Local smoothing estimates for wave equations

David Beltran

BCAM - Basque Center for Applied Mathematics

Atelier d'Analyse Harmonique 2018

Aussois, March 26 - 30, 2018

joint work with Jonathan Hickman (U. Chicago) and Chris Sogge (Johns Hopkins U.)

Wave equation on \mathbb{R}^n

Given $f_0, f_1: \mathbb{R}^n \to \mathbb{C}$ consider the Cauchy problem for the wave equation

$$\left\{ \begin{array}{l} (\partial^2_{tt} - \Delta) u = 0 \\ \\ u(\,\cdot\,,0) = f_0, \qquad \partial_t u(\,\cdot\,,0) = f_1. \end{array} \right.$$

Wave equation on \mathbb{R}^n

Given $f_0, f_1: \mathbb{R}^n \to \mathbb{C}$ consider the Cauchy problem for the wave equation

$$\left\{ \begin{array}{l} (\partial_{tt}^2-\Delta) \textit{u}=0 \\ \\ \textit{u}(\,\cdot\,,0)=\textit{f}_0, \qquad \partial_t \textit{u}(\,\cdot\,,0)=\textit{f}_1. \end{array} \right.$$

By Fourier transform, the solution u is given by

$$u(x,t) = \int_{\mathbb{R}^n} e^{ix\cdot\xi} \cos(t|\xi|) \widehat{f_0}(\xi) d\xi + \int_{\mathbb{R}^n} e^{ix\cdot\xi} \sin(t|\xi|) \frac{\widehat{f_1}(\xi)}{|\xi|} d\xi.$$

Wave equation on \mathbb{R}^n

Given $f_0, f_1 : \mathbb{R}^n \to \mathbb{C}$ consider the Cauchy problem for the wave equation

$$\begin{cases} (\partial_{tt}^2 - \Delta)u = 0 \\ u(\cdot, 0) = f_0, \quad \partial_t u(\cdot, 0) = f_1. \end{cases}$$

By Fourier transform, the solution u is given by

$$u(x,t) = \int_{\mathbb{R}^n} e^{ix\cdot\xi} \cos(t|\xi|) \widehat{f_0}(\xi) d\xi + \int_{\mathbb{R}^n} e^{ix\cdot\xi} \sin(t|\xi|) \frac{\widehat{f_1}(\xi)}{|\xi|} d\xi.$$

It can be re-written in terms of the half-wave propagator

$$e^{it\sqrt{-\Delta}}f(x) := \int_{\mathbb{R}^n} e^{i(x\cdot\xi+t|\xi|)} \widehat{f}(\xi) d\xi.$$

(Fourier extension operator for the cone)

Fixed time estimates

For any fixed time t,

$$e^{it\sqrt{-\Delta}}f(x) = \int_{\mathbb{R}^n} e^{i(x\cdot\xi+t|\xi|)}\widehat{f}(\xi) d\xi$$

is a Fourier multiplier operator in \mathbb{R}^n .

Fixed time estimates

For any fixed time t,

$$e^{it\sqrt{-\Delta}}f(x) = \int_{\mathbb{R}^n} e^{i(x\cdot\xi+t|\xi|)}\widehat{f}(\xi) d\xi$$

is a Fourier multiplier operator in \mathbb{R}^n .

For any fixed time t and any 1 , Peral (1980, also Miyachi) proved that

$$||u(\cdot,t)||_{L^p_{-s_p}(\mathbb{R}^n)} \leqslant C_{t,p}(||f_0||_{L^p(\mathbb{R}^n)} + ||f_1||_{L^p_{-1}(\mathbb{R}^n)})$$

for $s_p := (n-1)|1/2 - 1/p|$ and $C_{t,p}$ locally bounded in t.

Fixed time estimates

For any fixed time t,

$$e^{it\sqrt{-\Delta}}f(x) = \int_{\mathbb{R}^n} e^{i(x\cdot\xi+t|\xi|)}\widehat{f}(\xi) d\xi$$

is a Fourier multiplier operator in \mathbb{R}^n .

For any fixed time t and any 1 , Peral (1980, also Miyachi) proved that

$$||u(\cdot,t)||_{L^{p}_{-s_{p}}(\mathbb{R}^{n})} \leqslant C_{t,p}(||f_{0}||_{L^{p}(\mathbb{R}^{n})} + ||f_{1}||_{L^{p}_{-1}(\mathbb{R}^{n})})$$

for $s_p := (n-1)|1/2 - 1/p|$ and $C_{t,p}$ locally bounded in t.

This is sharp: $L^p_{-s_p}$ cannot be replaced by L^p_{α} with $\alpha > -s_p$.

Integrating locally in time

One can integrate locally in time for $t \sim 1$:

$$\begin{split} \left(\int_{1}^{2} \|u(\cdot,t)\|_{L_{-s_{p}}^{p}(\mathbb{R}^{n})}^{p} \mathrm{d}t\right)^{1/p} & \leq \left(\int_{1}^{2} C_{t,p}^{p} \mathrm{d}t\right)^{1/p} (\|f_{0}\|_{L^{p}(\mathbb{R}^{n})} + \|f_{1}\|_{L_{-1}^{p}(\mathbb{R}^{n})}) \\ & \lesssim \|f_{0}\|_{L^{p}(\mathbb{R}^{n})} + \|f_{1}\|_{L_{-1}^{p}(\mathbb{R}^{n})} \end{split}$$

and obtain the same estimates as for the fixed time estimate.

Integrating locally in time

One can integrate locally in time for $t \sim 1$:

$$\begin{split} \Big(\int_{1}^{2} \|u(\cdot,t)\|_{L_{-s_{p}}^{\rho}(\mathbb{R}^{n})}^{\rho} \mathrm{d}t \Big)^{1/\rho} & \leq \Big(\int_{1}^{2} C_{t,p}^{\rho} \mathrm{d}t \Big)^{1/\rho} (\|f_{0}\|_{L^{\rho}(\mathbb{R}^{n})} + \|f_{1}\|_{L_{-1}^{\rho}(\mathbb{R}^{n})}) \\ & \lesssim \|f_{0}\|_{L^{\rho}(\mathbb{R}^{n})} + \|f_{1}\|_{L_{-1}^{\rho}(\mathbb{R}^{n})} \end{split}$$

and obtain the same estimates as for the fixed time estimate.

Question: can one do better and replace $L^p_{-s_p}$ by L^p_{α} with $\alpha > -s_p$?

Integrating locally in time

One can integrate locally in time for $t \sim 1$:

$$\begin{split} \Big(\int_{1}^{2} \|u(\cdot,t)\|_{L_{-s_{p}}^{\rho}(\mathbb{R}^{n})}^{\rho} \mathrm{d}t \Big)^{1/p} & \leq \Big(\int_{1}^{2} C_{t,p}^{\rho} \mathrm{d}t \Big)^{1/p} (\|f_{0}\|_{L^{p}(\mathbb{R}^{n})} + \|f_{1}\|_{L_{-1}^{\rho}(\mathbb{R}^{n})}) \\ & \lesssim \|f_{0}\|_{L^{p}(\mathbb{R}^{n})} + \|f_{1}\|_{L_{-1}^{p}(\mathbb{R}^{n})} \end{split}$$

and obtain the same estimates as for the fixed time estimate.

Question: can one do better and replace $L^p_{-s_p}$ by L^p_{α} with $\alpha > -s_p$?

YES: Sogge (1991) showed that the above estimate holds for $L^p_{-s_p+\varepsilon(p)}$ for some $\varepsilon(p)>0$ if $2< p<\infty$.

Local smoothing estimates

Local smoothing conjecture (Sogge)

The inequality

$$\left(\int_{1}^{2} \|u(\cdot,t)\|_{L_{-s_{p}+\sigma}^{\rho}(\mathbb{R}^{n})}^{\rho} dt\right)^{1/\rho} \lesssim \|f_{0}\|_{L^{p}(\mathbb{R}^{n})} + \|f_{1}\|_{L_{-1}^{\rho}(\mathbb{R}^{n})}$$

holds for all $\sigma < 1/p$ if $\frac{2n}{n-1} \leqslant p < \infty$ and $\sigma < s_p$ if 2 .

