On weak Mukenhoupt-Wheeden conjecture

Sheldy Ombrosi Universidad Nacional del Sur

based in joint works with A. Lerner, F. Nazarov; and C. Pérez

March 26, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Hardy-Littlewood maximal operator on $\mathbb R$ is defined by

$$Mf(x) = \sup_{I \ni x} \frac{1}{|I|} \int_{I} |f(y)| dy,$$

A weight w is a non-negative locally integrable function on \mathbb{R} , $w(E) = \int_E w$ for a measurable set $E \subset \mathbb{R}$.

C. Fefferman and E. Stein (1971) proved that there exists an absolute constant C > 0 such that for every weight w,

$$\sup_{\lambda>0} \lambda w\{x \in \mathbb{R} : Mf(x) > \lambda\} \le C \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

$$\|Mf\|_{L^{1,\infty}(w)} \leq C[w]_{A_1} \|f\|_{L^{1}(w)}.$$

The Hardy-Littlewood maximal operator on $\mathbb R$ is defined by

$$Mf(x) = \sup_{I \ni x} \frac{1}{|I|} \int_{I} |f(y)| dy,$$

A weight w is a non-negative locally integrable function on \mathbb{R} , $w(E) = \int_E w$ for a measurable set $E \subset \mathbb{R}$.

C. Fefferman and E. Stein (1971) proved that there exists an absolute constant C > 0 such that for every weight w,

$$\sup_{\lambda>0} \lambda w\{x \in \mathbb{R} : Mf(x) > \lambda\} \le C \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

$$\|Mf\|_{L^{1,\infty}(w)} \leq C[w]_{A_1} \|f\|_{L^1(w)}.$$

The Hardy-Littlewood maximal operator on $\ensuremath{\mathbb{R}}$ is defined by

$$Mf(x) = \sup_{I \ni x} \frac{1}{|I|} \int_{I} |f(y)| dy,$$

A weight w is a non-negative locally integrable function on \mathbb{R} , $w(E) = \int_E w$ for a measurable set $E \subset \mathbb{R}$.

C. Fefferman and E. Stein (1971) proved that there exists an absolute constant C > 0 such that for every weight w,

$$\sup_{\lambda>0} \lambda w\{x \in \mathbb{R} : Mf(x) > \lambda\} \le C \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

$$\|Mf\|_{L^{1,\infty}(w)} \leq C[w]_{A_1} \|f\|_{L^1(w)}.$$

The Hardy-Littlewood maximal operator on ${\mathbb R}$ is defined by

$$Mf(x) = \sup_{I \ni x} \frac{1}{|I|} \int_{I} |f(y)| dy,$$

A weight w is a non-negative locally integrable function on \mathbb{R} , $w(E) = \int_E w$ for a measurable set $E \subset \mathbb{R}$.

C. Fefferman and E. Stein (1971) proved that there exists an absolute constant C > 0 such that for every weight w,

$$\sup_{\lambda>0} \lambda w\{x \in \mathbb{R} : Mf(x) > \lambda\} \le C \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

$$\|Mf\|_{L^{1,\infty}(w)} \leq C[w]_{A_1} \|f\|_{L^1(w)}.$$

The Hardy-Littlewood maximal operator on ${\mathbb R}$ is defined by

$$Mf(x) = \sup_{I \ni x} \frac{1}{|I|} \int_{I} |f(y)| dy,$$

A weight w is a non-negative locally integrable function on \mathbb{R} , $w(E) = \int_E w$ for a measurable set $E \subset \mathbb{R}$.

C. Fefferman and E. Stein (1971) proved that there exists an absolute constant C > 0 such that for every weight w,

$$\sup_{\lambda>0} \lambda w\{x \in \mathbb{R} : Mf(x) > \lambda\} \le C \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

$$\|Mf\|_{L^{1,\infty}(w)} \leq C[w]_{A_1} \|f\|_{L^1(w)}.$$

The Hardy-Littlewood maximal operator on $\mathbb R$ is defined by

$$Mf(x) = \sup_{I \ni x} \frac{1}{|I|} \int_{I} |f(y)| dy,$$

A weight w is a non-negative locally integrable function on \mathbb{R} , $w(E) = \int_E w$ for a measurable set $E \subset \mathbb{R}$.

C. Fefferman and E. Stein (1971) proved that there exists an absolute constant C > 0 such that for every weight w,

$$\sup_{\lambda>0} \lambda w \{x \in \mathbb{R} : Mf(x) > \lambda\} \le C \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

In particular, if we define the $[w]_{A_1}$ constant of the weight w by $[w]_{A_1} = ||Mw/w||_{L^{\infty}}$, then (since $Mw(x) \le [w]_{A_1}w(x)$ a.e.)

 $\|Mf\|_{L^{1,\infty}(w)} \leq C[w]_{A_1} \|f\|_{L^1(w)}.$

The Hardy-Littlewood maximal operator on $\mathbb R$ is defined by

$$Mf(x) = \sup_{I \ni x} \frac{1}{|I|} \int_{I} |f(y)| dy,$$

A weight w is a non-negative locally integrable function on \mathbb{R} , $w(E) = \int_E w$ for a measurable set $E \subset \mathbb{R}$.

C. Fefferman and E. Stein (1971) proved that there exists an absolute constant C > 0 such that for every weight w,

$$\sup_{\lambda>0} \lambda w \{x \in \mathbb{R} : Mf(x) > \lambda\} \le C \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

$$\|Mf\|_{L^{1,\infty}(w)} \leq C[w]_{A_1} \|f\|_{L^1(w)}.$$

Calderón-Zygmund operators

The Hilbert transform:

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{1}{x-y} f(y) dy.$$

It's bounded on L^p

 $\|Hf\|_{L^p(\mathbb{R})} \leq C \|f\|_{L^p(\mathbb{R})}$

and of weak type (1,1)

$$|\{x \in \mathbb{R} : |Hf(x)| > t\}| \le \frac{C}{t} \int_{\mathbb{R}} |f(x)| dx.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Calderón-Zygmund operators

The Hilbert transform:

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{1}{x-y} f(y) dy.$$

It's bounded on L^p

 $\|Hf\|_{L^p(\mathbb{R})} \leq C \|f\|_{L^p(\mathbb{R})}$

and of weak type (1,1)

$$|\{x \in \mathbb{R} : |Hf(x)| > t\}| \leq \frac{C}{t} \int_{\mathbb{R}} |f(x)| dx.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Calderón-Zygmund operators

The Hilbert transform:

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{1}{x-y} f(y) dy.$$

It's bounded on L^p

$$\|Hf\|_{L^p(\mathbb{R})} \leq C \|f\|_{L^p(\mathbb{R})}$$

and of weak type (1,1)

$$|\{x \in \mathbb{R} : |Hf(x)| > t\}| \leq \frac{C}{t} \int_{\mathbb{R}} |f(x)| dx.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 ろくで

Definition

A Calderón-Zygmund operator T (CZO) is an operator bounded on $L^2(\mathbb{R}^n)$ that admits the following representation

$$Tf(x) = \int K(x,y)f(y)dy$$

with $f \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$ and $x \notin \text{supp } f$ and where $K : \mathbb{R}^{n} \times \mathbb{R}^{n} \setminus \{(x,x) : x \in \mathbb{R}^{n}\} \longrightarrow \mathbb{R}$ has the following properties

Size condition: $|\mathcal{K}(x,y)| \leq C_2 \frac{1}{|x-y|^n} \qquad x \neq 0.$

Smoothness condition (Hölder-Lipschitz):

$$\begin{split} |\mathcal{K}(x,y) - \mathcal{K}(x,z)| &\leq C_1 \frac{|y-z|^{\delta}}{|x-y|^{n+\delta}} \qquad \frac{1}{2}|x-y| > |y-z| \\ |\mathcal{K}(x,y) - \mathcal{K}(z,y)| &\leq C_1 \frac{|x-z|^{\delta}}{|x-y|^{n+\delta}} \qquad \frac{1}{2}|x-y| > |x-z| \end{split}$$

where $C_1 > 0$ and $C_2 > 0$ are constants independent of x, y, z.

