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Wave equation on R”

Given fy, f; : R" — C consider the Cauchy problem for the wave equation

{ (3ft—A)u=0
u(-,0) = f, oru(-,0) = f1.
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Wave equation on R”

Given fy, f; : R" — C consider the Cauchy problem for the wave equation

{ (3ft—A)u=0
u(-,0) = f, oru(-,0) = f1.

By Fourier transform, the solution u is given by
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ulx,t) = || e CcosteleDie e+ [ e sinteie) B de
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Wave equation on R”

Given fy, f; : R" — C consider the Cauchy problem for the wave equation

{ (a%t_A)UZO
u(-,0) = f, oru(-,0) = f1.

By Fourier transform, the solution u is given by

- - . ;
U(X, t) = Jn eleg Cos(t|§|)fb(§) dé’ + J;Rn eIX-g sm(t|§|) ]iéf) dg

It can be re-written in terms of the half-wave propagator

VB i | e HRg) de,

(Fourier extension operator for the cone)
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Fixed time estimates

For any fixed time t,
B = [ ST ag

is a Fourier multiplier operator in R".
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Fixed time estimates

For any fixed time t,
eitm,c(x) _ J ei(x-£+f|6|)f(§) d¢
is a Fourier multiplier operator in R".
For any fixed time t and any 1 < p < o0, Peral (1980, also Miyachi) proved that
luC Ol @ < Cepllfollr@n + Al @)

for s, := (n—1)|1/2 —1/p| and C; p locally bounded in t.
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Fixed time estimates

For any fixed time t,
VB = [ e fig) dg
is a Fourier multiplier operator in R".
For any fixed time t and any 1 < p < o0, Peral (1980, also Miyachi) proved that
lu(-, t)||L‘15p(R") < Gep([fol prny + HleLﬁl(Rn))
for s, := (n—1)|1/2 —1/p| and C; p locally bounded in t.

This is sharp: L’isp cannot be replaced by LP with oo > —s,,.
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Integrating locally in time

One can integrate locally in time for t ~ 1:

1/p 2 1/p
P
n OIfs aydt) < (| CEodt) " (Iliogen + 1filie )
< Ifollrwey + [f2llie ey

and obtain the same estimates as for the fixed time estimate.
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Integrating locally in time

One can integrate locally in time for t ~ 1:

1/p 2 1/p
P
n Ol aydt) < (| CEdt) " Iliogen + 1filie )
< Ifollrwey + [f2llie ey

and obtain the same estimates as for the fixed time estimate.

Question: can one do better and replace L’isp by LP with av > —s,7
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Integrating locally in time

One can integrate locally in time for t ~ 1:
1/p 2 1/p
([ 10600 ))” < ([ pae) " Ul + 15l ga)
< Ifollrwey + [f2llie ey
and obtain the same estimates as for the fixed time estimate.
Question: can one do better and replace L’isp by LP with av > —s,7

YES: Sogge (1991) showed that the above estimate holds for L’isﬁsw for some
e(p) >0if2 < p < 0.
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Local smoothing estimates

Local smoothing conjecture (Sogge)
The inequality

1/p
fu O andt) = Iilue + Il o

ho/dsforalla<1/pifnz_"1 <p<wando <s, if2<p<%
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Local smoothing estimates

Local smoothing conjecture (Sogge)
The inequality

1/p
fu Ol adt) S Il + Ifilie o

ho/dsforalla<1/pifnz_"1 <p<wando <s, if2<p<"2—”

3

|

=
Nl= 4
T =

D. Beltran

Local smoothing estimates for wave equations

Aussois, March 27, 2018



Local smoothing estimates

Local smoothing conjecture (Sogge)
The inequality

1/p
J‘ H ”LP (Rn)dt) S

ho/dsforalla<1/pifnz_"1 <p<wando <s,if2<p< 2%

Ifoll Loy + [F2lle7 | ey

o Interpolate the estimate
n=1 | o =
t —

2n 2 e’ f\nl Sl 2

R (R7x [1,2]) Lr=1(R")

’ \
o " with the fixed time endpoints
4 \
o " 1™ =2F | 2o 1,2]) = HfHLZ(Rn

“e’trf“Lw(n,l) (R"x[1,2]) = HfHLfD(Rn)
7T75
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Conjectures

Local smoothing conjecture
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Conjectures

