DEGENERATE POINCARÉ INEQUALITIES

Carlos Pérez

University of the Basque Country \&
BCAM, Basque Center for Applied Math.

Atelier d'Analyse Harmonique 2018 CNRS-Paul Langevin Center

Aussois, March 30, 2018

collaborators

most of the lecture will be on an almost finished work with:

collaborators

most of the lecture will be on an almost finished work with:

Ezequiel Rela

collaborators

most of the lecture will be on an almost finished work with:

Ezequiel Rela

And if I have time few results from a work in progress with

collaborators

most of the lecture will be on an almost finished work with:

Ezequiel Rela

And if I have time few results from a work in progress with

Sheldy Ombrosi, Ezequiel Rela and Israel Rios-Rivera

THE CLASSICAL POINCARÉ INEQUALITY

THE CLASSICAL POINCARÉ INEQUALITY

The simplest context: \mathbb{R}^{n} with the metric associated to the cubes with the lebesgue measure.

THE CLASSICAL POINCARÉ INEQUALITY

The simplest context: \mathbb{R}^{n} with the metric associated to the cubes with the lebesgue measure.

- $(1,1)$ Poincaré inequality:

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q}|\nabla f|
$$

$f_{Q}=\frac{1}{|Q|} \int_{Q} f=$ average of f over the cube $Q \&$

THE CLASSICAL POINCARÉ INEQUALITY

The simplest context: \mathbb{R}^{n} with the metric associated to the cubes with the lebesgue measure.

- $(1,1)$ Poincaré inequality:

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q}|\nabla f|
$$

$f_{Q}=\frac{1}{|Q|} \int_{Q} f=$ average of f over the cube $Q \& \ell(Q)=$ sidelength of Q.

THE CLASSICAL POINCARÉ INEQUALITY

The simplest context: \mathbb{R}^{n} with the metric associated to the cubes with the lebesgue measure.

- $(1,1)$ Poincaré inequality:

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q}|\nabla f|
$$

$f_{Q}=\frac{1}{|Q|} \int_{Q} f=$ average of f over the cube $Q \& \ell(Q)=$ sidelength of Q.

- $(p, p), p \geq 1$ Poincaré inequality:

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p} d x\right)^{1 / p} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p} d x\right)^{1 / p}
$$

THE CLASSICAL POINCARÉ INEQUALITY

The simplest context: \mathbb{R}^{n} with the metric associated to the cubes with the lebesgue measure.

- $(1,1)$ Poincaré inequality:

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q}|\nabla f|
$$

$f_{Q}=\frac{1}{|Q|} \int_{Q} f=$ average of f over the cube $Q \& \ell(Q)=$ sidelength of Q.

- $(p, p), p \geq 1$ Poincaré inequality:

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p} d x\right)^{1 / p} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p} d x\right)^{1 / p}
$$

- Higher order case. Somewhat less-known result.

THE CLASSICAL POINCARÉ INEQUALITY

The simplest context: \mathbb{R}^{n} with the metric associated to the cubes with the lebesgue measure.

- $(1,1)$ Poincaré inequality:

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq c_{n} \frac{\ell(Q)}{|Q|} \int_{Q}|\nabla f|
$$

$f_{Q}=\frac{1}{|Q|} \int_{Q} f=$ average of f over the cube $Q \& \ell(Q)=$ sidelength of Q.

- $(p, p), p \geq 1$ Poincaré inequality:

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p} d x\right)^{1 / p} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p} d x\right)^{1 / p}
$$

- Higher order case. Somewhat less-known result.

$$
\frac{1}{|Q|} \int_{Q}|f-P(Q, f)| \leq c_{n} \frac{\ell(Q)^{m}}{|Q|} \int_{Q}\left|\nabla^{m} f\right|
$$

INTEGRAL REPRESENTATION FORMULA

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

$$
\left|f(x)-f_{Q}\right| \leq \frac{c}{|Q|} \int_{Q} \frac{|\nabla f(z)|}{|x-z|^{n-1}} d z=c I_{1}\left(|\nabla f| \chi_{Q}\right)(x)
$$

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

$$
\left|f(x)-f_{Q}\right| \leq \frac{c}{|Q|} \int_{Q} \frac{|\nabla f(z)|}{|x-z|^{n-1}} d z=c I_{1}\left(|\nabla f| \chi_{Q}\right)(x)
$$

- They are equivalent (Franchi-Lu-Wheeden)

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

$$
\left|f(x)-f_{Q}\right| \leq \frac{c}{|Q|} \int_{Q} \frac{|\nabla f(z)|}{|x-z|^{n-1}} d z=c I_{1}\left(|\nabla f| \chi_{Q}\right)(x) .
$$

- They are equivalent (Franchi-Lu-Wheeden)

Here

$$
I_{\alpha} f(x)=c \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y
$$

$0<\alpha<n$.

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

$$
\left|f(x)-f_{Q}\right| \leq \frac{c}{|Q|} \int_{Q} \frac{|\nabla f(z)|}{|x-z|^{n-1}} d z=c I_{1}\left(|\nabla f| \chi_{Q}\right)(x) .
$$

- They are equivalent (Franchi-Lu-Wheeden)

Here

$$
I_{\alpha} f(x)=c \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y
$$

$0<\alpha<n$.
These are called fractional integrals of order α or Riesz potentials.

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

$$
\left|f(x)-f_{Q}\right| \leq \frac{c}{|Q|} \int_{Q} \frac{|\nabla f(z)|}{|x-z|^{n-1}} d z=c I_{1}\left(|\nabla f| \chi_{Q}\right)(x) .
$$

- They are equivalent (Franchi-Lu-Wheeden)

Here

$$
I_{\alpha} f(x)=c \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y
$$

$0<\alpha<n$.
These are called fractional integrals of order α or Riesz potentials.

The classical well-known estimates use these type of representation.

INTEGRAL REPRESENTATION FORMULA

The proof is based on the following classical formula:

$$
\left|f(x)-f_{Q}\right| \leq \frac{c}{|Q|} \int_{Q} \frac{|\nabla f(z)|}{|x-z|^{n-1}} d z=c I_{1}\left(|\nabla f| \chi_{Q}\right)(x) .
$$

- They are equivalent (Franchi-Lu-Wheeden)

Here

$$
I_{\alpha} f(x)=c \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y
$$

$0<\alpha<n$.
These are called fractional integrals of order α or Riesz potentials.

The classical well-known estimates use these type of representation.
It goes back to Sobolev.

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n$.

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p}\right)^{1 / p}
$$

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p}\right)^{1 / p}
$$

The SELF-IMPROVING property

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p}\right)^{1 / p}
$$

The SELF-IMPROVING property
Observations:

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p}\right)^{1 / p}
$$

The SELF-IMPROVING property

Observations:

- These estimates are sharper than the corresponding (p, p) Poincaré inequalities since $p^{*}>p$ by Jensen's inequality.

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p}\right)^{1 / p}
$$

The SELF-IMPROVING property

Observations:

- These estimates are sharper than the corresponding (p, p) Poincaré inequalities since $p^{*}>p$ by Jensen's inequality.
- p^{*} is optimal, that is, we cannot replace p^{*} by a larger exponent.

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p}\right)^{1 / p}
$$

The SELF-IMPROVING property

Observations:

- These estimates are sharper than the corresponding (p, p) Poincaré inequalities since $p^{*}>p$ by Jensen's inequality.
- p^{*} is optimal, that is, we cannot replace p^{*} by a larger exponent.
- p^{*} is usually called the Sobolev exponent.

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p}\right)^{1 / p}
$$

The SELF-IMPROVING property

Observations:

- These estimates are sharper than the corresponding (p, p) Poincaré inequalities since $p^{*}>p$ by Jensen's inequality.
- p^{*} is optimal, that is, we cannot replace p^{*} by a larger exponent.
- p^{*} is usually called the Sobolev exponent.
- One of the points of this talk is to show how to avoid such representation formulae.

Sobolev inequalities

Sobolev inequalities can be seen as sharp versions of the (p, p) Poincaré inequalities:

Let $p^{*}=\frac{p n}{n-p}$ when $1 \leq p<n . \quad$ Observe that $1^{*}=\frac{n}{n-1}=n^{\prime}$

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{p}\right)^{1 / p}
$$

The SELF-IMPROVING property

Observations:

- These estimates are sharper than the corresponding (p, p) Poincaré inequalities since $p^{*}>p$ by Jensen's inequality.
- p^{*} is optimal, that is, we cannot replace p^{*} by a larger exponent.
- p^{*} is usually called the Sobolev exponent.
- One of the points of this talk is to show how to avoid such representation formulae.
- We will use Calderón-Zygmund theory instead.