The same boundedness results for Hilbert transform also hold for CZO.

Definition

A Calderón-Zygmund operator T (CZO) is an operator bounded on $L^2(\mathbb{R}^n)$ that admits the following representation

$$Tf(x) = \int K(x,y)f(y)dy$$

with $f \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$ and $x \notin \text{supp } f$ and where $K : \mathbb{R}^{n} \times \mathbb{R}^{n} \setminus \{(x,x) : x \in \mathbb{R}^{n}\} \longrightarrow \mathbb{R}$ has the following properties

Size condition: $|\mathcal{K}(x,y)| \leq C_2 \frac{1}{|x-y|^n} \qquad x \neq 0.$

Smoothness condition (Hölder-Lipschitz):

$$\begin{split} |\mathcal{K}(x,y) - \mathcal{K}(x,z)| &\leq C_1 \frac{|y-z|^{\delta}}{|x-y|^{n+\delta}} \qquad \frac{1}{2}|x-y| > |y-z| \\ |\mathcal{K}(x,y) - \mathcal{K}(z,y)| &\leq C_1 \frac{|x-z|^{\delta}}{|x-y|^{n+\delta}} \qquad \frac{1}{2}|x-y| > |x-z| \end{split}$$

where $C_1 > 0$ and $C_2 > 0$ are constants independent of x, y, z.

The same boundedness results for Hilbert transform also hold for CZO.

$$\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$$

if and only if $w \in A_1$.

So, for a weight w we have that

 $\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

if and only if

 $\|M\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

▲ロト ▲母 ▼ ▲目 ▼ ▲目 ▼ ● ● ●

$$\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$$

if and only if $w \in A_1$. So, for a weight w we have that

 $\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

if and only if

 $\|M\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 ろくで

$$\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$$

if and only if $w \in A_1$. So, for a weight w we have that

 $\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

if and only if

 $\|M\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

$$\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$$

if and only if $w \in A_1$. So, for a weight w we have that

 $\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

if and only if

 $\|M\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 ろくで

$$\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$$

if and only if $w \in A_1$. So, for a weight w we have that

 $\|H\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

if and only if

 $\|M\|_{L^1(w)\to L^{1,\infty}(w)}<\infty$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Muckenhoupt-Wheeden conjectures

Basic Problem

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

The Conjectures

Muckenhoupt-Wheeden conjecture

Let w an arbitrary weight then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

where H stands for the Hilbert transform.

Weak Muckenhoupt-Wheeden conjecture

Let w an A_1 weight and H the Hilbert transform, then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} [w]_{A_1} \int_{\mathbb{R}} |f(x)| w(x) dx$$

・ロト ・母 ト ・目 ・ 一回 ・ うらぐ

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

The Conjectures

Muckenhoupt-Wheeden conjecture

Let w an arbitrary weight then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

where H stands for the Hilbert transform.

Weak Muckenhoupt-Wheeden conjecture

Let w an A_1 weight and H the Hilbert transform, then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} [w]_{A_1} \int_{\mathbb{R}} |f(x)| w(x) dx$$

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = のへで

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

The Conjectures

Muckenhoupt-Wheeden conjecture

Let w an arbitrary weight then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}} |f(x)| Mw(x) dx$$

where H stands for the Hilbert transform.

Weak Muckenhoupt-Wheeden conjecture

Let w an A_1 weight and H the Hilbert transform, then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} [w]_{A_1} \int_{\mathbb{R}} |f(x)| w(x) dx$$

▲ロト ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ ▲ 日 ▶

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

Orlicz averages

Definition

Let $\Phi:[0,\infty)\longrightarrow(0,\infty)$ be a Young function, i.e. a convex, increasing function such that $\Phi(0)=0,$

$$\|f\|_{\Phi,Q} = \inf\left\{\lambda > 0; \frac{1}{|Q|}\int_Q \Phi\left(\frac{|f(x)|}{\lambda}\right)dx \le 1
ight\}.$$

If $\Phi(t) = t^r$

$$||f||_{\Phi,Q} = \left(\frac{1}{|Q|}\int_{Q}|f(x)|^{r}dx\right)^{\frac{1}{r}}.$$

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - 釣ん(で)

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

Orlicz averages

Definition

Let $\Phi:[0,\infty)\longrightarrow(0,\infty)$ be a Young function, i.e. a convex, increasing function such that $\Phi(0)=0,$

$$\|f\|_{\Phi,Q} = \inf\left\{\lambda > 0; \frac{1}{|Q|}\int_Q \Phi\left(\frac{|f(x)|}{\lambda}\right)dx \le 1
ight\}.$$

If $\Phi(t) = t^r$

$$||f||_{\Phi,Q} = \left(\frac{1}{|Q|}\int_Q |f(x)|^r dx\right)^{\frac{1}{r}}.$$

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

Orlicz maximal functions

Definition

We define the maximal operator associated to $\boldsymbol{\Phi}$ as

$$M_{\Phi}f(x) = \sup_{x\in Q} \|f\|_{\Phi,Q}.$$

Some important particular cases

$$M_{L(\log L)^{\alpha}}f(x) = \sup_{x \in Q} \|f\|_{\Phi,Q}$$

where $\Phi(t) = t(1 + \log^+ t)^{\alpha}$ $\alpha > 0$.

$$M_{L(\log \log L)^{\alpha}}f(x) = \sup_{x \in Q} \|f\|_{\Phi,Q}$$

where $\Phi(t) = t(1 + \log^+ \log^+ t)^{\alpha}$ $\alpha > 0$.

Theorem

Let Φ and Ψ Young functions. If there exists c>0 such that $\Phi(t)\leq \Psi(t)$ t>c then

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

Orlicz maximal functions

Definition

We define the maximal operator associated to $\boldsymbol{\Phi}$ as

$$M_{\Phi}f(x) = \sup_{x\in Q} \|f\|_{\Phi,Q}.$$

Some important particular cases

$$M_{L(\log L)^{\alpha}}f(x) = \sup_{x \in Q} \|f\|_{\Phi,Q}$$

where $\Phi(t) = t(1 + \log^+ t)^{lpha}$ lpha > 0.

$$M_{L(\log \log L)^{\alpha}}f(x) = \sup_{x \in Q} \|f\|_{\Phi,Q}$$

where $\Phi(t) = t(1 + \log^+ \log^+ t)^{\alpha}$ $\alpha > 0$.

Theorem

Let Φ and Ψ Young functions. If there exists c>0 such that $\Phi(t)\leq \Psi(t)$ t>c then

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

Orlicz maximal functions

Definition

We define the maximal operator associated to $\boldsymbol{\Phi}$ as

$$M_{\Phi}f(x) = \sup_{x\in Q} \|f\|_{\Phi,Q}.$$

Some important particular cases

$$M_{L(\log L)^{\alpha}}f(x) = \sup_{x \in Q} \|f\|_{\Phi,Q}$$

where $\Phi(t) = t(1 + \log^+ t)^{lpha}$ $\alpha > 0$.

$$M_{L(\log \log L)^{\alpha}}f(x) = \sup_{x \in Q} \|f\|_{\Phi,Q}$$

where $\Phi(t) = t(1 + \log^+ \log^+ t)^{\alpha}$ $\alpha > 0$.

Theorem

Let Φ and Ψ Young functions. If there exists c>0 such that $\Phi(t) \leq \Psi(t)$ t>c then

The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness

Orlicz maximal functions

Definition

We define the maximal operator associated to $\boldsymbol{\Phi}$ as

$$M_{\Phi}f(x) = \sup_{x\in Q} \|f\|_{\Phi,Q}.$$

Some important particular cases

$$M_{L(\log L)^{\alpha}}f(x) = \sup_{x \in Q} \|f\|_{\Phi,Q}$$

where $\Phi(t) = t(1 + \log^+ t)^{lpha}$ $\alpha > 0$.

$$M_{L(\log \log L)^{\alpha}}f(x) = \sup_{x \in Q} \|f\|_{\Phi,Q}$$

where $\Phi(t) = t(1 + \log^+ \log^+ t)^{\alpha}$ $\alpha > 0$.