‘ Local smoothing conjecture‘

U

‘ Bochner—Riesz conjecture ‘
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‘ Local smoothing conjecture‘

U

‘ Bochner—Riesz conjecture ‘

U

‘ Fourier Restriction conjecture for paraboloids‘

U

‘ Kakeya conjecture ‘
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State of the art for the local smoothing conjecture (n = 2)
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State of the art for the local smoothing conjecture (n = 3)
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Decoupling (or Wolff) inequalities

The space-time Fourier transform of e®™V~2f is
(VBFN(ET) = F©(r — [€])

so is supported in [ := {(£,7) e R 7 = [¢]}.
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Decoupling (or Wolff) inequalities

The space-time Fourier transform of e®™V~2f is
(VBFN(ET) = F©(r — [€])

so is supported in [ := {(£,7) e R 7 = [¢]}.

Decomposition into dyadic frequency
scales in &:

FoF LY
~—— ~——
lelsr kel jgl~ax
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Decoupling (or Wolff) inequalities

The space-time Fourier transform of e®™V~2f is

(e™V=REY (e, ) = F(&)3(r — |€])

so is supported in [ := {(£,7) e R 7 = [¢]}.

Decomposition into dyadic frequency
scales in &:

FoF LY
~—— ~——
lelsr kel jgl~ax

Low frequency part is easy:

|e®™V=AFSY < K« f, for Ke LY(R").
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If one is able to prove

[t I

there's summability over k € N to conclude

iy

A

L(R"x[1,2])

for all € > 0.
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If one is able to prove

VA o (R x < [ ey

le

there's summability over k € N to conclude

[Ciad fHLP (®x[1,2)) S [flee@n)

for all € > 0.
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If one is able to prove

itv/—A kaL" <

le

there's summability over k € N to conclude

[Ciad fHLP (®x[1,2)) S [flee@n)

for all € > 0.
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If one is able to prove

™Y 2K orax 1)) < 27| F]l o (re)

there’s summability over k € N to conclude

He't f”LP J(R7x[1,2]) R HfHLP(]R"

for all € > 0.
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If one is able to prove

|2 ¥ o) S 27 o ey
there’s summability over k € N to conclude

le™ _Af”Lf’l_e(R"x[l,Z]) < [ Fll o mey

for all € > 0.

Enough to understand

€] ~ 2"
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If one is able to prove

le™ =2 max 1)) < 275 F]l o rmy

there’s summability over k € N to conclude

le™ _AfHLf;_ ®ox12) S Il @n

€

for all € > 0.

Enough to understand

€] ~ 2" €] ~ 2%

Localising in 1 < t < 2 has the effect of blurring out in O(1) in frequency side.
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Plates

Further decompose the frequency space so that we can better understand e®V—2.
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Further decompose the frequency space so that we can better understand e®V—2.
Fl= Y11
0
2k
6 : sectors of angular width 27/2

#{9} ~ 2(n—1)k/2
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Further decompose the frequency space so that we can better understand e®V—2.
Fl= Y11
2k ’
6 : sectors of angular width 27/2
#{9} ~ 2(n—1)k/2
it/— ! it/ 1/2
IX[1,2)(t)e™ AkaLP(JR"“) < QkWH( Z IX[1,2)(t)e™ Afek|2) H[_p(]RnJrl) (SF)
O:plates
£(0)~27K?

D. Beltran (BCAM) Local smoothing estimates for wave equations Aussois, March 27, 2018



Further decompose the frequency space so that we can better understand e®V—2.

Fl= Y11
0

0 : sectors of angular width 2~
#{9} - 2(n—1)k/2

k/2

it/— ! it/ 1/2
X2 (t)e” AkaLP(JR"“)SQkWH( Z IX[L2)(t)e” Afek|2) H[_p(]RnJrl) (SF)
O:plates
£(0)~27K?

o= ? o= 1/2

X2 (D™ A ngarny £ 27( D5 Ixpay (D™ A @)™ (D2)
O:plates
£(9)~27k2
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Further decompose the frequency space so that we can better understand e®V—2.

