderman–Teichner '21.
 - Moreover, we get an (unexpected) group structure on $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)!$ It is usually nonabelian!

- k = 2: $\operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, X).$
 - $d = 4: \ \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, M) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3).$
 - \implies We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.
 - ⇒ We recover (and generalise) LBT for spheres of Gabai '20 and Schneiderman–Teichner '21.
 - Moreover, we get an (unexpected) group structure on $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)!$ It is usually nonabelian!
- k = d-1: $\mathsf{Emb}_{\partial}(\mathbb{D}^{d-1}, \mathbb{S}^1 \times \mathbb{D}^{d-1}) \simeq \Omega \, \mathsf{Emb}_{\partial}(\mathbb{D}^{d-2}, \mathbb{D}^d)$

 $d = 4: \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^3, \mathbb{S}^1 \times \mathbb{D}^3) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$, cf. Budney–Gabai.

- k = 2: $\operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, X).$
 - $d = 4: \ \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, M) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3).$
 - \implies We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.
 - ⇒ We recover (and generalise) LBT for spheres of Gabai '20 and Schneiderman–Teichner '21.
 - Moreover, we get an (unexpected) group structure on $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)!$ It is usually nonabelian!

$$k = d-1$$
: $\mathsf{Emb}_{\partial}(\mathbb{D}^{d-1}, \mathbb{S}^1 \times \mathbb{D}^{d-1}) \simeq \Omega \, \mathsf{Emb}_{\partial}(\mathbb{D}^{d-2}, \mathbb{D}^d)$

d = 4: $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^3, \mathbb{S}^1 \times \mathbb{D}^3) \cong \pi_1 \operatorname{Emb}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$, cf. Budney–Gabai.

k = d: Recovers a theorem (and proof) of Cerf '68: There is a homotopy equivalence $\operatorname{Diff}_{\partial}^+(\mathbb{D}^d) \simeq \Omega \operatorname{Emb}_{\partial}(\mathbb{D}^{d-1}, \mathbb{D}^d)$. In particular,

 $\pi_0 \operatorname{Diff}^+_{\partial}(\mathbb{D}^4) \cong \pi_1(\operatorname{Emb}_{\partial}(\mathbb{D}^3, \mathbb{D}^4); \operatorname{U}).$

- k = 2: $\operatorname{Emb}_{\partial}(\mathbb{D}^2, M) \simeq \Omega \operatorname{Emb}_{\partial}^{\varepsilon}(\mathbb{D}^1, X).$
 - $d = 4: \ \pi_0 \operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^2, M) \cong \pi_1 \operatorname{\mathsf{Emb}}_{\partial}^{\varepsilon}(\mathbb{D}^1, M \cup_{\nu G} h^3).$
 - \implies We classify isotopy classes of 2-disks in 4-manifolds in the setting with a dual.
 - ⇒ We recover (and generalise) LBT for spheres of Gabai '20 and Schneiderman–Teichner '21.
 - Moreover, we get an (unexpected) group structure on $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^2, M)!$ It is usually nonabelian!

$$k = d-1$$
: $\mathsf{Emb}_{\partial}(\mathbb{D}^{d-1}, \mathbb{S}^1 \times \mathbb{D}^{d-1}) \simeq \Omega \, \mathsf{Emb}_{\partial}(\mathbb{D}^{d-2}, \mathbb{D}^d)$

d = 4: $\pi_0 \operatorname{Emb}_{\partial}(\mathbb{D}^3, \mathbb{S}^1 \times \mathbb{D}^3) \cong \pi_1 \operatorname{Emb}_{\partial}(\mathbb{D}^2, \mathbb{D}^4)$, cf. Budney–Gabai.

k = d: Recovers a theorem (and proof) of Cerf '68: There is a homotopy equivalence $\operatorname{Diff}_{\partial}^+(\mathbb{D}^d) \simeq \Omega \operatorname{Emb}_{\partial}(\mathbb{D}^{d-1}, \mathbb{D}^d)$. In particular,

 $\pi_0 \operatorname{Diff}^+_{\partial}(\mathbb{D}^4) \cong \pi_1(\operatorname{Emb}_{\partial}(\mathbb{D}^3, \mathbb{D}^4); \operatorname{U}).$

Open problem

Is $\pi_0 \operatorname{Diff}^+_{\partial}(\mathbb{D}^4)$ trivial? Compute it.

See Budney-Gabai, Gay, Watanabe for some candidate diffeomorphisms.

