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Some definitions.

First Heisenberg group : H! ~ R® with the group law

(x,y,8)-(X,y,s)=(x+x,y+y s+ +2(xy) = xy)).
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Some definitions.

First Heisenberg group : H! ~ R3? with the group law
(y,s) (X,y, )= (x+ X,y +y s+ + 20" = xy)).
Heisenberg family (H?)y>1 : HY ~ R24+1 with

(X,y,s)-(x',y’,s’)=(X—i—x’,y+y'7s+s’+2(x-y’—x’~y)).
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Some definitions.

First Heisenberg group : H! ~ R® with the group law
(y,s) (X,y, )= (x+ X,y +y s+ + 20" = xy)).
Heisenberg family (H?)y>1 : HY ~ R24+1 with
(X,y,S) : (Xlaylasl) = (X—|—X’,y—|—y’,$—|—5/+2(X-yI —x' y))
« Minimally non commutative » groups :

[[w, w'], w"] = 0 for any w,w’, w" € HC.
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Basic analysis.

o Lebesgue spaces : LP(H') ~ LP(R3).
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Basic analysis.

o Lebesgue spaces : LP(H') ~ LP(R3).

@ Convolution ;

(fxg)(w):= /]I—]Il f(wv)g(v)dv.
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Basic analysis.

o Lebesgue spaces : LP(H') ~ LP(R3).

e Convolution :
(fxg)(w):= /]I—]Il f(wv)g(v)dv.

@ Young and Holder inequalities are available.
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Some motivations.

What do the laws of phyics look like on H* ?

G. Lévy (LJLL, UPMC) Noncommutative Fourier analysis



Some motivations.

What do the laws of phyics look like on H' ? The geometry prevents
dispersion ; consider the Schrédinger equation

iOru+ Agu =0
{ u(0) = wo. (1)
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Some motivations.

What do the laws of phyics look like on H' ? The geometry prevents
dispersion ; consider the Schrédinger equation

iOru+ Agu =0
{ u(0) = wo. (1)

_3
On R Jlu(t)|le < t72]uolsa.
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Some motivations.

What do the laws of phyics look like on H' ? The geometry prevents
dispersion ; consider the Schrédinger equation

iOtu+ Agpu =0
{ u(0) = wo. (1)

3
On R® . |lu(t)|| 1= < t_51||U0||L1-
On H' : fJu(t)|lte St o] 1.
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Some motivations.

What do the laws of phyics look like on H' ? The geometry prevents
dispersion ; consider the Schrédinger equation

iOtu+ Agpu =0
{ u(0) = wo. (1)

3
On R® . |lu(t)|| 1= < t_51||U0||L1-
On H' : [lu(t)|| S t2|uol| -
On HY : J|u(t)||e St 2| uolla.
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Some motivations.

What do the laws of phyics look like on H' ? The geometry prevents
dispersion ; consider the Schrédinger equation

iOtu+ Agpu =0
{ u(0) = wo. (1)

3
On R® . |lu(t)|| 1= < t_51||U0||L1-
On H' : |lu(t)| = S f_§1|\U0HL1-
On HY : J|u(t)||e St 2| uolla.

PDEs are much harder to study on H! than on R3!
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Another example : NLS3.

The defocusing nonlinear Schrédinger equation of order three (NLS3)

iOru 4+ Au = ulul?
{ u(0) = up. (2)
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Another example : NLS3.

The defocusing nonlinear Schrédinger equation of order three (NLS3)

iOru 4+ Au = ulul?
{ u(0) = up. (2)

is :
o well-posed on H!(R3);
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Another example : NLS3.

The defocusing nonlinear Schrédinger equation of order three (NLS3)

iOru 4+ Au = ulul?
{ u(0) = up. (2)

is :
o well-posed on H!(R3);
o (barely) well-posed in H*(R*);
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Another example : NLS3.

The defocusing nonlinear Schrédinger equation of order three (NLS3)

iOru 4+ Au = ulul?
{ u(0) = up. (2)

is :
o well-posed on H!(R3);
o (barely) well-posed in H*(R*);
o ill-posed in H1(S*);
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Another example : NLS3.