Fl= Y11
0

0 : sectors of angular width 2~

#{9} - 2(n—1)k/2

k/2

it/— ! it/ 1/2
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Decoupling = LS

The right hand-side in the decoupling inequality is “easy” to understand:

T 1/
(D) Ixpa®e™ 2 w@n) " < [l
6:plates
Interpolation between
@ p = 2: Plancherel theorem.

e p = o: Young's inequality and a bound on L! norm of the associated kernel;
stationary phase.
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Decoupling = LS

The right hand-side in the decoupling inequality is “easy” to understand:

itn/— 1/
(D) Ixpa (O™ =26 [ w@m) P < 1l

6:plates

Interpolation between
@ p = 2: Plancherel theorem.

e p = o: Young's inequality and a bound on L! norm of the associated kernel;
stationary phase.

So in all, a (D,) with constant 2€7 implies

|2l o S | Fllisn)-
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Decoupling = LS

The right hand-side in the decoupling inequality is “easy” to understand:

T 1/
(D) Ixpa®e™ 2 w@n) " < [l
6:plates
Interpolation between
@ p = 2: Plancherel theorem.

e p = o: Young's inequality and a bound on L! norm of the associated kernel;
stationary phase.

So in all, a (D,) with constant 2€7 implies

|2l o S | Fllisn)-

2(n+1)

It turns out that for < p < @ the best possible value for v in (D,) is

7:5/3_1//3

sharp p-decoupling ‘ = ‘ sharp LS estimates‘

SO
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Sharp decoupling theorem

Rescaling so that 1 < |£| < 2 and in the language of Fourier extension operators

Erx,) = | erertIr s

1<¢)<2

Theorem (Bourgain—Demeter, 2015)

For all e > 0 and X > 1 there exists C,  such that
EF iy < Cooh®@ (S [l ,)
LP(WBX) X Lep 6 Lp(WBA)
9:\—1/2—plates
for 2 < p < o0, where

) os/2 if 2<p
a(p) -—{ s:—l/p

They obtained the stronger £2-version, from which the ¢P follows from Halder.
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Wave equations on manifolds

Let n > 2 and (M, g) be a smooth, compact n-dimensional Riemannian manifold
with associated Laplace—Beltrami operator A,.
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Wave equations on manifolds

Let n = 2 and (M, g) be a smooth, compact n-dimensional Riemannian manifold
with associated Laplace—Beltrami operator A,.

Given the initial data fy, 1 : M — C, consider the Cauchy problem

(02 — Ag)u=0
{ U(-,O):fo’ arU(',O):fi.
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Wave equations on manifolds

Let n = 2 and (M, g) be a smooth, compact n-dimensional Riemannian manifold
with associated Laplace—Beltrami operator A,.

Given the initial data fy, 1 : M — C, consider the Cauchy problem

(02 — Ag)u=0
{ u("O)Zan arU(',O):fi.

Seeger—Sogge-Stein (1991) : for each fixed time t and 1 < p < oo the solution u
satisfies

Hu('vt)“L”_sp(M) <mg [folleomy + 1l ()

where s, := (n—1)|1/2 - 1/p|.
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Wave equations on manifolds

Let n = 2 and (M, g) be a smooth, compact n-dimensional Riemannian manifold
with associated Laplace—Beltrami operator A,.

Given the initial data fy, 1 : M — C, consider the Cauchy problem
(02 - Ag)u=0
u(-,0) = f, oru(-,0) = f1.
Seeger—Sogge-Stein (1991) : for each fixed time t and 1 < p < oo the solution u

satisfies
Hu('vt)“L”_sp(M) <mg [folleomy + 1l ()

where s, := (n—1)|1/2 - 1/p|.

What about local smoothing estimates in this setting?

D. Beltran (BCAM) Local smoothing estimates for wave equations Aussois, March 27, 2018



State of the art for the local smoothing conjecture

T =




State of the art for the local smoothing conjecture

o Mockenhoupt—Seeger—Sogge

T =




State of the art for the local smoothing conjecture

© 1 72(33",;31) if n odd
(*) 5=

3n—2 :
if n even
o 2(3n+2) Mockenhoupt—Seeger—Sogge

Minicozzi-Sogge

T =




State of the art for the local smoothing conjecture

3n—3 e
(*) 1 _ m if n odd
P 32=2_ if p even
2(3n+2)
o Mockenhoupt-Seeger—Sogge
| Minicozzi-Sogge
2n

Lee—Seeger (n = 4)

T =



State of the art for the local smoothing conjecture

3n—3 i
*) 1 _ ) 26D if n odd
P 2(33"”;22) if n even

o Mockenhoupt-Seeger—Sogge
| Minicozzi-Sogge
2 Lee—Seeger (n = 4)
B.—Hickman—Sogge
n—3
2(n—1)