Theorem

Let Φ and Ψ Young functions. If there exists c > 0 such that $\Phi(t) \le \Psi(t)$ t > c then

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• First result '70s A. Córdoba and C. Fefferman proved for r > 1

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_r}{\lambda} \int_{\mathbb{R}} |f(x)| M_r w(x) dx$$

• In 1994 C. Pérez established the following result for Calderón-Zygmund operators

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \le \frac{c_{\varepsilon}}{\lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log L)^{\varepsilon}} w(x) dx \qquad \varepsilon > 0.$$

- In 2011 M. C. Reguera disproved the conjecture for dyadic case.
- Finally, in 2012 M. C. Reguera and C. Thiele disproved the conjecture for the Hilbert transform

• First result '70s A. Córdoba and C. Fefferman proved for r > 1

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_r}{\lambda} \int_{\mathbb{R}} |f(x)| M_r w(x) dx$$

• In 1994 C. Pérez established the following result for Calderón-Zygmund operators

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \le \frac{c_{\varepsilon}}{\lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log L)^{\varepsilon}} w(x) dx \qquad \varepsilon > 0.$$

- In 2011 M. C. Reguera disproved the conjecture for dyadic case.
- Finally, in 2012 M. C. Reguera and C. Thiele disproved the conjecture for the Hilbert transform

• First result '70s A. Córdoba and C. Fefferman proved for r > 1

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_r}{\lambda} \int_{\mathbb{R}} |f(x)| M_r w(x) dx$$

• In 1994 C. Pérez established the following result for Calderón-Zygmund operators

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_{\varepsilon}}{\lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log L)^{\varepsilon}} w(x) dx \qquad \varepsilon > 0.$$

- In 2011 M. C. Reguera disproved the conjecture for dyadic case.
- Finally, in 2012 M. C. Reguera and C. Thiele disproved the conjecture for the Hilbert transform

• First result '70s A. Córdoba and C. Fefferman proved for r > 1

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_r}{\lambda} \int_{\mathbb{R}} |f(x)| M_r w(x) dx$$

• In 1994 C. Pérez established the following result for Calderón-Zygmund operators

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_{\varepsilon}}{\lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log L)^{\varepsilon}} w(x) dx \qquad \varepsilon > 0.$$

- In 2011 M. C. Reguera disproved the conjecture for dyadic case.
- Finally, in 2012 M. C. Reguera and C. Thiele disproved the conjecture for the Hilbert transform

• In 2014 C. Pérez and T. Hytönen

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_T}{\varepsilon \lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log L)^{\varepsilon}} w(x) dx \quad \varepsilon > 0.$$

• In 2015, C. Domingo-Salazar, M. Lacey and G. Rey established the following result

$$w\left(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}\right) \le \frac{1}{\varepsilon\lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log\log L)^{1+\varepsilon}} w(x) dx \quad \varepsilon > 0$$

• In 2016 with M. Caldarelli and A. Lerner proved that

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}} |f(x)| M_{\Phi} w(x) dx$$

fails for every $\Phi(t)$ such that $\lim_{t\to\infty} \frac{\Phi(t)}{t\log^+(1+\log^+(t))} = 0$

• In 2014 C. Pérez and T. Hytönen

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_T}{\varepsilon \lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log L)^{\varepsilon}} w(x) dx \quad \varepsilon > 0.$$

• In 2015, C. Domingo-Salazar, M. Lacey and G. Rey established the following result $w(\{y \in \mathbb{D} : | Tf(y)| > 2\}) \leq \frac{1}{2} \int |f(y)| M$

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{1}{\varepsilon \lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log \log L)^{1+\varepsilon}} w(x) dx \quad \varepsilon > 0.$$

• In 2016 with M. Caldarelli and A. Lerner proved that

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}} |f(x)| M_{\Phi} w(x) dx$$

fails for every $\Phi(t)$ such that $\lim_{t o\infty}rac{\Phi(t)}{t\log^+(1+\log^+(t))}=0$

• In 2014 C. Pérez and T. Hytönen

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c_T}{\varepsilon \lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log L)^{\varepsilon}} w(x) dx \quad \varepsilon > 0.$$

• In 2015, C. Domingo-Salazar, M. Lacey and G. Rey established the following result

$$w\left(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}\right) \leq \frac{1}{\varepsilon\lambda} \int_{\mathbb{R}} |f(x)| M_{L(\log\log L)^{1+\varepsilon}} w(x) dx \quad \varepsilon > 0.$$

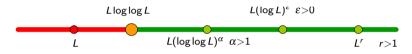
• In 2016 with M. Caldarelli and A. Lerner proved that

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}} |f(x)| M_{\Phi} w(x) dx$$

fails for every $\Phi(t)$ such that $\lim_{t \to \infty} \frac{\Phi(t)}{t \log^+(1 + \log^+(t))} = 0$

Open question

The preceding results can be summarized as follows



Open question

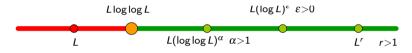
Does the weak type inequality

$$w\left(\left\{x \in \mathbb{R} : |Tf(x)| > \lambda\right\}\right) \le \frac{c}{\lambda} \int_{\mathbb{R}} |f(x)| M_{\Phi} w(x) dx \quad \alpha > 1$$

hold for $\Phi(t) = t \log^+(1 + \log^+(t))?$

Open question

The preceding results can be summarized as follows



Open question

Does the weak type inequality

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \leq \frac{c}{\lambda} \int_{\mathbb{R}} |f(x)| M_{\Phi} w(x) dx \quad \alpha > 1$$

hold for $\Phi(t) = t \log^+(1 + \log^+(t))?$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへで

Weak Mukenhoupt-Wheeden conjecture

Weak Muckenhoupt-Wheeden conjecture

Let w an A_1 weight and H the Hilbert transform, then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} [w]_{A_1} \int_{\mathbb{R}} |f(x)| w(x) dx$$

• From well known results about weight theory (up to 2005) was simple to obtain for $\varepsilon > 0$

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \lesssim \frac{c_{\varepsilon}}{\lambda} [w]_{A_1}^{1+\varepsilon} \int_{\mathbb{R}} |f(x)| w(x) dx$$

• In 2008 with A. Lerner and C. Pérez, we prove that: Let $\phi(t) = t \log(1+t) \log^+(\log(1+t))$ and T a Calderón-Zygmund Operator. Then,

$$w\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\} \le \frac{c}{\lambda}\phi([w]_{A_1})\int_{\mathbb{R}^n} |f|w\,dx$$

Weak Mukenhoupt-Wheeden conjecture

Weak Muckenhoupt-Wheeden conjecture

Let w an A_1 weight and H the Hilbert transform, then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} [w]_{\mathcal{A}_1} \int_{\mathbb{R}} |f(x)| w(x) dx$$

• From well known results about weight theory (up to 2005) was simple to obtain for $\varepsilon>0$

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \lesssim \frac{c_{\varepsilon}}{\lambda} [w]_{A_1}^{1+\varepsilon} \int_{\mathbb{R}} |f(x)| w(x) dx$$

• In 2008 with A. Lerner and C. Pérez, we prove that: Let $\phi(t) = t \log(1+t) \log^+(\log(1+t))$ and T a Calderón-Zygmund Operator. Then,

$$w\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\} \le \frac{c}{\lambda}\phi([w]_{A_1})\int_{\mathbb{R}^n} |f|w\,dx$$

Weak Mukenhoupt-Wheeden conjecture

Weak Muckenhoupt-Wheeden conjecture

Let w an A_1 weight and H the Hilbert transform, then

$$w(\{x \in \mathbb{R} : |Hf(x)| > \lambda\}) \lesssim \frac{1}{\lambda} [w]_{\mathcal{A}_1} \int_{\mathbb{R}} |f(x)| w(x) dx$$

• From well known results about weight theory (up to 2005) was simple to obtain for $\varepsilon > 0$

$$w(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \lesssim \frac{c_{\varepsilon}}{\lambda} [w]_{A_1}^{1+\varepsilon} \int_{\mathbb{R}} |f(x)| w(x) dx$$

