Why doing noncommutative Fourier analysis.

Guillaume Lévy

LJLL, UPMC

Aussois, March -th 2018

Some definitions.

First Heisenberg group : $\mathbb{H}^1 \sim \mathbb{R}^3$ with the group law

$$(x,y,s)\cdot(x',y',s')=(x+x',y+y',s+s'+2(xy'-x'y)).$$

Heisenberg family $(\mathbb{H}^d)_{d\geq 1}:\mathbb{H}^d\sim\mathbb{R}^{2d+1}$ with

$$(x, y, s) \cdot (x', y', s') = (x + x', y + y', s + s' + 2(x \cdot y' - x' \cdot y))$$

« Minimally non commutative » groups :

$$[[w,w'],w'']=0 \text{ for any } w,w',w''\in\mathbb{H}^d.$$

Some definitions.

First Heisenberg group : $\mathbb{H}^1 \sim \mathbb{R}^3$ with the group law

$$(x,y,s)\cdot(x',y',s')=(x+x',y+y',s+s'+2(xy'-x'y)).$$

Heisenberg family $(\mathbb{H}^d)_{d\geq 1}: \mathbb{H}^d \sim \mathbb{R}^{2d+1}$ with

$$(x,y,s)\cdot(x',y',s')=(x+x',y+y',s+s'+2(x\cdot y'-x'\cdot y)).$$

« Minimally non commutative » groups :

$$[[w,w'],w'']=0 \text{ for any } w,w',w''\in\mathbb{H}^d.$$

Some definitions.

First Heisenberg group : $\mathbb{H}^1 \sim \mathbb{R}^3$ with the group law

$$(x,y,s)\cdot(x',y',s')=(x+x',y+y',s+s'+2(xy'-x'y)).$$

Heisenberg family $(\mathbb{H}^d)_{d\geq 1}: \mathbb{H}^d \sim \mathbb{R}^{2d+1}$ with

$$(x,y,s)\cdot(x',y',s')=(x+x',y+y',s+s'+2(x\cdot y'-x'\cdot y)).$$

« Minimally non commutative » groups :

$$[[w, w'], w''] = 0$$
 for any $w, w', w'' \in \mathbb{H}^d$.

Basic analysis.

- ullet Lebesgue spaces : $L^p(\mathbb{H}^1) \sim L^p(\mathbb{R}^3)$.
- Convolution :

$$(f*g)(w) := \int_{\mathbb{H}^1} f(wv^{-1})g(v)dv$$

Young and Hölder inequalities are available.

Basic analysis.

- ullet Lebesgue spaces : $L^p(\mathbb{H}^1) \sim L^p(\mathbb{R}^3)$.
- Convolution :

$$(f*g)(w):=\int_{\mathbb{H}^1}f(wv^{-1})g(v)dv.$$

Young and Hölder inequalities are available.

Basic analysis.

- ullet Lebesgue spaces : $L^p(\mathbb{H}^1) \sim L^p(\mathbb{R}^3)$.
- Convolution :

$$(f*g)(w):=\int_{\mathbb{H}^1}f(wv^{-1})g(v)dv.$$

Young and Hölder inequalities are available.

What do the laws of phyics look like on \mathbb{H}^1 ? The geometry prevents dispersion; consider the Schrödinger equation

$$\begin{cases} i\partial_t u + \Delta_{\mathbb{H}^1} u = 0\\ u(0) = u_0. \end{cases}$$
 (1)

On
$$\mathbb{R}^3$$
: $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^1 : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^d : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.

What do the laws of phyics look like on \mathbb{H}^1 ? The geometry prevents dispersion; consider the Schrödinger equation

$$\begin{cases}
i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\
u(0) = u_0.
\end{cases}$$
(1)

On
$$\mathbb{R}^3$$
: $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{3}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^1 : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^d : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.

What do the laws of phyics look like on \mathbb{H}^1 ? The geometry prevents dispersion; consider the Schrödinger equation

$$\begin{cases}
i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\
u(0) = u_0.
\end{cases}$$
(1)

On
$$\mathbb{R}^3$$
: $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{3}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^1 : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^d : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.

What do the laws of phyics look like on \mathbb{H}^1 ? The geometry prevents dispersion; consider the Schrödinger equation

$$\begin{cases} i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\ u(0) = u_0. \end{cases} \tag{1}$$

On
$$\mathbb{R}^3$$
: $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{3}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^1 : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^d : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.

What do the laws of phyics look like on \mathbb{H}^1 ? The geometry prevents dispersion; consider the Schrödinger equation

$$\begin{cases}
i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\
u(0) = u_0.
\end{cases}$$
(1)

On
$$\mathbb{R}^3$$
: $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{3}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^1 : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^d : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.

What do the laws of phyics look like on \mathbb{H}^1 ? The geometry prevents dispersion; consider the Schrödinger equation

$$\begin{cases} i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\ u(0) = u_0. \end{cases}$$
 (1)

On
$$\mathbb{R}^3$$
: $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{3}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^1 : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.
On \mathbb{H}^d : $\|u(t)\|_{L^{\infty}} \lesssim t^{-\frac{1}{2}} \|u_0\|_{L^1}$.

The defocusing nonlinear Schrödinger equation of order three (NLS_3)

$$\begin{cases} i\partial_t u + \Delta u = u|u|^2 \\ u(0) = u_0. \end{cases}$$
 (2)

```
s:

• well-posed on H^1(\mathbb{R}^3);

• (barely) well-posed in H^1(\mathbb{R}^4)

• ill-posed in H^1(\mathbb{S}^4);

• ? in H^1(\mathbb{H}^1).
```

The defocusing nonlinear Schrödinger equation of order three (NLS_3)

$$\begin{cases} i\partial_t u + \Delta u = u|u|^2 \\ u(0) = u_0. \end{cases}$$
 (2)

- well-posed on $H^1(\mathbb{R}^3)$;
 - (barely) well-posed in $H^1(\mathbb{R}^4)$;
 - ill-posed in $H^1(\mathbb{S}^4)$;
 - ? in $H^1(\mathbb{H}^1)$.

The defocusing nonlinear Schrödinger equation of order three (NLS_3)

$$\begin{cases} i\partial_t u + \Delta u = u|u|^2 \\ u(0) = u_0. \end{cases}$$
 (2)

- well-posed on $H^1(\mathbb{R}^3)$;
- ullet (barely) well-posed in $H^1(\mathbb{R}^4)$;
- ill-posed in $H^1(\mathbb{S}^4)$;
- ? in $H^1(\mathbb{H}^1)$.