Elliptic Theory

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .
-The elliptic Operator:

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .
-The elliptic Operator: $\quad L u=\operatorname{div}(A(x) . \nabla u)=0$

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .
-The elliptic Operator:

$$
L u=\operatorname{div}(A(x) \cdot \nabla u)=0
$$

where

$$
\lambda|\xi|^{2} \leq A(x) \xi \cdot \xi \leq \wedge|\xi|^{2}
$$

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .
-The elliptic Operator:

$$
L u=\operatorname{div}(A(x) \cdot \nabla u)=0
$$

where

$$
\lambda|\xi|^{2} \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2}
$$

- Goal: to prove local Hölder continuity of the (weak) solutions of the equation.

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .
-The elliptic Operator:

$$
L u=\operatorname{div}(A(x) \cdot \nabla u)=0
$$

where

$$
\lambda|\xi|^{2} \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2}
$$

- Goal: to prove local Hölder continuity of the (weak) solutions of the equation.
- Classical theory: De Giorgi, Nash (local Holder continuity theory of solutions)

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .
-The elliptic Operator:

$$
L u=\operatorname{div}(A(x) \cdot \nabla u)=0
$$

where

$$
\lambda|\xi|^{2} \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2}
$$

- Goal: to prove local Hölder continuity of the (weak) solutions of the equation.
- Classical theory: De Giorgi, Nash (local Holder continuity theory of solutions)
- Moser (Harnack inequality from which Holder continuity of solutions can be derived). This became the standard machinery for these questions.

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .
-The elliptic Operator: $\quad L u=\operatorname{div}(A(x) . \nabla u)=0$
where

$$
\lambda|\xi|^{2} \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2}
$$

- Goal: to prove local Hölder continuity of the (weak) solutions of the equation.
- Classical theory: De Giorgi, Nash (local Holder continuity theory of solutions)
- Moser (Harnack inequality from which Holder continuity of solutions can be derived). This became the standard machinery for these questions.

Key point besides the $(2,2) \mathrm{PI}$,

Elliptic Theory

The case $p>1$ is important in the theory of elliptic P.D.E. .
-The elliptic Operator:

$$
L u=\operatorname{div}(A(x) \cdot \nabla u)=0
$$

where

$$
\lambda|\xi|^{2} \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2}
$$

- Goal: to prove local Hölder continuity of the (weak) solutions of the equation.
- Classical theory: De Giorgi, Nash (local Holder continuity theory of solutions)
- Moser (Harnack inequality from which Holder continuity of solutions can be derived). This became the standard machinery for these questions.

Key point besides the $(2,2) \mathrm{PI}$, the PS inequality:

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right|^{2^{*}} d x\right)^{1 / 2^{*}} \leq c \ell(Q)\left(\frac{1}{|Q|} \int_{Q}|\nabla f|^{2} d x\right)^{1 / 2}
$$

"Degenerate" elliptic equations

- "Degenerate" elliptic equations
"Degenerate" elliptic equations
- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi . \xi \leq \wedge|\xi|^{2} w(x)
$$

"Degenerate" elliptic equations

- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi . \xi \leq \wedge|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.
"Degenerate" elliptic equations

- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi . \xi \leq \wedge|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.

Late 60's and early 70's:

- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi . \xi \leq \wedge|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.

Late 60's and early 70's: Kruzkov, Murthy, Stampacchia, Trudinger.
"Degenerate" elliptic equations

- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi . \xi \leq \wedge|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.

Late 60's and early 70's: Kruzkov, Murthy, Stampacchia, Trudinger.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w^{s} d x\right)^{1 / s}\left(\frac{1}{|Q|} \int_{Q} w^{-t} d x\right)^{1 / t}<\infty, \quad \frac{1}{s}+\frac{1}{t}<\frac{2}{n}
$$

- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi \cdot \xi \leq \wedge|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.

Late 60's and early 70's: Kruzkov, Murthy, Stampacchia, Trudinger.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w^{s} d x\right)^{1 / s}\left(\frac{1}{|Q|} \int_{Q} w^{-t} d x\right)^{1 / t}<\infty, \quad \frac{1}{s}+\frac{1}{t}<\frac{2}{n}
$$

- The relevant work is due Fabes-Kenig-Serapioni (1982),
- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi \cdot \xi \leq \wedge|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.

Late 60's and early 70's: Kruzkov, Murthy, Stampacchia, Trudinger.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w^{s} d x\right)^{1 / s}\left(\frac{1}{|Q|} \int_{Q} w^{-t} d x\right)^{1 / t}<\infty, \quad \frac{1}{s}+\frac{1}{t}<\frac{2}{n}
$$

- The relevant work is due Fabes-Kenig-Serapioni (1982), they removed the restriction in s, t,
- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi . \xi \leq \wedge|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.
Late 60's and early 70's: Kruzkov, Murthy, Stampacchia, Trudinger.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w^{s} d x\right)^{1 / s}\left(\frac{1}{|Q|} \int_{Q} w^{-t} d x\right)^{1 / t}<\infty, \quad \frac{1}{s}+\frac{1}{t}<\frac{2}{n}
$$

- The relevant work is due Fabes-Kenig-Serapioni (1982), they removed the restriction in s, t, and consider the A_{2} condition instead:
- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.

Late 60's and early 70's: Kruzkov, Murthy, Stampacchia, Trudinger.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w^{s} d x\right)^{1 / s}\left(\frac{1}{|Q|} \int_{Q} w^{-t} d x\right)^{1 / t}<\infty, \quad \frac{1}{s}+\frac{1}{t}<\frac{2}{n}
$$

- The relevant work is due Fabes-Kenig-Serapioni (1982), they removed the restriction in s, t, and consider the A_{2} condition instead:

$$
[w]_{A_{2}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{-1} d x\right)
$$

- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.

Late 60's and early 70's: Kruzkov, Murthy, Stampacchia, Trudinger.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w^{s} d x\right)^{1 / s}\left(\frac{1}{|Q|} \int_{Q} w^{-t} d x\right)^{1 / t}<\infty, \quad \frac{1}{s}+\frac{1}{t}<\frac{2}{n}
$$

- The relevant work is due Fabes-Kenig-Serapioni (1982), they removed the restriction in s, t, and consider the A_{2} condition instead:

$$
[w]_{A_{2}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{-1} d x\right)
$$

- method of proof is based on the Moser iteration technique
- "Degenerate" elliptic equations

$$
\lambda|\xi|^{2} w(x) \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2} w(x)
$$

where w is a weight with some sort of singularity.

Late 60's and early 70's: Kruzkov, Murthy, Stampacchia, Trudinger.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w^{s} d x\right)^{1 / s}\left(\frac{1}{|Q|} \int_{Q} w^{-t} d x\right)^{1 / t}<\infty, \quad \frac{1}{s}+\frac{1}{t}<\frac{2}{n}
$$

- The relevant work is due Fabes-Kenig-Serapioni (1982), they removed the restriction in s, t, and consider the A_{2} condition instead:

$$
[w]_{A_{2}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{-1} d x\right)
$$

- method of proof is based on the Moser iteration technique

Weighted Poincaré and Poincaré-Sobolev inequalties

Weighted Poincaré and Poincaré-Sobolev inequalties

If

```
w\in A2
```


Weighted Poincaré and Poincaré-Sobolev inequalties

If $\quad w \in A_{2}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

Weighted Poincaré and Poincaré-Sobolev inequalties

If $\quad w \in A_{2}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

and there is gain for some δ :

Weighted Poincaré and Poincaré-Sobolev inequalties

If $\quad w \in A_{2}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

and there is gain for some δ :

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2+\delta} w\right)^{\frac{1}{2+\delta}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

Weighted Poincaré and Poincaré-Sobolev inequalties

If $\quad w \in A_{2}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

and there is gain for some δ :

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2+\delta} w\right)^{\frac{1}{2+\delta}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

- Due to Fabes-Kenig-Serapioni.

Weighted Poincaré and Poincaré-Sobolev inequalties

If

$$
w \in A_{2}
$$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

and there is gain for some δ :

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2+\delta} w\right)^{\frac{1}{2+\delta}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

- Due to Fabes-Kenig-Serapioni.
- Method of proof is by fractional integrals.

Weighted Poincaré and Poincaré-Sobolev inequalties

If

$$
w \in A_{2}
$$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

and there is gain for some δ :

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2+\delta} w\right)^{\frac{1}{2+\delta}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

- Due to Fabes-Kenig-Serapioni.
- Method of proof is by fractional integrals.

Since there have been a lot of variants of these results:

If

$$
w \in A_{2}
$$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

and there is gain for some δ :

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2+\delta} w\right)^{\frac{1}{2+\delta}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

- Due to Fabes-Kenig-Serapioni.
- Method of proof is by fractional integrals.

Since there have been a lot of variants of these results:

- Chanillo-Wheeden, Franchi-Lu-Wheeden, Chua-Wheeden

If

$$
w \in A_{2}
$$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

and there is gain for some δ :

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2+\delta} w\right)^{\frac{1}{2+\delta}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

- Due to Fabes-Kenig-Serapioni.
- Method of proof is by fractional integrals.

Since there have been a lot of variants of these results:

- Chanillo-Wheeden, Franchi-Lu-Wheeden, Chua-Wheeden

We will see again the gain again but it is not that precise anymore.

