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Collective behaviour and self-organization
1 Ant Trails

2 Bird flocks

3 fish schools
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Questions

1 Why a large number of individuals want to move through a flock ?
2 How large-scale complexity emerge from microscopic local rules without

centralized coordination ?
3 Identify the mechanisms governing the interactions between individuals and their

environment.

Models

Ideas from statistical physics( particle description),Kinetic theory (mean field limit).
Hydrodynamic approach.
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From particles interactions to aggregation equation : mean-field limit

Consider N particles moving through classical mechanics law :{
Ẋi (t) = − 1

N
∑

j 6=i ∇K(Xi (t)− Xj (t))
Xi (0) = X 0

i , i ∈ {1, 2, ..,N}

We define the empirical measure

µN(t) = 1
N

N∑
i=1

δXi (t)

If (µN(0))N converges weakly to ρ0, then "formally" (µN(t))N converges weakly to
the density ρ satisfying the continuity equation{

∂tρ+ div(vρ) = 0, x ∈ Rd , t ≥ 0
v = −∇K ? ρ,
ρ|t=0 = ρ0.
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Aggregation equation with Newtonian potential

{
∂tρ+ div(vρ) = 0, x ∈ R2, t ≥ 0
v = −∇K ? ρ, K(x) = 1

2π log |x |
ρ|t=0 = ρ0.

The vector-field v is compressible :

div v = −ρ

This equation is the compressible version of Euler equations where

v = ∇⊥K ? ρ = 1
2π

ˆ
R2

(x − y)⊥

|x − y |2 ρ(y)dy

and ρ is the vorticity ω = ∂1v 2 − ∂2v 1, which satisfies the transport equation

∂tω + v · ∇ω = 0

Taoufik Hmidi



Classical solutions

Wölibner (1933) : Euler equation is globally well-posed for ω0 ∈ Cα, α > 0. This
follows from

‖ω(t)‖L∞ = ‖ω0‖L∞

Nieto-Poupaud-Soler ; Bertozzi-Laurent-Léger : The aggregation equation is locally
well-posed for ρ0 ∈ Cα, α > 0 : ρ ∈ L∞([0,T ?),Cα).
What about T ? ?
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Blow up

The aggregation equation takes the form

∂tρ+ v · ∇ρ = ρ2

Using the characteristics we get

ρ(t, ψ(t, x)) = ρ0(x)
1− tρ0(x)

where ψ denotes the trajectories map :

ψ(t, x) = x +
ˆ t

0
v(τ, ψ(τ, x))dτ

Consequences : Let ρ0 ∈ Cαc , α > 0, then
1 Global existence is satisfied when supR ρ0(x) ≤ 0.
2 Blow up in finite time happens if and only supR ρ0(x) > 0,

T? = 1
supR ρ0(x) and ‖ρ(t)‖L∞ = 1

T? − t
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Yudovich solutions type

Yudovich : Euler admits global unique solution ω ∈ L∞(R+; L1 ∩ L∞)
N-P-S, B-L-L : Existence of solutions when ρ0 ∈ L1 ∩ L∞, with

ρ ∈ L∞([0,T ], L∞ ∩ L1)

For ρ0 ∈ L1 ∩ Cc

‖ρ(t)‖L1 = ‖ρ0‖L1

The blow up does not occur for L1 !
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Concentration phenomenon

Question : The L1 norm is conserved but what about concentration phenomenon
when t → T ? ?

Two examples ( from B-L-L )

1 Delta mass concentration : Let ρ0 = 1
π
1D(0,1) then weakly

lim
t→2π

ρ(t)dx → πδ0

2 Vortex sheet concentration : Let ρ0 = (πab)−11E with E the ellipse centered at
zero and with semi axes a and b. Then ρ(t) = (πa(t)b(t))−11Et , with Et an ellipse
and it converges weakly to the semi-cricle law

lim
t→πab

ρ(t)dx =
2
√

x2
0 − x2

1

πx2
0

1[−x0,x0]dx1, x0 = a − b
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Time rescaling and vortex patch problem