Local smoothing estimates

Local smoothing conjecture (Sogge)

The inequality

$$\left(\int_{1}^{2}\|u(\cdot,t)\|_{L_{-s_{p}+\sigma}^{\rho}(\mathbb{R}^{n})}^{\rho}\mathrm{d}t\right)^{1/\rho}\lesssim\|f_{0}\|_{L^{p}(\mathbb{R}^{n})}+\|f_{1}\|_{L_{-1}^{\rho}(\mathbb{R}^{n})}$$

holds for all $\sigma < 1/p$ if $\frac{2n}{n-1} \leqslant p < \infty$ and $\sigma < s_p$ if 2 .

Local smoothing estimates

Local smoothing conjecture (Sogge)

The inequality

$$\bigg(\int_{1}^{2}\|u(\cdot,t)\|_{L^{p}_{-s_{p}+\sigma}(\mathbb{R}^{n})}^{p}\mathrm{d}t\bigg)^{1/p}\lesssim\|f_{0}\|_{L^{p}(\mathbb{R}^{n})}+\|f_{1}\|_{L^{p}_{-1}(\mathbb{R}^{n})}$$

holds for all $\sigma < 1/p$ if $\frac{2n}{n-1} \leqslant p < \infty$ and $\sigma < s_p$ if 2 .

Interpolate the estimate

$$\|e^{it\sqrt{-\Delta}}f\|_{L^{\frac{2n}{n-1}}_{-\varepsilon}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^{\frac{2n}{n-1}}(\mathbb{R}^n)}$$

with the fixed time endpoints

$$\begin{cases} \|e^{it\sqrt{-\Delta}}f\|_{L^2(\mathbb{R}^n\times[1,2])} = \|f\|_{L^2(\mathbb{R}^n)} \\ \|e^{it\sqrt{-\Delta}}f\|_{L^{\infty}_{-\frac{(n-1)}{2}-\varepsilon}(\mathbb{R}^n\times[1,2])} \lesssim \|f\|_{L^{\infty}(\mathbb{R}^n)} \end{cases}$$

Local smoothing conjecture

Local smoothing conjecture

Bochner–Riesz conjecture

Local smoothing conjecture

⇓

Bochner–Riesz conjecture

 \downarrow

Fourier Restriction conjecture for paraboloids

Local smoothing conjecture Bochner-Riesz conjecture Fourier Restriction conjecture for paraboloids Kakeya conjecture

Decoupling (or Wolff) inequalities

The space-time Fourier transform of $e^{it\sqrt{-\Delta}}f$ is

$$(e^{it\sqrt{-\Delta}}f)^{\hat{}}(\xi,\tau) = \hat{f}(\xi)\delta(\tau - |\xi|)$$

so is supported in $\Gamma := \{(\xi, \tau) \in \mathbb{R}^{n+1} : \tau = |\xi|\}.$

Decoupling (or Wolff) inequalities

The space-time Fourier transform of $e^{it\sqrt{-\Delta}}f$ is

$$(e^{it\sqrt{-\Delta}}f)^{\hat{}}(\xi,\tau)=\hat{f}(\xi)\delta(\tau-|\xi|)$$

so is supported in $\Gamma := \{(\xi, \tau) \in \mathbb{R}^{n+1} : \tau = |\xi|\}.$

Decomposition into dyadic frequency scales in ξ :

$$\widehat{f} = \underbrace{\widehat{f}^{\lesssim 1}}_{|\xi| \lesssim 1} + \sum_{k \in \mathbb{N}} \underbrace{\widehat{f}^k}_{|\xi| \sim 2^k}$$

Decoupling (or Wolff) inequalities

The space-time Fourier transform of $e^{it\sqrt{-\Delta}}f$ is

$$(e^{it\sqrt{-\Delta}}f)^{\hat{}}(\xi,\tau)=\hat{f}(\xi)\delta(\tau-|\xi|)$$

so is supported in $\Gamma := \{(\xi, \tau) \in \mathbb{R}^{n+1} : \tau = |\xi|\}.$

Decomposition into dyadic frequency scales in ξ :

$$\widehat{f} = \underbrace{\widehat{f}^{\lesssim 1}}_{|\xi| \lesssim 1} + \sum_{k \in \mathbb{N}} \underbrace{\widehat{f}^k}_{|\xi| \sim 2^k}$$

Low frequency part is easy:

$$|e^{it\sqrt{-\Delta}}f^{\lesssim 1}|\lesssim K*f, \ \ \text{for} \ \ K\in L^1(\mathbb{R}^n).$$

If one is able to prove

$$\|e^{it\sqrt{-\Delta}}f^k\|_{L^p_\alpha(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

there's summability over $k \in \mathbb{N}$ to conclude

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p_{\alpha-\epsilon}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for all $\epsilon > 0$.

If one is able to prove

$$\|e^{it\sqrt{-\Delta}}f^k\|_{L^p_{\alpha-\epsilon+\epsilon}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

there's summability over $k \in \mathbb{N}$ to conclude

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p_{\alpha-\epsilon}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for all $\epsilon > 0$.

$$\|e^{it\sqrt{-\Delta}}f^k\|_{L^p_{\alpha-\epsilon}(\mathbb{R}^n\times[1,2])}\lesssim 2^{-k\epsilon}\|f\|_{L^p(\mathbb{R}^n)}$$

there's summability over $k \in \mathbb{N}$ to conclude

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p_{\alpha-\epsilon}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for all $\epsilon > 0$.

$$\|e^{it\sqrt{-\Delta}}f^k\|_{L^p(\mathbb{R}^n\times[1,2])}\lesssim 2^{-k\alpha}\|f\|_{L^p(\mathbb{R}^n)}$$

there's summability over $k \in \mathbb{N}$ to conclude

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p_{\alpha-\epsilon}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for all $\epsilon > 0$.

$$\|e^{it\sqrt{-\Delta}}f^k\|_{(\mathbb{R}^n\times[1,2])}\lesssim 2^{-k\alpha}\|f\|_{L^p(\mathbb{R}^n)}$$

there's summability over $k \in \mathbb{N}$ to conclude

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p_{\alpha-\epsilon}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for all $\epsilon > 0$.

Enough to understand

$$\|e^{it\sqrt{-\Delta}}f^k\|_{(\mathbb{R}^n\times[1,2])}\lesssim 2^{-k\alpha}\|f\|_{L^p(\mathbb{R}^n)}$$

there's summability over $k \in \mathbb{N}$ to conclude

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p_{\alpha-\epsilon}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for all $\epsilon > 0$.

Enough to understand

Localising in 1 < t < 2 has the effect of blurring out in O(1) in frequency side.

Further decompose the frequency space so that we can better understand $e^{it\sqrt{-\Delta}}$.

Further decompose the frequency space so that we can better understand $e^{it\sqrt{-\Delta}}$.

$$f^k := \sum_{\theta} f^k_{\theta}$$

 θ : sectors of angular width $2^{-k/2}$

$$\#\{\theta\} \sim 2^{(n-1)k/2}$$

Further decompose the frequency space so that we can better understand $e^{it\sqrt{-\Delta}}$.

$$f^k := \sum_{\theta} f_{\theta}^k$$

$$\|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f^{k}\|_{L^{p}(\mathbb{R}^{n+1})} \lesssim 2^{k\gamma} \|\left(\sum_{\substack{\theta: \text{plates} \\ \angle(\theta) \sim 2^{-k/2}}} |\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^{k}|^{2}\right)^{1/2} \|_{L^{p}(\mathbb{R}^{n+1})} \quad (\mathsf{SF})$$

Further decompose the frequency space so that we can better understand $e^{it\sqrt{-\Delta}}$.