The defocusing nonlinear Schrödinger equation of order three (NLS_3)

$$\begin{cases} i\partial_t u + \Delta u = u|u|^2 \\ u(0) = u_0. \end{cases}$$
 (2)

- well-posed on $H^1(\mathbb{R}^3)$;
- ullet (barely) well-posed in $H^1(\mathbb{R}^4)$;
- ullet ill-posed in $H^1(\mathbb{S}^4)$;
- ? in $H^1(\mathbb{H}^1)$.

The defocusing nonlinear Schrödinger equation of order three (NLS_3)

$$\begin{cases} i\partial_t u + \Delta u = u|u|^2 \\ u(0) = u_0. \end{cases}$$
 (2)

- ullet well-posed on $H^1(\mathbb{R}^3)$;
 - (barely) well-posed in $H^1(\mathbb{R}^4)$;
 - ullet ill-posed in $H^1(\mathbb{S}^4)$;
 - ? in $H^1(\mathbb{H}^1)$.

Dispersive estimates are so weak, we are forced to live without them.

 \Rightarrow Akin to having strong nonlinearities and/or high (euclidean) dimensions.

Dispersive estimates are so weak, we are forced to live without them.

⇒ Akin to having strong nonlinearities and/or high (euclidean) dimensions.

Dispersive estimates are so weak, we are forced to live without them.

⇒ Akin to having strong nonlinearities and/or high (euclidean) dimensions.

Dispersive estimates are so weak, we are forced to live without them.

 \Rightarrow Akin to having strong nonlinearities and/or high (euclidean) dimensions.

A primer in abstract Fourier theory.

An irreducible unitary representation (IUR) of a group G is a pair (π, \mathcal{H}) , where \mathcal{H} is a Hilbert space and $\pi: G \longrightarrow \mathcal{U}(\mathcal{H})$ is a group morphism.

Example (Euclidean case)

If $G=\mathbb{R}^n$, any IUR is of the type (π_ξ,\mathbb{C}) with $\xi\in(\mathbb{R}^n)^*$, where

$$\pi_{\xi} \colon \mathbb{R}^n \longrightarrow \mathcal{U}(\mathbb{C})$$

$$x \longmapsto M_{e^{i\langle \xi, x \rangle}} = \left(z \mapsto e^{i\langle \xi, x \rangle} z \right).$$

Example (Heisenberg case)

If $G=\mathbb{H}^1$, any IUR is of the type $(\pi_\lambda,L^2(\mathbb{R}))$ with $\lambda\in\mathbb{R}\setminus\{0\}$, where

$$\pi_{\lambda} \colon \mathbb{H}^{1} \longrightarrow \mathcal{U}(L^{2}(\mathbb{R}))$$
$$(x, y, s) = w \longmapsto U_{w}^{\lambda} = \left(u \mapsto e^{i\lambda(s+2y(z-x))}u(z-2x)\right).$$

A primer in abstract Fourier theory.

An irreducible unitary representation (IUR) of a group G is a pair (π, \mathcal{H}) , where \mathcal{H} is a Hilbert space and $\pi: G \longrightarrow \mathcal{U}(\mathcal{H})$ is a group morphism.

Example (Euclidean case)

If $G=\mathbb{R}^n$, any IUR is of the type (π_ξ,\mathbb{C}) with $\xi\in (\mathbb{R}^n)^*$, where

$$\pi_{\xi} \colon \mathbb{R}^{n} \longrightarrow \mathcal{U}(\mathbb{C})$$
$$x \longmapsto M_{e^{i\langle \xi, x \rangle}} = \left(z \mapsto e^{i\langle \xi, x \rangle} z \right).$$

Example (Heisenberg case)

If $G=\mathbb{H}^1$, any IUR is of the type $(\pi_\lambda,L^2(\mathbb{R}))$ with $\lambda\in\mathbb{R}\setminus\{0\}$, where

$$\pi_{\lambda} \colon \mathbb{H}^{1} \longrightarrow \mathcal{U}(L^{2}(\mathbb{R}))$$
$$(x, y, s) = w \longmapsto U_{w}^{\lambda} = \left(u \mapsto e^{i\lambda(s+2y(z-x))}u(z-2x)\right).$$

A primer in abstract Fourier theory.

An irreducible unitary representation (IUR) of a group G is a pair (π, \mathcal{H}) , where \mathcal{H} is a Hilbert space and $\pi: G \longrightarrow \mathcal{U}(\mathcal{H})$ is a group morphism.

Example (Euclidean case)

If $G=\mathbb{R}^n$, any IUR is of the type (π_ξ,\mathbb{C}) with $\xi\in(\mathbb{R}^n)^*$, where

$$\pi_{\xi} \colon \mathbb{R}^{n} \longrightarrow \mathcal{U}(\mathbb{C})$$
$$x \longmapsto M_{e^{i\langle \xi, x \rangle}} = \left(z \mapsto e^{i\langle \xi, x \rangle} z \right).$$

Example (Heisenberg case)

If $G=\mathbb{H}^1$, any IUR is of the type $(\pi_\lambda,L^2(\mathbb{R}))$ with $\lambda\in\mathbb{R}\setminus\{0\}$, where

$$\pi_{\lambda} \colon \mathbb{H}^{1} \longrightarrow \mathcal{U}(L^{2}(\mathbb{R}))$$
$$(x, y, s) = w \longmapsto U_{w}^{\lambda} = \left(u \mapsto e^{i\lambda(s+2y(z-x))}u(z-2x)\right).$$

The abstract Fourier transform.

For a 'reasonable' group G, the Fourier transform of $f \in L^1(G)$ is

$$\mathcal{F}(f)(\pi) := \int_{\mathcal{G}} f(g) \overline{\pi(g)} dg \in \mathcal{L}(\mathcal{H}).$$

Example (Euclidean case)

If $G = \mathbb{R}^n$, we have

$$\mathcal{F}(f)(\pi_{\xi}) := \int_{\mathbb{R}^n} f(x) M_{e^{-i\langle \xi, x \rangle}} dx = M_{\hat{f}(\xi)} \in \mathcal{L}(\mathbb{C}).$$

Example (Heisenberg case)

If $G = \mathbb{H}^1$, we have

$$\mathcal{F}(f)(\pi_{\lambda}) := \int_{\mathbb{H}^1} f(w) U_w^{\lambda} dw = \dots$$

The abstract Fourier transform.