• In 2008 with A. Lerner and C. Pérez, we prove that: Let $\phi(t) = t \log(1+t) \log^+(\log(1+t))$ and T a Calderón-Zygmund Operator. Then,

$$w\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\} \le \frac{c}{\lambda}\phi([w]_{A_1})\int_{\mathbb{R}^n} |f|w\,dx$$

Theorem (A. Lerner, O. and C. Pérez, 2009)

For any Calderón-Zygmund operator T,

 $\|Tf\|_{L^{p}(w)} \leq c p p'[w]_{A_{1}} \|f\|_{L^{p}(w)} \quad (p > 1).$

 $w\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\} \le \frac{c}{\lambda} [w]_{A_1} \log([w]_{A_1}) \int_{\mathbb{R}^n} |f| w \, dx.$

Theorem (A. Lerner, O. and C. Pérez, 2009)

For any Calderón-Zygmund operator T,

$$||Tf||_{L^{p}(w)} \leq c p p'[w]_{A_{1}} ||f||_{L^{p}(w)} \quad (p > 1).$$

$$w\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\} \leq \frac{c}{\lambda} [w]_{A_1} \log([w]_{A_1}) \int_{\mathbb{R}^n} |f| w \, dx.$$

• In 2013 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg disproved weak Muckenhoupt-Wheeden conjecture for *T* the martingale transform. In fact they showed that the dependence cannot in general be made better than

$[w]_{A_1} \log^{1/5}(e + [w]_{A_1})$

They conjectured that our result should be sharp

• In 2016 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg showed that the dependence cannot in general be made better than

• In 2013 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg disproved weak Muckenhoupt-Wheeden conjecture for *T* the martingale transform. In fact they showed that the dependence cannot in general be made better than

$[w]_{A_1} \log^{1/5}(e + [w]_{A_1})$

They conjectured that our result should be sharp

• In 2016 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg showed that the dependence cannot in general be made better than

• In 2013 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg disproved weak Muckenhoupt-Wheeden conjecture for *T* the martingale transform. In fact they showed that the dependence cannot in general be made better than

$[w]_{A_1} \log^{1/5}(e + [w]_{A_1})$

They conjectured that our result should be sharp

• In 2016 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg showed that the dependence cannot in general be made better than

• In 2013 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg disproved weak Muckenhoupt-Wheeden conjecture for *T* the martingale transform. In fact they showed that the dependence cannot in general be made better than

$[w]_{A_1} \log^{1/5}(e + [w]_{A_1})$

They conjectured that our result should be sharp

• In 2016 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg showed that the dependence cannot in general be made better than

 $[w]_{A_1} \log^{1/3}(e + [w]_{A_1})$

< □ > < 同 >

< 注入 < 注入 →

• In 2013 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg disproved weak Muckenhoupt-Wheeden conjecture for *T* the martingale transform. In fact they showed that the dependence cannot in general be made better than

$[w]_{A_1} \log^{1/5}(e + [w]_{A_1})$

They conjectured that our result should be sharp

• In 2016 F. Nazarov, A. Reznikov, A. V. Vasyunin and A. Volberg showed that the dependence cannot in general be made better than

Muckenhoupt-Wheeden conjectures	Basic Problem The development of the conjecture of Mukenhoupt-Wheeden The development of the weak Mukenhoupt-Wheeden conjecture Sharpness
---------------------------------	--

Sharpness...

For $t \geq 1$, define

$$\varphi_{H}(t) = \sup_{[w]_{A_{1}} \leq t} \|H\|_{L^{1}(w) \to L^{1,\infty}(w)}.$$

We have that

 $\varphi_H(t) \leq C t \log(e+t)$

We will show that actually

 $\varphi_H(t) \equiv t \log(e+t)$

Theorem (Lerner, Nazarov, and O., 2017

There exists c' > 0 such that for all $t \ge 1$,

 $\varphi_H(t) \ge c' t \log(e+t)$

As a corollary we obtain that the inequality

 $\|Hf\|_{L^{1,\infty}(w)} \leq \psi([w]_{A_1})\|f\|_{L^{1}(w)}$

fails in general for every increasing on $[1,\infty)$ function ψ satisfying

Sharpness...

For $t \ge 1$, define

$$\varphi_{H}(t) = \sup_{[w]_{A_{1}} \leq t} \|H\|_{L^{1}(w) \to L^{1,\infty}(w)}.$$

We have that

 $\varphi_H(t) \leq C t \log(e+t)$

We will show that actually

 $\varphi_H(t) \equiv t \log(e+t)$

Theorem (Lerner, Nazarov, and O., 2017

There exists c' > 0 such that for all $t \ge 1$,

 $\varphi_H(t) \ge c' t \log(e+t)$

As a corollary we obtain that the inequality

 $\|Hf\|_{L^{1,\infty}(w)} \leq \psi([w]_{A_1})\|f\|_{L^{1}(w)}$

fails in general for every increasing on $[1,\infty)$ function ψ satisfying

Sharpness...

For $t \ge 1$, define

$$\varphi_{H}(t) = \sup_{[w]_{A_{1}} \leq t} \|H\|_{L^{1}(w) \to L^{1,\infty}(w)}$$

We have that

 $\varphi_H(t) \leq C t \log(e+t)$

We will show that actually

 $\varphi_H(t) \equiv t \log(e+t)$

Theorem (Lerner, Nazarov, and O., 2017

There exists c' > 0 such that for all $t \ge 1$,

 $\varphi_H(t) \ge c' t \log(e+t)$

As a corollary we obtain that the inequality

 $\|Hf\|_{L^{1,\infty}(w)} \leq \psi([w]_{A_1})\|f\|_{L^{1}(w)}$

fails in general for every increasing on $[1,\infty)$ function ψ satisfying

Sharpness...

For $t \ge 1$, define

$$\varphi_{H}(t) = \sup_{[w]_{A_{1}} \leq t} \|H\|_{L^{1}(w) \to L^{1,\infty}(w)}$$

We have that

 $\varphi_H(t) \leq C t \log(e+t)$

We will show that actually

 $\varphi_H(t) \equiv t \log(e+t)$

Theorem (Lerner, Nazarov, and O., 2017

There exists c' > 0 such that for all $t \ge 1$,

 $\varphi_H(t) \ge c' t \log(e+t)$

As a corollary we obtain that the inequality

 $\|Hf\|_{L^{1,\infty}(w)} \leq \psi([w]_{A_1})\|f\|_{L^{1}(w)}$

fails in general for every increasing on $[1,\infty)$ function ψ satisfying

Sharpness...

For $t \ge 1$, define

$$\varphi_H(t) = \sup_{[w]_{A_1} \le t} \|H\|_{L^1(w) \to L^{1,\infty}(w)}$$

We have that

$$\varphi_H(t) \leq C t \log(e+t)$$

We will show that actually

 $\varphi_H(t) \equiv t \log(e+t)$

Theorem (Lerner, Nazarov, and O., 2017)

There exists c' > 0 such that for all $t \ge 1$,

 $\varphi_H(t) \geq c't\log(e+t)$

As a corollary we obtain that the inequality

 $\|Hf\|_{L^{1,\infty}(w)} \le \psi([w]_{A_1})\|f\|_{L^{1}(w)}$

fails in general for every increasing on $[1,\infty)$ function ψ satisfying

Sharpness...

For $t \ge 1$, define

$$\varphi_H(t) = \sup_{[w]_{A_1} \leq t} \|H\|_{L^1(w) \to L^{1,\infty}(w)}.$$

We have that

 $\varphi_{H}(t) \leq C t \log(e+t)$

We will show that actually

 $\varphi_H(t) \equiv t \log(e+t)$

Theorem (Lerner, Nazarov, and O., 2017)

There exists c' > 0 such that for all $t \ge 1$,

 $\varphi_H(t) \geq c't\log(e+t)$

As a corollary we obtain that the inequality

 $\|Hf\|_{L^{1,\infty}(w)} \le \psi([w]_{A_1})\|f\|_{L^{1}(w)}$

fails in general for every increasing on $[1,\infty)$ function ψ satisfying

Sharpness...