Metastable homotopy groups

• Whitney '40s: stable range $\ell < \frac{d}{2}$.

 \implies $n < 2 \iff$ generically no double points.

- Whitney '40s: stable range $\ell < \frac{d}{2}$.
 - \implies $n < 2 \iff$ generically no double points.
 - Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d 2\ell 1)$ -connected.

- Whitney '40s: stable range $\ell < \frac{d}{2}$.
 - \implies $n < 2 \iff$ generically no double points.
 - Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d 2\ell 1)$ -connected.
- Haefliger '60s and Dax '70s: metastable range $\ell < \frac{2d}{3}$.
 - \implies $n < 3 \iff$ generically no triple points.

- Whitney '40s: stable range $\ell < \frac{d}{2}$.
 - \implies $n < 2 \iff$ generically no double points.
 - Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d 2\ell 1)$ -connected.
- Haefliger '60s and Dax '70s: metastable range $\ell < \frac{2d}{3}$.
 - \implies $n < 3 \iff$ generically no triple points.
 - Dax upgraded this to:

 $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{P}_2(V, X)$ is $(2d - 3\ell - 3)$ -connected,

- Whitney '40s: stable range $\ell < \frac{d}{2}$.
 - \implies $n < 2 \iff$ generically no double points.
 - Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d 2\ell 1)$ -connected.
- Haefliger '60s and Dax '70s: metastable range $\ell < \frac{2d}{3}$.
 - \implies $n < 3 \iff$ generically no triple points.
 - Dax upgraded this to:

 $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{P}_2(V, X)$ is $(2d - 3\ell - 3)$ -connected,

for a certain space $P_2(V, X)$ built out of pairs of points in X.

· Goodwillie–Klein–Weiss embedding calculus.

- Whitney '40s: stable range $\ell < \frac{d}{2}$.
 - \implies $n < 2 \iff$ generically no double points.
 - Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d 2\ell 1)$ -connected.
- *Haefliger* '60s and *Dax* '70s: metastable range $\ell < \frac{2d}{3}$.
 - \implies $n < 3 \iff$ generically no triple points.
 - Dax upgraded this to:

 $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{P}_2(V, X)$ is $(2d - 3\ell - 3)$ -connected,

- · Goodwillie–Klein–Weiss embedding calculus.
 - Construct a tower of spaces $P_n(V, X)$, $n \ge 1$, with: $P_1 = Imm(V, X)$ and $P_2(V, X) =$ the Haefliger-Dax space.

- Whitney '40s: stable range $\ell < \frac{d}{2}$.
 - \implies $n < 2 \iff$ generically no double points.
 - Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d 2\ell 1)$ -connected.
- Haefliger '60s and Dax '70s: metastable range $\ell < \frac{2d}{3}$.
 - \implies $n < 3 \iff$ generically no triple points.
 - Dax upgraded this to:

 $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{P}_2(V, X)$ is $(2d - 3\ell - 3)$ -connected,

- · Goodwillie-Klein-Weiss embedding calculus.
 - Construct a tower of spaces $P_n(V, X)$, $n \ge 1$, with: $P_1 = Imm(V, X)$ and $P_2(V, X) =$ the Haefliger-Dax space.
 - $\operatorname{Emb}(V,X) \to P_n(V,X)$ is $(nd (n+1)\ell (2n-1))$ -connected (hard!).

- Whitney '40s: stable range $\ell < \frac{d}{2}$.
 - \implies $n < 2 \iff$ generically no double points.
 - Can show: $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{Imm}(V, X)$ is $(d 2\ell 1)$ -connected.
- Haefliger '60s and Dax '70s: metastable range $\ell < \frac{2d}{3}$.
 - \implies $n < 3 \iff$ generically no triple points.
 - Dax upgraded this to:

 $\operatorname{Emb}(V, X) \hookrightarrow \operatorname{P}_2(V, X)$ is $(2d - 3\ell - 3)$ -connected,

- · Goodwillie-Klein-Weiss embedding calculus.
 - Construct a tower of spaces $P_n(V, X)$, $n \ge 1$, with: $P_1 = Imm(V, X)$ and $P_2(V, X) =$ the Haefliger-Dax space.
 - $\operatorname{Emb}(V,X) \to P_n(V,X)$ is $(nd (n+1)\ell (2n-1))$ -connected (hard!).
 - Use homotopy theoretic tools to study $P_n(V, X)$.