For a 'reasonable' group G, the Fourier transform of $f \in L^1(G)$ is

$$\mathcal{F}(f)(\pi) := \int_G f(g) \overline{\pi(g)} dg \in \mathcal{L}(\mathcal{H}).$$

Example (Euclidean case)

If $G = \mathbb{R}^n$, we have

$$\mathcal{F}(f)(\pi_{\xi}) := \int_{\mathbb{R}^n} f(x) M_{\mathrm{e}^{-i\langle \xi, x \rangle}} dx = M_{\hat{f}(\xi)} \in \mathcal{L}(\mathbb{C}).$$

Example (Heisenberg case)

If $G = \mathbb{H}^1$, we have

$$\mathcal{F}(f)(\pi_{\lambda}) := \int_{\mathbb{H}^1} f(w) U_w^{\lambda} dw = \dots$$
?

The abstract Fourier transform.

For a 'reasonable' group G, the Fourier transform of $f \in L^1(G)$ is

$$\mathcal{F}(f)(\pi) := \int_G f(g) \overline{\pi(g)} dg \in \mathcal{L}(\mathcal{H}).$$

Example (Euclidean case)

If $G = \mathbb{R}^n$, we have

$$\mathcal{F}(f)(\pi_{\xi}) := \int_{\mathbb{R}^n} f(x) M_{\mathrm{e}^{-i\langle \xi, x \rangle}} dx = M_{\hat{f}(\xi)} \in \mathcal{L}(\mathbb{C}).$$

Example (Heisenberg case)

If $G = \mathbb{H}^1$, we have

$$\mathcal{F}(f)(\pi_{\lambda}) := \int_{\mathbb{H}^1} f(w) U_w^{\lambda} dw = \dots$$
?

Action on convolutions:

$$\mathcal{F}(f_1*f_2)(\pi) = \mathcal{F}(f_1)(\pi) \circ \mathcal{F}(f_2)(\pi)$$

Abstract Parseval identity:

$$||f||_{L^2(G)}^2 = \int_{...} ||\mathcal{F}(f)(\pi)||^2 d\pi.$$

Inversion formula

$$f(g) = \int_{...} \langle \mathcal{F}(f)(\pi), \pi(g) \rangle d\pi.$$

Action on convolutions:

$$\mathcal{F}(f_1*f_2)(\pi)=\mathcal{F}(f_1)(\pi)\circ\mathcal{F}(f_2)(\pi).$$

Abstract Parseval identity:

$$|f|_{L^2(G)}^2 = \int_{...} ||\mathcal{F}(f)(\pi)||^2 d\pi.$$

Inversion formula

$$f(g) = \int_{...} \langle \mathcal{F}(f)(\pi), \pi(g) \rangle d\pi.$$

Action on convolutions:

$$\mathcal{F}(f_1*f_2)(\pi)=\mathcal{F}(f_1)(\pi)\circ\mathcal{F}(f_2)(\pi).$$

Abstract Parseval identity:

$$||f||_{L^2(G)}^2 = \int_{...} ||\mathcal{F}(f)(\pi)||^2 d\pi.$$

Inversion formula

$$f(g) = \int_{...} \langle \mathcal{F}(f)(\pi), \pi(g) \rangle d\pi.$$

Action on convolutions:

$$\mathcal{F}(f_1*f_2)(\pi)=\mathcal{F}(f_1)(\pi)\circ\mathcal{F}(f_2)(\pi).$$

Abstract Parseval identity:

$$||f||_{L^2(G)}^2 = \int_{...} ||\mathcal{F}(f)(\pi)||^2 d\pi.$$

Inversion formula:

$$f(g) = \int_{...} \langle \mathcal{F}(f)(\pi), \pi(g) \rangle d\pi.$$

 $\mathcal{F}(f)(\pi_{\lambda}) \in \mathcal{L}(L^2(\mathbb{R})) \Rightarrow \mathcal{F}(f)(\pi_{\lambda}) \sim \text{infinite matrix. Coefficients?}$ Obtained by computing

$$\hat{f}(\lambda, n, m) := \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot e_m, e_n \rangle_{L^2(\mathbb{R})}$$

 $\mathcal{F}(f)(\pi_{\lambda}) \in \mathcal{L}(L^2(\mathbb{R})) \Rightarrow \mathcal{F}(f)(\pi_{\lambda}) \sim \text{infinite matrix. Coefficients?}$ Obtained by computing

$$\hat{f}(\lambda, n, m) := \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot e_m, e_n \rangle_{L^2(\mathbb{R})}$$

 $\mathcal{F}(f)(\pi_{\lambda}) \in \mathcal{L}(L^2(\mathbb{R})) \Rightarrow \mathcal{F}(f)(\pi_{\lambda}) \sim \text{infinite matrix. Coefficients?}$ Obtained by computing

$$\hat{f}(\lambda, n, m) := \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot e_m, e_n \rangle_{L^2(\mathbb{R})}$$

 $\mathcal{F}(f)(\pi_{\lambda}) \in \mathcal{L}(L^2(\mathbb{R})) \Rightarrow \mathcal{F}(f)(\pi_{\lambda}) \sim \text{infinite matrix. Coefficients?}$ Obtained by computing

$$\hat{f}(\lambda, n, m) := \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot e_m, e_n \rangle_{L^2(\mathbb{R})}$$

From a matrix to its coefficients

 $\mathcal{F}(f)(\pi_{\lambda}) \in \mathcal{L}(L^2(\mathbb{R})) \Rightarrow \mathcal{F}(f)(\pi_{\lambda}) \sim \text{infinite matrix. Coefficients?}$ Obtained by computing

$$\hat{f}(\lambda, n, m) := \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot e_m, e_n \rangle_{L^2(\mathbb{R})}$$

for a suitable ONB $(e_n)_{n\in\mathbb{N}}$ of $L^2(\mathbb{R})$. Which $(e_n)_{n\in\mathbb{N}}$ do we choose? Hint: we are interested in the Schrödinger equation \Rightarrow look at the laplacian.

Motto: « the Fourier transform diagonalizes the laplacian ».