The defocusing nonlinear Schrédinger equation of order three (NLS3)

iOru 4+ Au = ulul?
{ u(0) = up. (2)

o well-posed on H!(R3);

o (barely) well-posed in H*(R*);
o ill-posed in H1(S*);

o 7in H(HY).
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Why and how doing PDEs on H!?

Dispersive estimates are so weak, we are forced to live without them.
= Akin to having strong nonlinearities and/or high (euclidean) dimensions.
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Why and how doing PDEs on H!?

Dispersive estimates are so weak, we are forced to live without them.
= Akin to having strong nonlinearities and/or high (euclidean) dimensions.

Would like to have practical tools, like Fourier analysis...
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Why and how doing PDEs on H!?

Dispersive estimates are so weak, we are forced to live without them.
= Akin to having strong nonlinearities and/or high (euclidean) dimensions.

Would like to have practical tools, like Fourier analysis... which already
exists...
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Why and how doing PDEs on H!?

Dispersive estimates are so weak, we are forced to live without them.
= Akin to having strong nonlinearities and/or high (euclidean) dimensions.

Would like to have practical tools, like Fourier analysis... which already
exists... somehow.
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A primer in abstract Fourier theory.

An irreducible unitary representation (IUR) of a group G is a pair (7, H),
where H is a Hilbert space and 7 : G — U(H) is a group morphism.
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A primer in abstract Fourier theory.

An irreducible unitary representation (IUR) of a group G is a pair (7, H),
where H is a Hilbert space and 7 : G — U(H) is a group morphism.

Example (Euclidean case)
If G =R", any IUR is of the type (m¢,C) with £ € (R")*, where
T R" — Z/{((C)

X — Mei<§,x> = <Z — ei<§’x>z> 5
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A primer in abstract Fourier theory.

An irreducible unitary representation (IUR) of a group G is a pair (7, H),
where H is a Hilbert space and 7 : G — U(H) is a group morphism.

Example (Euclidean case)
If G =R", any IUR is of the type (m¢,C) with £ € (R")*, where
T R" — U((C)

X —— Mei<g,x> = <Z — ei<§’x>z> 5

Example (Heisenberg case)

If G = H, any IUR is of the type (my, L?(R)) with A € R\ {0}, where

ma: HY — U(L2(R))

(x,y,8) =wr— U) = (u s e MsH2r(z=x)) (7 — 2x)) .

y

G. Lévy (LJLL, UPMC) Noncommutative Fourier analysis Aussois, March —t" 2018 7/23



The abstract Fourier transform.
For a 'reasonable’ group G, the Fourier transform of f € [1(G) is

/ f(g)m(&)de < L(H).
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The abstract Fourier transform.
For a 'reasonable’ group G, the Fourier transform of f € [1(G) is

/ f(g)m(&)de < L(H).

Example (Euclidean case)
If G =R", we have

.7:(1()(7'('5) = /n f(X)Mef,-@,X) dx = Mf(g) S ﬁ((C)
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The abstract Fourier transform.
For a 'reasonable’ group G, the Fourier transform of f € [1(G) is

/ag g)dg € L(H).

Example (Euclidean case)
If G =R", we have

.7:(7()(7'('5) = /n f(X)Mef,-@,X) dx = Mf(g) S ﬁ(C)

Example (Heisenberg case)
If G = H!, we have

F(f)m) = [ Fw) U = .7
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Basic abstract properties

= = = E DA
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Basic abstract properties

Action on convolutions :

F(h x R)(m) = F(h)(r) o F(f)(m).
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Basic abstract properties

Action on convolutions :
F(h + R)(m) = F(f)(7) o F(f2)(m).

Abstract Parseval identity :

1122, = / | F(F) () 2dr.
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Basic abstract properties

Action on convolutions :

F(h x R)(m) = F(h)(r) o F(f)(m).

Abstract Parseval identity :

11726y = /H]: )| dr.