Let ρ0 = 1D0 with D0 a bounded domain, then

ρ(t, x) =
1D̂t

1− t , 0 ≤ t < 1 = T?, D̂t = ψ(t,D0)

Notice that
|D̂t | = (1− t)|D0|

Let τ = − ln(1− t) and Dτ = D̂1−e−τ then 1Dτ is a solution of

∂τρ+ v · ∇ρ = 0, ρ0 = 1D0 , v(τ) = ∇K ? 1Dτ , τ ∈ [0,+∞),

One also has
∀τ ≥ 0, |Dτ | = e−τ |D0|

Chemin (Euler equation) : If ∂D0 ∈ C1+ε then ∀t ≥ 0, ∂Dt ∈ C1+ε,

Bertozzi-Garnett-Laurent-Verdera (Aggregation) : similar result.

Taoufik Hmidi



Asymptotic behavior

Recall that |Dt | = e−t |D0|.
This implies that ˆ +∞

0
‖v(t)‖L∞dt <∞

This allows to define the limit shape

D∞ :=
{

lim
t→+∞

ψ(t,X),X ∈ D0

}
What about the geometric structure of D∞ ?
What about the weak limit of the probability measure :

dPt = et 1Dt

|D0|
dX , X = (x , y) ∈ R2

Numerical simulations (B-L-L) : Collapse to skeleton shapes.
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Concentration along skeleton structure

Proposition
Let D0 be a simply connected domain symmetric with respect to an axis ∆. Denote by
L = Length(D0 ∩∆). There exists an absoute constant C such that if

L > C |D0|
1
2

then the shape D∞ contains a segment of size L− C |D0|
1
2 .

Thin initial domains along their axis of symmetry generate concentration to segments.

• Applications to polygonal shapes.
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One fold symmetric patches

Main goal : Find initial patches for which we can analyze the concentration to a
collection of segments lying in the same straight line.

Let D0 be a planar set symmetric with respect to the real axis with

D0 =
{

(x , y), x ∈ R,−f (x) ≤ y ≤ f (x)
}
, f ∈ C1

c (R,R+)

D0 is defined by a graph and what about Dt ?

Note that Dt is symmetric with respect to the real axis for any t ≥ 0.
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Strategy

Write the graph equation.

Study local well-posedness : Hölder and continuous Dini spaces.

Global well-posedness with small initial data.

Collapse to singular measure.
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Graph reformulation

Let s 7→ γt(s) be any parametrization of the boundary ∂Dt , then(
∂tγt(s)− v(t, γt(s))

)
· ~n(γt(s)) = 0

with ~n(γt) being a normal vector to the boundary at the point γt(s)
By taking the parametrization x 7→ (x , f (t, x)) we get{

∂t f (t, x) + u1(t, x)∂x f (t, x) = u2(t, x), t ≥ 0, x ∈ R
f (0, x) = f0(x).

where (u1, u2)(t, x) is the trace of (v1, v2) at the point X = (x , f (t, x)).
One has the expressions

u1(t, x) = 1
2π

ˆ
R

{
arctan

( ft(x + y)−ft(x)
y

)
+ arctan

( ft(x + y)+ft(x)
y

)}
dy

u2(t, x) = 1
4π

ˆ
R
log

[
y 2 +

(
ft(x + y)−ft(x)

)2

y 2 +
(
ft(x + y)+ft(x)

)2

]
dy .
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Qualitative properties

Maximum principle :

∀t ≥ 0, x ∈ R, 0 ≤ f (t, x) ≤ ‖f0‖L∞ .

This can derived from the fact that

u2(t, x) ≤ 0.

Confinement of the support : If suppf0 ⊂ [a, b] then

t ≥ 0, suppf (t) ⊂ [a, b]
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Functional setting

Hölder and Dini spaces : let s ∈ (0, 1) denote by C s the usual Hölder space and

f ∈ CD ⇐⇒ ‖f ‖L∞ +
ˆ 1

0

µ(r)
r dr <∞

with µ(r) = sup
|x−y|≤r

|f (x)− f (y)|

Dini space is an algebra, contrary to Besov space B0
∞,1.