$$f^k := \sum_{\theta} f^k_{\theta}$$

$$\|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f^{k}\|_{L^{p}(\mathbb{R}^{n+1})} \stackrel{?}{\lesssim} 2^{k\gamma} \| (\sum_{\substack{\theta: \text{plates} \\ \angle(\theta) \sim 2^{-k/2}}} |\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^{k}|^{2})^{1/2} \|_{L^{p}(\mathbb{R}^{n+1})} \quad (\mathsf{SF})$$

$$\|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f^k\|_{L^p(\mathbb{R}^{n+1})} \stackrel{?}{\lesssim} 2^{k\gamma} \Big(\sum_{\substack{\theta: \text{plates} \\ \angle(\theta) \sim 2^{-k/2}}} \|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^k\|_{L^p(\mathbb{R}^{n+1})}^2 \Big)^{1/2} \quad (\mathsf{D}_2)$$

Further decompose the frequency space so that we can better understand $e^{it\sqrt{-\Delta}}$.

$$f^k := \sum_{\theta} f^k_{\theta}$$

$$\|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f^k\|_{L^p(\mathbb{R}^{n+1})} \stackrel{?}{\lesssim} 2^{k\gamma} \|\left(\sum_{\substack{\theta: \text{plates}\\ \angle(\theta) \sim 2^{-k/2}}} |\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^k|^2\right)^{1/2} \|_{L^p(\mathbb{R}^{n+1})} \quad (\mathsf{SF})$$

$$\|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f^k\|_{L^p(\mathbb{R}^{n+1})} \stackrel{?}{\lesssim} 2^{k\gamma} \Big(\sum_{\substack{\theta: \text{plates} \\ \angle(\theta) \sim 2^{-k/2}}} \|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^k\|_{L^p(\mathbb{R}^{n+1})}^2 \Big)^{1/2} \quad (\mathsf{D_2})$$

Further decompose the frequency space so that we can better understand $e^{it\sqrt{-\Delta}}$.

$$f^k := \sum_{\theta} f^k_{\theta}$$

$$\|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f^k\|_{L^p(\mathbb{R}^{n+1})} \stackrel{?}{\lesssim} 2^{k\gamma} \|\left(\sum_{\substack{\theta: \text{plates}\\ \angle(\theta) \sim 2^{-k/2}}} |\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^k|^2\right)^{1/2} \|_{L^p(\mathbb{R}^{n+1})} \quad (\mathsf{SF})$$

$$\|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f^k\|_{L^p(\mathbb{R}^{n+1})} \stackrel{?}{\lesssim} 2^{k\gamma} \Big(\sum_{\substack{\theta: \text{plates} \\ \angle(\theta) \sim 2^{-k/2}}} \|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^k\|_{L^p(\mathbb{R}^{n+1})}^{\mathbf{p}} \Big)^{1/\mathbf{p}} \quad (\mathsf{D}_{\mathbf{p}})$$

Decoupling \Rightarrow LS

The right hand-side in the decoupling inequality is "easy" to understand:

$$\big(\sum_{\theta: \mathrm{plates}} \|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^k\|_{L^p(\mathbb{R}^{n+1})}\big)^{1/p} \lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

Interpolation between

- p = 2: Plancherel theorem.
- $p = \infty$: Young's inequality and a bound on L^1 norm of the associated kernel; stationary phase.

Decoupling \Rightarrow LS

The right hand-side in the decoupling inequality is "easy" to understand:

$$\big(\sum_{\theta: \mathrm{plates}} \|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^k\|_{L^p(\mathbb{R}^{n+1})}\big)^{1/p} \lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

Interpolation between

- p = 2: Plancherel theorem.
- $p = \infty$: Young's inequality and a bound on L^1 norm of the associated kernel; stationary phase.

So in all, a (D_p) with constant $2^{k\gamma}$ implies

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p_{-\gamma}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}.$$

Decoupling \Rightarrow LS

The right hand-side in the decoupling inequality is "easy" to understand:

$$\big(\sum_{\theta: \mathrm{plates}} \|\chi_{[1,2]}(t)e^{it\sqrt{-\Delta}}f_{\theta}^k\|_{L^p(\mathbb{R}^{n+1})}\big)^{1/p} \lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

Interpolation between

- p = 2: Plancherel theorem.
- $p = \infty$: Young's inequality and a bound on L^1 norm of the associated kernel; stationary phase.

So in all, a (D_p) with constant $2^{k\gamma}$ implies

$$\|e^{it\sqrt{-\Delta}}f\|_{L^p_{-\gamma}(\mathbb{R}^n\times[1,2])}\lesssim \|f\|_{L^p(\mathbb{R}^n)}.$$

It turns out that for $\frac{2(n+1)}{n-1} \leqslant p < \infty$ the best possible value for γ in (D_p) is

$$\gamma = s_p - 1/p$$

SO

sharp
$$p$$
-decoupling \Longrightarrow sharp LS estimates

Sharp decoupling theorem

Rescaling so that $1\leqslant |\xi|\leqslant 2$ and in the language of Fourier extension operators

$$Ef(x,t) = \int_{1 \leq |\xi| \leq 2} e^{ix \cdot \xi + t|\xi|} f(\xi) d\xi,$$

Theorem (Bourgain-Demeter, 2015)

For all $\epsilon > 0$ and $\lambda \geqslant 1$ there exists $C_{\epsilon,p}$ such that

$$\|Ef\|_{L^p(w_{B_\lambda})} \leqslant C_{\epsilon,p} \lambda^{\alpha(p)+\epsilon} \Big(\sum_{\theta: \lambda^{-1/2}-\text{plates}} \|Ef_{\theta}\|_{L^p(w_{B_\lambda})}^p\Big)^{1/p}$$

for $2 \le p < \infty$, where

$$\alpha(p) := \begin{cases} s_p/2 & \text{if} \quad 2 \leqslant p \leqslant \frac{2(n+1)}{n-1}, \\ s_p - 1/p & \text{if} \quad \frac{2(n+1)}{n-1} \leqslant p < \infty. \end{cases}$$

They obtained the stronger ℓ^2 -version, from which the ℓ^p follows from Hölder.

Let $n\geqslant 2$ and (M,g) be a smooth, compact n-dimensional Riemannian manifold with associated Laplace–Beltrami operator Δ_g .

Let $n \geqslant 2$ and (M,g) be a smooth, compact n-dimensional Riemannian manifold with associated Laplace–Beltrami operator Δ_g .

Given the initial data $f_0, f_1: M \to \mathbb{C}$, consider the Cauchy problem

$$\begin{cases} (\partial_t^2 - \Delta_g)u = 0 \\ u(\cdot, 0) = f_0, \quad \partial_t u(\cdot, 0) = f_1. \end{cases}$$

Let $n \geqslant 2$ and (M,g) be a smooth, compact n-dimensional Riemannian manifold with associated Laplace–Beltrami operator Δ_g .

Given the initial data $f_0, f_1: M \to \mathbb{C}$, consider the Cauchy problem

$$\begin{cases} (\partial_t^2 - \Delta_g)u = 0 \\ u(\cdot, 0) = f_0, \quad \partial_t u(\cdot, 0) = f_1. \end{cases}$$

Seeger–Sogge–Stein (1991) : for each fixed time t and 1 the solution <math>u satisfies

$$\|u(\,\cdot\,,t)\|_{L^p_{-s_p}(M)} \lesssim_{M,g} \|f_0\|_{L^p(M)} + \|f_1\|_{L^p_{-1}(M)}$$

where $s_p := (n-1)|1/2 - 1/p|$.

Let $n \geqslant 2$ and (M,g) be a smooth, compact n-dimensional Riemannian manifold with associated Laplace–Beltrami operator Δ_g .

Given the initial data $f_0, f_1: M \to \mathbb{C}$, consider the Cauchy problem

$$\begin{cases} (\partial_t^2 - \Delta_g)u = 0 \\ u(\cdot, 0) = f_0, \quad \partial_t u(\cdot, 0) = f_1. \end{cases}$$

Seeger–Sogge–Stein (1991) : for each fixed time t and 1 the solution <math>u satisfies

$$\|u(\,\cdot\,,t)\|_{L^p_{-s_p}(M)} \lesssim_{M,g} \|f_0\|_{L^p(M)} + \|f_1\|_{L^p_{-1}(M)}$$

where $s_p := (n-1)|1/2 - 1/p|$.

What about local smoothing estimates in this setting?