• Therefore, part 1) in Theorem 2, which said

 $p_u \colon \pi_n(\mathsf{Emb}_\partial(\mathbb{D}^\ell, X), u) \cong \pi_n(\mathsf{Imm}_\partial(\mathbb{D}^\ell, X), u) \cong \pi_{n+\ell} X, \quad \text{ for } 0 \le n \le d-2\ell-2.$

is just the well-known computation of homotopy groups of immersions, using Smale–Hirsch theory.

• Therefore, part 1) in Theorem 2, which said

 $p_u \colon \pi_n(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_n(\mathsf{Imm}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell}X, \quad \text{ for } 0 \le n \le d-2\ell-2.$

is just the well-known computation of homotopy groups of immersions, using Smale–Hirsch theory.

• For $n = d - 2\ell - 1$ we still have a surjection

$$\pi_{d-2\ell-1}\operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^{\ell},X)\twoheadrightarrow\pi_{d-2\ell-1}\operatorname{\mathsf{Imm}}_{\partial}(\mathbb{D}^{\ell},X)\cong\pi_{d-\ell-1}X.$$

Dax tells us how to compute its kernel.

• Therefore, part 1) in Theorem 2, which said

 $p_u \colon \pi_n(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_n(\mathsf{Imm}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell}X, \quad \text{ for } 0 \le n \le d-2\ell-2.$

is just the well-known computation of homotopy groups of immersions, using Smale–Hirsch theory.

• For $n = d - 2\ell - 1$ we still have a surjection

 $\pi_{d-2\ell-1}\operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^{\ell},X)\twoheadrightarrow \pi_{d-2\ell-1}\operatorname{\mathsf{Imm}}_{\partial}(\mathbb{D}^{\ell},X)\cong \pi_{d-\ell-1}X.$

Dax tells us how to compute its kernel.

• Firstly, study the relative homotopy group

 $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X))$

• Therefore, part 1) in Theorem 2, which said

 $p_u \colon \pi_n(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_n(\mathsf{Imm}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell}X, \quad \text{ for } 0 \le n \le d-2\ell-2.$

is just the well-known computation of homotopy groups of immersions, using Smale–Hirsch theory.

• For $n = d - 2\ell - 1$ we still have a surjection

 $\pi_{d-2\ell-1}\operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^{\ell},X)\twoheadrightarrow \pi_{d-2\ell-1}\operatorname{\mathsf{Imm}}_{\partial}(\mathbb{D}^{\ell},X)\cong \pi_{d-\ell-1}X.$

Dax tells us how to compute its kernel.

• Firstly, study the relative homotopy group

 $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X))$

• Then study the image of the map

 δ_{Imm} : $\pi_{d-2\ell} \text{Imm}(V, X) \rightarrow \pi_{d-2\ell-1}(\text{Imm}(V, X), \text{Emb}(V, X))$

• Therefore, part 1) in Theorem 2, which said

 $p_u \colon \pi_n(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_n(\mathsf{Imm}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell}X, \quad \text{ for } 0 \le n \le d-2\ell-2.$

is just the well-known computation of homotopy groups of immersions, using Smale–Hirsch theory.

• For $n = d - 2\ell - 1$ we still have a surjection

 $\pi_{d-2\ell-1}\operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^{\ell},X)\twoheadrightarrow \pi_{d-2\ell-1}\operatorname{\mathsf{Imm}}_{\partial}(\mathbb{D}^{\ell},X)\cong \pi_{d-\ell-1}X.$

Dax tells us how to compute its kernel.

• Firstly, study the relative homotopy group

 $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X))$

• Then study the image of the map

$$\delta_{\mathsf{Imm}} \colon \pi_{d-2\ell} \mathsf{Imm}(V, X) \to \pi_{d-2\ell-1}(\mathsf{Imm}(V, X), \mathsf{Emb}(V, X))$$

- The desired kernel is the cokernel of δ_{Imm} .

• Therefore, part 1) in Theorem 2, which said

 $p_u \colon \pi_n(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_n(\mathsf{Imm}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell}X, \quad \text{ for } 0 \le n \le d-2\ell-2.$

is just the well-known computation of homotopy groups of immersions, using Smale–Hirsch theory.

• For $n = d - 2\ell - 1$ we still have a surjection

$$\pi_{d-2\ell-1}\operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^{\ell},X)\twoheadrightarrow\pi_{d-2\ell-1}\operatorname{\mathsf{Imm}}_{\partial}(\mathbb{D}^{\ell},X)\cong\pi_{d-\ell-1}X.$$

Dax tells us how to compute its kernel.