N
~
3
+
—
N
T =



State of the art for the local smoothing conjecture

3n—3 i
*) 1 _ ) 26D if n odd
P 2(33"”;22) if n even

o Mockenhoupt—Seeger—Sogge
| Minicozzi-Sogge
2n Lee—Seeger (n = 4)
B.—Hickman—Sogge
n—3
2(n—1)

N
~
3
+
—
N
T =

D. Beltran (BCAM)

Local smoothing estimates for wave equations Aussois, March 27, 2018



Local smoothing estimates

Theorem (B.—Hickman—Sogge)

With the previous setting, and ( ) < p < o, the estimate

2 1/p
(L luC D15y de) " Smg Bl + IKlie
—SP o

holds for all o < 1/p.
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The solution u to the Cauchy problem is given by
u(x, t) = Fofo(x, t) + F1fi(x, t)
where each F), can be written in local coordinates as a
b (x. b b(x,t;&) &
F.f(x, t ::J eltotid) 0 S fie)q
H ( ) N (1 + |§|2)_l5/2 (5) 5
where

@ b is a symbol of order 0 (with compact support in the (x, t) variables)
@ ¢ satisfies certain non-degeneracy and curvature hypothesis:

For fixed (xo, to),
f = axt(b(XOa to; f)

is “essentially a cone”, i.e., a smooth hypersurface with (n — 1) non-vanishing
principal curvatures.

Remember, for ¢(x, t;&) = x - & + t|¢

, one has 0, :¢(x, t;€) = (&,[£])-
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The solution u to the Cauchy problem is given by
u(x, t) = Fofo(x, t) + F1fi(x, t)
where each F), can be written in local coordinates as a
b (x. b b(x,t;&) &
F.f(x, t ::J eltotid) 0 S fie)q
H ( ) N (1 + |§|2)_l5/2 (5) 5
where

@ b is a symbol of order 0 (with compact support in the (x, t) variables)
@ ¢ satisfies certain non-degeneracy and curvature hypothesis:

For fixed (xo, to),
f = axt(b(XOa to; f)

is “essentially a cone”, i.e., a smooth hypersurface with (n — 1) non-vanishing
principal curvatures.

Remember, for ¢(x, t;&) = x - & + t|¢

, one has 0, :¢(x, t;€) = (&,[£])-
So enough to show
|FF o rasry S 24C VP | o e

2(n+1
(ntl) < p < 0.

for
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Phase conditions

Reduction to 1/2 < |£] < 2, indeed suffices to consider a conic domain
Mi={¢eR":1/2<¢, <2and |§] < || for 1<j<n—1}.
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Phase conditions

Reduction to 1/2 < |£] < 2, indeed suffices to consider a conic domain
Mi={¢eR":1/2<¢, <2and |§] < || for 1<j<n—1}.
Let a = a; ® ap € CP (R x R") where
(x, t) domain ¢ domain

supp(a1) < B(0,1) supp(az2) < Iy
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Phase conditions

Reduction to 1/2 < |£] < 2, indeed suffices to consider a conic domain
Mi={¢eR":1/2<¢, <2and |§] < || for 1<j<n—1}.
Let a = a; ® ap € CP (R x R") where
(x, t) domain ¢ domain
supp(a1) = B(0,1) supp(az) = Ny
Let ¢: R” x R x R” — R is smooth away from R” x R x {0} .

D. Beltran (BCAM) Local smoothing estimates for wave equations Aussois, March 27, 2018



Phase conditions

Reduction to 1/2 < |£] < 2, indeed suffices to consider a conic domain
Mi={¢eR":1/2<¢, <2and |§] < || for 1<j<n—1}.
Let a = a; ® ap € CP (R x R") where
(x, t) domain ¢ domain
supp(a1) < B(0,1) supp(a2) = I
Let ¢: R” x R x R” — R is smooth away from R” x R x {0} .
For all (x,t) € R" x R the function £ — ¢(x, t; &) is homogeneous of degree 1.
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Phase conditions

Reduction to 1/2 < |£] < 2, indeed suffices to consider a conic domain
Mi={¢eR":1/2<¢, <2and |§] < || for 1<j<n—1}.
Let a = a; ® ap € CP (R x R") where
(x, t) domain ¢ domain
supp(a1) < B(0,1) supp(az2) = 'y
Let ¢: R” x R x R” — R is smooth away from R” x R x {0} .
For all (x,t) € R" x R the function & — ¢(x, t; &) is homogeneous of degree 1.
H1) rank 6Z,¢(x, t;€) = n for all (x,t; &) € supp a\0.
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Phase conditions