For $t \ge 1$, define

$$\varphi_{H}(t) = \sup_{[w]_{A_{1}} \leq t} \|H\|_{L^{1}(w) \to L^{1,\infty}(w)}$$

We have that

 $\varphi_{H}(t) \leq C t \log(e+t)$

We will show that actually

 $\varphi_H(t) \equiv t \log(e+t)$

Theorem (Lerner, Nazarov, and O., 2017)

There exists c' > 0 such that for all $t \ge 1$,

 $\varphi_H(t) \ge c' t \log(e+t)$

As a corollary we obtain that the inequality

 $\|Hf\|_{L^{1,\infty}(w)} \leq \psi([w]_{A_1})\|f\|_{L^{1}(w)}$

fails in general for every increasing on $[1,\infty)$ function ψ satisfying

 $\lim_{t\to\infty}\frac{\psi(t)}{t\log(e+t)}=0$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 のQ@

An overview of the proof

First step: show that the definition of φ_H along with the standard extrapolation and dualization arguments yields

$$\|H(w\chi_{[0,1)})\|_{L^2(\sigma)} \lesssim \varphi_H(\|M\|_{L^2(\sigma)\to L^2(\sigma)}) \left(\int_0^1 w\right)^{1/2},$$

where $\sigma = w^{-1}$. $w \in A_2$, if

$$[w]_{\mathcal{A}_2} = \sup_{I \subset \mathbb{R}} \frac{w(I)\sigma(I)}{|I|^2} < \infty$$

Second: for every $t \gg 1$, there exists an A_2 weight $w_t = w$ satisfying

$$\int_0^1 w = 1$$

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)}\sim t$$

An overview of the proof

First step: show that the definition of φ_H along with the standard extrapolation and dualization arguments yields

$$\|H(w\chi_{[0,1)})\|_{L^2(\sigma)} \lesssim \varphi_H(\|M\|_{L^2(\sigma)\to L^2(\sigma)}) \left(\int_0^1 w\right)^{1/2},$$

where $\sigma = w^{-1}$. $w \in A_2$, if

$$[w]_{A_2} = \sup_{I \subset \mathbb{R}} \frac{w(I)\sigma(I)}{|I|^2} < \infty$$

Second: for every $t \gg 1$, there exists an A_2 weight $w_t = w$ satisfying

$$\int_0^1 w = 1$$

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)}\sim t$$

An overview of the proof

First step: show that the definition of φ_H along with the standard extrapolation and dualization arguments yields

$$\|H(w\chi_{[0,1)})\|_{L^{2}(\sigma)} \lesssim \varphi_{H}(\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)}) \left(\int_{0}^{1} w\right)^{1/2},$$

where $\sigma = w^{-1}$. $w \in A_2$, if

$$[w]_{A_2} = \sup_{I \subset \mathbb{R}} \frac{w(I)\sigma(I)}{|I|^2} < \infty$$

Second: for every $t \gg 1$, there exists an A_2 weight $w_t = w$ satisfying

$$\int_0^1 w = 1$$

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)}\sim t$$

An overview of the proof

First step: show that the definition of φ_H along with the standard extrapolation and dualization arguments yields

$$\|H(w\chi_{[0,1)})\|_{L^2(\sigma)} \lesssim \varphi_H(\|M\|_{L^2(\sigma)\to L^2(\sigma)}) \Big(\int_0^1 w\Big)^{1/2},$$

where $\sigma = w^{-1}$. $w \in A_2$, if

$$[w]_{\mathcal{A}_2} = \sup_{I \subset \mathbb{R}} \frac{w(I)\sigma(I)}{|I|^2} < \infty$$

Second: for every $t \gg 1$, there exists an A_2 weight $w_t = w$ satisfying

$$\int_0^1 w = 1$$

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)}\sim t$$

An overview of the proof

First step: show that the definition of φ_H along with the standard extrapolation and dualization arguments yields

$$\|H(w\chi_{[0,1)})\|_{L^{2}(\sigma)} \lesssim \varphi_{H}(\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)}) \left(\int_{0}^{1} w\right)^{1/2},$$

where $\sigma = w^{-1}$. $w \in A_2$, if

$$[w]_{A_2} = \sup_{I \subset \mathbb{R}} \frac{w(I)\sigma(I)}{|I|^2} < \infty$$

Second: for every $t \gg 1$, there exists an A_2 weight $w_t = w$ satisfying

$$\int_0^1 w = 1$$

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)}\sim t$$

An overview of the proof

First step: show that the definition of φ_H along with the standard extrapolation and dualization arguments yields

$$\|H(w\chi_{[0,1)})\|_{L^{2}(\sigma)} \lesssim \varphi_{H}(\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)}) \left(\int_{0}^{1} w\right)^{1/2},$$

where $\sigma = w^{-1}$. $w \in A_2$, if

$$[w]_{A_2} = \sup_{I \subset \mathbb{R}} \frac{w(I)\sigma(I)}{|I|^2} < \infty$$

Second: for every $t \gg 1$, there exists an A_2 weight $w_t = w$ satisfying

$$\int_0^1 w = 1$$

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)}\sim t$$

An overview of the proof

First step: show that the definition of φ_H along with the standard extrapolation and dualization arguments yields

$$\|H(w\chi_{[0,1)})\|_{L^{2}(\sigma)} \lesssim \varphi_{H}(\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)}) \left(\int_{0}^{1} w\right)^{1/2},$$

where $\sigma = w^{-1}$. $w \in A_2$, if

$$[w]_{A_2} = \sup_{I \subset \mathbb{R}} \frac{w(I)\sigma(I)}{|I|^2} < \infty$$

Second: for every $t \gg 1$, there exists an A_2 weight $w_t = w$ satisfying

$$\int_0^1 w = 1$$

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)}\sim t$$

$$\|H(w\chi_{[0,1)})\|_{L^2(\sigma)}\gtrsim t\log t$$

Rubio de Francia extrapolation trick

Given $g \ge 0$ with $\|g\|_{L^2(\sigma)} = 1$, define

$$\mathscr{R}g(x) = \sum_{k=0}^{\infty} \frac{M^k g(x)}{(2\|M\|_{L^2(\sigma) \to L^2(\sigma)})^k}.$$

$$\alpha \int_{\{x:|Hf(x)|>\alpha\}} g \leq \alpha \int_{\{x:|Hf(x)|>\alpha\}} \mathscr{R}g \leq \varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{1}(\mathscr{R}g)}$$

$$\leq \varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{2}(w)}\|\mathscr{R}g\|_{L^{2}(\sigma)}$$

$$\leq 2\varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{2}(w)}.$$

Taking here the supremum over all $g \ge 0$ with $\|g\|_{L^2(\sigma)} = 1$ yields

$$\|Hf\|_{L^{2,\infty}(w)} \leq 2\varphi_H(2\|M\|_{L^2(\sigma)\to L^2(\sigma)})\|f\|_{L^2(w)}.$$

Rubio de Francia extrapolation trick

Given $g \ge 0$ with $\|g\|_{L^2(\sigma)} = 1$, define

$$\mathscr{R}g(x) = \sum_{k=0}^{\infty} \frac{M^k g(x)}{(2\|M\|_{L^2(\sigma) \to L^2(\sigma)})^k}.$$

$$\alpha \int_{\{x:|Hf(x)|>\alpha\}} g \leq \alpha \int_{\{x:|Hf(x)|>\alpha\}} \mathscr{R}g \leq \varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{1}(\mathscr{R}g)}$$

$$\leq \varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{2}(w)}\|\mathscr{R}g\|_{L^{2}(\sigma)}$$

$$\leq 2\varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{2}(w)}.$$

Taking here the supremum over all $g \ge 0$ with $\|g\|_{L^2(\sigma)} = 1$ yields

$$\|Hf\|_{L^{2,\infty}(w)} \le 2\varphi_H(2\|M\|_{L^2(\sigma)\to L^2(\sigma)})\|f\|_{L^2(w)}.$$