On \mathbb{R}^n

$$\mathcal{F}(\Delta f)(\pi_{\xi}) = \mathcal{F}(f)(\pi_{\xi}) \circ M_{-|\xi|^2}$$

$$\left(\Leftrightarrow\widehat{\Delta f}(\xi)=-|\xi|^2\widehat{f}(\xi)\right)$$

On \mathbb{H}^1 :

$$\mathcal{F}(\Delta_{\mathbb{H}^1}f)(\pi_\lambda)=\mathcal{F}(f)(\pi_\lambda)\circ\Delta_{\mathsf{osc},\lambda}$$

$$\Delta_{\operatorname{osc},\lambda} u(x) = (\partial_x^2 - \lambda^2 x^2) u(x).$$

Motto : « the Fourier transform diagonalizes the laplacian \gg .

On \mathbb{R}^n :

$$\mathcal{F}(\Delta f)(\pi_{\xi}) = \mathcal{F}(f)(\pi_{\xi}) \circ M_{-|\xi|^2}$$

$$\left(\Leftrightarrow\widehat{\Delta f}(\xi)=-|\xi|^2\widehat{f}(\xi)\right)$$

On \mathbb{H}^1 :

$$\mathcal{F}(\Delta_{\mathbb{H}^1}f)(\pi_\lambda) = \mathcal{F}(f)(\pi_\lambda) \circ \Delta_{\mathsf{osc},\lambda}$$

$$\Delta_{\operatorname{osc},\lambda} u(x) = (\partial_x^2 - \lambda^2 x^2) u(x)$$

Motto : « the Fourier transform diagonalizes the laplacian \gg .

On \mathbb{R}^n :

$$\mathcal{F}(\Delta f)(\pi_{\xi}) = \mathcal{F}(f)(\pi_{\xi}) \circ M_{-|\xi|^2}$$

$$\left(\Leftrightarrow\widehat{\Delta f}(\xi)=-|\xi|^2\widehat{f}(\xi)\right)$$

On \mathbb{H}^1 :

$$\mathcal{F}(\Delta_{\mathbb{H}^1}f)(\pi_\lambda) = \mathcal{F}(f)(\pi_\lambda) \circ \Delta_{\mathsf{osc},\lambda}$$

$$\Delta_{\operatorname{osc},\lambda} u(x) = (\partial_x^2 - \lambda^2 x^2) u(x).$$

Motto: « the Fourier transform diagonalizes the laplacian ».

On \mathbb{R}^n :

$$\mathcal{F}(\Delta f)(\pi_{\xi}) = \mathcal{F}(f)(\pi_{\xi}) \circ M_{-|\xi|^2}$$

$$\left(\Leftrightarrow\widehat{\Delta f}(\xi)=-|\xi|^2\widehat{f}(\xi)\right)$$

On \mathbb{H}^1 :

$$\mathcal{F}(\Delta_{\mathbb{H}^1}f)(\pi_\lambda)=\mathcal{F}(f)(\pi_\lambda)\circ\Delta_{\mathsf{osc},\lambda}$$

$$\Delta_{\operatorname{osc},\lambda}u(x)=(\partial_x^2-\lambda^2x^2)u(x).$$

Eigenfunctions : (rescaled) Hermite functions $H_{n,\lambda}:=|\lambda|^{\frac{1}{4}}H_n(|\lambda|^{\frac{1}{2}}\cdot)$.

Eigenvalues : $\Delta_{\operatorname{osc},\lambda}H_{n,\lambda}=-4|\lambda|(2n+1)H_{n,\lambda}$.

The eigenvalues mix the IUR parameter and the Hermite index

$$\begin{split} \widehat{\Delta f}(\lambda, n, m) &= \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot (\Delta_{\text{osc}, \lambda} H_{m, \lambda}), H_{n, \lambda} \rangle_{L^{2}(\mathbb{R})} \\ &= \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot (-4|\lambda|(2m+1)H_{m, \lambda}), H_{n, \lambda} \rangle_{L^{2}(\mathbb{R})} \\ &= -4|\lambda|(2m+1)\hat{f}(\lambda, n, m). \end{split}$$

Eigenfunctions : (rescaled) Hermite functions $H_{n,\lambda} := |\lambda|^{\frac{1}{4}} H_n(|\lambda|^{\frac{1}{2}} \cdot)$. Eigenvalues : $\Delta_{\text{osc}} \lambda H_{n,\lambda} = -4|\lambda|(2n+1)H_{n,\lambda}$.

The eigenvalues mix the IUR parameter and the Hermite index

 $\widehat{\Delta f}(\lambda, n, m) = \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot (\Delta_{\mathsf{osc}, \lambda} H_{m, \lambda}), H_{n, \lambda} \rangle_{L^{2}(\mathbb{R})}$ $= \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot (-4|\lambda|(2m+1)H_{m, \lambda}), H_{n, \lambda} \rangle_{L^{2}(\mathbb{R})}$

Eigenfunctions : (rescaled) Hermite functions $H_{n,\lambda} := |\lambda|^{\frac{1}{4}} H_n(|\lambda|^{\frac{1}{2}} \cdot)$.

Eigenvalues : $\Delta_{\operatorname{osc},\lambda}H_{n,\lambda} = -4|\lambda|(2n+1)H_{n,\lambda}$.

The eigenvalues mix the IUR parameter and the Hermite index!

If we choose $e_n = H_{n,\lambda}$, we get

$$\begin{split} \widehat{\Delta f}(\lambda, n, m) &= \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot (\Delta_{\text{osc}, \lambda} H_{m, \lambda}), H_{n, \lambda} \rangle_{L^{2}(\mathbb{R})} \\ &= \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot (-4|\lambda|(2m+1)H_{m, \lambda}), H_{n, \lambda} \rangle_{L^{2}(\mathbb{R})} \\ &= -4|\lambda|(2m+1)\widehat{f}(\lambda, n, m). \end{split}$$

Eigenfunctions: (rescaled) Hermite functions $H_{n,\lambda}:=|\lambda|^{\frac{1}{4}}H_n(|\lambda|^{\frac{1}{2}}\cdot)$. Eigenvalues: $\Delta_{\text{osc},\lambda}H_{n,\lambda}=-4\frac{|\lambda|}{|\lambda|}(2n+1)H_{n,\lambda}$. The eigenvalues mix the IUR parameter and the Hermite index! If we choose $e_n=H_{n,\lambda}$, we get

$$\begin{split} \widehat{\Delta f}(\lambda, n, m) &= \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot (\Delta_{\mathsf{osc}, \lambda} H_{m, \lambda}), H_{n, \lambda} \rangle_{L^{2}(\mathbb{R})} \\ &= \langle \mathcal{F}(f)(\pi_{\lambda}) \cdot (-4|\lambda|(2m+1)H_{m, \lambda}), H_{n, \lambda} \rangle_{L^{2}(\mathbb{R})} \\ &= -4|\lambda|(2m+1)\widehat{f}(\lambda, n, m). \end{split}$$