If

$$
\begin{aligned}
& w \in A_{2} \\
& \left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2} w\right)^{\frac{1}{2}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}},
\end{aligned}
$$

and there is gain for some δ :

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{2+\delta} w\right)^{\frac{1}{2+\delta}} \leq C(w) \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{2} w\right)^{\frac{1}{2}}
$$

- Due to Fabes-Kenig-Serapioni.
- Method of proof is by fractional integrals.

Since there have been a lot of variants of these results:

- Chanillo-Wheeden, Franchi-Lu-Wheeden, Chua-Wheeden

We will see again the gain again but it is not that precise anymore.

- First example of this property is due to L. Saloff-Coste.

GENERAL SITUATION

STARTING POINT:

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq a(Q)
$$

where a is a "functional"

GENERAL SITUATION

STARTING POINT:

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq a(Q)
$$

where a is a "functional"

$$
a: \mathcal{Q} \rightarrow(0, \infty)
$$

GENERAL SITUATION

STARTING POINT:

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq a(Q)
$$

where a is a "functional"

$$
a: \mathcal{Q} \rightarrow(0, \infty)
$$

where \mathcal{Q} denotes the family of all cubes from \mathbb{R}^{n}.

GENERAL SITUATION

STARTING POINT:

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq a(Q)
$$

where a is a "functional"

$$
a: \mathcal{Q} \rightarrow(0, \infty)
$$

where \mathcal{Q} denotes the family of all cubes from \mathbb{R}^{n}.

Question: What kind of condition can we impose on a to get the self-improving property?

GENERAL SITUATION

STARTING POINT:

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq a(Q)
$$

where a is a "functional" $a: \mathcal{Q} \rightarrow(0, \infty)$
where \mathcal{Q} denotes the family of all cubes from \mathbb{R}^{n}.

Question: What kind of condition can we impose on a to get the self-improving property?

- There is the L^{p} self-improving (model example: Sobolev inequalities)

GENERAL SITUATION

STARTING POINT:

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq a(Q)
$$

where a is a "functional"

$$
a: \mathcal{Q} \rightarrow(0, \infty)
$$

where \mathcal{Q} denotes the family of all cubes from \mathbb{R}^{n}.

Question: What kind of condition can we impose on a to get the self-improving property?

- There is the L^{p} self-improving (model example: Sobolev inequalities)
- There is also exponential self-improving:

GENERAL SITUATION

STARTING POINT:

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq a(Q)
$$

where a is a "functional"

$$
a: \mathcal{Q} \rightarrow(0, \infty)
$$

where \mathcal{Q} denotes the family of all cubes from \mathbb{R}^{n}.

Question: What kind of condition can we impose on a to get the self-improving property?

- There is the L^{p} self-improving (model example: Sobolev inequalities)
- There is also exponential self-improving:
a lo John-Nirenberg or

GENERAL SITUATION

STARTING POINT:

$$
\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y \leq a(Q)
$$

where a is a "functional"

$$
a: \mathcal{Q} \rightarrow(0, \infty)
$$

where \mathcal{Q} denotes the family of all cubes from \mathbb{R}^{n}.

Question: What kind of condition can we impose on a to get the self-improving property?

- There is the L^{p} self-improving (model example: Sobolev inequalities)
- There is also exponential self-improving:
a lo John-Nirenberg or
of Trudinger type

model example

Our model example is associated to the fractional average

model example

Our model example is associated to the fractional average

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

model example

Our model example is associated to the fractional average

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

- They enjoy a L^{p} self-improving

model example

Our model example is associated to the fractional average

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

- They enjoy a L^{p} self-improving
- Motivated by the theory developed in the papers by Hajlasz, Heinonen and Koskela.

model example

Our model example is associated to the fractional average

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

- They enjoy a L^{p} self-improving
- Motivated by the theory developed in the papers by Hajlasz, Heinonen and Koskela.
- Other type of examples are given by

model example

Our model example is associated to the fractional average

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

- They enjoy a L^{p} self-improving
- Motivated by the theory developed in the papers by Hajlasz, Heinonen and Koskela.
- Other type of examples are given by

$$
a(Q)=\nu(Q)^{\frac{1}{p}}
$$

model example

Our model example is associated to the fractional average

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

- They enjoy a L^{p} self-improving
- Motivated by the theory developed in the papers by Hajlasz, Heinonen and Koskela.
- Other type of examples are given by

$$
a(Q)=\nu(Q)^{\frac{1}{p}}
$$

- related to the exponential self-improving property.
the D_{r} condition
the D_{r} condition
GOAL: find some conditions on a such if f satisfies
the D_{r} condition
GOAL: find some conditions on a such if f satisfies

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \quad Q \subset \mathbb{R}^{n}
$$

the D_{r} condition

GOAL: find some conditions on a such if f satisfies

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \quad Q \subset \mathbb{R}^{n}
$$

implies a L^{r} self-improving property of the form for some $r>1$,

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right|^{r} d y\right)^{1 / r} \leq c a(Q)
$$

the D_{r} condition
GOAL: find some conditions on a such if f satisfies

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \quad Q \subset \mathbb{R}^{n}
$$

implies a L^{r} self-improving property of the form for some $r>1$,

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right|^{r} d y\right)^{1 / r} \leq c a(Q)
$$

We impose a geometrical type condition which will be key in what follows:

GOAL: find some conditions on a such if f satisfies

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \quad Q \subset \mathbb{R}^{n}
$$

implies a L^{r} self-improving property of the form for some $r>1$,

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right|^{r} d y\right)^{1 / r} \leq c a(Q)
$$

We impose a geometrical type condition which will be key in what follows:
Let $0<r<\infty$. We say that the functional a satisfies the D_{r} condition if there exists a finite constant c such that for each cube Q and any family $\left\{Q_{i}\right\}$ of pairwise disjoint dyadic subcubes of Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right| \leq c^{r} a(Q)^{r}|Q|
$$

GOAL: find some conditions on a such if f satisfies

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \quad Q \subset \mathbb{R}^{n}
$$

implies a L^{r} self-improving property of the form for some $r>1$,

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right|^{r} d y\right)^{1 / r} \leq c a(Q)
$$

We impose a geometrical type condition which will be key in what follows:
Let $0<r<\infty$. We say that the functional a satisfies the D_{r} condition if there exists a finite constant c such that for each cube Q and any family $\left\{Q_{i}\right\}$ of pairwise disjoint dyadic subcubes of Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right| \leq c^{r} a(Q)^{r}|Q|
$$

- Resembles a little bit the Carleson condition.

GOAL: find some conditions on a such if f satisfies

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \quad Q \subset \mathbb{R}^{n}
$$

implies a L^{r} self-improving property of the form for some $r>1$,

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right|^{r} d y\right)^{1 / r} \leq c a(Q)
$$

We impose a geometrical type condition which will be key in what follows:
Let $0<r<\infty$. We say that the functional a satisfies the D_{r} condition if there exists a finite constant c such that for each cube Q and any family $\left\{Q_{i}\right\}$ of pairwise disjoint dyadic subcubes of Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right| \leq c^{r} a(Q)^{r}|Q|
$$

- Resembles a little bit the Carleson condition.
- $r<s \Longrightarrow D_{s} \subset D_{r}$.

GOAL: find some conditions on a such if f satisfies

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \quad Q \subset \mathbb{R}^{n}
$$

implies a L^{r} self-improving property of the form for some $r>1$,

$$
\left(\frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right|^{r} d y\right)^{1 / r} \leq c a(Q)
$$

We impose a geometrical type condition which will be key in what follows:
Let $0<r<\infty$. We say that the functional a satisfies the D_{r} condition if there exists a finite constant c such that for each cube Q and any family $\left\{Q_{i}\right\}$ of pairwise disjoint dyadic subcubes of Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right| \leq c^{r} a(Q)^{r}|Q|
$$

- Resembles a little bit the Carleson condition.
- $r<s \Longrightarrow D_{s} \subset D_{r}$.
- Then we can define for a given a the optimal exponent

$$
r_{a}=\sup \left\{r: a \in D_{r}\right\}
$$

EXAMPLES

EXAMPLES

Recall the fractional functional given by

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

EXAMPLES

Recall the fractional functional given by

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

Observe that with $r=\frac{n p}{n-\alpha p} \quad$ we have

$$
a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\nu\left(Q_{i}\right)^{r / p}
$$

EXAMPLES

Recall the fractional functional given by

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

Observe that with $r=\frac{n p}{n-\alpha p} \quad$ we have

$$
a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\nu\left(Q_{i}\right)^{r / p}
$$

and then if $\left\{Q_{i}\right\}$ is a family of disjoint dyadic subcubes of Q

EXAMPLES

Recall the fractional functional given by

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

Observe that with $r=\frac{n p}{n-\alpha p} \quad$ we have

$$
a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\nu\left(Q_{i}\right)^{r / p}
$$

and then if $\left\{Q_{i}\right\}$ is a family of disjoint dyadic subcubes of Q

$$
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\sum_{i} \nu\left(Q_{i}\right)^{r / p} \leq\left(\sum_{i} \nu\left(Q_{i}\right)\right)^{r / p}
$$

EXAMPLES

Recall the fractional functional given by

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

Observe that with $r=\frac{n p}{n-\alpha p} \quad$ we have

$$
a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\nu\left(Q_{i}\right)^{r / p}
$$

and then if $\left\{Q_{i}\right\}$ is a family of disjoint dyadic subcubes of Q

$$
\begin{gathered}
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\sum_{i} \nu\left(Q_{i}\right)^{r / p} \leq\left(\sum_{i} \nu\left(Q_{i}\right)\right)^{r / p} \\
\leq \nu(Q)^{r / p}=a(Q)^{r}|Q|
\end{gathered}
$$

which means that $a \in D_{r}$.