Reduction to 1/2 < |£] < 2, indeed suffices to consider a conic domain
Mi={¢eR":1/2<¢, <2and |§] < || for 1<j<n—1}.
Let a = a; ® ap € CP (R x R") where
(x, t) domain ¢ domain
supp(a1) = B(0,1) supp(az) < Iy
Let ¢: R” x R x R” — R is smooth away from R” x R x {0} .
For all (x,t) € R" x R the function & — ¢(x, t; &) is homogeneous of degree 1.

H1) rank 6Z,¢(x, t;€) = n for all (x,t; &) € supp a\0.

H2) Defining the generalised Gauss map by G(z;¢§) := &Eig\ where

Go(z:€) = /\ 0¢,0:6(z: €),
Jj=1

one has

rank 6727,,7<az¢(2; 1), G(z:§))lp=e =n—1

for all (z; &) € supp a\0.
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The oscillatory integral operators

The local smoothing estimates for F will be deduced from a decoupling inequality
for a closely related class of oscillatory integral operators.
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The oscillatory integral operators

The local smoothing estimates for F will be deduced from a decoupling inequality
for a closely related class of oscillatory integral operators.

Given A > 1, define the rescaled phase and amplitude
P 6E) = Ap(x/A t/N€E)  and  ax, £€) 1= a(x/A t/A)a2(€)

and, with this data, let

T M(x,t) = J

R

e () M (x, 1 €)F(€) d€.
Recall the Fourier extension operator

Erx,) = [ et ag

1<fgl<2

for which we studied bounds on Bj.

||Ef||Lp(B>\) reads now HT)\f||Lp(Rn+1).
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Remember the constant coefficient case

T A—1/2

€l ~1
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The plates

Fix a second spatial parameter 1 < R < A.
Fix a maximally R~'/?-separated subset of [—1,1]"~! x {1}.
For each w belonging to this subset define the R~1/2-plate

0:={(¢,&)eR":1/2< &, <2and |€'/¢, —w| < R7TY2}.

&

U/ /7;}4/ (w,1)

&n=1/2

5/

Define fy := xyf.
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The variable coefficient decoupling theorem

Let

Theorem (B.—Hickman—Sogge, 2018)

Let T be an operator of the form described above and 2 < p < co. For all ¢ > 0
and M € N one has

1/p
I T)\fHLP(]R"H) SeM,p,a /\a(p)JrE( Z I TAfG”‘Zp(]gnH)) + >\7MHfHL2(]ﬁin)'
9:2—12_plate
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The variable coefficient decoupling theorem

Let

Theorem (B.—Hickman—Sogge, 2018)

Let T be an operator of the form described above and 2 < p < co. For all ¢ > 0
and M € N one has

1/p
I T)\fHLP(]R"H) SeM,p,a /\a(p)JrE( Z I TAfGHLp Rn+1 ) + >\7MHfHL2(]ﬁin)'
9:2—12_plate

Decoupling inequalities are “stable” : instance in Pramanik-Seeger (2007).
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The variable coefficient decoupling theorem

Let

Theorem (B.—Hickman—Sogge, 2018)

Let T be an operator of the form described above and 2 < p < co. For all ¢ > 0
and M € N one has

1/p
1T liomerny Semima X055 5 [T lagary) - + A1 Loy
9:2—12_plate

Decoupling inequalities are “stable” : instance in Pramanik-Seeger (2007).

constant coefficient decoupling = variable coefficient decoupling‘
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The variable coefficient decoupling theorem

Let

Theorem (B.—Hickman—Sogge, 2018)

Let T be an operator of the form described above and 2 < p < co. For all ¢ > 0
and M € N one has

1/p
IT iy Semima X505 3 [T lagury) - + A1y
9:2—12_plate

Decoupling inequalities are “stable” : instance in Pramanik-Seeger (2007).

constant coefficient decoupling = variable coefficient decoupling‘
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Scheme of the proof

We will prove that for 1 < R < )},

1/p
IT Flis(oy Semnon RO 1Tl )
0:R—1/2_plate

where Bg < B(0, \).
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Scheme of the proof

We will prove that for 1 < R < )},

1/p
IT Flis(oy Semnon RO 1Tl )
0:R—1/2_plate
where Bg < B(0, \).