Expanding the definition of $\hat{f}(\lambda,n,m)$ yields $(\hat{w}=(\lambda,n,m))$

$$\hat{f}(\hat{w}) = \int_{\mathbb{H}^1} f(w) \overline{\Theta(w, \hat{w})} dw$$

- $|\Theta(w, \hat{w})| < 1$;
 - $\Theta(w, \hat{w}) = e^{is\lambda} \mathcal{W}(x, y, \hat{w});$
 - $\mathcal{W}(x, y, \hat{w}) \approx \langle H_{m,\lambda}(\cdot 2x), H_{n,\lambda} \rangle_{L^2(\mathbb{R})}$
 - $\Delta_{\mathbb{H}^1}\Theta(w,\hat{w}) = -4|\lambda|(2m+1)\Theta(w,\hat{w})$

Expanding the definition of $\hat{f}(\lambda, n, m)$ yields $(\hat{w} = (\lambda, n, m))$

$$\hat{f}(\hat{w}) = \int_{\mathbb{H}^1} f(w) \overline{\Theta(w, \hat{w})} dw$$

- $|\Theta(w, \hat{w})| \leq 1$;
- $\Theta(w, \hat{w}) = e^{is\lambda} \mathcal{W}(x, y, \hat{w});$
- $W(x, y, \hat{w}) \approx \langle H_{m,\lambda}(\cdot 2x), H_{n,\lambda} \rangle_{L^{2}(\mathbb{R})};$
- $\Delta_{\mathbb{H}^1}\Theta(w,\hat{w}) = -4|\lambda|(2m+1)\Theta(w,\hat{w});$
- . . .

Expanding the definition of $\hat{f}(\lambda, n, m)$ yields $(\hat{w} = (\lambda, n, m))$

$$\hat{f}(\hat{w}) = \int_{\mathbb{H}^1} f(w) \overline{\Theta(w, \hat{w})} dw$$

- $|\Theta(w, \hat{w})| \leq 1$;
- $\Theta(w, \hat{w}) = e^{is\lambda} \mathcal{W}(x, y, \hat{w});$
- $W(x, y, \hat{w}) \approx \langle H_{m,\lambda}(\cdot 2x), H_{n,\lambda} \rangle_{L^2(\mathbb{R})};$
- $\Delta_{\mathbb{H}^1}\Theta(w,\hat{w}) = -4|\lambda|(2m+1)\Theta(w,\hat{w});$
- . . .

Expanding the definition of $\hat{f}(\lambda,n,m)$ yields $(\hat{w}=(\lambda,n,m))$

$$\hat{f}(\hat{w}) = \int_{\mathbb{H}^1} f(w) \overline{\Theta(w, \hat{w})} dw$$

- $|\Theta(w, \hat{w})| \leq 1$;
- $\Theta(w, \hat{w}) = e^{is\lambda} \mathcal{W}(x, y, \hat{w});$
- $W(x, y, \hat{w}) \approx \langle H_{m,\lambda}(\cdot 2x), H_{n,\lambda} \rangle_{L^{2}(\mathbb{R})};$
- . . .

Expanding the definition of $\hat{f}(\lambda,n,m)$ yields $(\hat{w}=(\lambda,n,m))$

$$\hat{f}(\hat{w}) = \int_{\mathbb{H}^1} f(w) \overline{\Theta(w, \hat{w})} dw$$

- $|\Theta(w, \hat{w})| \leq 1$;
- $\Theta(w, \hat{w}) = e^{is\lambda} \mathcal{W}(x, y, \hat{w});$
- $W(x, y, \hat{w}) \approx \langle H_{m,\lambda}(\cdot 2x), H_{n,\lambda} \rangle_{L^{2}(\mathbb{R})};$
- \bullet $\Delta_{\mathbb{H}^1}\Theta(w,\hat{w})=-4|\lambda|(2m+1)\Theta(w,\hat{w});$
- . . .

Expanding the definition of $\hat{f}(\lambda, n, m)$ yields $(\hat{w} = (\lambda, n, m))$

$$\hat{f}(\hat{w}) = \int_{\mathbb{H}^1} f(w) \overline{\Theta(w, \hat{w})} dw$$

- $|\Theta(w, \hat{w})| \leq 1$;
- $\Theta(w, \hat{w}) = e^{is\lambda} \mathcal{W}(x, y, \hat{w});$
- $W(x, y, \hat{w}) \approx \langle H_{m,\lambda}(\cdot 2x), H_{n,\lambda} \rangle_{L^{2}(\mathbb{R})};$
- ullet $\Delta_{\mathbb{H}^1}\Theta(w,\hat{w})=-4|\lambda|(2m+1)\Theta(w,\hat{w});$
- •

Action on convolutions:

$$(\widehat{f_1*f_2})(\lambda, n, m) = \sum_{\ell} \widehat{f_1}(\lambda, n, \ell) \widehat{f_2}(\lambda, \ell, m).$$

Parseval identity:

$$\int_{\mathbb{H}^1} |f(w)|^2 dw = \sum_{n,m} \int_{\mathbb{R}} |\hat{f}(\lambda, n, m)|^2 |\lambda| d\lambda.$$

Inversion formula

$$f(w) = c \sum_{n,m} \int_{\mathbb{R}} \hat{f}(\hat{w}) \Theta(w, \hat{w}) |\lambda| d\lambda.$$

Action on convolutions:

$$(\widehat{f_1*f_2})(\lambda,n,m) = \sum_{\ell} \hat{f_1}(\lambda,n,\ell)\hat{f_2}(\lambda,\ell,m).$$

Parseval identity:

$$\int_{\mathbb{H}^1} |f(w)|^2 dw = \sum_{n,m} \int_{\mathbb{R}} |\hat{f}(\lambda, n, m)|^2 |\lambda| d\lambda.$$

Inversion formula:

$$f(w) = c \sum_{n,m} \int_{\mathbb{R}} \hat{f}(\hat{w}) \Theta(w, \hat{w}) |\lambda| d\lambda.$$