Inversion formula :

flg) = / (F(F)(x), 7)) dm
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From a matrix to its coefficients

F(f)(my) € L(L2(R)) = F(f)(my) ~ infinite matrix.
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From a matrix to its coefficients

F(f)(my) € L(L2(R)) = F(f)(my) ~ infinite matrix. Coefficients?
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From a matrix to its coefficients

F(f)(my) € L(L2(R)) = F(f)(my) ~ infinite matrix. Coefficients?
Obtained by computing

~

f(A, n,m) := (F(F)(72) - em, n)12(r)

for a suitable ONB (e,)nen of L2(R).
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From a matrix to its coefficients

F(f)(my) € L(L2(R)) = F(f)(my) ~ infinite matrix. Coefficients?
Obtained by computing

~

f(A, n,m) := (F(F)(72) - em, n)12(r)

for a suitable ONB (e,)nen of L2(R). Which (e,)nen do we choose ?
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From a matrix to its coefficients

F(f)(my) € L(L2(R)) = F(f)(m)) ~ infinite matrix. Coefficients ?
Obtained by computing

~

F(A, n,m) = (F(F)(m2) - em, €n)12(r)
for a suitable ONB (e,)nen of L2(R). Which (e,)nen do we choose ?

Hint : we are interested in the Schrédinger equation = look at the
laplacian.
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Pour qui sonne le glas-placien.

Motto : « the Fourier transform diagonalizes the laplacian ».
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Pour qui sonne le glas-placien.

Motto : « the Fourier transform diagonalizes the laplacian ».
On R":
./—"(Af)(ﬂ'g) = .F(f)(’/'rg) @) M_mz
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Pour qui sonne le glas-placien.

Motto : « the Fourier transform diagonalizes the laplacian ».
On R":
./—"(Af)(ﬂ'g) = .F(f)(’/'rg) @) M_mz

(& BF(©) = —1ePF(©))
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Pour qui sonne le glas-placien.

Motto : « the Fourier transform diagonalizes the laplacian ».
On R":
./—"(Af)(ﬂ'g) = ./_"(f)(’/'rg) @) M_mz

(« &F(©) = ~16P7(©))
On H! :
F(AHl f)(7r)\) = 'F(f)(ﬂk) © Aosc,>\
where
Dosert(x) = (92 — N2x?)u(x).
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Eigenelements of Agsc, A

Eigenfunctions : (rescaled) Hermite functions H, ) := |)\|%Hn(|/\|%-).
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Eigenelements of Agsc, A

Eigenfunctions : (rescaled) Hermite functions H, ) := ])\|%H,,(|/\|%-).
Eigenvalues : Agsc \Hn ) = —4|\[(2n 4+ 1)H, 5.
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Eigenelements of Agsc, A

Eigenfunctions : (rescaled) Hermite functions H, ) := ])\|%H,,(|/\|%-).
Eigenvalues : Agsc \Hn ) = —4|\[(2n 4+ 1)H, 5.
The eigenvalues mix the IUR parameter and the Hermite index!
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Eigenelements of Agsc, A

Eigenfunctions : (rescaled) Hermite functions H, ) := P\|%Hn(|/\|%)
Eigenvalues : Agsc \Hn ) = —4|\[(2n 4+ 1)H, 5.

The eigenvalues mix the IUR parameter and the Hermite index!

If we choose e, = H, ), we get

A\f()\, n,m) = (F(f)(mx) - (Aosc AHm ), Hn,>\>L2(R)
= (F(F)(mx) - (=4A[(2m + 1)Hm \), Hox) 12 (w)

~

= —4|\|(2m + 1)f (A, n, m).
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The Fourier kernel of HZ

Expanding the definition of 7?(/\, n, m) yields (W = (A, n, m))

F(#) = /H F(w)O(w, W)dw

where © satisfies
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The Fourier kernel of HZ

Expanding the definition of 7?(/\, n, m) yields (W = (A, n, m))

F(#) = /H F(w)O(w, W)dw

where © satisfies
e |O(w,w)| <1;
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The Fourier kernel of HZ

Expanding the definition of 7?(/\, n, m) yields (W = (A, n, m))

F(i) :/ F(w)O(w, W)dw
Hl
where © satisfies

° [O(w, W) <1;
o O(w, W) = e W(x,y, W);
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The Fourier kernel of HZ

Expanding the definition of 7?(/\, n, m) yields (W = (A, n, m))

F(#) = /H F(w)O(w, W)dw

where © satisfies
e |O(w,w)| <1;
o O(w, W) = e W(x,y, W);
° W(x,y, W) ~ (Hm (- — 2x), Hox) 12wy ;
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The Fourier kernel of HZ