EXAMPLES

Recall the fractional functional given by

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

Observe that with $r=\frac{n p}{n-\alpha p} \quad$ we have

$$
a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\nu\left(Q_{i}\right)^{r / p}
$$

and then if $\left\{Q_{i}\right\}$ is a family of disjoint dyadic subcubes of Q

$$
\begin{gathered}
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\sum_{i} \nu\left(Q_{i}\right)^{r / p} \leq\left(\sum_{i} \nu\left(Q_{i}\right)\right)^{r / p} \\
\leq \nu(Q)^{r / p}=a(Q)^{r}|Q|
\end{gathered}
$$

which means that $a \in D_{r}$.
Some observations:

- If $\alpha=1, r=p^{*}$, the Sobolev exponent.

EXAMPLES

Recall the fractional functional given by

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

Observe that with $r=\frac{n p}{n-\alpha p} \quad$ we have

$$
a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\nu\left(Q_{i}\right)^{r / p}
$$

and then if $\left\{Q_{i}\right\}$ is a family of disjoint dyadic subcubes of Q

$$
\begin{gathered}
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\sum_{i} \nu\left(Q_{i}\right)^{r / p} \leq\left(\sum_{i} \nu\left(Q_{i}\right)\right)^{r / p} \\
\leq \nu(Q)^{r / p}=a(Q)^{r}|Q|
\end{gathered}
$$

which means that $a \in D_{r}$.
Some observations:

- If $\alpha=1, r=p^{*}$, the Sobolev exponent.
- If $\alpha=m=1,2 \cdots, \quad r=\frac{m p}{n-p m}$, the Sobolev exponent related to higher order PI.

EXAMPLES

Recall the fractional functional given by

$$
a(Q)=\ell(Q)^{\alpha}\left(\frac{\nu(Q)}{|Q|}\right)^{1 / p}
$$

Observe that with $r=\frac{n p}{n-\alpha p} \quad$ we have

$$
a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\nu\left(Q_{i}\right)^{r / p}
$$

and then if $\left\{Q_{i}\right\}$ is a family of disjoint dyadic subcubes of Q

$$
\begin{gathered}
\sum_{i} a\left(Q_{i}\right)^{r}\left|Q_{i}\right|=\sum_{i} \nu\left(Q_{i}\right)^{r / p} \leq\left(\sum_{i} \nu\left(Q_{i}\right)\right)^{r / p} \\
\leq \nu(Q)^{r / p}=a(Q)^{r}|Q|
\end{gathered}
$$

which means that $a \in D_{r}$.
Some observations:

- If $\alpha=1, r=p^{*}$, the Sobolev exponent.
- If $\alpha=m=1,2 \cdots, \quad r=\frac{m p}{n-p m}$, the Sobolev exponent related to higher order PI.
- If $\nu \equiv 1, a$ satisfies the D_{r} condition for every $r>1$.

Variants of the D_{r} condition

Variants of the D_{r} condition

The (weighted) $D_{r}(w)$ condition for some $0<r<\infty$: for each cube Q and for any family $\left\{Q_{i}\right\}$ of pairwise disjoint cubes contained in Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r} w\left(Q_{i}\right) \leq c^{r} a(Q)^{r} w(Q)
$$

Variants of the D_{r} condition

The (weighted) $D_{r}(w)$ condition for some $0<r<\infty$: for each cube Q and for any family $\left\{Q_{i}\right\}$ of pairwise disjoint cubes contained in Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r} w\left(Q_{i}\right) \leq c^{r} a(Q)^{r} w(Q)
$$

Theorem (Franchi, P, Wheeden, 1998)
Let $a \in D_{r}(w)$ for some $r>0$ and let $w \in A_{\infty}$. Let f such that

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q),
$$

Variants of the D_{r} condition

The (weighted) $D_{r}(w)$ condition for some $0<r<\infty$: for each cube Q and for any family $\left\{Q_{i}\right\}$ of pairwise disjoint cubes contained in Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r} w\left(Q_{i}\right) \leq c^{r} a(Q)^{r} w(Q)
$$

Theorem (Franchi, P, Wheeden, 1998)

Let $a \in D_{r}(w)$ for some $r>0$ and let $w \in A_{\infty}$. Let f such that

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q),
$$

Then there exists a constant c such that

$$
\left\|f-f_{Q}\right\|_{L^{r, \infty}(Q, w)} \leq c a(Q)
$$

Variants of the D_{r} condition

The (weighted) $D_{r}(w)$ condition for some $0<r<\infty$: for each cube Q and for any family $\left\{Q_{i}\right\}$ of pairwise disjoint cubes contained in Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r} w\left(Q_{i}\right) \leq c^{r} a(Q)^{r} w(Q)
$$

Theorem (Franchi, P, Wheeden, 1998)

Let $a \in D_{r}(w)$ for some $r>0$ and let $w \in A_{\infty}$. Let f such that

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q),
$$

Then there exists a constant c such that

$$
\left\|f-f_{Q}\right\|_{L^{r, \infty}(Q, w)} \leq c a(Q)
$$

- The proof combines Calderón-Zygmund theory with an appropriate variant of the good- λ inequality of Burkholder-Gundy.

Variants of the D_{r} condition

The (weighted) $D_{r}(w)$ condition for some $0<r<\infty$: for each cube Q and for any family $\left\{Q_{i}\right\}$ of pairwise disjoint cubes contained in Q,

$$
\sum_{i} a\left(Q_{i}\right)^{r} w\left(Q_{i}\right) \leq c^{r} a(Q)^{r} w(Q)
$$

Theorem (Franchi, P, Wheeden, 1998)

Let $a \in D_{r}(w)$ for some $r>0$ and let $w \in A_{\infty}$. Let f such that

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q)
$$

Then there exists a constant c such that

$$
\left\|f-f_{Q}\right\|_{L^{r, \infty}(Q, w)} \leq c a(Q)
$$

- The proof combines Calderón-Zygmund theory with an appropriate variant of the good- λ inequality of Burkholder-Gundy.
- Can be extended to the context of a space of homogeneous type.

How to recover the weighted Poincaré-Sobolev inequality

How to recover the weighted Poincaré-Sobolev inequality
We start by using the L^{1} unweighted Poincaré inequality

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n} \ell(Q) f_{Q}|\nabla f(x)| d x .
$$

We start by using the L^{1} unweighted Poincaré inequality

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n} \ell(Q) f_{Q}|\nabla f(x)| d x .
$$

By the A_{p} condition, we obtain that

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p} .
$$

We start by using the L^{1} unweighted Poincaré inequality

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n} \ell(Q) f_{Q}|\nabla f(x)| d x .
$$

By the A_{p} condition, we obtain that

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p} .
$$

Hence appears naturally the weighted fractional integral

$$
a_{f}(Q):=c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

We start by using the L^{1} unweighted Poincaré inequality

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n} \ell(Q) f_{Q}|\nabla f(x)| d x .
$$

By the A_{p} condition, we obtain that

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

Hence appears naturally the weighted fractional integral

$$
a_{f}(Q):=c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

which satisfies trivially

We start by using the L^{1} unweighted Poincaré inequality

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n} \ell(Q) f_{Q}|\nabla f(x)| d x .
$$

By the A_{p} condition, we obtain that

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

Hence appears naturally the weighted fractional integral

$$
a_{f}(Q):=c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

which satisfies trivially $a \in D_{p}(w)$

We start by using the L^{1} unweighted Poincaré inequality

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n} \ell(Q) f_{Q}|\nabla f(x)| d x .
$$

By the A_{p} condition, we obtain that

$$
\frac{1}{|Q|}\left|f(x)-f_{Q}\right| d x \leq c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p} .
$$

Hence appears naturally the weighted fractional integral

$$
a_{f}(Q):=c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

which satisfies trivially $a \in D_{p}(w)$
and hence

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f(x)-f_{Q}\right|^{p} w d x\right)^{1 / p} \leq \tilde{c} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

How to recover the weighted Poincaré-Sobolev inequality

How to recover the weighted Poincaré-Sobolev inequality

It is more interesting to get for some $p^{*}>p$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f(y)-f_{Q}\right|^{p^{*}} w(y) d y\right)^{\frac{1}{p^{*}}} \leq \tilde{c} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{\frac{1}{p}}
$$

How to recover the weighted Poincaré-Sobolev inequality

It is more interesting to get for some $p^{*}>p$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f(y)-f_{Q}\right|^{p^{*}} w(y) d y\right)^{\frac{1}{p^{*}}} \leq \tilde{c} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{\frac{1}{p}}
$$

Hence the question reduces to understand the $D_{p^{*}}(w)$ for a larger exponent.

