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1

|Q|

∫
Q
|f − fQ| ≤ cn

`(Q)

|Q|

∫
Q
|∇f |

fQ = 1
|Q|

∫
Q f = average of f over the cube Q & `(Q) = sidelength ofQ.

• (p, p), p ≥ 1 Poincaré inequality:(
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1

|Q|

∫
Q
|f − fQ|p dx

)1/p

≤ c `(Q)

(
1

|Q|

∫
Q
|∇f |pdx

)1/p

• Higher order case. Somewhat less-known result.

1

|Q|

∫
Q
|f − P (Q, f)| ≤ cn

`(Q)m

|Q|

∫
Q
|∇mf |

2



Denegerate Poincare inequalities cperez@bcamath.otg

INTEGRAL REPRESENTATION FORMULA

3



Denegerate Poincare inequalities cperez@bcamath.otg

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

|f(x)− fQ| ≤
c

|Q|

∫
Q

|∇f(z)|
|x− z|n−1

dz = c I1(|∇f |χ
Q

)(x).

3



Denegerate Poincare inequalities cperez@bcamath.otg

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

|f(x)− fQ| ≤
c

|Q|

∫
Q

|∇f(z)|
|x− z|n−1

dz = c I1(|∇f |χ
Q

)(x).

• They are equivalent (Franchi-Lu-Wheeden)

3



Denegerate Poincare inequalities cperez@bcamath.otg

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

|f(x)− fQ| ≤
c

|Q|

∫
Q

|∇f(z)|
|x− z|n−1

dz = c I1(|∇f |χ
Q

)(x).

• They are equivalent (Franchi-Lu-Wheeden)

Here

Iαf(x) = c
∫
Rn

f(y)

|x− y|n−α
dy

0 < α < n.

3



Denegerate Poincare inequalities cperez@bcamath.otg

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

|f(x)− fQ| ≤
c

|Q|

∫
Q

|∇f(z)|
|x− z|n−1

dz = c I1(|∇f |χ
Q

)(x).

• They are equivalent (Franchi-Lu-Wheeden)

Here

Iαf(x) = c
∫
Rn

f(y)

|x− y|n−α
dy

0 < α < n.

These are called fractional integrals of order α or Riesz potentials.

3



Denegerate Poincare inequalities cperez@bcamath.otg

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

|f(x)− fQ| ≤
c

|Q|

∫
Q

|∇f(z)|
|x− z|n−1

dz = c I1(|∇f |χ
Q

)(x).

• They are equivalent (Franchi-Lu-Wheeden)

Here

Iαf(x) = c
∫
Rn

f(y)

|x− y|n−α
dy

0 < α < n.

These are called fractional integrals of order α or Riesz potentials.

The classical well–known estimates use these type of representation.

3



Denegerate Poincare inequalities cperez@bcamath.otg

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

|f(x)− fQ| ≤
c

|Q|

∫
Q

|∇f(z)|
|x− z|n−1

dz = c I1(|∇f |χ
Q

)(x).

• They are equivalent (Franchi-Lu-Wheeden)

Here

Iαf(x) = c
∫
Rn

f(y)

|x− y|n−α
dy

0 < α < n.

These are called fractional integrals of order α or Riesz potentials.

The classical well–known estimates use these type of representation.

It goes back to Sobolev.

3



Denegerate Poincare inequalities cperez@bcamath.otg

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré
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inequalities:

Let p∗ = pn
n−p when 1 ≤ p < n. Observe that 1∗ = n

n−1 = n′

(
1

|Q|

∫
Q
|f − fQ|p

∗
)1/p∗

≤ c `(Q)

(
1

|Q|

∫
Q
|∇f |p

)1/p

The SELF-IMPROVING property

Observations:
• These estimates are sharper than the corresponding (p, p) Poincaré inequal-
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• Goal: to prove local Hölder continuity of the (weak) solutions of the equation.

• Classical theory: De Giorgi, Nash (local Holder continuity theory of solutions)

• Moser (Harnack inequality from which Holder continuity of solutions can be
derived). This became the standard machinery for these questions.

Key point besides the (2,2) PI,

5



Denegerate Poincare inequalities cperez@bcamath.otg

Elliptic Theory
The case p > 1 is important in the theory of elliptic P.D.E. .

•The elliptic Operator: Lu = div(A(x).∇u) = 0

where λ|ξ|2 ≤ A(x)ξ.ξ ≤ Λ|ξ|2
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We start by using the L1 unweighted Poincaré inequality
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Subelliptic operators, from the theory of several complex variables.
In R2:

(X1, X2) = (
∂

∂x
, x

∂

∂y
)

associated to the Grushin operator:

X2
1 +X2

2 =
∂2

∂x2
+ x2 ∂

2

∂y2
.