Rubio de Francia extrapolation trick

Given $g \ge 0$ with $\|g\|_{L^2(\sigma)} = 1$, define

$$\mathscr{R}g(x) = \sum_{k=0}^{\infty} \frac{M^k g(x)}{(2\|M\|_{L^2(\sigma) \to L^2(\sigma)})^k}.$$

$$\begin{split} \alpha & \int\limits_{\{x:|Hf(x)|>\alpha\}} g \leq \alpha & \int\limits_{\{x:|Hf(x)|>\alpha\}} \mathscr{R}g \leq \varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{1}(\mathscr{R}g)} \\ & \leq & \varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{2}(w)}\|\mathscr{R}g\|_{L^{2}(\sigma)} \\ & \leq & 2\varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{2}(w)}. \end{split}$$

Taking here the supremum over all $g \geq 0$ with $\|g\|_{L^2(\sigma)} = 1$ yields

$$\|Hf\|_{L^{2,\infty}(w)} \leq 2\varphi_H(2\|M\|_{L^2(\sigma)\to L^2(\sigma)})\|f\|_{L^2(w)}.$$

Rubio de Francia extrapolation trick

Given $g \ge 0$ with $\|g\|_{L^2(\sigma)} = 1$, define

$$\mathscr{R}g(x) = \sum_{k=0}^{\infty} \frac{M^k g(x)}{(2\|M\|_{L^2(\sigma) \to L^2(\sigma)})^k}$$

$$\begin{split} \alpha & \int\limits_{\{x:|Hf(x)|>\alpha\}} g \leq \alpha & \int\limits_{\{x:|Hf(x)|>\alpha\}} \mathscr{R}g \leq \varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{1}(\mathscr{R}g)} \\ & \leq & \varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{2}(w)}\|\mathscr{R}g\|_{L^{2}(\sigma)} \\ & \leq & 2\varphi_{H}(2\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)})\|f\|_{L^{2}(w)}. \end{split}$$

Taking here the supremum over all $g \ge 0$ with $\|g\|_{L^2(\sigma)} = 1$ yields

$$\|Hf\|_{L^{2,\infty}(w)} \leq 2\varphi_H(2\|M\|_{L^2(\sigma)\to L^2(\sigma)})\|f\|_{L^2(w)}.$$

Construction of the weight

Fix $t \gg 1$. Take $k \in \mathbb{N}$ such that $t \leq 3^k \leq 3t$. Let $\varepsilon = 3^{-k}$ and $p = \frac{1}{3\varepsilon} \left(\frac{1+\varepsilon}{2} + \frac{4\varepsilon^2}{1+\varepsilon} \right)$. $p \sim \frac{1}{\varepsilon} \sim t \sim 3^k$.

For every two positive numbers ω and σ such that $\omega \sigma = p$ and any interval $I \subset \mathbb{R}$, we define inductively the sequence of weights $w_n = w_n(\omega, \sigma, I)$ (n = 0, 1, 2, ...) supported on I...

Let $u = \sqrt{p} + \sqrt{p-1}$ be the larger root of $u + \frac{1}{u} = 2\sqrt{p}$. Define

$$w_0(\omega,\sigma,l) = \frac{\omega}{\sqrt{\rho}} \left(u \chi_{l_-} + \frac{1}{u} \chi_{l_+} \right),$$

where I_{-} and I_{+} are the left and the right halves of I respectively.

Suppose that $w_{n-1}(\omega, \sigma, I)$ is already defined for all ω, σ with $\omega \sigma = p$ and all $I \subset \mathbb{R}$.

Construction of the weight

Fix $t \gg 1$. Take $k \in \mathbb{N}$ such that $t \leq 3^k \leq 3t$. Let $\varepsilon = 3^{-k}$ and $p = \frac{1}{3\varepsilon} \left(\frac{1+\varepsilon}{2} + \frac{4\varepsilon^2}{1+\varepsilon} \right)$. $p \sim \frac{1}{\varepsilon} \sim t \sim 3^k$.

For every two positive numbers ω and σ such that $\omega \sigma = p$ and any interval $I \subset \mathbb{R}$, we define inductively the sequence of weights $w_n = w_n(\omega, \sigma, I)$ (n = 0, 1, 2, ...) supported on I...

Let $u = \sqrt{p} + \sqrt{p-1}$ be the larger root of $u + \frac{1}{u} = 2\sqrt{p}$. Define

$$w_0(\omega,\sigma,l)=\frac{\omega}{\sqrt{\rho}}\left(u\chi_{l_-}+\frac{1}{u}\chi_{l_+}\right),$$

where I_{-} and I_{+} are the left and the right halves of I respectively.

Suppose that $w_{n-1}(\omega, \sigma, I)$ is already defined for all ω, σ with $\omega \sigma = p$ and all $I \subset \mathbb{R}$.

Construction of the weight

Fix $t \gg 1$. Take $k \in \mathbb{N}$ such that $t \leq 3^k \leq 3t$. Let $\varepsilon = 3^{-k}$ and $p = \frac{1}{3\varepsilon} \left(\frac{1+\varepsilon}{2} + \frac{4\varepsilon^2}{1+\varepsilon} \right)$. $p \sim \frac{1}{\varepsilon} \sim t \sim 3^k$.

For every two positive numbers ω and σ such that $\omega \sigma = p$ and any interval $I \subset \mathbb{R}$, we define inductively the sequence of weights $w_n = w_n(\omega, \sigma, I)$ (n = 0, 1, 2, ...) supported on I...

Let $u = \sqrt{p} + \sqrt{p-1}$ be the larger root of $u + \frac{1}{\mu} = 2\sqrt{p}$. Define

$$w_0(\omega,\sigma,l)=\frac{\omega}{\sqrt{\rho}}\left(u\chi_{l_-}+\frac{1}{u}\chi_{l_+}\right),$$

where I_{-} and I_{+} are the left and the right halves of I respectively.

Suppose that $w_{n-1}(\omega, \sigma, I)$ is already defined for all ω, σ with $\omega\sigma = p$ and all $I \subset \mathbb{R}$.

Construction of the weight

Fix $t \gg 1$. Take $k \in \mathbb{N}$ such that $t \leq 3^k \leq 3t$. Let $\varepsilon = 3^{-k}$ and $p = \frac{1}{3\varepsilon} \left(\frac{1+\varepsilon}{2} + \frac{4\varepsilon^2}{1+\varepsilon} \right)$. $p \sim \frac{1}{\varepsilon} \sim t \sim 3^k$.

For every two positive numbers ω and σ such that $\omega \sigma = p$ and any interval $I \subset \mathbb{R}$, we define inductively the sequence of weights $w_n = w_n(\omega, \sigma, I)$ (n = 0, 1, 2, ...) supported on I...

Let $u = \sqrt{p} + \sqrt{p-1}$ be the larger root of $u + \frac{1}{u} = 2\sqrt{p}$. Define

$$w_0(\omega,\sigma,l)=\frac{\omega}{\sqrt{\rho}}\left(u\chi_{l_-}+\frac{1}{u}\chi_{l_+}\right),$$

where I_{-} and I_{+} are the left and the right halves of I respectively.

Suppose that $w_{n-1}(\omega, \sigma, I)$ is already defined for all ω, σ with $\omega \sigma = p$ and all $I \subset \mathbb{R}$

Construction of the weight

Fix $t \gg 1$. Take $k \in \mathbb{N}$ such that $t \leq 3^k \leq 3t$. Let $\varepsilon = 3^{-k}$ and $p = \frac{1}{3\varepsilon} \left(\frac{1+\varepsilon}{2} + \frac{4\varepsilon^2}{1+\varepsilon} \right)$. $p \sim \frac{1}{\varepsilon} \sim t \sim 3^k$.

For every two positive numbers ω and σ such that $\omega \sigma = p$ and any interval $I \subset \mathbb{R}$, we define inductively the sequence of weights $w_n = w_n(\omega, \sigma, I)$ (n = 0, 1, 2, ...) supported on I...

Let $u = \sqrt{p} + \sqrt{p-1}$ be the larger root of $u + \frac{1}{u} = 2\sqrt{p}$. Define

$$w_0(\omega,\sigma,l)=\frac{\omega}{\sqrt{\rho}}\left(u\chi_{l_-}+\frac{1}{u}\chi_{l_+}\right),$$

where I_{-} and I_{+} are the left and the right halves of I respectively.