Expanding the definition of 7?(/\, n, m) yields (W = (A, n, m))
Fi) = / F(w)B(w, W)dw
Hl

where © satisfies
e |O(w,w)| <1;
o O(w, W) = e W(x,y, W);
° W(x,y, W) ~ (Hm (- — 2x), Hox) 12wy ;
o AmO(w,w) = —4|\[(2m+1)O(w, w);
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The Fourier kernel of HZ

Expanding the definition of 7?(/\, n, m) yields (W = (A, n, m))

F(#) = /H F(w)O(w, W)dw

where © satisfies

e |O(w,w)| <1;

o O(w, W) = e W(x,y, W);
W(x,y, W) & (Hn (- = 2x), Hp2) 2(r) ;
A O(w, w) = —4|A\|[(2m +1)O(w, W);

G. Lévy (LJLL, UPMC) Noncommutative Fourier analysis Aussois, March -t 2018 13 /23



Recasting the abstract properties

= = = E DA
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Recasting the abstract properties

Action on convolutions :

(R B)Anm) =" A 0, Oh(\ £, m).
L
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Recasting the abstract properties

Action on convolutions :

(R B)Anm) =" A 0, Oh(\ £, m).
L

Parseval identity :

f(w)]?dw = /f)\,n,mz)\d)\.
H1|()| ;RI( IR
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Recasting the abstract properties

Action on convolutions :

(ﬂ*fg)/\nmzz (A, n, O)h(N, £, m).
¢

Parseval identity :
F(w)dw =" / (A n, m)PIAIdA.
HL o JR

Inversion formula :

w) = CZ/R;?(W)G(W, W)|A|dA.
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Application : 'resolution” of the Schrédinger equation
Taking the Fourier transform in

i0¢u + Agru =0
u(0) = up
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Application : 'resolution” of the Schrédinger equation
Taking the Fourier transform in

i0¢u + Agru =0
u(0) = up

gives

i0¢d(t, A\, n,m) — 4|A|(2m + 1)d(t, A\, n,m) =0
a(0,\, n, m) = do(A, n, m)
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Application : 'resolution” of the Schrédinger equation
Taking the Fourier transform in

{ i0¢u + Agru =0

u(0) = up
gives
i0¢d(t, A\, n,m) — 4|A|(2m + 1)d(t, A\, n,m) =0
a(0,\, n, m) = do(A, n, m)
and hence

a(t, A\, n,m) = e_4"‘)‘|t(2m+1)00()\, n, m)

_ Z do(\, n, 0) (e—4i|)\\t(2£+1)]l£:m)

¢
= U * S¢(A, n, m)
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Application : 'resolution” of the Schrédinger equation
Taking the Fourier transform in

i0¢u + Agru =0
u(0) = up

gives
i0¢d(t, A\, n,m) — 4|A|(2m + 1)d(t, A\, n,m) =0
a(0,\, n, m) = do(A, n, m)

and hence
a(t, A\, n,m) = e_4"‘)‘|t(2m+1)ﬁo()\, n, m)

_ Z do(\, n, 0) (e—4i|)\\t(2£+1)]l£:m)

¢
= U * S¢(A, n, m)

where
é;‘()‘? n, m) = e_4ll)\|t(2n+1)]ln:m
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Where do the coefficients live ?

We would like to study the coefficient set
H' = (R\ {0}) x N x N.

Topology 7 Metric ? « Regularity implies decay » 7
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Where do the coefficients live ?

We would like to study the coefficient set
H' = (R\ {0}) x N x N.

Topology 7 Metric ? « Regularity implies decay » 7
Hint : from the identity

Af(X, n,m) = —4|A|(2m + 1)F (X, n, m),

smoothness on H! implies decay ~ (JA|m 4 |\|)~P.
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Where do the coefficients live ?

We would like to study the coefficient set
H' = (R\ {0}) x N x N.

Topology 7 Metric ? « Regularity implies decay » 7
Hint : from the identity

AF(\, n,m) = —4|\|(2m + 1)F(A, n, m),

smoothness on H! implies decay ~ (JA|m 4 |\|)~P.
Another identity :

(n—m)O(w,w) ~w-V,0(w,w).