Nagel-Stein-Wainger proved that there is a metric d
X

, the Carnot-Caratheodory
metric, which is doubling with respect to the Lebesgue measure.
Hence

(Rn, d
X
, dx)

becomes a space of homogeneous type.
•. There is a key PI:

1

|B|

∫
B
|f − fB| ≤ c

rB
|B|

∫
B
|Xf |

15



Denegerate Poincare inequalities cperez@bcamath.otg

Other Interesting Poincaré Inequalities
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Definition 1 Let L > 1 and let Q be a cube. We will say that a family of
pairwise disjoint subcubes {Qi} of Q is L-small if

∑
i

|Qi| ≤
|Q|
L

We will say {Qi} ∈ S(L)

Now, the correct notion of Dp condition in this context is the following.

Definition 1
Let w be any weight and let s > 1. We say that the functional a satisfies the
weighted SDs

p(w) condition for 0 < p < ∞ if there is a constant c such that
for any cube Q and any family {Qi} of pairwise disjoint subcubes of Q such
that {Qi} ∈ S(L), the following inequality holds:

∑
i

a(Qi)
pw(Qi) ≤ cp

(
1

L

)p
s
a(Q)pw(Q)
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Theorem. Let w be any weight. Consider a functional a satisfiyng
SDs

p(w) with s > 1 and p ≥ 1. Suppose that
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|f − fQ| ≤ a(Q) (H)

for every cube Q. Then, there exists a dimensional constant cn such that for
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p(w) with s > 1 and p ≥ 1. Suppose that

1

|Q|

∫
Q
|f − fQ| ≤ a(Q) (H)

for every cube Q. Then, there exists a dimensional constant cn such that for
any cube Q
Then (

1

w(Q)

∫
Q
|f − fQ|pwdx

)1
p

≤ s cn a(Q)

Corollary
Let (u, v) ∈ Ap. The the following Poincaré (p, p) inequality holds(

1

u(Q)

∫
Q
|f − fQ|p u dx

)1/p

≤ cn[u, v]
1
p
Ap
`(Q)

(
1

u(Q)

∫
Q
|∇f |p v dx

)1/p

,

where cn is a dimensional constant.
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Corollary (The Keith-Zhong phenomenon)
Let 1 < p0 and let (f, g) be a couple of functions satisfying

1

|Q|

∫
Q
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`(Q)
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∫
Q
gp0 wdx

) 1
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|f − fQ| dx ≤ C[w]Ap0

`(Q)

(
1
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∫
Q
gp0 wdx

) 1
p0

w ∈ Ap0

Then, for any 1 ≤ p < p0, the following estimate holds for any w ∈ Ap(
1

w(Q)

∫
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)1/p
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Lemma Let 1 ≤ q ≤ p < n, and let w ∈ Aq. If E > 1 we let p∗ be

1

p
−

1

p∗
=

1

nqE
.

Then, if {Qi} ∈ S(L), L > 1, the following inequality holds:

∑
i

a(Qi)
p∗w(Qi) ≤ [w]

p∗
nqE
Aq

(
1

L

) p∗
nE′

a(Q)p
∗
w(Q)
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L
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• The functional a “preserves smallness” with index nE′ and constant [w]
1
nqE
Aq

• E can be seen as “error” it is the made.
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• Again, this is a very “clean” inequality.
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Let f be a locally integrable function and let w be a weight such that

‖f‖
BMOw

= sup
Q

1

w(Q)

∫
Q
|f − fQ| <∞,
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BMOw

= sup
Q

1

w(Q)

∫
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|f − fQ| <∞,

Theorem
a) A1 case: If w ∈ A1, there exists a constant c such that for any cube Q
and any q > 1(

1

w(Q)

∫
Q

(
|f − fQ|

w

)q
wdx

)1
q

≤ c q [w]A1
‖f‖BMOw

and hence for any cube Q∥∥∥∥f − fQw
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and hence for any cube Q∥∥∥∥f − fQw

∥∥∥∥
expL(Q,w)

≤ c [w]A1
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BMOw

b) Ap case: If w ∈ Ap, 1 < p < ∞, there exists a constant c such that for
any cube Q 1

w(Q)

∫
Q

(
|f − fQ|

w

)p′
wdx


1
p′

≤ c2np p′ [w]Ap‖f‖BMOw
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Theorem
a) A1 case: If w ∈ A1, there exists a constant c such that for any cube Q and
q > 1(

1

w(Q)

∫
Q

∣∣∣∣∣f(x)− fQ
w

∣∣∣∣∣
q

w(x)dx

)1
q

≤ cn‖f‖
BMOw

qq′[w]
1
q′
A1

[w]
1
q
A∞
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