Local smoothing estimates

Theorem (B.-Hickman-Sogge)

With the previous setting, and $\frac{2(n+1)}{n-1} \le p < \infty$, the estimate

$$\bigg(\int_{1}^{2}\|u(\,\cdot\,,t)\|_{L^{p}_{-s_{p}+\sigma}(M)}^{p}\,\mathrm{d}t\bigg)^{1/p}\lesssim_{M,g}\|f_{0}\|_{L^{p}(M)}+\|f_{1}\|_{L^{p}_{-1}(M)}$$

holds for all $\sigma < 1/p$.

The solution u to the Cauchy problem is given by

$$u(x,t) = \mathcal{F}_0 f_0(x,t) + \mathcal{F}_1 f_1(x,t)$$

where each \mathcal{F}_{μ} can be written in local coordinates as a

$$\mathcal{F}_{\mu}f(x,t) := \int_{\hat{\mathbb{R}}^n} e^{i\phi(x,t;\xi)} \frac{b(x,t;\xi)}{(1+|\xi|^2)^{-\mu/2}} \hat{f}(\xi) d\xi$$

where

- b is a symbol of order 0 (with compact support in the (x, t) variables)
- ullet ϕ satisfies certain non-degeneracy and curvature hypothesis:

For fixed (x_0, t_0) ,

$$\xi \mapsto \partial_{xt}\phi(x_0, t_0; \xi)$$

is "essentially a cone", i.e., a smooth hypersurface with (n-1) non-vanishing principal curvatures.

Remember, for $\phi(x, t; \xi) = x \cdot \xi + t|\xi|$, one has $\partial_{x,t}\phi(x, t; \xi) = (\xi, |\xi|)$.

The solution u to the Cauchy problem is given by

$$u(x,t) = \mathcal{F}_0 f_0(x,t) + \mathcal{F}_1 f_1(x,t)$$

where each \mathcal{F}_{μ} can be written in local coordinates as a

$$\mathcal{F}_{\mu}f(x,t) := \int_{\hat{\mathbb{R}}^n} e^{i\phi(x,t;\xi)} \frac{b(x,t;\xi)}{(1+|\xi|^2)^{-\mu/2}} \hat{f}(\xi) d\xi$$

where

- b is a symbol of order 0 (with compact support in the (x, t) variables)
- ullet ϕ satisfies certain *non-degeneracy* and *curvature* hypothesis:

For fixed (x_0, t_0) ,

$$\xi \mapsto \partial_{xt}\phi(x_0, t_0; \xi)$$

is "essentially a cone", i.e., a smooth hypersurface with (n-1) non-vanishing principal curvatures.

Remember, for $\phi(x, t; \xi) = x \cdot \xi + t|\xi|$, one has $\partial_{x,t}\phi(x, t; \xi) = (\xi, |\xi|)$.

So enough to show

$$\|\mathcal{F}f^k\|_{L^p(\mathbb{R}^{n+1})} \lesssim 2^{k(s_p-1/p+\epsilon)} \|f\|_{L^p(\mathbb{R}^n)}$$

for
$$\frac{2(n+1)}{n-1} \leqslant p < \infty$$
.

Reduction to $1/2 \leqslant |\xi| \leqslant 2$, indeed suffices to consider a conic domain

$$\Gamma_1:=\big\{\xi\in\hat{\mathbb{R}}^n: 1/2\leqslant \xi_n\leqslant 2 \text{ and } |\xi_j|\leqslant |\xi_n| \text{ for } 1\leqslant j\leqslant n-1\big\}.$$

Local smoothing estimates for wave equations

Reduction to $1/2 \leqslant |\xi| \leqslant 2$, indeed suffices to consider a conic domain

$$\Gamma_1:=\big\{\xi\in\hat{\mathbb{R}}^n: 1/2\leqslant \xi_n\leqslant 2 \text{ and } |\xi_j|\leqslant |\xi_n| \text{ for } 1\leqslant j\leqslant n-1\big\}.$$

Reduction to $1/2 \leqslant |\xi| \leqslant 2$, indeed suffices to consider a conic domain

$$\Gamma_1 := \big\{ \xi \in \hat{\mathbb{R}}^n : 1/2 \leqslant \xi_n \leqslant 2 \text{ and } |\xi_j| \leqslant |\xi_n| \text{ for } 1 \leqslant j \leqslant n-1 \big\}.$$

Let
$$a=a_1\otimes a_2\in C_c^\infty(\mathbb{R}^{n+1}\times\mathbb{R}^n)$$
 where

$$(x, t)$$
 domain

$$\mathsf{supp}(a_1) \subset B(0,1)$$

$$\xi$$
 domain

$$supp(a_2) \subset \Gamma_1$$

Reduction to $1/2 \le |\xi| \le 2$, indeed suffices to consider a conic domain

$$\Gamma_1:=\big\{\xi\in\hat{\mathbb{R}}^n: 1/2\leqslant \xi_n\leqslant 2 \text{ and } |\xi_j|\leqslant |\xi_n| \text{ for } 1\leqslant j\leqslant n-1\big\}.$$

Let
$$a=a_1\otimes a_2\in C_c^\infty(\mathbb{R}^{n+1}\times\mathbb{R}^n)$$
 where

$$(x, t)$$
 domain

$$\xi$$
 domain

$$supp(a_1) \subset B(0,1)$$

$$supp(a_2) \subset \Gamma_1$$

Let $\phi \colon \mathbb{R}^n \times \mathbb{R} \times \hat{\mathbb{R}}^n \to \mathbb{R}$ is smooth away from $\mathbb{R}^n \times \mathbb{R} \times \{0\}$.

Reduction to $1/2\leqslant |\xi|\leqslant 2,$ indeed suffices to consider a conic domain

$$\Gamma_1:=\big\{\xi\in\hat{\mathbb{R}}^n: 1/2\leqslant \xi_n\leqslant 2 \text{ and } |\xi_j|\leqslant |\xi_n| \text{ for } 1\leqslant j\leqslant n-1\big\}.$$

Let
$$a=a_1\otimes a_2\in C_c^\infty(\mathbb{R}^{n+1} imes\mathbb{R}^n)$$
 where

$$(x, t)$$
 domain

$$\xi$$
 domain

$$supp(a_1) \subset B(0,1)$$

$$supp(a_2) \subset \Gamma_1$$

Let $\phi \colon \mathbb{R}^n \times \mathbb{R} \times \hat{\mathbb{R}}^n \to \mathbb{R}$ is smooth away from $\mathbb{R}^n \times \mathbb{R} \times \{0\}$.

For all $(x,t) \in \mathbb{R}^n \times \mathbb{R}$ the function $\xi \mapsto \phi(x,t;\xi)$ is homogeneous of degree 1.

Reduction to $1/2\leqslant |\xi|\leqslant 2,$ indeed suffices to consider a conic domain

$$\Gamma_1:=\big\{\xi\in\hat{\mathbb{R}}^n: 1/2\leqslant \xi_n\leqslant 2 \text{ and } |\xi_j|\leqslant |\xi_n| \text{ for } 1\leqslant j\leqslant n-1\big\}.$$

Let
$$a=a_1\otimes a_2\in C_c^\infty(\mathbb{R}^{n+1} imes\mathbb{R}^n)$$
 where

$$(x, t)$$
 domain

$$\xi$$
 domain

$$supp(a_1) \subset B(0,1)$$

$$supp(a_2) \subset \Gamma_1$$

Let $\phi \colon \mathbb{R}^n \times \mathbb{R} \times \hat{\mathbb{R}}^n \to \mathbb{R}$ is smooth away from $\mathbb{R}^n \times \mathbb{R} \times \{0\}$.

For all $(x,t) \in \mathbb{R}^n \times \mathbb{R}$ the function $\xi \mapsto \phi(x,t;\xi)$ is homogeneous of degree 1.

H1) rank
$$\partial_{\xi z}^2 \phi(x, t; \xi) = n$$
 for all $(x, t; \xi) \in \text{supp } a \setminus 0$.