Suppose that $w_{n-1}(\omega, \sigma, I)$ is already defined for all ω, σ with $\omega \sigma = p$ and all $I \subset \mathbb{R}$.

$$I_{k-1} \subset I_{k-2} \subset \cdots \subset I_0 = I$$

and $|I_{k-1}| = 3\varepsilon |I|$.

Given an interval J, denote by $J^{(i)}$, i = 1, 2, 3, the *i*-th from the left subinterval of J in the partition of J into 3 equal intervals.

Define $w_n(\omega, \sigma, I)$ by

$$w_{n}(\omega,\sigma,l) = \frac{\omega}{p} \left(\sum_{m=0}^{k-2} \chi_{l_{m}^{(1)}} + \chi_{l_{k-1}^{(1)} \cup l_{k-1}^{(2)}} + \frac{4\varepsilon}{1+\varepsilon} \chi_{l_{k-1}^{(3)}} \right) \\ + \sum_{m=0}^{k-2} w_{n-1} \left(2\omega, \frac{\sigma}{2}, l_{m}^{(2)} \right).$$

$$I_{k-1} \subset I_{k-2} \subset \cdots \subset I_0 = I$$

and $|I_{k-1}| = 3\varepsilon |I|$.

Given an interval J, denote by $J^{(i)}$, i = 1, 2, 3, the *i*-th from the left subinterval of J in the partition of J into 3 equal intervals. Define $w_n(\omega, \sigma, I)$ by

$$w_{n}(\omega,\sigma,l) = \frac{\omega}{p} \left(\sum_{m=0}^{k-2} \chi_{l_{m}^{(1)}} + \chi_{l_{k-1}^{(1)} \cup l_{k-1}^{(2)}} + \frac{4\varepsilon}{1+\varepsilon} \chi_{l_{k-1}^{(3)}} \right) \\ + \sum_{m=0}^{k-2} w_{n-1} \left(2\omega, \frac{\sigma}{2}, l_{m}^{(2)} \right).$$

$$I_{k-1} \subset I_{k-2} \subset \cdots \subset I_0 = I$$

and $|I_{k-1}| = 3\varepsilon |I|$.

Given an interval J, denote by $J^{(i)}$, i = 1, 2, 3, the *i*-th from the left subinterval of J in the partition of J into 3 equal intervals.

Define $w_n(\omega, \sigma, I)$ by

$$w_{n}(\omega,\sigma,l) = \frac{\omega}{p} \left(\sum_{m=0}^{k-2} \chi_{l_{m}^{(1)}} + \chi_{l_{k-1}^{(1)} \cup l_{k-1}^{(2)}} + \frac{4\varepsilon}{1+\varepsilon} \chi_{l_{k-1}^{(3)}} \right) \\ + \sum_{m=0}^{k-2} w_{n-1} \left(2\omega, \frac{\sigma}{2}, l_{m}^{(2)} \right).$$

$$I_{k-1} \subset I_{k-2} \subset \cdots \subset I_0 = I$$

and $|I_{k-1}| = 3\varepsilon |I|$.

Given an interval *J*, denote by $J^{(i)}$, i = 1, 2, 3, the *i*-th from the left subinterval of *J* in the partition of *J* into 3 equal intervals.

Define $w_n(\omega, \sigma, I)$ by

$$\begin{split} w_n(\omega,\sigma,l) &= \frac{\omega}{p} \Biggl(\sum_{m=0}^{k-2} \chi_{I_m^{(1)}} + \chi_{I_{k-1}^{(1)} \cup I_{k-1}^{(2)}} + \frac{4\varepsilon}{1+\varepsilon} \chi_{I_{k-1}^{(3)}} \Biggr) \\ &+ \sum_{m=0}^{k-2} w_{n-1} \Bigl(2\omega, \frac{\sigma}{2}, I_m^{(2)} \Bigr). \end{split}$$

$$I_{k-1} \subset I_{k-2} \subset \cdots \subset I_0 = I$$

and $|I_{k-1}| = 3\varepsilon |I|$.

Given an interval J, denote by $J^{(i)}$, i = 1, 2, 3, the *i*-th from the left subinterval of J in the partition of J into 3 equal intervals.

Define $w_n(\omega, \sigma, I)$ by

$$\begin{split} w_n(\omega,\sigma,I) &= \frac{\omega}{p} \Biggl(\sum_{m=0}^{k-2} \chi_{I_m^{(1)}} + \chi_{I_{k-1}^{(1)} \cup I_{k-1}^{(2)}} + \frac{4\varepsilon}{1+\varepsilon} \chi_{I_{k-1}^{(3)}} \Biggr) \\ &+ \sum_{m=0}^{k-2} w_{n-1} \Bigl(2\omega, \frac{\sigma}{2}, I_m^{(2)} \Bigr). \end{split}$$

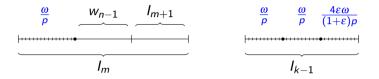


Figure: $w_n(\omega, \sigma, I)$ on intervals $I_m^{(i)}$ for i = 1, 2 and $0 \le m \le k - 2$ and on $I_{k-1}^{(i)}$ for i = 1, 2, 3.

Proposition. For every $n \ge 0$,

$$\frac{1}{|I|}\int_{I}w_{n}(\omega,\sigma,I)dx = \omega \quad \text{and} \quad \frac{1}{|I|}\int_{I}w_{n}^{-1}(\omega,\sigma,I)dx = \sigma$$

・ロト ・母 ト ・目 ト ・ 田 ・ うへの



Figure: $w_n(\omega, \sigma, I)$ on intervals $I_m^{(i)}$ for i = 1, 2 and $0 \le m \le k - 2$ and on $I_{k-1}^{(i)}$ for i = 1, 2, 3.

Proposition. For every $n \ge 0$,

$$\frac{1}{|I|}\int_{I}w_{n}(\omega,\sigma,I)dx = \omega \quad \text{and} \quad \frac{1}{|I|}\int_{I}w_{n}^{-1}(\omega,\sigma,I)dx = \sigma.$$

Estimate of the maximal operator

Let \mathcal{T} be the standard triadic lattice, that is,

$$\mathscr{T} = \{ [3^j n, 3^j (n+1)), \quad j, n \in \mathbb{Z} \}.$$

Denote by \mathscr{J} the family of all unions of two adjacent triadic intervals of equal length. First:

$$\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)} \leq 24 \sup_{J\in\mathscr{J}} \left(\frac{1}{w(J)} \int_{J} (M(w\chi_{J}))^{2} \sigma\right)^{1/2}$$

Second: for every triadic interval J, we have

$$\left(\frac{1}{w(J)}\int_{J}(M(w\chi_{J}))^{2}\sigma\right)^{1/2} \lesssim p \sim t$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Estimate of the maximal operator

Let \mathscr{T} be the standard triadic lattice, that is,

$$\mathscr{T} = \{ [3^j n, 3^j (n+1)), \quad j, n \in \mathbb{Z} \}.$$

Denote by \mathscr{J} the family of all unions of two adjacent triadic intervals of equal length. First:

$$\|M\|_{L^{2}(\sigma)\to L^{2}(\sigma)} \leq 24 \sup_{J\in\mathscr{J}} \left(\frac{1}{w(J)} \int_{J} (M(w\chi_{J}))^{2} \sigma\right)^{1/2}.$$

Second: for every triadic interval *J*, we have

$$\left(\frac{1}{w(J)}\int_{J}(M(w\chi_{J}))^{2}\sigma\right)^{1/2} \lesssim p \sim t$$

・ロト・日本・ 小田・ トロ・ うくの

Estimate of the maximal operator

Let \mathscr{T} be the standard triadic lattice, that is,

$$\mathscr{T} = \{ [3^j n, 3^j (n+1)), \quad j, n \in \mathbb{Z} \}.$$

Denote by \mathscr{J} the family of all unions of two adjacent triadic intervals of equal length. First:

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)} \leq 24 \sup_{J\in\mathscr{J}} \left(\frac{1}{w(J)} \int_J (M(w\chi_J))^2 \sigma\right)^{1/2}.$$