Lemma Let $w \in A_{p}, a \in D_{p\left(n^{\prime}+\delta\right)}(w)$ where δ depends on w.

How to recover the weighted Poincaré-Sobolev inequality

It is more interesting to get for some $p^{*}>p$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f(y)-f_{Q}\right|^{p^{*}} w(y) d y\right)^{\frac{1}{p^{*}}} \leq \tilde{c} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{\frac{1}{p}}
$$

Hence the question reduces to understand the $D_{p^{*}}(w)$ for a larger exponent.

Lemma Let $w \in A_{p}, \quad a \in D_{p\left(n^{\prime}+\delta\right)}(w)$ where δ depends on w.
and hence

How to recover the weighted Poincaré-Sobolev inequality

It is more interesting to get for some $p^{*}>p$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f(y)-f_{Q}\right|^{p^{*}} w(y) d y\right)^{\frac{1}{p^{*}}} \leq \tilde{c} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{\frac{1}{p}}
$$

Hence the question reduces to understand the $D_{p^{*}}(w)$ for a larger exponent.

Lemma Let $w \in A_{p}, \quad a \in D_{p\left(n^{\prime}+\delta\right)}(w)$ where δ depends on w.
and hence

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f(y)-f_{Q}\right|^{p\left(n^{\prime}+\delta\right)} w d x\right)^{\frac{1}{p\left(n^{\prime}+\delta\right)}} \leq \tilde{c} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{\frac{1}{p}}
$$

Other Interesting Poincaré Inequalities

Other Interesting Poincaré Inequalities

Subelliptic operators,

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables.

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}} .
$$

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}}
$$

Nagel-Stein-Wainger proved that there is a metric d_{X}, the Carnot-Caratheodory metric,

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}} .
$$

Nagel-Stein-Wainger proved that there is a metric d_{X}, the Carnot-Caratheodory metric, which is doubling with respect to the Lebesgue measure.

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}} .
$$

Nagel-Stein-Wainger proved that there is a metric d_{X}, the Carnot-Caratheodory metric, which is doubling with respect to the Lebesgue measure. Hence

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}} .
$$

Nagel-Stein-Wainger proved that there is a metric d_{X}, the Carnot-Caratheodory metric, which is doubling with respect to the Lebesgue measure. Hence

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}}
$$

Nagel-Stein-Wainger proved that there is a metric d_{X}, the Carnot-Caratheodory metric, which is doubling with respect to the Lebesgue measure. Hence

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

becomes a space of homogeneous type.

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}} .
$$

Nagel-Stein-Wainger proved that there is a metric d_{X}, the Carnot-Caratheodory metric, which is doubling with respect to the Lebesgue measure. Hence

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

becomes a space of homogeneous type.

- There is a key PI :

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}} .
$$

Nagel-Stein-Wainger proved that there is a metric d_{X}, the Carnot-Caratheodory metric, which is doubling with respect to the Lebesgue measure. Hence

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

becomes a space of homogeneous type.
-. There is a key PI:

$$
\frac{1}{|B|} \int_{B}\left|f-f_{B}\right| \leq c \frac{r_{B}}{|B|} \int_{B}|X f|
$$

Other Interesting Poincaré Inequalities

Subelliptic operators, from the theory of several complex variables. In \mathbb{R}^{2} :

$$
\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x}, x \frac{\partial}{\partial y}\right)
$$

associated to the Grushin operator:

$$
X_{1}^{2}+X_{2}^{2}=\frac{\partial^{2}}{\partial x^{2}}+x^{2} \frac{\partial^{2}}{\partial y^{2}} .
$$

Nagel-Stein-Wainger proved that there is a metric d_{X}, the Carnot-Caratheodory metric, which is doubling with respect to the Lebesgue measure. Hence

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

becomes a space of homogeneous type.
-. There is a key PI:

$$
\frac{1}{|B|} \int_{B}\left|f-f_{B}\right| \leq c \frac{r_{B}}{|B|} \int_{B}|X f|
$$

- Jerison (1986)

A NON-SMOOTH EXAMPLE

Consider the vector field

A NON-SMOOTH EXAMPLE

Consider the vector field

$$
X_{\alpha}=\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x},|x|^{\alpha} \frac{\partial}{\partial y}\right)
$$

A NON-SMOOTH EXAMPLE

Consider the vector field

$$
X_{\alpha}=\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x},|x|^{\alpha} \frac{\partial}{\partial y}\right)
$$

associated to the operator:

A NON-SMOOTH EXAMPLE

Consider the vector field

$$
X_{\alpha}=\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x},|x|^{\alpha} \frac{\partial}{\partial y}\right)
$$

associated to the operator:

$$
\frac{\partial^{2}}{\partial x^{2}}+|x|^{2 \alpha} \frac{\partial^{2}}{\partial y^{2}} .
$$

A NON-SMOOTH EXAMPLE

Consider the vector field

$$
X_{\alpha}=\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x},|x|^{\alpha} \frac{\partial}{\partial y}\right)
$$

associated to the operator:

$$
\frac{\partial^{2}}{\partial x^{2}}+|x|^{2 \alpha} \frac{\partial^{2}}{\partial y^{2}}
$$

These type of non-smooth examples were considered by Franchi-Lanconelli in the mid 80's.

A NON-SMOOTH EXAMPLE

Consider the vector field

$$
X_{\alpha}=\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x},|x|^{\alpha} \frac{\partial}{\partial y}\right)
$$

associated to the operator:

$$
\frac{\partial^{2}}{\partial x^{2}}+|x|^{2 \alpha} \frac{\partial^{2}}{\partial y^{2}}
$$

These type of non-smooth examples were considered by Franchi-Lanconelli in the mid 80's.
As above there is a corresponding Carnot-Caratheodory metric d_{X} such

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

becomes space of homogeneous type.

A NON-SMOOTH EXAMPLE

Consider the vector field

$$
X_{\alpha}=\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x},|x|^{\alpha} \frac{\partial}{\partial y}\right)
$$

associated to the operator:

$$
\frac{\partial^{2}}{\partial x^{2}}+|x|^{2 \alpha} \frac{\partial^{2}}{\partial y^{2}}
$$

These type of non-smooth examples were considered by Franchi-Lanconelli in the mid 80's.
As above there is a corresponding Carnot-Caratheodory metric d_{X} such

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

becomes space of homogeneous type.

- There is another key PI:

A NON-SMOOTH EXAMPLE

Consider the vector field

$$
X_{\alpha}=\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x},|x|^{\alpha} \frac{\partial}{\partial y}\right)
$$

associated to the operator:

$$
\frac{\partial^{2}}{\partial x^{2}}+|x|^{2 \alpha} \frac{\partial^{2}}{\partial y^{2}}
$$

These type of non-smooth examples were considered by Franchi-Lanconelli in the mid 80's.
As above there is a corresponding Carnot-Caratheodory metric d_{X} such

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

becomes space of homogeneous type.

- There is another key PI:

$$
\frac{1}{|B|} \int_{B}\left|f-f_{B}\right| \leq c \frac{r_{B}}{|B|} \int_{B}\left|X_{\alpha} f\right|
$$

A NON-SMOOTH EXAMPLE

Consider the vector field

$$
X_{\alpha}=\left(X_{1}, X_{2}\right)=\left(\frac{\partial}{\partial x},|x|^{\alpha} \frac{\partial}{\partial y}\right)
$$

associated to the operator:

$$
\frac{\partial^{2}}{\partial x^{2}}+|x|^{2 \alpha} \frac{\partial^{2}}{\partial y^{2}}
$$

These type of non-smooth examples were considered by Franchi-Lanconelli in the mid 80's.
As above there is a corresponding Carnot-Caratheodory metric d_{X} such

$$
\left(\mathbb{R}^{n}, d_{X}, d x\right)
$$

becomes space of homogeneous type.

- There is another key PI:

$$
\frac{1}{|B|} \int_{B}\left|f-f_{B}\right| \leq c \frac{r_{B}}{|B|} \int_{B}\left|X_{\alpha} f\right|
$$

- Franchi-Gutierrez-Wheeden (1994).

Poincaré-Sobolev

Poincaré-Sobolev

Let

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where }
$$

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where }
$$

$$
D=\text { doubling order }
$$

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where }
$$

$D=$ doubling order
Then

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where }
$$

$D=$ doubling order
Then

- the smooth case:

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where } \quad D=\text { doubling order }
$$

Then

- the smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}|X f|^{p}\right)^{1 / p}
$$

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where }
$$

$D=$ doubling order
Then

- the smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}|X f|^{p}\right)^{1 / p}
$$

- Lu $p>1$

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where } \quad D=\text { doubling order }
$$

Then

- the smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}|X f|^{p}\right)^{1 / p}
$$

- Lu $p>1$
- Franchi-Lu-Wheeden $p=1$.