• Firstly, study the relative homotopy group

$$\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X)) \cong \mathbb{Z}[\pi_1X]_{\operatorname{rel}_{\ell,d}}$$

 \cdot Then study the image of the map

$$\delta_{\mathsf{Imm}} \colon \pi_{d-2\ell} \mathsf{Imm}(V, X) \to \pi_{d-2\ell-1}(\mathsf{Imm}(V, X), \mathsf{Emb}(V, X))$$

 \cdot The desired kernel is the cokernel of δ_{Imm} .

• Therefore, part 1) in Theorem 2, which said

 $p_u \colon \pi_n(\mathsf{Emb}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_n(\mathsf{Imm}_{\partial}(\mathbb{D}^{\ell}, X), u) \cong \pi_{n+\ell}X, \quad \text{ for } 0 \le n \le d-2\ell-2.$

is just the well-known computation of homotopy groups of immersions, using Smale–Hirsch theory.

• For $n = d - 2\ell - 1$ we still have a surjection

$$\pi_{d-2\ell-1}\operatorname{\mathsf{Emb}}_{\partial}(\mathbb{D}^{\ell},X)\twoheadrightarrow\pi_{d-2\ell-1}\operatorname{\mathsf{Imm}}_{\partial}(\mathbb{D}^{\ell},X)\cong\pi_{d-\ell-1}X.$$

Dax tells us how to compute its kernel.

• Firstly, study the relative homotopy group

$$\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X)) \cong \mathbb{Z}[\pi_1X]_{\operatorname{rel}_{\ell,d}}$$

 \cdot Then study the image of the map

$$\delta_{\operatorname{Imm}}$$
: $\pi_{d-2\ell}\operatorname{Imm}(V,X) \to \pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X))$

It turns out this is given as the image of a certain homomorphism

dax:
$$\pi_{d-\ell}X \to \mathbb{Z}[\pi_1X \setminus 1].$$

 \cdot The desired kernel is the cokernel of δ_{Imm} .

There is an isomorphism $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X),u) \cong \Omega_0(\mathcal{C}_u;\theta_u)$, the degree 0 normal bordism group of a certain space \mathcal{C}_u with a stable normal bundle θ_u over it.

There is an isomorphism $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X),u) \cong \Omega_0(\mathcal{C}_u;\theta_u)$, the degree 0 normal bordism group of a certain space \mathcal{C}_u with a stable normal bundle θ_u over it.

Theorem [K–Teichner '22]

There is an isomorphism **Dax**: $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X), \operatorname{Emb}(V,X), u) \to \mathbb{Z}[\pi_1X]_{rel_{\ell,d}}$ given as follows:

There is an isomorphism $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X),u) \cong \Omega_0(\mathcal{C}_u;\theta_u)$, the degree 0 normal bordism group of a certain space \mathcal{C}_u with a stable normal bundle θ_u over it.

Theorem [K-Teichner '22]

There is an isomorphism **Dax**: $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X), \operatorname{Emb}(V,X), u) \to \mathbb{Z}[\pi_1X]_{rel_{\ell,d}}$ given as follows: represent a relative class by a "perfect" map

 $F \colon (\mathbb{I}^{d-2\ell-1}, \mathbb{I}^{d-2\ell-2} \times \{0\}, \mathbb{I}^{d-2\ell-2} \times \{1\} \cup \partial \mathbb{I}^{d-2\ell-2} \times \mathbb{I}) \to (\mathsf{Imm}, \mathsf{Emb}, u)$

i.e. F is smooth and its track

 $\widetilde{F} \colon \mathbb{I}^{d-2\ell-1} \times V \to \mathbb{I}^{d-2\ell-1} \times X, \quad (\vec{t}, v) \mapsto (\vec{t}, F(\vec{t}, v)),$

has no triple points and double points $(\vec{t}_i, x_i) \in \mathbb{I}^{d-2\ell-1} \times V$ for i = 1, ..., r are isolated and transverse.

There is an isomorphism $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X),u) \cong \Omega_0(\mathcal{C}_u;\theta_u)$, the degree 0 normal bordism group of a certain space \mathcal{C}_u with a stable normal bundle θ_u over it.