Reduction to $1/2 \leqslant |\xi| \leqslant 2$, indeed suffices to consider a conic domain

$$\Gamma_1 := \big\{ \xi \in \hat{\mathbb{R}}^n : 1/2 \leqslant \xi_n \leqslant 2 \text{ and } |\xi_j| \leqslant |\xi_n| \text{ for } 1 \leqslant j \leqslant n-1 \big\}.$$

Let $a = a_1 \otimes a_2 \in C_c^{\infty}(\mathbb{R}^{n+1} \times \mathbb{R}^n)$ where

$$(x, t)$$
 domain

 ξ domain

$$supp(a_1) \subset B(0,1)$$

$$supp(a_2) \subset \Gamma_1$$

Let $\phi \colon \mathbb{R}^n \times \mathbb{R} \times \hat{\mathbb{R}}^n \to \mathbb{R}$ is smooth away from $\mathbb{R}^n \times \mathbb{R} \times \{0\}$.

For all $(x, t) \in \mathbb{R}^n \times \mathbb{R}$ the function $\xi \mapsto \phi(x, t; \xi)$ is homogeneous of degree 1.

- H1) rank $\partial_{\xi z}^2 \phi(x, t; \xi) = n$ for all $(x, t; \xi) \in \text{supp } a \setminus 0$.
- H2) Defining the generalised Gauss map by $G(z;\xi):=\frac{G_0(z;\xi)}{|G_0(z;\xi)|}$ where

$$G_0(z;\xi) := \bigwedge_{j=1}^n \partial_{\xi_j} \partial_z \phi(z;\xi),$$

one has

$$\operatorname{rank} \partial_{nn}^2 \langle \partial_z \phi(z; \eta), G(z; \xi) \rangle |_{n=\xi} = n-1$$

for all $(z; \xi) \in \operatorname{supp} a \setminus 0$.

D. Beltran (BCAM) Local smoothing estimates for wave equations

The oscillatory integral operators

The local smoothing estimates for \mathcal{F} will be deduced from a decoupling inequality for a closely related class of oscillatory integral operators.

The oscillatory integral operators

The local smoothing estimates for \mathcal{F} will be deduced from a decoupling inequality for a closely related class of oscillatory integral operators.

Given $\lambda \geqslant 1$, define the rescaled phase and amplitude

$$\phi^{\lambda}(x,t;\xi) := \lambda \phi(x/\lambda,t/\lambda;\xi)$$
 and $a^{\lambda}(x,t;\xi) := a_1(x/\lambda,t/\lambda)a_2(\xi)$

and, with this data, let

$$T^{\lambda}f(x,t):=\int_{\hat{\mathbb{R}}^n}e^{i\phi^{\lambda}(x,t;\xi)}a^{\lambda}(x,t;\xi)f(\xi)\,\mathrm{d}\xi.$$

Recall the Fourier extension operator

$$Ef(x,t) = \int_{1 \le |\xi| \le 2} e^{i(x \cdot \xi + t|\xi|)} f(\xi) \,d\xi$$

for which we studied bounds on B_{λ} .

$$||Ef||_{L^p(B_\lambda)}$$
 reads now $||T^\lambda f||_{L^p(\mathbb{R}^{n+1})}$.

The plates

Remember the constant coefficient case

The plates

Fix a second spatial parameter $1\leqslant R\leqslant \lambda$. Fix a maximally $R^{-1/2}$ -separated subset of $[-1,1]^{n-1}\times\{1\}$. For each ω belonging to this subset define the $R^{-1/2}$ -plate

$$\theta:=\big\{(\xi',\xi_n)\in \hat{\mathbb{R}}^n: 1/2\leqslant \xi_n\leqslant 2 \text{ and } |\xi'/\xi_n-\omega|\leqslant R^{-1/2}\big\}.$$

Define $f_{\theta} := \chi_{\theta} f$.

Let

$$\alpha(p) := \begin{cases} s_p/2 & \text{if } 2 \leq p \leq \frac{2(n+1)}{n-1}, \\ s_p - 1/p & \text{if } \frac{2(n+1)}{n-1} \leq p < \infty. \end{cases}$$

Theorem (B.-Hickman-Sogge, 2018)

Let T^{λ} be an operator of the form described above and $2 \leqslant p \leqslant \infty$. For all $\varepsilon > 0$ and $M \in \mathbb{N}$ one has

$$\|T^{\lambda}f\|_{L^{p}(\mathbb{R}^{n+1})} \lesssim_{\varepsilon,M,\phi,a} \lambda^{\alpha(p)+\varepsilon} \Big(\sum_{\theta:\lambda^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(\mathbb{R}^{n+1})}^{p}\Big)^{1/p} + \lambda^{-M}\|f\|_{L^{2}(\hat{\mathbb{R}}^{n})}.$$

Let

$$\alpha(p) := \begin{cases} s_p/2 & \text{if } 2 \leqslant p \leqslant \frac{2(n+1)}{n-1}, \\ s_p - 1/p & \text{if } \frac{2(n+1)}{n-1} \leqslant p < \infty. \end{cases}$$

Theorem (B.-Hickman-Sogge, 2018)

Let T^{λ} be an operator of the form described above and $2 \leqslant p \leqslant \infty$. For all $\varepsilon > 0$ and $M \in \mathbb{N}$ one has

$$\|T^{\lambda}f\|_{L^{p}(\mathbb{R}^{n+1})} \lesssim_{\varepsilon,M,\phi,a} \lambda^{\alpha(p)+\varepsilon} \Big(\sum_{\theta:\lambda^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(\mathbb{R}^{n+1})}^{p}\Big)^{1/p} + \lambda^{-M}\|f\|_{L^{2}(\hat{\mathbb{R}}^{n})}.$$

Decoupling inequalities are "stable": instance in Pramanik-Seeger (2007).

Let

$$\alpha(p) := \begin{cases} s_p/2 & \text{if } 2 \leq p \leq \frac{2(n+1)}{n-1}, \\ s_p - 1/p & \text{if } \frac{2(n+1)}{n-1} \leq p < \infty. \end{cases}$$

Theorem (B.-Hickman-Sogge, 2018)

Let T^{λ} be an operator of the form described above and $2 \leqslant p \leqslant \infty$. For all $\varepsilon > 0$ and $M \in \mathbb{N}$ one has

$$\|T^{\lambda}f\|_{L^{p}(\mathbb{R}^{n+1})} \lesssim_{\varepsilon,M,\phi,a} \lambda^{\alpha(p)+\varepsilon} \Big(\sum_{\theta:\lambda^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(\mathbb{R}^{n+1})}^{p}\Big)^{1/p} + \lambda^{-M}\|f\|_{L^{2}(\hat{\mathbb{R}}^{n})}.$$

Decoupling inequalities are "stable": instance in Pramanik-Seeger (2007).

constant coefficient decoupling \Longrightarrow variable coefficient decoupling

Local smoothing estimates for wave equations

Let

$$\alpha(p) := \begin{cases} s_p/2 & \text{if } 2 \leqslant p \leqslant \frac{2(n+1)}{n-1}, \\ s_p - 1/p & \text{if } \frac{2(n+1)}{n-1} \leqslant p < \infty. \end{cases}$$

Theorem (B.-Hickman-Sogge, 2018)

Let T^{λ} be an operator of the form described above and $2 \leqslant p \leqslant \infty$. For all $\varepsilon > 0$ and $M \in \mathbb{N}$ one has

$$\|T^{\lambda}f\|_{L^{p}(\mathbb{R}^{n+1})} \lesssim_{\varepsilon,M,\phi,a} \lambda^{\alpha(p)+\varepsilon} \Big(\sum_{\theta:\lambda^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(\mathbb{R}^{n+1})}^{p}\Big)^{1/p} + \lambda^{-M}\|f\|_{L^{2}(\hat{\mathbb{R}}^{n})}.$$

Decoupling inequalities are "stable": instance in Pramanik-Seeger (2007).

constant coefficient decoupling \Longrightarrow variable coefficient decoupling

We will prove that for $1 \leqslant R \leqslant \lambda$,

$$\|T^{\lambda}f\|_{L^{p}(B_{R})} \lesssim_{\varepsilon,M,\phi,a} R^{\alpha(p)+\varepsilon} \Big(\sum_{\theta:R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}$$

where $B_R \subseteq B(0,\lambda)$.