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where } \quad D=\text { doubling order }
$$

Then

- the smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}|X f|^{p}\right)^{1 / p}
$$

- Lu $p>1$
- Franchi-Lu-Wheeden $p=1$.
- the non-smooth case:

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where } \quad D=\text { doubling order }
$$

Then

- the smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}|X f|^{p}\right)^{1 / p}
$$

- Lu $p>1$
- Franchi-Lu-Wheeden $p=1$.
- the non-smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}\left|X_{\alpha} f\right|^{p}\right)^{1 / p}
$$

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where } \quad D=\text { doubling order }
$$

Then

- the smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}|X f|^{p}\right)^{1 / p}
$$

- Lu $p>1$
- Franchi-Lu-Wheeden $p=1$.
- the non-smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}\left|X_{\alpha} f\right|^{p}\right)^{1 / p}
$$

Franchi-Gutierrez-Wheeden, $p \geq 1$

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where } \quad D=\text { doubling order }
$$

Then

- the smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}|X f|^{p}\right)^{1 / p}
$$

- Lu $p>1$
- Franchi-Lu-Wheeden $p=1$.
- the non-smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}\left|X_{\alpha} f\right|^{p}\right)^{1 / p}
$$

Franchi-Gutierrez-Wheeden, $p \geq 1$

- Each case has its own proof all of them based on a representation formula.

Poincaré-Sobolev

Let

$$
p^{*}=\frac{p D}{D-p} \quad \text { where } \quad D=\text { doubling order }
$$

Then

- the smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}|X f|^{p}\right)^{1 / p}
$$

- Lu $p>1$
- Franchi-Lu-Wheeden $p=1$.
- the non-smooth case:

$$
\left(\frac{1}{|B|} \int_{B}\left|f-f_{B}\right|^{p^{*}}\right)^{1 / p^{*}} \leq c r_{B}\left(\frac{1}{|B|} \int_{B}\left|X_{\alpha} f\right|^{p}\right)^{1 / p}
$$

Franchi-Gutierrez-Wheeden, $p \geq 1$

- Each case has its own proof all of them based on a representation formula.
- We avoid all these.

THE SHARPEST RESULT IN THE GENERAL CONTEXT

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $(X, d, \mu) \quad$ be a metric space with a doubling measure μ

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

$$
\sum_{i} a\left(B_{i}\right)^{r} w_{\mu}\left(B_{i}\right) \leq c^{r} a(B)^{r} w_{\mu}(B)
$$

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

$$
\sum_{i} a\left(B_{i}\right)^{r} w_{\mu}\left(B_{i}\right) \leq c^{r} a(B)^{r} w_{\mu}(B)
$$

Theorem (MacManus, P.) Let $w \in A_{\infty}(\mu)$ and suppose that

$$
\frac{1}{\mu(B)} \int_{B}\left|f-f_{B}\right| d \mu \leq a(B)
$$

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

$$
\sum_{i} a\left(B_{i}\right)^{r} w_{\mu}\left(B_{i}\right) \leq c^{r} a(B)^{r} w_{\mu}(B)
$$

Theorem (MacManus, P.) Let $w \in A_{\infty}(\mu)$ and suppose that

$$
\frac{1}{\mu(B)} \int_{B}\left|f-f_{B}\right| d \mu \leq a(B)
$$

Then, if $\delta>0$, there is a constant C independent of f and B such that

$$
\left\|f-f_{B}\right\|_{L^{r, \infty}(B, w)} \leq C a((1+\delta) B)
$$

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

$$
\sum_{i} a\left(B_{i}\right)^{r} w_{\mu}\left(B_{i}\right) \leq c^{r} a(B)^{r} w_{\mu}(B)
$$

Theorem (MacManus, P.) Let $w \in A_{\infty}(\mu)$ and suppose that

$$
\frac{1}{\mu(B)} \int_{B}\left|f-f_{B}\right| d \mu \leq a(B)
$$

Then, if $\delta>0$, there is a constant C independent of f and B such that

$$
\left\|f-f_{B}\right\|_{L^{r, \infty}(B, w)} \leq C a((1+\delta) B)
$$

- It is not so clean because of the factor $(1+\delta)$. (lack of dyadic structure)

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

$$
\sum_{i} a\left(B_{i}\right)^{r} w_{\mu}\left(B_{i}\right) \leq c^{r} a(B)^{r} w_{\mu}(B)
$$

Theorem (MacManus, P.) Let $w \in A_{\infty}(\mu)$ and suppose that

$$
\frac{1}{\mu(B)} \int_{B}\left|f-f_{B}\right| d \mu \leq a(B)
$$

Then, if $\delta>0$, there is a constant C independent of f and B such that

$$
\left\|f-f_{B}\right\|_{L^{r, \infty}(B, w)} \leq C a((1+\delta) B)
$$

- It is not so clean because of the factor $(1+\delta)$. (lack of dyadic structure)
- Other situations: non homogeneous spaces

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $\quad(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

$$
\sum_{i} a\left(B_{i}\right)^{r} w_{\mu}\left(B_{i}\right) \leq c^{r} a(B)^{r} w_{\mu}(B)
$$

Theorem (MacManus, P.) Let $w \in A_{\infty}(\mu)$ and suppose that

$$
\frac{1}{\mu(B)} \int_{B}\left|f-f_{B}\right| d \mu \leq a(B)
$$

Then, if $\delta>0$, there is a constant C independent of f and B such that

$$
\left\|f-f_{B}\right\|_{L^{r, \infty}(B, w)} \leq C a((1+\delta) B)
$$

- It is not so clean because of the factor $(1+\delta)$. (lack of dyadic structure)
- Other situations: non homogeneous spaces
(joint work with J. Orobitg)

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $\quad(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

$$
\sum_{i} a\left(B_{i}\right)^{r} w_{\mu}\left(B_{i}\right) \leq c^{r} a(B)^{r} w_{\mu}(B)
$$

Theorem (MacManus, P.) Let $w \in A_{\infty}(\mu)$ and suppose that

$$
\frac{1}{\mu(B)} \int_{B}\left|f-f_{B}\right| d \mu \leq a(B)
$$

Then, if $\delta>0$, there is a constant C independent of f and B such that

$$
\left\|f-f_{B}\right\|_{L^{r, \infty}(B, w)} \leq C a((1+\delta) B)
$$

- It is not so clean because of the factor $(1+\delta)$. (lack of dyadic structure)
- Other situations: non homogeneous spaces
(joint work with J. Orobitg)
- Weaker hypothesis: replace L^{1} norm by much weaker norms.

THE SHARPEST RESULT IN THE GENERAL CONTEXT

Let $(X, d, \mu) \quad$ be a metric space with a doubling measure μ
$D_{r}(w)$ condition: for some $0<r<\infty$ namely for each ball B and for any family $\left\{B_{i}\right\}$ of pairwise disjoint balls contained in B,

$$
\sum_{i} a\left(B_{i}\right)^{r} w_{\mu}\left(B_{i}\right) \leq c^{r} a(B)^{r} w_{\mu}(B)
$$

Theorem (MacManus, P.) Let $w \in A_{\infty}(\mu)$ and suppose that

$$
\frac{1}{\mu(B)} \int_{B}\left|f-f_{B}\right| d \mu \leq a(B)
$$

Then, if $\delta>0$, there is a constant C independent of f and B such that

$$
\left\|f-f_{B}\right\|_{L^{r, \infty}(B, w)} \leq C a((1+\delta) B)
$$

- It is not so clean because of the factor $(1+\delta)$. (lack of dyadic structure)
- Other situations: non homogeneous spaces
(joint work with J. Orobitg)
- Weaker hypothesis: replace L^{1} norm by much weaker norms.
(joint work with A. Lerner)

The small D_{p} condition

The small D_{p} condition

Definition 1 Let $L>1$ and let Q be a cube. We will say that a family of pairwise disjoint subcubes $\left\{Q_{i}\right\}$ of Q is L-small if

$$
\sum_{i}\left|Q_{i}\right| \leq \frac{|Q|}{L}
$$

We will say $\left\{Q_{i}\right\} \in S(L)$

The small D_{p} condition

Definition 1 Let $L>1$ and let Q be a cube. We will say that a family of pairwise disjoint subcubes $\left\{Q_{i}\right\}$ of Q is L-small if

$$
\sum_{i}\left|Q_{i}\right| \leq \frac{|Q|}{L}
$$

We will say $\left\{Q_{i}\right\} \in S(L)$

Now, the correct notion of D_{p} condition in this context is the following.