Induction on scales.
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Scheme of the proof

We will prove that for 1 < R < )},

1/p
| T llo(8e) Sempa RO ) HTA)%HU(BR)

0:R—1/2_plate
where Bg < B(0, \).

Induction on scales.

@ Trivial for small scales (R ~ 1).
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Scheme of the proof

We will prove that for 1 < R < )},

1/p
IT Flis(oy Semnon RO 1Tl )

0:R—1/2_plate
where Bg € B(0, \).
Induction on scales.
@ Trivial for small scales (R ~ 1).

o At sufficiently small scales (< )\1/2), T> may be effectively approximated by
extension operators.
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Scheme of the proof

We will prove that for 1 < R < )},
A < a(p)+e A Lp
| T2l e (Br) Semp.a R (2 1Tl )
0:R—1/2_plate
where Bg < B(0, \).

Induction on scales.

@ Trivial for small scales (R ~ 1).

o At sufficiently small scales (< )\1/2), T> may be effectively approximated by
extension operators.

@ Use of the Bourgain—Demeter theorem for extension operators.
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Scheme of the proof

We will prove that for 1 < R < )},
A < a(p)+e A Lp
| T2l e (Br) Semp.a R (2 1Tl )
0:R—1/2_plate
where Bg < B(0, \).

Induction on scales.

@ Trivial for small scales (R ~ 1).

o At sufficiently small scales (< )\1/2), T> may be effectively approximated by
extension operators.

@ Use of the Bourgain—Demeter theorem for extension operators.

e Parabolic rescaling.
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A trivial decoupling inequality

As
M= Y T,
0:R—1/2—plate
one may trivially bound

T Ml < D, 1T flwe

9:R—1/2_plate

1/ /
<(Y TG (X

0:R—1/2_plate 0:R—1/2—plate

/ 1/p
< R(n—1)/2p ( Z H T)\fe”ILJP(BR))
0:R—1/2—plate
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A trivial decoupling inequality

As
M= Y T,
0:R—1/2—plate
one may trivially bound

T Ml < D, 1T flwe

9:R—1/2_plate

1/ /
<(Y TG (X

0:R—1/2_plate 0:R—1/2—plate

/ 1/p
< R(n—1)/2p ( Z H T)\fe”ILJP(BR))
0:R—1/2—plate

This settles the desired decoupling inequality for R ~ 1.
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Approximation by extension operators




Approximation by extension operators

TK < A2 Br
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Approximation by extension operators

1/2
TK <\ Bgr = U By

BKCBR

On each Bk, one morally has

| T2 Flle(ae) ~ 1 Exflie (s

R for some Fourier extension operator Ex
associated to a conic hypersurface.
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Aproximation by extension operators, cont'd

Fix a Bx = B(z, K).

Apply a nonlinear change of variables ¢ = W2 () and a Taylor expansion of ¢*
around the point Z,

T (2) = j & 79 ) (2)an(€) F(£) e

R
_ f@ (=2 (he () HENE2) 32 (1) 25 () o () Iy
where
® a;(n) := 2 0 W2(1))| det 0, W2 (1))]
o fo(n) := & BVIDF o Wi ()
@ hz(n) is a smooth function homogeneous of degree 1.
@ and, by Taylor's theorem,

1
EXvin) = [ (1= @)@ + /N v, vy,

0
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Aproximation by extension operators, cont'd

Fix a Bx = B(z, K).

Apply a nonlinear change of variables ¢ = W2 () and a Taylor expansion of ¢*
around the point Z,

T (2) = j & 79 ) (2)an(€) F(£) e

R
- f@ /(@) (mhe(m)+iE2 (=2 gA(2) a2 () o () dy
where
® a;(n) := 2 0 W2(1))| det 0, W2 (1))]
o fo(n) := & BVIDF o Wi ()
@ hz(n) is a smooth function homogeneous of degree 1.
@ and, by Taylor's theorem,

1
EXvin) = | [ (1= @)@ + /N W)y,

0
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Aproximation by extension operators, cont'd

Fix a Bx = B(z, K).