We will prove that for $1 \leqslant R \leqslant \lambda$,

$$\|T^{\lambda}f\|_{L^{p}(B_{R})} \lesssim_{\varepsilon,M,\phi,a} R^{\alpha(p)+\varepsilon} \Big(\sum_{\theta:R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}$$

where $B_R \subseteq B(0, \lambda)$.

We will prove that for $1 \leqslant R \leqslant \lambda$,

$$\|T^{\lambda}f\|_{L^{p}(B_{R})} \lesssim_{\varepsilon,M,\phi,a} R^{\alpha(p)+\varepsilon} \Big(\sum_{\theta:R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}$$

where $B_R \subseteq B(0, \lambda)$.

Induction on scales.

• Trivial for small scales $(R \sim 1)$.

We will prove that for $1 \leqslant R \leqslant \lambda$,

$$\|T^{\lambda}f\|_{L^{p}(B_{R})} \lesssim_{\varepsilon, M, \phi, a} R^{\alpha(p)+\varepsilon} \Big(\sum_{\theta: R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}$$

where $B_R \subseteq B(0, \lambda)$.

- Trivial for small scales $(R \sim 1)$.
- At sufficiently small scales ($<\lambda^{1/2}$), T^{λ} may be effectively approximated by extension operators.

We will prove that for $1 \leqslant R \leqslant \lambda$,

$$\|T^{\lambda}f\|_{L^{p}(B_{R})} \lesssim_{\varepsilon, M, \phi, a} R^{\alpha(p)+\varepsilon} \Big(\sum_{\theta: R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}$$

where $B_R \subseteq B(0, \lambda)$.

- Trivial for small scales $(R \sim 1)$.
- At sufficiently small scales ($<\lambda^{1/2}$), T^{λ} may be effectively approximated by extension operators.
- Use of the Bourgain-Demeter theorem for extension operators.

We will prove that for $1 \leqslant R \leqslant \lambda$,

$$\|T^{\lambda}f\|_{L^{p}(B_{R})} \lesssim_{\varepsilon, M, \phi, a} R^{\alpha(p)+\varepsilon} \Big(\sum_{\theta: R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}$$

where $B_R \subseteq B(0, \lambda)$.

- Trivial for small scales $(R \sim 1)$.
- At sufficiently small scales ($<\lambda^{1/2}$), T^{λ} may be effectively approximated by extension operators.
- Use of the Bourgain-Demeter theorem for extension operators.
- Parabolic rescaling.

A trivial decoupling inequality

As

$$\mathcal{T}^{\lambda}f = \sum_{\theta: R^{-1/2}- ext{plate}} \mathcal{T}^{\lambda}f_{ heta},$$

one may trivially bound

$$\begin{split} \|T^{\lambda}f\|_{L^{p}(B_{R})} &\leqslant \sum_{\theta:R^{-1/2}-\mathrm{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})} \\ &\leqslant \Big(\sum_{\theta:R^{-1/2}-\mathrm{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p} \Big(\sum_{\theta:R^{-1/2}-\mathrm{plate}} 1\Big)^{1/p'} \\ &\lesssim R^{(n-1)/2p'} \Big(\sum_{\theta:R^{-1/2}-\mathrm{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p} \end{split}$$

A trivial decoupling inequality

As

$$\mathcal{T}^{\lambda}f = \sum_{\theta: R^{-1/2}-\mathrm{plate}} \mathcal{T}^{\lambda}f_{\theta},$$

one may trivially bound

$$\begin{split} \|T^{\lambda}f\|_{L^{p}(B_{R})} &\leqslant \sum_{\theta:R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})} \\ &\leqslant \Big(\sum_{\theta:R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p} \Big(\sum_{\theta:R^{-1/2}-\text{plate}} 1\Big)^{1/p} \\ &\lesssim R^{(n-1)/2p'} \Big(\sum_{\theta:R^{-1/2}-\text{plate}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p} \end{split}$$

This settles the desired decoupling inequality for $R \sim 1$.

Approximation by extension operators

Approximation by extension operators

$$B_R = \bigcup_{B_K \subset B_R} B_K$$

Approximation by extension operators

$$B_R = \bigcup_{B_K \subset B_R} B_K$$

On each B_K , one morally has

$$||T^{\lambda}f||_{L^{p}(B_{K})} \sim ||E_{K}f||_{L^{p}(B_{K})}$$

for some Fourier extension operator E_K associated to a *conic* hypersurface.

Aproximation by extension operators, cont'd

Fix a $B_K = B(\bar{z}, K)$.

Apply a nonlinear change of variables $\xi=\Psi^\lambda_{\bar z}(\eta)$ and a Taylor expansion of ϕ^λ around the point $\bar z$,

$$T^{\lambda}f(z) = \int_{\hat{\mathbb{R}}^n} e^{i\phi^{\lambda}(z;\xi)} a_1^{\lambda}(z) a_2(\xi) f(\xi) d\xi$$
$$= \int_{\hat{\mathbb{R}}^n} e^{i(z-\bar{z})\cdot(\eta,h_{\bar{z}}(\eta))+i\mathcal{E}_{\bar{z}}^{\lambda}(z-\bar{z};\eta)} a_1^{\lambda}(z) a_{\bar{z}}(\eta) f_{\bar{z}}(\eta) d\eta$$

where

- $a_{\bar{z}}(\eta) := a_2 \circ \Psi_{\bar{z}}^{\lambda}(\eta) |\det \partial_{\eta} \Psi_{\bar{z}}^{\lambda}(\eta)|$
- $\bullet \ f_{\bar{z}}(\eta) := e^{i\phi^{\lambda}(\bar{z}; \Psi^{\lambda}_{\bar{z}}(\eta))} f \circ \Psi^{\lambda}_{\bar{z}}(\eta)$
- $h_{\bar{z}}(\eta)$ is a smooth function homogeneous of degree 1.
- and, by Taylor's theorem,

$$\mathcal{E}_{\bar{z}}^{\lambda}(v;\eta) = \frac{1}{\lambda} \int_{0}^{1} (1-r) \langle (\hat{\sigma}_{zz}^{2}\phi)((\bar{z}+rv)/\lambda; \Psi_{\bar{z}}^{\lambda}(\eta))v, v \rangle dr.$$

Aproximation by extension operators, cont'd

Fix a $B_K = B(\bar{z}, K)$.

Apply a nonlinear change of variables $\xi=\Psi_{\bar z}^\lambda(\eta)$ and a Taylor expansion of ϕ^λ around the point $\bar z$,

$$T^{\lambda}f(z) = \int_{\hat{\mathbb{R}}^n} e^{i\phi^{\lambda}(z;\xi)} a_1^{\lambda}(z) a_2(\xi) f(\xi) d\xi$$
$$= \int_{\hat{\mathbb{R}}^n} e^{i(z-\overline{z})\cdot(\eta,h_{\overline{z}}(\eta))+i\mathcal{E}_{\overline{z}}^{\lambda}(z-\overline{z};\eta)} a_1^{\lambda}(z) a_{\overline{z}}(\eta) f_{\overline{z}}(\eta) d\eta$$

where

- $a_{\bar{z}}(\eta) := a_2 \circ \Psi_{\bar{z}}^{\lambda}(\eta) |\det \partial_{\eta} \Psi_{\bar{z}}^{\lambda}(\eta)|$
- $\bullet \ f_{\bar{z}}(\eta) := e^{i\phi^{\lambda}(\bar{z}; \Psi^{\lambda}_{\bar{z}}(\eta))} f \circ \Psi^{\lambda}_{\bar{z}}(\eta)$
- $h_{\bar{z}}(\eta)$ is a smooth function homogeneous of degree 1.
- and, by Taylor's theorem,

$$\mathcal{E}_{\bar{z}}^{\lambda}(\mathbf{v};\eta) = \frac{1}{\lambda} \int_{0}^{1} (1-r) \langle (\hat{\sigma}_{zz}^{2}\phi)((\bar{z}+r\mathbf{v})/\lambda; \Psi_{\bar{z}}^{\lambda}(\eta))\mathbf{v}, \mathbf{v} \rangle dr.$$

Aproximation by extension operators, cont'd

Fix a $B_K = B(\bar{z}, K)$.