The small D_{p} condition

Definition 1 Let $L>1$ and let Q be a cube. We will say that a family of pairwise disjoint subcubes $\left\{Q_{i}\right\}$ of Q is L-small if

$$
\sum_{i}\left|Q_{i}\right| \leq \frac{|Q|}{L}
$$

We will say $\left\{Q_{i}\right\} \in S(L)$

Now, the correct notion of D_{p} condition in this context is the following.

Definition 1

Let w be any weight and let $s>1$. We say that the functional a satisfies the weighted $S D_{p}^{s}(w)$ condition for $0<p<\infty$ if there is a constant c such that for any cube Q and any family $\left\{Q_{i}\right\}$ of pairwise disjoint subcubes of Q such that $\left\{Q_{i}\right\} \in S(L)$, the following inequality holds:

$$
\sum_{i} a\left(Q_{i}\right)^{p} w\left(Q_{i}\right) \leq c^{p}\left(\frac{1}{L}\right)^{\frac{p}{s}} a(Q)^{p} w(Q)
$$

main example

main example

Let μ be any Radon measure and define

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

main example

Let μ be any Radon measure and define

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Let w be a weight, $L>1,1 \leq p<n$ and let $a \in S D_{p}^{n}(w)$.

main example

Let μ be any Radon measure and define

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Let w be a weight, $L>1,1 \leq p<n$ and let $a \in S D_{p}^{n}(w)$.

The proof is an easy consequence of Hölder's inequality. Let $\left\{Q_{i}\right\} \in S(L)$, then

main example

Let μ be any Radon measure and define

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Let w be a weight, $L>1,1 \leq p<n$ and let $a \in S D_{p}^{n}(w)$.

The proof is an easy consequence of Hölder's inequality. Let $\left\{Q_{i}\right\} \in S(L)$, then

$$
\sum_{i} a\left(Q_{i}\right)^{p} w\left(Q_{i}\right)=\sum_{i} \ell\left(Q_{i}\right)^{p} \mu\left(Q_{i}\right)=\sum_{i}\left|Q_{i}\right|^{p / n} \mu\left(Q_{i}\right)
$$

main example

Let μ be any Radon measure and define

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Let w be a weight, $L>1,1 \leq p<n$ and let $a \in S D_{p}^{n}(w)$.

The proof is an easy consequence of Hölder's inequality. Let $\left\{Q_{i}\right\} \in S(L)$, then

$$
\begin{gathered}
\sum_{i} a\left(Q_{i}\right)^{p} w\left(Q_{i}\right)=\sum_{i} \ell\left(Q_{i}\right)^{p} \mu\left(Q_{i}\right)=\sum_{i}\left|Q_{i}\right|^{p / n} \mu\left(Q_{i}\right) \\
\leq\left(\sum_{i}\left|Q_{i}\right|\right)^{p / n}\left(\sum_{i} \mu\left(Q_{i}\right)^{(n / p)^{\prime}}\right)^{\frac{1}{(n / p)^{\prime}}}
\end{gathered}
$$

main example

Let μ be any Radon measure and define

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Let w be a weight, $L>1,1 \leq p<n$ and let $a \in S D_{p}^{n}(w)$.

The proof is an easy consequence of Hölder's inequality. Let $\left\{Q_{i}\right\} \in S(L)$, then

$$
\begin{aligned}
& \sum_{i} a\left(Q_{i}\right)^{p} w\left(Q_{i}\right)=\sum_{i} \ell\left(Q_{i}\right)^{p} \mu\left(Q_{i}\right)=\sum_{i}\left|Q_{i}\right|^{p / n} \mu\left(Q_{i}\right) \\
& \quad \leq\left(\sum_{i}\left|Q_{i}\right|\right)^{p / n}\left(\sum_{i} \mu\left(Q_{i}\right)^{(n / p)^{\prime}}\right)^{\frac{1}{(n / p)^{\prime}}} \\
& \quad \leq\left(\frac{|Q|}{L}\right)^{p / n} \mu(Q)=\left(\frac{1}{L}\right)^{p / n} a(Q)^{p} w(Q)
\end{aligned}
$$

A first result

A first result

Theorem. Let w be any weight. Consider a functional a satisfiyng $S D_{p}^{s}(w)$ with $s>1$ and $p \geq 1$. Suppose that

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \tag{H}
\end{equation*}
$$

for every cube Q. Then, there exists a dimensional constant c_{n} such that for any cube Q

A first result

Theorem. Let w be any weight. Consider a functional a satisfiyng $S D_{p}^{s}(w)$ with $s>1$ and $p \geq 1$. Suppose that

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \tag{H}
\end{equation*}
$$

for every cube Q. Then, there exists a dimensional constant c_{n} such that for any cube Q
Then

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{p} w d x\right)^{\frac{1}{p}} \leq s c_{n} a(Q)
$$

A first result

Theorem. Let w be any weight. Consider a functional a satisfiyng $S D_{p}^{s}(w)$ with $s>1$ and $p \geq 1$. Suppose that

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| \leq a(Q) \tag{H}
\end{equation*}
$$

for every cube Q. Then, there exists a dimensional constant c_{n} such that for any cube Q
Then

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{p} w d x\right)^{\frac{1}{p}} \leq s c_{n} a(Q)
$$

Corollary

Let $(u, v) \in A_{p}$. The the following Poincaré (p, p) inequality holds

$$
\left(\frac{1}{u(Q)} \int_{Q}\left|f-f_{Q}\right|^{p} u d x\right)^{1 / p} \leq c_{n}[u, v]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{u(Q)} \int_{Q}|\nabla f|^{p} v d x\right)^{1 / p}
$$

where c_{n} is a dimensional constant.

[^0]Corollary (A generalized John-Nirenberg)
Let a be an increasing functional and suppose that f satisfies (H).

Two more corollaries

Corollary (A generalized John-Nirenberg)
Let a be an increasing functional and suppose that f satisfies (H). Then,

$$
\left\|f-f_{Q}\right\|_{\exp L(Q, w)} \leq c_{n}[w]_{A_{\infty}} a(Q)
$$

Corollary (A generalized John-Nirenberg)

Let a be an increasing functional and suppose that f satisfies (H). Then,

$$
\left\|f-f_{Q}\right\|_{\exp L(Q, w)} \leq c_{n}[w]_{A_{\infty}} a(Q)
$$

Corollary (The Keith-Zhong phenomenon)

Let $1<p_{0}$ and let (f, g) be a couple of functions satisfying

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| d x \leq C_{[w]_{A_{p_{0}}}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q} g^{p_{0}} w d x\right)^{\frac{1}{p_{0}}} \quad w \in A_{p_{0}}
$$

Two more corollaries

Corollary (A generalized John-Nirenberg)

Let a be an increasing functional and suppose that f satisfies (H). Then,

$$
\left\|f-f_{Q}\right\|_{\exp L(Q, w)} \leq c_{n}[w]_{A_{\infty}} a(Q)
$$

Corollary (The Keith-Zhong phenomenon)

Let $1<p_{0}$ and let (f, g) be a couple of functions satisfying

$$
\frac{1}{|Q|} \int_{Q}\left|f-f_{Q}\right| d x \leq C_{[w]_{A_{p_{0}}}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q} g^{p_{0}} w d x\right)^{\frac{1}{p_{0}}} \quad w \in A_{p_{0}}
$$

Then, for any $1 \leq p<p_{0}$, the following estimate holds for any $w \in A_{p}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right| w d x\right)^{1 / p} \leq c C_{[w]_{A_{p}}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q} g^{p} w d x\right)^{1 / p}
$$

Improving Poincaré-Sobolev
Improving Poincaré-Sobolev

As before let

Improving Poincaré-Sobolev

As before let

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Improving Poincaré-Sobolev

As before let

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Lemma Let $1 \leq q \leq p<n$, and let $w \in A_{q}$. If $E>1$ we let p^{*} be

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n q E} .
$$

Improving Poincaré-Sobolev

As before let

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Lemma Let $1 \leq q \leq p<n$, and let $w \in A_{q}$. If $E>1$ we let p^{*} be

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n q E} .
$$

Then, if $\left\{Q_{i}\right\} \in S(L), L>1$, the following inequality holds:

$$
\sum_{i} a\left(Q_{i}\right)^{p^{*}} w\left(Q_{i}\right) \leq[w]_{A_{q}}^{\frac{p^{*}}{q E E}}\left(\frac{1}{L}\right)^{\frac{p^{*}}{n E^{\prime}}} a(Q)^{p^{*}} w(Q)
$$

Improving Poincaré-Sobolev

As before let

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Lemma Let $1 \leq q \leq p<n$, and let $w \in A_{q}$. If $E>1$ we let p^{*} be

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n q E}
$$

Then, if $\left\{Q_{i}\right\} \in S(L), L>1$, the following inequality holds:

$$
\sum_{i} a\left(Q_{i}\right)^{p^{*}} w\left(Q_{i}\right) \leq[w]_{A_{q}}^{\frac{p^{*}}{n E}}\left(\frac{1}{L}\right)^{\frac{p^{*}}{n E^{\prime}}} a(Q)^{p^{*}} w(Q)
$$

- The functional a "preserves smallness" with index $n E^{\prime}$ and constant $[w]_{A_{q}}^{\frac{1}{n q E}}$

Improving Poincaré-Sobolev

As before let

$$
a(Q)=\ell(Q)\left(\frac{1}{w(Q)} \mu(Q)\right)^{1 / p}
$$

Lemma Let $1 \leq q \leq p<n$, and let $w \in A_{q}$. If $E>1$ we let p^{*} be

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n q E} .
$$

Then, if $\left\{Q_{i}\right\} \in S(L), L>1$, the following inequality holds:

$$
\sum_{i} a\left(Q_{i}\right)^{p^{*}} w\left(Q_{i}\right) \leq[w]_{A_{q}}^{\frac{p^{*}}{q E E}}\left(\frac{1}{L}\right)^{\frac{p^{*}}{n E}} a(Q)^{p^{*}} w(Q)
$$

- The functional a "preserves smallness" with index $n E^{\prime}$ and constant $[w]_{A_{q}}^{\frac{1}{n q E}}$
- E can be seen as "error" it is the made.