Action on convolutions:

$$(\widehat{f_1*f_2})(\lambda,n,m) = \sum_{\ell} \hat{f_1}(\lambda,n,\ell)\hat{f_2}(\lambda,\ell,m).$$

Parseval identity:

$$\int_{\mathbb{H}^1} |f(w)|^2 dw = \sum_{n,m} \int_{\mathbb{R}} |\hat{f}(\lambda, n, m)|^2 |\lambda| d\lambda.$$

Inversion formula:

$$f(w) = c \sum_{n,m} \int_{\mathbb{R}} \hat{f}(\hat{w}) \Theta(w, \hat{w}) |\lambda| d\lambda.$$

Action on convolutions:

$$(\widehat{f_1*f_2})(\lambda,n,m) = \sum_{\ell} \hat{f_1}(\lambda,n,\ell)\hat{f_2}(\lambda,\ell,m).$$

Parseval identity:

$$\int_{\mathbb{H}^1} |f(w)|^2 dw = \sum_{n,m} \int_{\mathbb{R}} |\hat{f}(\lambda, n, m)|^2 |\lambda| d\lambda.$$

Inversion formula:

$$f(w) = c \sum_{n,m} \int_{\mathbb{R}} \hat{f}(\hat{w}) \Theta(w, \hat{w}) |\lambda| d\lambda.$$

Taking the Fourier transform in

$$\begin{cases} i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\ u(0) = u_0 \end{cases}$$

gives

$$\begin{cases} i\partial_t \hat{u}(t,\lambda,n,m) - 4|\lambda|(2m+1)\hat{u}(t,\lambda,n,m) = 0\\ \hat{u}(0,\lambda,n,m) = \hat{u}_0(\lambda,n,m) \end{cases}$$

and hence

$$\hat{u}(t,\lambda,n,m) = e^{-4i|\lambda|t(2m+1)} \hat{u}_0(\lambda,n,m)
= \sum_{\ell} \hat{u}_0(\lambda,n,\ell) \left(e^{-4i|\lambda|t(2\ell+1)} \mathbb{1}_{\ell=m} \right)
= \widehat{u_0 * s_t}(\lambda,n,m)$$

$$s_t(\lambda, n, m) := e^{-\pi i \pi (t^2 n^2 + 1)} \mathbb{I}_{n=m}.$$

Taking the Fourier transform in

$$\begin{cases} i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\ u(0) = u_0 \end{cases}$$

gives

$$\begin{cases} i\partial_t \hat{u}(t,\lambda,n,m) - 4|\lambda|(2m+1)\hat{u}(t,\lambda,n,m) = 0 \\ \hat{u}(0,\lambda,n,m) = \hat{u}_0(\lambda,n,m) \end{cases}$$

and hence

$$\hat{u}(t,\lambda,n,m) = e^{-4i|\lambda|t(2m+1)} \hat{u}_0(\lambda,n,m)
= \sum_{\ell} \hat{u}_0(\lambda,n,\ell) \left(e^{-4i|\lambda|t(2\ell+1)} \mathbb{1}_{\ell=m} \right)
= \widehat{u_0 * s_t}(\lambda,n,m)$$

where

 $\hat{s}_t(\lambda, n, m) := e^{-4t|\lambda|t(2n+1)} \mathbb{1}_{n=m}.$

Taking the Fourier transform in

$$\begin{cases} i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\ u(0) = u_0 \end{cases}$$

gives

$$\begin{cases} i\partial_t \hat{u}(t,\lambda,n,m) - 4|\lambda|(2m+1)\hat{u}(t,\lambda,n,m) = 0 \\ \hat{u}(0,\lambda,n,m) = \hat{u}_0(\lambda,n,m) \end{cases}$$

and hence

$$\begin{split} \hat{u}(t,\lambda,n,m) &= e^{-4i|\lambda|t(2m+1)} \hat{u}_0(\lambda,n,m) \\ &= \sum_{\ell} \hat{u}_0(\lambda,n,\ell) \left(e^{-4i|\lambda|t(2\ell+1)} \mathbb{1}_{\ell=m} \right) \\ &= \widehat{u_0 * s_t}(\lambda,n,m) \end{split}$$

where

 $\widehat{s_t}(\lambda, n, m) := e^{-4i|\lambda|t(2n+1)} \mathbb{1}_{n=m}.$

Taking the Fourier transform in

$$\begin{cases} i\partial_t u + \Delta_{\mathbb{H}^1} u = 0 \\ u(0) = u_0 \end{cases}$$

gives

$$\begin{cases} i\partial_t \hat{u}(t,\lambda,n,m) - 4|\lambda|(2m+1)\hat{u}(t,\lambda,n,m) = 0 \\ \hat{u}(0,\lambda,n,m) = \hat{u}_0(\lambda,n,m) \end{cases}$$

and hence

$$\begin{split} \hat{u}(t,\lambda,n,m) &= e^{-4i|\lambda|t(2m+1)} \hat{u}_0(\lambda,n,m) \\ &= \sum_{\ell} \hat{u}_0(\lambda,n,\ell) \left(e^{-4i|\lambda|t(2\ell+1)} \mathbb{1}_{\ell=m} \right) \\ &= \widehat{u_0 * s_t}(\lambda,n,m) \end{split}$$

$$\widehat{s_t}(\lambda, n, m) := e^{-4i|\lambda|t(2n+1)} \mathbb{1}_{n=m}.$$

Where do the coefficients live?

We would like to study the coefficient set

$$\widetilde{\mathbb{H}}^1 = (\mathbb{R} \setminus \{0\}) \times \mathbb{N} \times \mathbb{N}.$$

Topology? Metric? « Regularity implies decay »?

Hint : from the identity

$$\widehat{\Delta f}(\lambda, n, m) = -4|\lambda|(2m+1)\widehat{f}(\lambda, n, m),$$

smoothness on \mathbb{H}^1 implies decay $\sim (|\lambda|m+|\lambda|)^{-p}$. Another identity :

$$(n-m)\Theta(w,\hat{w}) \sim w \cdot \nabla_w \Theta(w,\hat{w}).$$

 \Rightarrow regularity on \mathbb{H}^1 implies decay $\sim |n-m|^{-p}$.

Where do the coefficients live?

