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The SELF-IMPROVING property

Observations:

e These estimates are sharper than the corresponding (p, p) Poincaré inequal-
ities since p* > p by Jensen’s inequality.

e p* is optimal, that is, we cannot replace p* by a larger exponent.

e p™ is usually called the Sobolev exponent.

e One of the points of this talk is to show how to avoid such representation
formulae.

e We will use Calderéon-Zygmund theory instead.
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e Goal: to prove local Holder continuity of the (weak) solutions of the equation.
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e First example of this property is due to L. Saloff-Coste.
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Question: What kind of condition can we impose on a to get the self-improving
property?

e There is the LP self-improving (model example: Sobolev inequalities)

e There is also exponential self-improving:

a lo John-Nirenberg or

of Trudinger type
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Our model example is associated to the fractional average

v(Q)\ P
Q| )

a(Q) = £(Q)” (
e They enjoy a LP self-improving

e Motivated by the theory developed in the papers by Hajlasz, Heinonen and
Koskela.

e Other type of examples are given by
1
a(Q) = v(Q)?

e related to the exponential self-improving property.
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implies a L" self-improving property of the form for some » > 1,
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implies a L" self-improving property of the form for some » > 1,
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We impose a geometrical type condition which will be key in what follows:

Let O < r < oco. We say that the functional a satisfies the D, condition if there
exists a finite constant ¢ such that for each cube @ and any family {Q;} of
pairwise disjoint dyadic subcubes of @,

> a(Q)"Qi] < " a(Q)"|Q)

7

e Resembles a little bit the Carleson condition.
or < s=— Ds C Dxs.
e Then we can define for a given a the optimal exponent
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Observe that with r = & 5 we have
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r/p
N a(@)71Qi = S v(Q)"P < (Z V(Qﬁ)

< v(Q)"P = a(Q)"|Q)]

which means that a € D,..
Some observations:
o lf =1, r = p*, the Sobolev exponent.

mp

elfa=m=1,2---, r= p—— the Sobolev exponent related to higher
order PI.

o If v = 1, a satisfies the D, condition for every » > 1.
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The (weighted) D,-(w) condition for some 0 < r < oo: for each cube Q and
for any family {Q;} of pairwise disjoint cubes contained in Q,

> a(@Q)"w(Q;) < " a(Q) w(Q)

7

Theorem (Franchi, P, Wheeden, 1998)
Let a € D,(w) forsome r > 0 and let w € Ax. Let f such that

1 /
|f T f S a’(Q)a
Q| J Q!
Then there exists a constant ¢ such that

||f - fQHLT,OO(Q,w) S CCL(Q)

e The proof combines Calderon—-Zygmund theory with an appropriate variant
of the good-\ inequality of Burkholder—-Gundy.
e Can be extended to the context of a space of homogeneous type.
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1@ = Joldz < ent(@)f, IV @)

By the A, condition, we obtain that

) 1/p
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Hence appears naturally the weighted fractional integral
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which satisfies trivially a € Dp(w)

and hence
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How to recover the weighted Poincaré-Sobolev inequality

It is more interesting to get for some p* > p

1 1

o — fol?" w : ¢ o x)|Pw a:)p
(w(@ J 7@ = fol <y>dy) < E(Q)<w(Q) | Vs @)pwd

Hence the question reduces to understand the D,«(w) for a larger exponent.

Lemma Letwe Ay, ac D

p(n/_|_5)('w) where § depends on w.

and hence

1
1 / p(n/
(m /Q f(y) — fQ\p(n +9) wdaz> e < Z0Q) (

1

[ vr@Pr d:c)

(@)
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In R2:

o 0
X1,X0) =(—,2—
(X1, X2) (8x,fﬂay)
associated to the Grushin operator:

02 5 02
X?+X5=—"— —
1+ X5 = Ox2 + Oy2’
Nagel-Stein-Wainger proved that there is a metric d e the Carnot-Caratheodory
metric,  which is doubling with respect to the Lebesgue measure.

Hence

(R",d_ ,dx)

Y X’

becomes a space of homogeneous type.

e. There is a key PI:
1 TB/
S — <c—= | |X
i Sl Bl < e XA

e Jerison (1986)
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Consider the vector field
0 0
Xo = (X1,X2) = (=, |=|* =
a = (X1, X2) (83B || 8y>
associated to the operator:

02 82
52 + |2]**

These type of non—smooth examples were considered by Franchi-Lanconelli
in the mid 80’s.

As above there is a corresponding Carnot-Caratheodory metric d PR such

(R",d_ ,dx)

Y X7
becomes space of homogeneous type.
e There is another key PI:

G Jlf =l < eT2 [ X

e Franchi—Gutierrez—Wheeden (1994).
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e Franchi—Lu—Wheeden p = 1.
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e the non—smooth case:

1/29* 1
<|B|/ If - fB|p> <crp (@/B|XQf|p>

Franchi—Gutierrez—Wheeden, p > 1

1/p

e Each case has its own proof all of them based on a representation formula.
e We avoid all these.
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Let (X,d, ) be a metric space with a doubling measure u
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Let (X,d, ) be a metric space with a doubling measure u

Dy(w) condition: for some 0 < r < oo hamely for each ball B and for any
family { B;} of pairwise disjoint balls contained in B,

> a(By) wu(B;) < " a(B) wu(B)

1

Theorem (MacManus, P.) Let w € Aco() and suppose that
f— fBldu < a(B)
(B) /1§ = f5l

Then, if § > 0, there is a constant C' independent of f and B such that

Hf — fBHL’r‘,OO(B,w) <C a((l + 5)3)

e It is not so clean because of the factor (1 + §). (lack of dyadic structure)
e Other situations: non homogeneous spaces

(joint work with J. Orobitg)

e Weaker hypothesis: replace L1 norm by much weaker norms.