Consequence

Consequence

Corollary Let $1 \leq q \leq p<n$, and let $w \in A_{q}$. Let p^{*} be defined by

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n\left(q+\log [w]_{A_{q}}\right)}
$$

and suppose that f satisfies (H). Then

Consequence

Corollary Let $1 \leq q \leq p<n$, and let $w \in A_{q}$. Let p^{*} be defined by

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n\left(q+\log [w]_{A_{q}}\right)}
$$

and suppose that f satisfies (H). Then

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{p^{*}} w d x\right)^{\frac{1}{p^{*}}} \leq c_{n} a(Q)
$$

Consequence

Corollary Let $1 \leq q \leq p<n$, and let $w \in A_{q}$. Let p^{*} be defined by

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n\left(q+\log [w]_{A_{q}}\right)}
$$

and suppose that f satisfies (H). Then

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{p^{*}} w d x\right)^{\frac{1}{p^{*}}} \leq c_{n} a(Q)
$$

In particular

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{p^{*}} w d x\right)^{\frac{1}{p^{*}}} \leq c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

Consequence

Corollary Let $1 \leq q \leq p<n$, and let $w \in A_{q}$. Let p^{*} be defined by

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n\left(q+\log [w]_{A_{q}}\right)}
$$

and suppose that f satisfies (H). Then

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{p^{*}} w d x\right)^{\frac{1}{p^{*}}} \leq c_{n} a(Q)
$$

In particular

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{p^{*}} w d x\right)^{\frac{1}{p^{*}}} \leq c_{n}[w]_{A_{p}}^{\frac{1}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f(x)|^{p} w d x\right)^{1 / p}
$$

- Again, this is a very "clean" inequality.

Poincaré-Sobolev via Good- λ

Poincaré-Sobolev via Good- λ

Theorem

Let $1 \leq q \leq p<n$ an let $w \in A_{q}$. Let p^{*} be defined by

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n q}
$$

and suppose that f satisfies (H). Then

Poincaré-Sobolev via Good- λ

Theorem

Let $1 \leq q \leq p<n$ an let $w \in A_{q}$. Let p^{*} be defined by

$$
\frac{1}{p}-\frac{1}{p^{*}}=\frac{1}{n q}
$$

and suppose that f satisfies (H). Then

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|^{p^{*}} w d x\right)^{\frac{1}{p^{*}}} \leq c[w]_{A_{q}}^{\frac{1}{n q}}[w]_{A_{p}}^{\frac{2}{p}} \ell(Q)\left(\frac{1}{w(Q)} \int_{Q}|\nabla f|^{p} w d x\right)^{\frac{1}{p}},
$$

Bloom BMO and Muckenhoupt-Wheeden

Let f be a locally integrable function and let w be a weight such that

$$
\|f\|_{B M O_{w}}=\sup _{Q} \frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|<\infty,
$$

Bloom BMO and Muckenhoupt-Wheeden

Let f be a locally integrable function and let w be a weight such that

$$
\|f\|_{B M O_{w}}=\sup _{Q} \frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|<\infty,
$$

Theorem

a) A_{1} case: If $w \in A_{1}$, there exists a constant c such that for any cube Q and any $q>1$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left(\frac{\left|f-f_{Q}\right|}{w}\right)^{q} w d x\right)^{\frac{1}{q}} \leq c q[w]_{A_{1}}\|f\|_{B M O_{w}}
$$

and hence for any cube Q

$$
\left\|\frac{f-f_{Q}}{w}\right\|_{\exp L(Q, w)} \leq c[w]_{A_{1}}\|f\|_{B M O_{w}}
$$

Bloom BMO and Muckenhoupt-Wheeden

Let f be a locally integrable function and let w be a weight such that

$$
\|f\|_{B M O_{w}}=\sup _{Q} \frac{1}{w(Q)} \int_{Q}\left|f-f_{Q}\right|<\infty,
$$

Theorem

a) A_{1} case: If $w \in A_{1}$, there exists a constant c such that for any cube Q and any $q>1$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left(\frac{\left|f-f_{Q}\right|}{w}\right)^{q} w d x\right)^{\frac{1}{q}} \leq c q[w]_{A_{1}}\|f\|_{B M O_{w}}
$$

and hence for any cube Q

$$
\left\|\frac{f-f_{Q}}{w}\right\|_{\exp L(Q, w)} \leq c[w]_{A_{1}}\|f\|_{B M O_{w}}
$$

b) A_{p} case: If $w \in A_{p}, 1<p<\infty$, there exists a constant c such that for any cube Q

$$
\left(\frac{1}{w(Q)} \int_{Q}\left(\frac{\left|f-f_{Q}\right|}{w}\right)^{p^{\prime}} w d x\right)^{\frac{1}{p^{\prime}}} \leq c 2^{n p} p^{\prime}[w]_{A_{p}}\|f\|_{B M O_{w}}
$$

Using the sparse method

Using the sparse method

Theorem

a) A_{1} case: If $w \in A_{1}$, there exists a constant c such that for any cube Q and $q>1$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n}\|f\|_{B M O_{w}} q q^{\prime}[w]_{A_{1}}^{\frac{1}{q^{\prime}}}[w]_{A \infty}^{\frac{1}{q}}
$$

Using the sparse method

Theorem

a) A_{1} case: If $w \in A_{1}$, there exists a constant c such that for any cube Q and $q>1$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n}\|f\|_{B M O_{w}} q q^{\prime}[w]_{A_{1}}^{\frac{1}{q}}[w]_{A_{\infty}}^{\frac{1}{q}}
$$

b) A_{p} case: then, if $1 \leq q \leq p^{\prime}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n} p\|f\|_{B M O_{w}}[w]_{A_{\infty}}^{\frac{1}{p^{\prime}}}[w]_{A_{p}}^{\frac{1}{p}}
$$

Using the sparse method

Theorem

a) A_{1} case: If $w \in A_{1}$, there exists a constant c such that for any cube Q and $q>1$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n}\|f\|_{B M O_{w}} q q^{\prime}[w]_{A_{1}}^{\frac{1}{q}}[w]_{A_{\infty}}^{\frac{1}{q}}
$$

b) A_{p} case: then, if $1 \leq q \leq p^{\prime}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n} p\|f\|_{B M O_{w}}[w]_{A_{\infty}}^{\frac{1}{p^{\prime}}}[w]_{A_{p}}^{\frac{1}{p}}
$$

Using the sparse method

Theorem

a) A_{1} case: If $w \in A_{1}$, there exists a constant c such that for any cube Q and $q>1$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n}\|f\|_{B M O_{w}} q q^{\prime}[w]_{A_{1}}^{\frac{1}{q}}[w]_{A_{\infty}}^{\frac{1}{q}}
$$

b) A_{p} case: then, if $1 \leq q \leq p^{\prime}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n} p\|f\|_{B M O_{w}}[w]_{A_{\infty}}^{\frac{1}{p^{\prime}}}[w]_{A_{p}}^{\frac{1}{p}}
$$

Using the sparse method

Theorem

a) A_{1} case: If $w \in A_{1}$, there exists a constant c such that for any cube Q and $q>1$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n}\|f\|_{B M O_{w}} q q^{\prime}[w]_{A_{1}}^{\frac{1}{q}}[w]_{A_{\infty}}^{\frac{1}{q}}
$$

b) A_{p} case: then, if $1 \leq q \leq p^{\prime}$

$$
\left(\frac{1}{w(Q)} \int_{Q}\left|\frac{f(x)-f_{Q}}{w}\right|^{q} w(x) d x\right)^{\frac{1}{q}} \leq c_{n} p\|f\|_{B M O_{w}}[w]_{A_{\infty}}^{\frac{1}{p^{\prime}}}[w]_{A_{p}}^{\frac{1}{p}}
$$

merci
 beaucoup

merci
 beaucoup

thank you very much

[^0]: Two more corollaries