We would like to study the coefficient set

$$\widetilde{\mathbb{H}}^1 = (\mathbb{R} \setminus \{0\}) \times \mathbb{N} \times \mathbb{N}.$$

Topology? Metric? « Regularity implies decay »? Hint : from the identity

$$\widehat{\Delta f}(\lambda, n, m) = -4|\lambda|(2m+1)\widehat{f}(\lambda, n, m),$$

smoothness on \mathbb{H}^1 implies decay $\sim (|\lambda|m + |\lambda|)^{-p}$.

$$(n-m)\Theta(w,\hat{w}) \sim w \cdot \nabla_w \Theta(w,\hat{w}).$$

 \Rightarrow regularity on \mathbb{H}^1 implies decay $\sim |n-m|^{-p}$.

Where do the coefficients live?

We would like to study the coefficient set

$$\widetilde{\mathbb{H}}^1 = (\mathbb{R} \setminus \{0\}) \times \mathbb{N} \times \mathbb{N}.$$

Topology? Metric? « Regularity implies decay »? Hint: from the identity

$$\widehat{\Delta f}(\lambda, n, m) = -4|\lambda|(2m+1)\widehat{f}(\lambda, n, m),$$

smoothness on \mathbb{H}^1 implies decay $\sim (|\lambda|m+|\lambda|)^{-p}$. Another identity :

$$(n-m)\Theta(w,\hat{w}) \sim w \cdot \nabla_w \Theta(w,\hat{w}).$$

 \Rightarrow regularity on \mathbb{H}^1 implies decay $\sim |n-m|^{-p}$.

The natural distance on $\widetilde{\mathbb{H}}^1$

We endow $\widetilde{\mathbb{H}}^1$ with the distance

$$\hat{d}(\hat{w}, \hat{w}') := |\lambda - \lambda'| + |\lambda m - \lambda' m'| + |(n - m) - (n' - m')|.$$

Let's embed $\widetilde{\mathbb{H}}^1$ to euclideanize the distance $:\left(\widetilde{\mathbb{H}}^1,\hat{d}
ight)$ is isometric to

$$\widetilde{\mathbb{H}}^1 := \{(\lambda, \lambda m, n-m)\} \subset (\mathbb{R} \setminus \{0\}) \times \mathbb{R} \times \mathbb{Z}$$

with the usual Euclidean distance

The natural distance on \mathbb{H}^1

We endow $\widetilde{\mathbb{H}}^1$ with the distance

$$\hat{d}(\hat{w}, \hat{w}') := |\lambda - \lambda'| + |\lambda m - \lambda' m'| + |(n - m) - (n' - m')|.$$

Let's embed $\widetilde{\mathbb{H}}^1$ to euclideanize the distance $:\left(\widetilde{\mathbb{H}}^1,\hat{d}
ight)$ is isometric to

$$\widetilde{\mathbb{H}}^1:=\{(\lambda,\lambda m,n-m)\}\subset (\mathbb{R}\setminus\{0\})\times \mathbb{R}\times \mathbb{Z}$$

with the usual Euclidean distance.

Drawing the Euclidean $\widetilde{\mathbb{H}}^1$

The missing points

The space $\widetilde{\mathbb{H}}^1$ is not complete : the sequence $(\frac{1}{m},1,1)_{m\in\mathbb{N}}$ has its limit outside!

Completion of $\widetilde{\mathbb{H}}^1$

$$\widehat{\mathbb{H}}^1 := \widetilde{\mathbb{H}}^1 \cup \widehat{\mathbb{H}}^1_0$$

Boundary

$$\hat{\mathbb{H}}_0^1 := \{0\} \times \mathbb{R} \times \mathbb{Z}.$$

Note : this incompleteness can *only* be seen through matrix coefficients. What does it mean? What do the Fourier transforms become near $\widehat{\mathbb{H}}_0^1$?

The missing points

The space $\widetilde{\mathbb{H}}^1$ is not complete : the sequence $(\frac{1}{m},1,1)_{m\in\mathbb{N}}$ has its limit outside!

Completion of $\widetilde{\mathbb{H}}^1$:

$$\widehat{\mathbb{H}}^1:=\widetilde{\mathbb{H}}^1\cup\widehat{\mathbb{H}}^1_0$$

Boundary:

$$\widehat{\mathbb{H}}_0^1 := \{0\} \times \mathbb{R} \times \mathbb{Z}.$$

Note : this incompleteness can *only* be seen through matrix coefficients. What does it mean? What do the Fourier transforms become near $\widehat{\mathbb{H}}_0^1$?

The missing points

The space $\widetilde{\mathbb{H}}^1$ is not complete : the sequence $(\frac{1}{m},1,1)_{m\in\mathbb{N}}$ has its limit outside!

Completion of $\widetilde{\mathbb{H}}^1$:

$$\widehat{\mathbb{H}}^1:=\widetilde{\mathbb{H}}^1\cup\widehat{\mathbb{H}}^1_0$$

Boundary:

$$\widehat{\mathbb{H}}_0^1 := \{0\} \times \mathbb{R} \times \mathbb{Z}.$$

Note : this incompleteness can *only* be seen through matrix coefficients. What does it mean? What do the Fourier transforms become near $\widehat{\mathbb{H}}_0^1$?

The boundary kernel

On the boundary, the kernel becomes (\sim semiclassical limit)

$$\Theta(w, \lambda, \lambda m, n-m) \xrightarrow[\lambda \to 0]{\lambda m \to z} \mathcal{K}(w, 0, z, n-m)$$

$$\mathcal{K}(w,0,z,n-m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\left((n-m)\theta+2|z|^{\frac{1}{2}}(x\sin\theta+y\cos\theta)\right)} d\theta.$$

Example

$$\hat{f}\left(\frac{1}{m}, m+1, m\right) \xrightarrow[m \to \infty]{} \frac{1}{2\pi} \int_{\mathbb{H}^1} f(w) \left(\int_{-\pi}^{\pi} e^{-i(\theta+2(x\sin\theta+y\cos\theta))} d\theta\right) dw.$$

The boundary kernel

On the boundary, the kernel becomes (\sim semiclassical limit)

$$\Theta(w, \lambda, \lambda m, n-m) \xrightarrow{\lambda m \to z} \mathcal{K}(w, 0, z, n-m)$$

$$\mathcal{K}(w,0,z,n-m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\left((n-m)\theta+2|z|^{\frac{1}{2}}(x\sin\theta+y\cos\theta)\right)} d\theta.$$

Example :

$$\hat{f}\left(\frac{1}{m}, m+1, m\right) \xrightarrow[m \to \infty]{} \frac{1}{2\pi} \int_{\mathbb{H}^1} f(w) \left(\int_{-\pi}^{\pi} \mathrm{e}^{-i(\theta+2(x\sin\theta+y\cos\theta)}d\theta\right) dw.$$