Second: for every triadic interval J, we have

$$\left(\frac{1}{w(J)}\int_{J}(M(w\chi_{J}))^{2}\sigma\right)^{1/2} \lesssim p \sim t$$

Estimate of the maximal operator

Let \mathscr{T} be the standard triadic lattice, that is,

$$\mathscr{T} = \{ [3^j n, 3^j (n+1)), \quad j, n \in \mathbb{Z} \}.$$

Denote by \mathscr{J} the family of all unions of two adjacent triadic intervals of equal length. First:

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)} \leq 24 \sup_{J\in\mathscr{J}} \left(\frac{1}{w(J)} \int_J (M(w\chi_J))^2 \sigma\right)^{1/2}.$$

Second: for every triadic interval J, we have

$$\left(\frac{1}{w(J)}\int_{J}(M(w\chi_{J}))^{2}\sigma\right)^{1/2} \lesssim p \sim t$$

Estimate of the maximal operator

Let \mathscr{T} be the standard triadic lattice, that is,

$$\mathscr{T} = \{ [3^j n, 3^j (n+1)), \quad j, n \in \mathbb{Z} \}.$$

Denote by \mathscr{J} the family of all unions of two adjacent triadic intervals of equal length. First:

$$\|M\|_{L^2(\sigma)\to L^2(\sigma)}\leq 24\sup_{J\in\mathscr{J}}\left(\frac{1}{w(J)}\int_J (M(w\chi_J))^2\sigma\right)^{1/2}.$$

Second: for every triadic interval *J*, we have

$$\left(\frac{1}{w(J)}\int_{J}(M(w\chi_{J}))^{2}\sigma\right)^{1/2} \lesssim p \sim t$$

Estimate of the Hilbert transform

Denote by A_I^* , I = 0, ..., n-1, the union of all intervals $\frac{1}{2}I$ where I is a tail interval contained in

 $[0,1)\cap (\operatorname{supp} w_{n-l}\setminus \operatorname{supp} w_{n-(l+1)}).$

In other words, A_l^* is the union of all intervals $\frac{1}{2}J_{k-1}^{(3)}$ where $J \subset [0,1)$ carries w_{n-l} . The sets A_l^* plays the central role in establishing the lower bound for $H(w\chi_{[0,1)})$, as the following proposition shows.

Proposition There exists an absolute C > 0 such that for for all I = 0, ..., n-1 and for every $x \in A_i^*$

 $|H(w\chi_{[0,1)})(x)| \ge C \, k \, M(w\chi_{[0,1)})(x)$

Combining that with the measure of A_l^* we can obtain...

 $\|H(w\chi_{[0,1)})\|_{L^2(\sigma)}\gtrsim k\,3^k\sim (\log t)\,t$

Estimate of the Hilbert transform

Denote by A_I^* , I = 0, ..., n-1, the union of all intervals $\frac{1}{2}I$ where I is a tail interval contained in

 $[0,1) \cap (\operatorname{supp} w_{n-l} \setminus \operatorname{supp} w_{n-(l+1)}).$

In other words, A_j^* is the union of all intervals $\frac{1}{2}J_{k-1}^{(3)}$ where $J \subset [0,1)$ carries w_{n-1} .

The sets A_i plays the central role in establishing the lower bound for $H(W\chi_{[0,1)})$, as the following proposition shows.

Proposition There exists an absolute C > 0 such that for for all l = 0, ..., n-1 and for every $x \in A_l^*$

 $|H(w\chi_{[0,1)})(x)| \ge C \, k \, M(w\chi_{[0,1)})(x)$

Combining that with the measure of A_l^* we can obtain...

 $\|H(w\chi_{[0,1)})\|_{L^2(\sigma)}\gtrsim k\,3^k\sim (\log t)\,t$

Estimate of the Hilbert transform

Denote by A_I^* , I = 0, ..., n-1, the union of all intervals $\frac{1}{2}I$ where I is a tail interval contained in

$$[0,1)\cap (\operatorname{supp} w_{n-l}\setminus \operatorname{supp} w_{n-(l+1)}).$$

In other words, A_l^* is the union of all intervals $\frac{1}{2}J_{k-1}^{(3)}$ where $J \subset [0,1)$ carries w_{n-l} . The sets A_l^* plays the central role in establishing the lower bound for $H(w\chi_{[0,1)})$, as the following proposition shows.

Proposition There exists an absolute C>0 such that for for all $l=0,\ldots,n-1$ and for every $x\in A_l^*$

 $|H(w\chi_{[0,1)})(x)| \ge C \, k \, M(w\chi_{[0,1)})(x)$

Combining that with the measure of A_l^* we can obtain...

 $\|H(w\chi_{[0,1)})\|_{L^2(\sigma)}\gtrsim k\,3^k\sim (\log t)\,t$

Estimate of the Hilbert transform

Denote by A_I^* , I = 0, ..., n-1, the union of all intervals $\frac{1}{2}I$ where I is a tail interval contained in

$$[0,1)\cap (\operatorname{supp} w_{n-l}\setminus \operatorname{supp} w_{n-(l+1)}).$$

In other words, A_l^* is the union of all intervals $\frac{1}{2}J_{k-1}^{(3)}$ where $J \subset [0,1)$ carries w_{n-l} . The sets A_l^* plays the central role in establishing the lower bound for $H(w\chi_{[0,1)})$, as the following proposition shows.

Proposition

There exists an absolute C > 0 such that for for all l = 0, ..., n-1 and for every $x \in A_l^*$

$$|H(w\chi_{[0,1)})(x)| \ge C k M(w\chi_{[0,1)})(x)$$

Combining that with the measure of A_I^* we can obtain...

$$\|H(w\chi_{[0,1)})\|_{L^2(\sigma)}\gtrsim k\,3^k\sim (\log t)\,t$$

Estimate of the Hilbert transform

Denote by A_I^* , I = 0, ..., n-1, the union of all intervals $\frac{1}{2}I$ where I is a tail interval contained in

$$[0,1)\cap (\operatorname{supp} w_{n-l}\setminus \operatorname{supp} w_{n-(l+1)}).$$

In other words, A_I^* is the union of all intervals $\frac{1}{2}J_{k-1}^{(3)}$ where $J \subset [0,1)$ carries w_{n-l} . The sets A_I^* plays the central role in establishing the lower bound for $H(w\chi_{[0,1)})$, as the following proposition shows.

Proposition

There exists an absolute C > 0 such that for for all l = 0, ..., n-1 and for every $x \in A_l^*$

$$|H(w\chi_{[0,1)})(x)| \ge C \, k \, M(w\chi_{[0,1)})(x)$$

Combining that with the measure of A_I^* we can obtain...

$$\|H(w\chi_{[0,1)})\|_{L^2(\sigma)} \gtrsim k \, 3^k \sim (\log t) \, t$$

Estimate of the Hilbert transform

Denote by A_I^* , I = 0, ..., n-1, the union of all intervals $\frac{1}{2}I$ where I is a tail interval contained in

$$[0,1) \cap (\operatorname{supp} w_{n-l} \setminus \operatorname{supp} w_{n-(l+1)}).$$

In other words, A_I^* is the union of all intervals $\frac{1}{2}J_{k-1}^{(3)}$ where $J \subset [0,1)$ carries w_{n-l} . The sets A_I^* plays the central role in establishing the lower bound for $H(w\chi_{[0,1)})$, as the following proposition shows.

Proposition

There exists an absolute C > 0 such that for for all l = 0, ..., n-1 and for every $x \in A_l^*$

$$|H(w\chi_{[0,1)})(x)| \ge C \, k \, M(w\chi_{[0,1)})(x)$$

Combining that with the measure of A_I^* we can obtain...

$$\|H(w\chi_{[0,1)})\|_{L^2(\sigma)}\gtrsim k\,3^k\sim (\log t)\,t$$

- Very recently P. Ivanisvili and A. Volberg obtained also the sharpness for the martingale transform ${\cal T}$

 $\varphi_T(t) \ge c' t \log(e+t)$

- Very recently P. Ivanisvili and A. Volberg obtained also the sharpness for the martingale transform ${\cal T}$

 $\varphi_T(t) \ge c' t \log(e+t)$

Thank you!