Apply a nonlinear change of variables ¢ = W2 () and a Taylor expansion of ¢*
around the point Z,

T (2) = j & 79 ) (2)an(€) F(£) e

R
- f@ /(@) (mhe(m)+iE2 (=2 gA(2) a2 () o () dy
where
® a;(n) := 2 0 W2(1))| det 0, W2 (1))]
o fo(n) := & BVIDF o Wi ()
@ hz(n) is a smooth function homogeneous of degree 1.
@ and, by Taylor's theorem,

1
EXvin) = | [ (1= @)@ + /N W)y,

0
Since |v| = |z — 2| < K < A'/?, for all € NJ one has
sup o5& (viml s 1.

v;n)eB(0,K) Xxsupp as
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Use of constant coefficient decoupling

On each By, the approximation
I T Fllo(gey ~ | Exfllie(i0.k))

allows to apply the Bourgain—Demeter theorem for such Ek:

v
[T e gy ~ |Efellemoky S K P2 3T IEE e s0k) "

0:K—1/2_plates
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Use of constant coefficient decoupling

On each By, the approximation
I T Fllo(gey ~ | Exfllie(i0.k))

allows to apply the Bourgain—Demeter theorem for such Ek:

v
[T e (gey ~ |ExFellemoky S K P2 3T IEE somk)

0:K—1/2_plates
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Use of constant coefficient decoupling

On each By, the approximation
| T Fllie (B ~ |Ex o B0,k
allows to apply the Bourgain—Demeter theorem for such Ek:

| T le(go) ~ 1Ex ok KPP0 ] |

0:K—1/2_plates

Y
f@HLp(BK ) 7
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Use of constant coefficient decoupling

On each By, the approximation

I T Fllo(gey ~ | Exfllie(i0.k))

allows to apply the Bourgain—Demeter theorem for such Ek:

1/
| T le(go) ~ 1Ex ok KPP0 ] I T ol 5)) "
0:K—1/2_plates
and summing over Bk < Bgr
« £ 1/
IT e < KO0 ST 1T lEg,) "

0:K—1/2_plates

D. Beltran (BCAM) Local smoothing estimates for wave equations Aussois, March 27, 2018



Parabolic rescaling

& space

D. Beltran (BCAM) Local smoothing estimates for wave equations Aussois, March 27, 2018



Parabolic rescaling

& space

(x, t) space
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Parabolic rescaling

By induction hypothesis, one assumes the inequality

(o] 1> 1/
IT sy < 0" (Y 1T l5) "

9:p—1/2—plates

to hold for p < R/2.
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Parabolic rescaling

By induction hypothesis, one assumes the inequality

(o] 1> 1/
IT sy < 0" (Y 1T l5) "

9:p—1/2—plates

to hold for p < R/2.
If 6 is a K~/2-plate, by rescaling and setting p = R/K,

o 1
IT ol < (RIK)PH( S T8 ) "

a:R’l/Z—plates
o0
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Parabolic rescaling

By induction hypothesis, one assumes the inequality

(e £ 1/
[T g,y < 02O Y 1T l0e,) "

9:p—1/2—plates

to hold for p < R/2.
If 6 is a K~/2-plate, by rescaling and setting p = R/K,

o 1
IT ol < (RIK)PH( S T8 ) "

a:R’l/Z—plates
o0

Summing over all K~1/2-plates 6,

(Y 1T P S RO T )

0:K—1/2—plates o0:R—12—plates

D. Beltran (BCAM) Local smoothing estimates for wave equations Aussois, March 27, 2018



Closing induction

We saw:

Approximation 4+ Bourgain—Demeter constant coefficient implies

I T Flirey < KEOH2(00 30 T

0:K—1/2_plates

1/p
fGH[_p(BR ) .

Parabolic rescaling + induction on the radius implies

( Z H T)\fGHLP(BR))l/P < (R/K)a(P)+E( Z H T

0:K—1/2_plates o:R—12—plates

1/p
f HLP BR)) :
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Closing induction

We saw:
Approximation 4+ Bourgain—Demeter constant coefficient implies

I T Flirey < KEOH2(00 30 T

0:K—1/2_plates

1/p
fGH[_p(BR ) .

Parabolic rescaling + induction on the radius implies

(D Tl S (RO T8, )

0:K—1/2_plates o:R—12—plates

So altogehter,

| T o gy € K™/2ROPITE( Z | T

o:R—1/2—plates

1/p
HLp (Br) ) .

Choose K large enough so that C.K~¢/2 < 1.
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Bounds for Hormander-type operators

Decouping theory for Hormander type operators is the same as for extension oper-
ators.