Theorem [K-Teichner '22]

There is an isomorphism **Dax**: $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X), \operatorname{Emb}(V,X), u) \to \mathbb{Z}[\pi_1X]_{rel_{\ell,d}}$ given as follows: represent a relative class by a "perfect" map

 $F \colon (\mathbb{I}^{d-2\ell-1}, \mathbb{I}^{d-2\ell-2} \times \{0\}, \mathbb{I}^{d-2\ell-2} \times \{1\} \cup \partial \mathbb{I}^{d-2\ell-2} \times \mathbb{I}) \to (\mathsf{Imm}, \mathsf{Emb}, u)$

i.e. F is smooth and its track

 $\widetilde{F} \colon \mathbb{I}^{d-2\ell-1} \times V \to \mathbb{I}^{d-2\ell-1} \times X, \quad (\vec{t}, v) \mapsto (\vec{t}, F(\vec{t}, v)),$

has no triple points and double points $(\vec{t}_i, x_i) \in \mathbb{I}^{d-2\ell-1} \times V$ for i = 1, ..., r are isolated and transverse. Then $\text{Dax}([F]) = \sum_{i=1}^r \varepsilon_{(\vec{t}_i, x_i)} g_{(\vec{t}_i, x_i)}$ is the sum of signed double point loops of \tilde{F} .

There is an isomorphism Dax: $\pi_{d-2\ell-1}(\operatorname{Imm}(V,X),\operatorname{Emb}(V,X),u) \to \mathbb{Z}[\pi_1X]_{rel_{\ell,d}}$ given as follows: represent a relative class by a "perfect" map

$$F: (\mathbb{I}^{d-2\ell-1}, \mathbb{I}^{d-2\ell-2} \times \{0\}, \mathbb{I}^{d-2\ell-2} \times \{1\} \cup \partial \mathbb{I}^{d-2\ell-2} \times \mathbb{I}) \to (\mathsf{Imm}, \mathsf{Emb}, u)$$

i.e. F is smooth and its track

$$\widetilde{F} \colon \mathbb{I}^{d-2\ell-1} \times V \to \mathbb{I}^{d-2\ell-1} \times X, \quad (\vec{t}, v) \mapsto (\vec{t}, F(\vec{t}, v)),$$

has no triple points and double points $(\vec{t}_i, x_i) \in \mathbb{I}^{d-2\ell-1} \times V$ for i = 1, ..., r are isolated and transverse. Then $\text{Dax}([F]) = \sum_{i=1}^r \varepsilon_{(\vec{t}_i, x_i)} g_{(\vec{t}_i, x_i)}$ is the sum of signed double point loops of \tilde{F} .

• Moreover, the inverse of Dax can be made explicit: for $g \in \pi_1 X \setminus 1$ the relative homotopy class $\partial \mathbf{r}(g)$ is given by

• Moreover, the inverse of Dax can be made explicit: for $g \in \pi_1 X \setminus 1$ the relative homotopy class $\partial \mathbf{r}(g)$ is given by

• Moreover, the inverse of Dax can be made explicit: for $g \in \pi_1 X \setminus 1$ the relative homotopy class $\partial \mathbf{r}(g)$ is given by

• Finally, for $V = \mathbb{D}^{\ell}$ we can describe $\operatorname{im}(\delta_{\operatorname{Imm}})$ as $\langle 1 \rangle \oplus \operatorname{im}(\operatorname{dax})$ where $\operatorname{dax}: \pi_{d-\ell}X \to \mathbb{Z}[\pi_1X \setminus 1], \quad \operatorname{dax}(a) = \operatorname{Dax}(\widetilde{A}),$ where we represent $a \in \pi_{d-\ell}X$ by a map $A: \mathbb{I}^{d-2\ell} \times \mathbb{D}^{\ell} \to X.$

• Moreover, the inverse of Dax can be made explicit: for $g \in \pi_1 X \setminus 1$ the relative homotopy class $\partial \mathbf{r}(g)$ is given by

• Finally, for $V = \mathbb{D}^{\ell}$ we can describe $\operatorname{im}(\delta_{\operatorname{Imm}})$ as $\langle 1 \rangle \oplus \operatorname{im}(\operatorname{dax})$ where $\operatorname{dax}: \pi_{d-\ell}X \to \mathbb{Z}[\pi_1X \setminus 1], \quad \operatorname{dax}(a) = \operatorname{Dax}(\widetilde{A}),$

where we represent $a \in \pi_{d-\ell} X$ by a map $A \colon \mathbb{I}^{d-2\ell} \times \mathbb{D}^{\ell} \to X$.

• We can compute this in many classes of examples! See [K '21].

Thank you!