Beirao da Veiga (1984) : Euler equations are global when the vorticity belongs to
Dini space. This is a consequence of the composition law :

‖f ◦ ψ‖CD ≤ C‖f ‖CD log(1 + ‖∇ψ‖L∞)

We have the embedding : for any s ∈ (0, 1)

C s ↪→ CD ↪→ B0
∞,1 ↪→ Cb
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Local/global well-posedness
Denote by X = C s , s ∈ (0, 1), CD .

Theorem (H.-Li (2018))
Let f0 be a positive compactly supported function, s.t. f ′0 ∈ X. Then

1 The graph equation admits a unique local solution s.t. f ′ ∈ L∞([0,T ],X).
2 There exists ε > 0 such that if

‖f ′0 ‖C s ≤ ε,
then T = +∞. Moreover

‖f (t)‖L∞ + ‖f ′(t)‖L∞ ≤ C0e−t
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Collapse to singular measure

Theorem (H.-Li (2018))
Let f0 be a positive compactly supported function, s.t. f ′0 ∈ C s with small norm. Assume
that supp f0 is the union of n−disjoint segments.

1 There exists a compact set D∞ ⊂ R composed of exactly n−disjoints segments,

∀ t ≥ 0, dH(Dt ,D∞) ≤ C0e−t

2 The probability measure dPt = et 1Dt
|D0|

dX converges weakly as t → +∞ to the
probability measure

dP∞(X) = Φ(x)1D∞dx , X = (x , y)

with Φ ∈ Cα, ∀α ∈ (0, 1) and

Φ(x) = 2 lim
t→+∞

et f (t, x)

= f0(ψ−1
∞ (x))
‖f0‖L1

eg(x)

where ψ∞(x) = lim
t→+∞

ψ1(t, x) and ψ1 is the flow associated to u1. The function g
is recovered through the full dynamics of the graph.
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Slope equation

Set g(t, x) = ∂x f (t, x) = f ′(t, x) and define the operators

∆±y f (x) = f (x + y)±f (x)

then
∂tg + u1∂xg = F−(t, x)− F+(t, x)

with

F±(t, x) = 1
2π p.v.

ˆ
R

[∆±y f (x)±yf ′(x)]∆±y f ′(x)
y 2 + [∆±y f (x)]2

dy

For local well-posedness we need to estimate

‖F±(t)‖X , X = C s ,CD
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Estimate of F−

Recall that

F−(t, x) = 1
2π p.v.

ˆ
R

[∆−y f (x)− yf ′(x)]∆−y f ′(x)
y 2 + [∆−y f (x)]2

dy

It is connected to Cauchy operator associated to the graph f :

Cf g(x) =
ˆ
R

g(x + y)− g(x)
y + i(f (x + y)− f (x))dy

Coifman,McIntosh,Meyer : If f ∈W 1,∞ , then for p ∈ (1,∞), Cf : Lp → Lp is continuous.

Wittmann : If K is a compact, 0 < s < 1, f ∈ C1+s then Cf : Cs
K → C s is continuous.

This operator "could" fail to be continuous on Dini space !
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Truncated bilinear Cauchy operators

We shall be concerned with : for M > 0, θ ∈ [0, 1]

Cθf (g , h)(x) =
ˆ M

−M

[g(x + θy)− g(x)][h(x + y)− h(x)]
y + i(f (x + y)− f (x)) dy

Proposition
Let 0 < s < 1,K be a compact X = C s

K ,CD,K then we have the estimates

‖Cθf (g , h)‖X ≤ C
[
1 + ‖f ′‖3

X
](
‖g‖D‖h‖X + ‖h‖D‖g‖X

)
As an application :

‖F−‖X ≤ C‖f ′‖D
[
‖f ′‖X + ‖f ′‖3

X
]
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Estimate of F+

Recall that

F+(t, x) = 1
2π p.v.