(joint work with A. Lerner)
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The small D, condition

Definition 1 Let L > 1 and let Q be a cube. We will say that a family of
pairwise disjoint subcubes {Q;} of Q is L-small if

<@l
2_1Qil <=

7

We will say {Q;} € S(L)

Now, the correct notion of D), condition in this context is the following.

Definition 1
Let w be any weight and let s > 1. We say that the functional a satisfies the

weighted SD;(w) condition for 0 < p < oo if there is a constant ¢ such that
for any cube @ and any family {Q;} of pairwise disjoint subcubes of @) such
that {Q;} € S(L), the following inequality holds:

1\ 5
> a(@)Pw(@) < & (Z) a(Q)Pw(Q)

1
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main example

Let 1 be any Radon measure and define

1 1/19
o(Q) = £(Q) (@m)) |

Let w be aweight, L > 1,1 <p <nandleta € SDj(w).

The proof is an easy consequence of Holder’s inequality. Let {Q;} € S(L),
then

S a(Q)Pw(Q) = Y 4Q)Pu(Q:) = 3 1QlP ™ u(Qy)

1

1

p/m \ Gy
< (X 1@l >~ (@) "P)



main example

Let 1 be any Radon measure and define

1 1/p
o(Q) = £(Q) ( : Q)m)) |

Let w be aweight, L > 1,1 <p <nandleta € SDj(w).

The proof is an easy consequence of Holder’s inequality. Let {Q;} € S(L),
then

>~ a(Q)Pw(Qi) = Y HQ)N Qi) = Z 1QilP ™1 (Qy)
Z p/n N\ Gy
< (ZIQiI) (ZMQWW)

p/n /n
<(")" @ = (7)"" a@ru@
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A first result

Theorem. Let w be any weight. Consider a functional a satisfiyng
SD7(w) with s > 1 and p > 1. Suppose that

1
@/Q F—fol <a(Q)  (H)

for every cube ). Then, there exists a dimensional constant ¢, such that for

any cube @
Then

1

< (Q)/ | f = fQ|p’wde>p < scpa(Q)

Corollary
Let (u,v) € Ap. The the following Poincaré (p, p) inequality holds

1/p
/ VP dx) ,

1

1/p
<(Q) N fQ|pudw> < enlu, ol 4Q)

where ¢, is a dimensional constant.

(v
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Two more corollaries

Corollary (A generalized John-Nirenberg)

Let a be an increasing functional and suppose that f satisfies (H).
Then,

Hf - fQHexp L(Q.w) < enlw] 4, a(Q)

Corollary (The Keith-Zhong phenomenon)
Let 1 < pg and let (f, g) be a couple of functions satisfying

1
) 1 o
@/@ f — fQ| dx < C[w]ApOE(Q) (m /Q gPo wd:l:) w e APO

Then, forany 1 < p < pg, the following estimate holds for any w € A,

1 1/p "
(@ /Q |f — fQ| wdac) < CC[w]Apf(Q) (TQ) /Q g? wdm)

1/p
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Improving Poincaré-Sobolev

As before let

1 1/p
a(Q) = Q) ( (Q)M(Q)>

Lemma letl <g<p<n,andletw e Ay. If E > 1 welet p* be
1 1 1

p p* ngE
Then, if {Q;} € S(L), L > 1, the following inequality holds:

*

1

nq* nE’ *
;a@m’ w(Qi) < [w)™F (Z) a(Q)P w(Q)

1
e The functional a “preserves smallness” with index nE’ and constant [w]zqu

e I/ can be seen as “error” it Is the made.
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Consequence

Corollary Lletl < g<p<n,andletw € A,. Let p* be defined by
1 1 1

p p* n(g+loglw]y,)

and suppose that f satisfies (H). Then

1
E3

(ﬁ/cz If — fol?” wde‘)p < cna(Q)

In particular

= 1

1 N cn [w]”, 1 x) [Pw :B)l/p
(i Jol = Fal wie)” < enlul @) (s [ I97@IPw

e Again, this is a very “clean” inequality.
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Bloom BMO and Muckenhoupt-Wheeden

Let f be a locally integrable function and let w be a weight such that
Il 5240, —Sup—(Q)/ If — fol < oo,

Theorem
a) Ay case: If w € Aq, there exists a constant ¢ such that for any cube @Q
andany q > 1

("w(Q)/ <|f fQ|> wdm>q < cqlw]a, IfllBpmoy

and hence for any cube Q@

‘f_fQ

< clwla, 1l 5070

exp L(Q,w)

b) Ap case: Ifw e Ay, 1 < p < oo, there exists a constant ¢ such that for
any cube @

(w(@ /, ('f fQ') da:) < 2" [wlaIf 500,
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