= regularity on H' implies decay ~ [n — m|~P.
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The natural distance on HY

We endow H! with the distance

d(, ') := A = X|+ [Am = N/ + |(n — m) — (n' — m').
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The natural distance on HY

We endow H! with the distance
d(, ') := A = X|+ [Am = N/ + |(n — m) — (n' — m').
Let's embed H! to euclideanize the distance : (]IT]II, 8) is isometric to

H' := {(\,Am,n—m)} C (R\ {0}) xR x Z

with the usual Euclidean distance.
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Drawing the Euclidean H*

A

) 0 a ¢ » ¢ o » @ 0 0 00©

4/9

‘..c.cfi.oqoqyon-vaaoloo -

,/\m
o & - E 9DACx
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The missing points

The space H! is not complete : the sequence (%, 1, 1) men has its limit
outside !
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The missing points

The space H! is not complete : the sequence (%, 1, 1) men has its limit
outside !

Completion of H! ~ L
H! .= H' UHj
Boundary : ~
Hg := {0} xR x Z.
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The missing points

The space H! is not complete : the sequence (%, 1, 1) men has its limit
outside !

Completion of H! ~ L
H! .= H' UHj
Boundary : ~
Hg := {0} xR x Z.

Note : this incompleteness can only be seen through matrix coefficients.
What does it mean ? What do the Fourier transforms become near HJ ?
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The boundary kernel

On the boundary, the kernel becomes (~ semiclassical limit)

O(w, A\, Am,n — m) Amoz, K(w,0,z,n— m)
A—0

1 T i((n-m z 3 xsin
K(w,0,z,n—m) = 2_/ e (( )0+2|z|2 (xs 0+ycos€)d0‘
T

—T
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The boundary kernel

On the boundary, the kernel becomes (~ semiclassical limit)

O(w, A\, \m,n — m) Amoz, K(w,0,z,n— m)
A—0

1 T i((n-m z 3 xsin
K(w,0,z,n—m) = 2_/ e (( )0+2|z|2 (xs 0—|—ycos@)d0‘
T

—T

Example :

;‘°<i,mjL 1, m> — i/ f(w) (/ e_’(9+2(XSi”9+yc°59)d0> dw.
m m—oo 2T Jip -

G. Lévy (LJLL, UPMC) Noncommutative Fourier analysis Aussois, March -t 2018 20 /23



Familiar statements

o Riemann-Lebesgue lemma : the FT is continuous from L!(H!') to
Co(HD).
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Familiar statements

o Riemann-Lebesgue lemma : the FT is continuous from L!(H!') to
Co(HM).

@ Schwartz duality : the FT is a bicontinuous isomorphism between
S(H!) and S(H?).

G. Lévy (LJLL, UPMC) Noncommutative Fourier analysis Aussois, March -t 2018 21 /23



Familiar statements

o Riemann-Lebesgue lemma : the FT is continuous from L!(H!') to
Co(H).

@ Schwartz duality : the FT is a bicontinuous isomorphism between
S(H!) and S(H?).
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Familiar statements

o Riemann-Lebesgue lemma : the FT is continuous from L!(H!') to
Co(H).

@ Schwartz duality : the FT is a bicontinuous isomorphism between
S(H!) and S(H?).

@ « The FT exchanges Dirac masses and constants » :
ﬁ = C(S@, 80 = ’)\’]ln:m-
o If f does not depend on s, then

~

f(0,z,n—m) ~ (/ f(x,y)K(w,0,z,n— m)dxdy) 5@%.
R2
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Summary

@ First motivation : studying PDEs with low dispersion — look for
geometries preventing it.
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Summary

@ First motivation : studying PDEs with low dispersion — look for
geometries preventing it.

@ Would like to have a Fourier transform — theory already exists, but
not very tractable/practical...

@ Look at matrix coefficients — things look much nicer/familiar.

@ What are this Fourier transform main properties — exhibits
incompleteness.

@ A few interesting things : the limit kernel, some basic (and explicit)
FT, Riemann-Lebesgue lemma, Schwartz duality,...

o Further extensions : subtle harmonic analysis, more general groups (or
even completely different families),...
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Thank you for your attention !

G. Lévy (LJLL, UPMC)
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