ˆ
R

[∆+
y f (x) + yf ′(x)]∆+

y f ′(x)
y 2 + [∆+

y f (x)]2 dy

It is connected to Cauchy operator of the second kind : let α, β ∈ [0, 1]

Tf
α,βg(x) = p.v.

ˆ
R

y g(αx + βy)
y 2 + [f (x + y) + f (x)]2 dy

Proposition
Let f be positive, compactly supported in K and f ′ ∈ CD . Then

1 The operator Tf
α,β : CD,K → L∞ is continuous indepen. on α, β

2 The modified operator f ′Tf
α,β : CD,K → CD,K is continuous. The continuity

constant depends only on | lnβ| and finite for β = 0.
3 Similar estimates in C s

K .
4 Application :

‖F+‖X ≤ C
(
1 + ‖f ′‖

1
3
D)
[
‖f ′‖X + ‖f ′‖16

X
]
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One key estimate

Lemma
Let K be a compact set of R and f : R→ R+ be a continuous positive function
supported in K such that f ′ ∈ CD . Then we have,

∀x ∈ R, |f ′(x)| ≤ C
‖f ′‖CD

(
1 + ln+(1/‖f ′‖D)

1 + ln+
( 1

f (x)

) ,

If in addition f ′ ∈ C s(R) with s ∈ (0, 1), then

∀x ∈ R, |f ′(x)| ≤ C‖f ′‖
1

1+s
s [f (x)]

s
1+s

and the constant C depends only on s.
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Weak damping and global existence

Here X = C s
K , 0 < s < 1. Recall that

‖F−‖C s ≤ C‖f ′‖D
[
‖f ′‖C s + ‖f ′‖3

C s
]

and
‖F+‖C s ≤ C

(
1 + ‖f ′‖

1
3
D)
[
‖f ′‖C s + ‖f ′‖16

C s
]

By interpolation

‖f ′(t)‖D . ‖f (t)‖θL1‖f ′(t)‖1−θ
C s

. e−Ct‖f ′(t)‖1−θ
C s

We establish the refined estimate :

F+(t, x) = f ′(x) + L(t, x) + N(t, x)

‖L(t)‖C s ≤ ‖f ′‖C s + C‖f ′‖s
D‖f ′‖C s

‖N(t)‖C s ≤ C‖f ′‖
1
3
D

[
‖f ′‖C s + ‖f ′‖16

C s
]

g = f ′ satisfies

∂tg + u1∂xg + g = −L(t, x)− N(t, x) + F−(t, x).
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Scattering and collapse to singular measure

Define the probability measure

dPt = et1DtdX , X = (x , y), |D0| = 1

Note that supp dPt ⊂ K0 a fixed compact independent of the time

Let ϕ ∈ C∞c (R2), then by Fubini

It :=
ˆ
R2
ϕ(x , y)dPt(X)

= et
ˆ
R

ˆ f (t,x)

−f (t,x)
ϕ(x , y)dydx

Taylor expansion on y : ϕ(x , y) = ϕ(x , 0) + yη(x , y), η ∈ L∞(R2) and

It = 2et
ˆ
R
f (t, x)ϕ(x , 0)dx + O(e−t) since ‖f (t)‖L∞ ≤ Ce−t

Main result : there exists Φ ∈ Cα(R),∀α ∈ (0, 1) such that

‖et f (t)− Φ‖L∞ = O(e−εt)
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One has
∂t f (t, x) + u1∂x f (t, x)+f (t, x) = −f (t, x)R(t, x) (1)

with

‖R(t)‖L∞ ≤ ‖f ′(t)‖D
(
1 + ‖f ′(t)‖5

∞
)

≤ Ce−ηt , η > 0. (2)

From the characteristic method we get the representation

et f
(
t, ψ1(t, x)

)
= f0(x)e

´ t
0 R(τ,ψ1(τ,x))dτ . (3)

Thus
lim

t→+∞
‖et f

(
t, ψ1(t, ·)

)
− R2(·)‖L∞ = 0,

with
R2 : x 7→ f0(x)e

´+∞
0 R(τ,ψ1(τ,x))dτ . (4)
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Thank you ! !
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