Apply a nonlinear change of variables $\xi=\Psi_{\bar z}^\lambda(\eta)$ and a Taylor expansion of ϕ^λ around the point $\bar z$,

$$T^{\lambda}f(z) = \int_{\hat{\mathbb{R}}^n} e^{i\phi^{\lambda}(z;\xi)} a_1^{\lambda}(z) a_2(\xi) f(\xi) d\xi$$
$$= \int_{\hat{\mathbb{R}}^n} e^{i(z-\bar{z})\cdot(\eta,h_{\bar{z}}(\eta))+i\mathcal{E}_{\bar{z}}^{\lambda}(z-\bar{z};\eta)} a_1^{\lambda}(z) a_{\bar{z}}(\eta) f_{\bar{z}}(\eta) d\eta$$

where

- $a_{\bar{z}}(\eta) := a_2 \circ \Psi_{\bar{z}}^{\lambda}(\eta) |\det \partial_{\eta} \Psi_{\bar{z}}^{\lambda}(\eta)|$
- $\bullet \ f_{\bar{z}}(\eta) := e^{i\phi^{\lambda}(\bar{z}; \Psi^{\lambda}_{\bar{z}}(\eta))} f \circ \Psi^{\lambda}_{\bar{z}}(\eta)$
- $h_{\bar{z}}(\eta)$ is a smooth function homogeneous of degree 1.
- and, by Taylor's theorem,

$$\mathcal{E}_{\bar{z}}^{\lambda}(v;\eta) = \frac{1}{\lambda} \int_{0}^{1} (1-r) \langle (\partial_{zz}^{2}\phi)((\bar{z}+rv)/\lambda; \Psi_{\bar{z}}^{\lambda}(\eta))v, v \rangle dr.$$

Since $|v| = |z - \bar{z}| \le K \le \lambda^{1/2}$, for all $\beta \in \mathbb{N}_0^n$ one has

$$\sup_{(v;\eta)\in B(0,K)\times \text{supp }2\pi}|\partial_{\eta}^{\beta}\mathcal{E}_{\bar{z}}^{\lambda}(v;\eta)|\lesssim_{|\beta|}1.$$

On each B_K , the approximation

$$||T^{\lambda}f||_{L^{p}(B_{K})} \sim ||E_{K}f_{\bar{z}}||_{L^{p}(B(0,K))}$$

allows to apply the Bourgain–Demeter theorem for such E_K :

$$\|T^{\lambda}f\|_{L^p(B_K)} \sim \|E_K f_{\bar{z}}\|_{L^p(B(0,K))} \lesssim K^{\alpha(p)+\varepsilon/2} \big(\sum_{\theta:K^{-1/2}-\text{plates}} \|E_K f_{\bar{z}}\|_{L^p(B(0,K))}^p\big)^{1/p}$$

On each B_K , the approximation

$$||T^{\lambda}f||_{L^{p}(B_{K})} \sim ||E_{K}f_{\bar{z}}||_{L^{p}(B(0,K))}$$

allows to apply the Bourgain–Demeter theorem for such E_K :

$$\|T^{\lambda}f\|_{L^{p}(B_{K})} \sim \|E_{K}f_{\bar{z}}\|_{L^{p}(B(0,K))} \lesssim K^{\alpha(p)+\varepsilon/2} \big(\sum_{\theta:K^{-1/2}-\text{plates}} \|E_{K}f_{\bar{z}}\|_{L^{p}(B(0,K))}^{p}\big)^{1/p}$$

On each B_K , the approximation

$$||T^{\lambda}f||_{L^{p}(B_{K})} \sim ||E_{K}f_{\bar{z}}||_{L^{p}(B(0,K))}$$

allows to apply the Bourgain–Demeter theorem for such E_K :

$$\|T^{\lambda}f\|_{L^{p}(B_{K})} \sim \|E_{K}f_{\bar{z}}\|_{L^{p}(B(0,K))} \lesssim K^{\alpha(p)+\varepsilon/2} \Big(\sum_{\theta:K^{-1/2}-\mathrm{plates}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{K})}^{p}\Big)^{1/p}$$

On each B_K , the approximation

$$||T^{\lambda}f||_{L^{p}(B_{K})} \sim ||E_{K}f_{\bar{z}}||_{L^{p}(B(0,K))}$$

allows to apply the Bourgain–Demeter theorem for such E_K :

$$\|T^{\lambda}f\|_{L^{p}(B_{K})} \sim \|E_{K}f_{\overline{z}}\|_{L^{p}(B(0,K))} \lesssim K^{\alpha(p)+\varepsilon/2} \Big(\sum_{\theta:K^{-1/2}-\text{plates}} \|\frac{T^{\lambda}}{f_{\theta}}\|_{L^{p}(B_{K})}^{p}\Big)^{1/p}$$

and summing over $B_K \subset B_R$

$$\|T^{\lambda}f\|_{L^{p}(B_{R})}\lesssim K^{\alpha(p)+arepsilon/2}ig(\sum_{ heta:K^{-1/2}- ext{plates}}\|T^{\lambda}f_{ heta}\|_{L^{p}(B_{R})}^{p}ig)^{1/p}.$$

 ξ space

 $\boldsymbol{\xi}$ space

(x, t) space

By induction hypothesis, one assumes the inequality

$$\|T^{\lambda}f\|_{L^{p}(B_{\rho})} \lesssim \rho^{\alpha(\rho)+\varepsilon} \Big(\sum_{\theta: \rho^{-1/2}-\mathrm{plates}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{\rho})}^{p}\Big)^{1/p}$$

to hold for $\rho \leqslant R/2$.

By induction hypothesis, one assumes the inequality

$$\|T^{\lambda}f\|_{L^{p}(B_{\rho})} \lesssim \rho^{\alpha(\rho)+\varepsilon} \Big(\sum_{\theta: \rho^{-1/2}-\text{plates}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{\rho})}^{p}\Big)^{1/p}$$

to hold for $\rho \leqslant R/2$.

If θ is a $K^{-1/2}$ -plate, by rescaling and setting $\rho=R/K$,

$$\|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})} \lesssim (R/K)^{\alpha(p)+\varepsilon} \Big(\sum_{\substack{\sigma: R^{-1/2}-\text{plates}\\ \sigma\subseteq \theta}} \|T^{\lambda}f_{\sigma}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}.$$

By induction hypothesis, one assumes the inequality

$$\|T^{\lambda}f\|_{L^{p}(B_{\rho})} \lesssim \rho^{\alpha(\rho)+\varepsilon} \Big(\sum_{\theta: \rho^{-1/2}-\text{plates}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{\rho})}^{p}\Big)^{1/p}$$

to hold for $\rho \leqslant R/2$.

If θ is a $K^{-1/2}$ -plate, by rescaling and setting $\rho=R/K$,

$$\|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})} \lesssim (R/K)^{\alpha(p)+\varepsilon} \Big(\sum_{\substack{\sigma: R^{-1/2}-\text{plates}\\ \sigma\subseteq \theta}} \|T^{\lambda}f_{\sigma}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}.$$

Summing over all $K^{-1/2}$ -plates θ ,

$$\big(\sum_{\theta: \mathcal{K}^{-1/2}-\text{plates}} \| \mathcal{T}^{\lambda} f_{\theta} \|_{L^{p}(B_{R})}^{p} \big)^{1/p} \lesssim (R/K)^{\alpha(p)+\varepsilon} \big(\sum_{\sigma: R^{-1/2}-\text{plates}} \| \mathcal{T}^{\lambda} f_{\sigma} \|_{L^{p}(B_{R})}^{p} \big)^{1/p}$$

Closing induction

We saw:

Approximation + Bourgain-Demeter constant coefficient implies

$$\|T^{\lambda}f\|_{L^p(B_R)} \lesssim K^{\alpha(p)+\varepsilon/2} \big(\sum_{\theta:K^{-1/2}-\mathrm{plates}} \|T^{\lambda}f_{\theta}\|_{L^p(B_R)}^p\big)^{1/p}.$$