This is very much in contrast with the associated LP theory.
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Bounds for Hormander-type operators

Decouping theory for Hormander type operators is the same as for extension oper-
ators.

This is very much in contrast with the associated LP theory.
Case of non-homogeneous phase functions:

Restriction conjecture:

| Ef

LR gy S AN oo (1)

Hormander conjectured the same estimate to hold for T*.

True for n = 2: Carleson-Sjolin (1972).
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Bounds for Hormader type operators

Bourgain (1991): false for n > 3,
I Tl o ey < [0 (g1

2(n+1)

fails to hold uniformly in A > 1 whenever p < =—.
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Bounds for Hormader type operators

Bourgain (1991): false for n > 3,
I Tl o ey < [0 (g1

2(n+1)

fails to hold uniformly in A > 1 whenever p < =—.

But Bourgain (1995) also showed that if n is even, one could go beyond this
exponent.
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Bounds for Hormader type operators

Bourgain (1991): false for n > 3,
I Tl o ey < [0 (g1

2(n+1)

fails to hold uniformly in A > 1 whenever p < =—.

But Bourgain (1995) also showed that if n is even, one could go beyond this
exponent.

The estimate holds sharply for

2(n+1

p2 (:7:) if n>3 is odd, + : Stein(1986), — : Bourgain(1991)
2(n+2

2 A2 e 4 iseven, -+ : Bourgain-Guth(2011), — : Wisewell(2005)

n
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Bounds for Hormader type operators

Bourgain (1991): false for n > 3,
I Tl o ey < [0 (g1

2(n+1)

fails to hold uniformly in A > 1 whenever p < =—.

But Bourgain (1995) also showed that if n is even, one could go beyond this
exponent.

The estimate holds sharply for

2 1
p= % if n>3 is odd, + : Stein(1986), — : Bourgain(1991)
2 2
> M if n>4 iseven, -+ :Bourgain-Guth(2011), — : Wisewell(2005)
n

Assumption in ¢ is only about nonvanishing curvatures of the surfaces for each
point.
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Bounds for Hormader type operators

Bourgain (1991): false for n > 3,
I Tl o ey < [0 (g1

2(n+1)

fails to hold uniformly in A > 1 whenever p < =—.

But Bourgain (1995) also showed that if n is even, one could go beyond this
exponent.

The estimate holds sharply for

2 1
p= % if n>3 is odd, + : Stein(1986), — : Bourgain(1991)
2 2
> M if n>4 iseven, -+ :Bourgain-Guth(2011), — : Wisewell(2005)
n

Assumption in ¢ is only about nonvanishing curvatures of the surfaces for each
point.

What if principal curvatures are all assumed to be positive?
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Positive definite phases

It is possible to go beyond the above exponents.

After contributions of Lee (2006) and Bourgain—Guth (2011), the sharp bounds
were recently stablished by Guth—Hickman—Iliopoulou (2017):

T2l ooy < A°|Fllp(go-1y

holds for all A = 1 whenever

S 2604 D) e 3 s odd,
3n—3

>M if n>4 is even.
3n—2

Sharp: for instance by the examples of Minicozzi-Sogge (1997).
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Sharp local smoothing for Fourier integral operators

We showed in general, that

| FFlle

L opt1/pre BT S HfHLP(R")

~—1~ < p < o0, with no definite condition on the phase functions.
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Sharp local smoothing for Fourier integral operators

We showed in general, that

| FFlle

L opt1/pre BT S HfHLP(R")

for 2(""_+11) < p < o0, with no definite condition on the phase functions.

We (B.—Hickman-Sogge) adapted Bourgain's counterexample for oscillatory inte-
gral operators into this setting, to show that this is sharp in terms of p.
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Sharp local smoothing for Fourier integral operators

We showed in general, that

[F£ e @1y S [[f]Lrem)

—sp+1/p+e

for 2(""_+11) < p < o0, with no definite condition on the phase functions.

We (B.—Hickman-Sogge) adapted Bourgain's counterexample for oscillatory inte-
gral operators into this setting, to show that this is sharp in terms of p.

n odd n even
n — 1 non-vanishing 2(n+1) 2(n+2)
curvatures n—1 n
n— 1 positive 2(3n+1) 2(3n+2)
curvatures 3n—-3 3n—2
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Merci!
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