- Riemann-Lebesgue lemma : the FT is continuous from $L^1(\mathbb{H}^1)$ to $\mathcal{C}_0(\hat{\mathbb{H}}^1).$
- Schwartz duality : the FT is a bicontinuous isomorphism between $\mathcal{S}(\mathbb{H}^1)$ and $\mathcal{S}(\widehat{\mathbb{H}}^1)$.
- « The FT exchanges Dirac masses and constants » :

$$\hat{\mathbb{1}} = c\delta_{\hat{0}}, \qquad \hat{\delta}_{0} = |\lambda| \mathbb{1}_{n=m}.$$

$$\hat{f}(0,z,n-m) \sim \left(\int_{\mathbb{R}^2} f(x,y) \overline{\mathcal{K}(w,0,z,n-m)} dx dy\right) \delta_{\widehat{\mathbb{H}}_0^1}.$$

- Riemann-Lebesgue lemma : the FT is continuous from $L^1(\mathbb{H}^1)$ to $\mathcal{C}_0(\hat{\mathbb{H}}^1).$
- Schwartz duality : the FT is a bicontinuous isomorphism between $\mathcal{S}(\mathbb{H}^1)$ and $\mathcal{S}(\widehat{\mathbb{H}}^1)$.
- « The FT exchanges Dirac masses and constants » :

$$\hat{1} = c\delta_{\hat{0}}, \qquad \hat{\delta}_{0} = |\lambda| \mathbb{1}_{n=m}.$$

$$\hat{f}(0,z,n-m) \sim \left(\int_{\mathbb{R}^2} f(x,y) \overline{\mathcal{K}(w,0,z,n-m)} dx dy \right) \delta_{\widehat{\mathbb{H}}^1_0}.$$

- Riemann-Lebesgue lemma : the FT is continuous from $L^1(\mathbb{H}^1)$ to $\mathcal{C}_0(\hat{\mathbb{H}}^1).$
- Schwartz duality : the FT is a bicontinuous isomorphism between $\mathcal{S}(\mathbb{H}^1)$ and $\mathcal{S}(\widehat{\mathbb{H}}^1)$.
- « The FT exchanges Dirac masses and constants » :

$$\hat{\mathbb{1}} = c\delta_{\hat{0}}, \qquad \hat{\delta}_{0} = |\lambda| \mathbb{1}_{n=m}.$$

$$\hat{f}(0,z,n-m) \sim \left(\int_{\mathbb{R}^2} f(x,y) \overline{\mathcal{K}(w,0,z,n-m)} dx dy \right) \delta_{\widehat{\mathbb{H}}^1_0}.$$

- Riemann-Lebesgue lemma : the FT is continuous from $L^1(\mathbb{H}^1)$ to $\mathcal{C}_0(\hat{\mathbb{H}}^1).$
- Schwartz duality : the FT is a bicontinuous isomorphism between $\mathcal{S}(\mathbb{H}^1)$ and $\mathcal{S}(\widehat{\mathbb{H}}^1)$.
- « The FT exchanges Dirac masses and constants » :

$$\hat{\mathbb{1}} = c\delta_{\hat{0}}, \qquad \hat{\delta}_{0} = |\lambda| \mathbb{1}_{n=m}.$$

$$\hat{f}(0,z,n-m) \sim \left(\int_{\mathbb{R}^2} f(x,y) \overline{\mathcal{K}(w,0,z,n-m)} dx dy\right) \delta_{\widehat{\mathbb{H}}_0^1}.$$

- First motivation: studying PDEs with low dispersion → look for geometries preventing it.
- Would like to have a Fourier transform → theory already exists, but not very tractable/practical...
- Look at matrix coefficients → things look much nicer/familiar.
- A few interesting things: the limit kernel, some basic (and explicit)
 FT, Riemann-Lebesgue lemma, Schwartz duality,...
- Further extensions : subtle harmonic analysis, more general groups (or even completely different families),...

- First motivation: studying PDEs with low dispersion → look for geometries preventing it.
- Would like to have a Fourier transform

 theory already exists, but not very tractable/practical...
- Look at matrix coefficients → things look much nicer/familiar.
- A few interesting things: the limit kernel, some basic (and explicit)
 FT, Riemann-Lebesgue lemma, Schwartz duality,...
- Further extensions: subtle harmonic analysis, more general groups (or even completely different families),...

- First motivation: studying PDEs with low dispersion → look for geometries preventing it.
- Would like to have a Fourier transform

 theory already exists, but not very tractable/practical...
- Look at matrix coefficients → things look much nicer/familiar.
- A few interesting things: the limit kernel, some basic (and explicit)
 FT, Riemann-Lebesgue lemma, Schwartz duality,...
- Further extensions : subtle harmonic analysis, more general groups (or even completely different families),...

- First motivation: studying PDEs with low dispersion → look for geometries preventing it.
- Would like to have a Fourier transform

 theory already exists, but not very tractable/practical...
- ullet Look at matrix coefficients \longrightarrow things look much nicer/familiar.
- What are this Fourier transform main properties exhibits incompleteness.
- A few interesting things: the limit kernel, some basic (and explicit)
 FT, Riemann-Lebesgue lemma, Schwartz duality,...
- Further extensions : subtle harmonic analysis, more general groups (or even completely different families),...

- First motivation: studying PDEs with low dispersion → look for geometries preventing it.
- Would like to have a Fourier transform

 theory already exists, but not very tractable/practical...
- ullet Look at matrix coefficients \longrightarrow things look much nicer/familiar.
- What are this Fourier transform main properties exhibits incompleteness.
- A few interesting things: the limit kernel, some basic (and explicit)
 FT, Riemann-Lebesgue lemma, Schwartz duality,...
- Further extensions : subtle harmonic analysis, more general groups (or even completely different families),...

- First motivation: studying PDEs with low dispersion → look for geometries preventing it.
- Would like to have a Fourier transform

 theory already exists, but not very tractable/practical...
- ullet Look at matrix coefficients \longrightarrow things look much nicer/familiar.
- What are this Fourier transform main properties exhibits incompleteness.
- A few interesting things: the limit kernel, some basic (and explicit)
 FT, Riemann-Lebesgue lemma, Schwartz duality,...
- Further extensions: subtle harmonic analysis, more general groups (or even completely different families),...

Thank you for your attention!