Parabolic rescaling + induction on the radius implies

$$\big(\sum_{\theta: \mathcal{K}^{-1/2}-\mathrm{plates}} \|T^\lambda f_\theta\|_{L^p(B_R)}^p\big)^{1/p} \lesssim (R/K)^{\alpha(p)+\varepsilon} \big(\sum_{\sigma: R^{-1/2}-\mathrm{plates}} \|T^\lambda f_\sigma\|_{L^p(B_R)}^p\big)^{1/p}.$$

Closing induction

We saw:

 $Approximation + Bourgain-Demeter\ constant\ coefficient\ implies$

$$\|T^{\lambda}f\|_{L^{p}(B_{R})} \lesssim K^{\alpha(p)+\varepsilon/2} \Big(\sum_{\theta:K^{-1/2}-\text{plates}} \|T^{\lambda}f_{\theta}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}.$$

Parabolic rescaling + induction on the radius implies

$$\big(\sum_{\theta: \mathcal{K}^{-1/2}-\mathrm{plates}} \|T^{\lambda} f_{\theta}\|_{L^{p}(B_{R})}^{p}\big)^{1/p} \lesssim (R/\mathcal{K})^{\alpha(p)+\varepsilon} \big(\sum_{\sigma: R^{-1/2}-\mathrm{plates}} \|T^{\lambda} f_{\sigma}\|_{L^{p}(B_{R})}^{p}\big)^{1/p}.$$

So altogehter,

$$\|T^{\lambda}f\|_{L^{p}(B_{R})} \lesssim K^{-\varepsilon/2}R^{\alpha(p)+\varepsilon} \Big(\sum_{\sigma: R^{-1/2}-\text{plates}} \|T^{\lambda}f_{\sigma}\|_{L^{p}(B_{R})}^{p}\Big)^{1/p}.$$

Choose K large enough so that $C_{\varepsilon}K^{-\varepsilon/2} \leqslant 1$.

Decouping theory for Hörmander type operators is the same as for extension operators.

This is very much in contrast with the associated L^p theory.

Decouping theory for Hörmander type operators is the same as for extension operators.

This is very much in contrast with the associated L^p theory.

Case of non-homogeneous phase functions:

Restriction conjecture:

$$\|Ef\|_{L^{\frac{2n}{n-1}}(B_{\lambda})} \lesssim \lambda^{\varepsilon} \|f\|_{L^{\infty}(B^{n-1})}.$$

Hörmander conjectured the same estimate to hold for T^{λ} .

True for n = 2: Carleson–Sjolin (1972).

Bourgain (1991): false for $n \ge 3$,

$$\|T^{\lambda}f\|_{L^{p}(\mathbb{R}^{n})} \lesssim \|f\|_{L^{\infty}(B^{n-1})}$$

fails to hold uniformly in $\lambda\geqslant 1$ whenever $p<\frac{2(n+1)}{n-1}.$

Bourgain (1991): false for $n \ge 3$,

$$\|T^{\lambda}f\|_{L^{p}(\mathbb{R}^{n})} \lesssim \|f\|_{L^{\infty}(B^{n-1})}$$

fails to hold uniformly in $\lambda \geqslant 1$ whenever $p < \frac{2(n+1)}{n-1}$.

But Bourgain (1995) also showed that if n is even, one could go beyond this exponent.

Bourgain (1991): false for $n \ge 3$,

$$||T^{\lambda}f||_{L^{p}(\mathbb{R}^{n})} \lesssim ||f||_{L^{\infty}(B^{n-1})}$$

fails to hold uniformly in $\lambda\geqslant 1$ whenever $p<\frac{2(n+1)}{n-1}.$

But Bourgain (1995) also showed that if n is even, one could go beyond this exponent.

The estimate holds sharply for

$$p \ge \frac{2(n+1)}{n-1}$$
 if $n \ge 3$ is odd, +: Stein(1986), -: Bourgain(1991)

$$p > \frac{2(n+2)}{n}$$
 if $n \ge 4$ is even, $+$: Bourgain–Guth(2011), $-$: Wisewell(2005)

Bourgain (1991): false for $n \ge 3$,

$$||T^{\lambda}f||_{L^{p}(\mathbb{R}^{n})} \lesssim ||f||_{L^{\infty}(B^{n-1})}$$

fails to hold uniformly in $\lambda\geqslant 1$ whenever $p<\frac{2(n+1)}{n-1}.$

But Bourgain (1995) also showed that if n is even, one could go beyond this exponent.

The estimate holds sharply for

$$p \ge \frac{2(n+1)}{n-1}$$
 if $n \ge 3$ is odd, +: Stein(1986), -: Bourgain(1991)

$$p > \frac{2(n+2)}{n}$$
 if $n \geqslant 4$ is even, $+$: Bourgain–Guth(2011), $-$: Wisewell(2005)

Assumption in ϕ is only about nonvanishing curvatures of the surfaces for each point.

Bourgain (1991): false for $n \ge 3$,

$$||T^{\lambda}f||_{L^{p}(\mathbb{R}^{n})} \lesssim ||f||_{L^{\infty}(B^{n-1})}$$

fails to hold uniformly in $\lambda \geqslant 1$ whenever $p < \frac{2(n+1)}{n-1}$.

But Bourgain (1995) also showed that if n is even, one could go beyond this exponent.

The estimate holds sharply for

$$p \ge \frac{2(n+1)}{n-1}$$
 if $n \ge 3$ is odd, +: Stein(1986), -: Bourgain(1991)

$$p > \frac{2(n+2)}{n}$$
 if $n \ge 4$ is even, $+$: Bourgain–Guth(2011), $-$: Wisewell(2005)

Assumption in ϕ is only about nonvanishing curvatures of the surfaces for each point.

What if principal curvatures are all assumed to be positive?

Positive definite phases

It is possible to go beyond the above exponents.

After contributions of Lee (2006) and Bourgain–Guth (2011), the sharp bounds were recently stablished by Guth–Hickman–Iliopoulou (2017):

$$\|T_+^{\lambda}f\|_{L^p(\mathbb{R}^n)}\lesssim \lambda^{\varepsilon}\|f\|_{L^p(B^{n-1})}$$

holds for all $\lambda \ge 1$ whenever

$$p \geqslant \frac{2(3n+1)}{3n-3} \quad \text{if } n \geqslant 3 \text{ is odd,}$$

$$p \geqslant \frac{2(3n+2)}{3n-2} \quad \text{if } n \geqslant 4 \text{ is even.}$$

Sharp: for instance by the examples of Minicozzi-Sogge (1997).

Sharp local smoothing for Fourier integral operators

We showed in general, that

$$\|\mathcal{F}f\|_{L^p_{-s_p+1/p+\epsilon}(\mathbb{R}^{n+1})} \lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for $\frac{2(n+1)}{n-1} \le p < \infty$, with no definite condition on the phase functions.

Sharp local smoothing for Fourier integral operators

We showed in general, that

$$\|\mathcal{F}f\|_{L^p_{-s_p+1/p+\epsilon}(\mathbb{R}^{n+1})} \lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for $\frac{2(n+1)}{n-1} \le p < \infty$, with no definite condition on the phase functions.

We (B.-Hickman-Sogge) adapted Bourgain's counterexample for oscillatory integral operators into this setting, to show that this is sharp in terms of p.

Sharp local smoothing for Fourier integral operators

We showed in general, that

$$\|\mathcal{F}f\|_{L^p_{-s_p+1/p+\epsilon}(\mathbb{R}^{n+1})} \lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

for $\frac{2(n+1)}{n-1} \le p < \infty$, with no definite condition on the phase functions.

We (B.–Hickman–Sogge) adapted Bourgain's counterexample for oscillatory integral operators into this setting, to show that this is sharp in terms of p.

	n odd	<i>n</i> even
n-1 non-vanishing curvatures	$\frac{2(n+1)}{n-1}$	$\frac{2(n+2)}{n}$
n-1 positive curvatures	$\frac{2(3n+1)}{3n-3}$	$\frac{2(3n+2)}{3n-2}$

Merci!