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Wave packet decompositions

Our goal is to recall some techniques in “wave packet
decompositions”

Wf (ρ) = 〈f (x), ϕρ(x)〉

such as the Bargmann transform and to describe how one can adapt
the decomposition to the operator investigated, in particular for
quadratic non-self-adjoint operators.

Example: for the Bargmann transform, the family {ϕρ}ρ∈C is made
up of phase-space translations of the Gaussian ϕ0(x) = e−πx2

.
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Application to non-self-adjoint operators

If θ ∈ (−π/2, π/2) and

Qθ = π

(
eiθx2 − e−iθ 1

4π2
d2

dx2

)
,

identify the eigenfunctions uk,θ and the L2-operator norm of the
spectral projections

1
k

log ‖Πk,θ‖ ∼
(

1 + | sin θ|
1− | sin θ|

)1/2

, θ 6= 0.

[Davies, Kuijlaars 2004; Bagarello, 2010; V. 2013]
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Phase-space translations

We know how to translate a function by x0 in physical space:

T(x0,0)f (x) = f (x− x0).
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Phase-space translations

We know how to translate a function by x0 in physical space:

T(x0,0)f (x) = f (x− x0).

We know how to translate a function by ξ0 in momentum:

T(0,ξ0)f (x) = e2πiξ0xf (x).

To do both simultaneously, there’s a natural correction factor.

T(x0,ξ0)f (x) = e−πix0ξ0+2πiξ0xf (x− x0).
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Why the correction factor?

T(x0,ξ0)f (x) = e−πix0ξ0+2πiξ0xf (x− x0).

1. We’d like {Tt(x0,ξ0)}t∈R to be a group.
2. Note that, if Dt = 1

2πi∂t (as in Folland)

Dte2πitξ0xf (x) = ξ0xe2πitξ0xf (x).

Moreover, if Dx = 1
2πi∂x as well,

Dtf (x− tx0) = −x0(Dxf )(x− tx0).

We’d actually like {Tt(x0,ξ0)}t∈R to be the group

Tt(x0,ξ0) = exp(2πit(ξ0x− x0Dx)).
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Composition law

One can compute directly that, for v,w ∈ R2n and

σ((vx, vξ), (wx,wξ)) = vξwx − wξvx,

the shifts obey
TvTw = eπiσ(v,w)Tv+w.

Another way of saying this is that

{eπisTv : (s, v) ∈ R1+2n}

is the Heisenberg group.
Remark: the sympletic product also appears in

Tv = exp (2πiσ(v, (x,Dx)))
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What the correction factor is good for

Let
F f (x) = e−

πi
4

∫
e−2πixyf (y) dy

be the Fourier transform.

We know that F f (· − x0)(x) = e−2πix0xF f (x) and that
Fe2πiξ0·f (·)(x) = F f (x− ξ0). But the two together. . .
We have the general rule

FT(x0,ξ0) = T(ξ0,−x0)F ,

with no constants.
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A more complicated example

A more involved computation comes from tracking the quantum
Schrödinger evolution

e−itQ0ϕ0(x− x0)

when
ϕ0(x) = e−πx2

,

Q0 = π(D2
x + x2).
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Ansatz and ODEs

We could guess that e−itQ0ϕ0(x− x0) should take the form

e−itQ0ϕ0(x− x0) = e−π(x2+a(t)x+b(t))

for a(0) = −2x0 and b0 = x2
0.

We can obtain ODEs for a′ and b′ which give us

a(t) = −2e−itx0, b(t) = x2
0e−it cos t +

it
2π
.
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Using Egorov

Instead, we can use that ϕ0(x) is chosen such that

Q0ϕ0(x) = π

(
− 1

(2π)2
d2

dx2 + x2
)

e−πx2
=

1
2
ϕ0(x)

and that e−itQ0 follows a rule for shifts like that of F :

e−itQ0Tv = TFtve−itQ0 , Ft =

(
0 1
−1 0

)t

=

(
cos t sin t
− sin t cos t

)
.

Therefore

e−itQ0T(x0,0)ϕ0(x) = Tx0(cos t,− sin t)e
−itQ0ϕ0(x)

= e−
it
2 Tx0(cos t,− sin t)ϕ0(x).
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Metaplectic operators

There are many such operators K, unitary on L2(Rn), associated with
linear transformations K such that

KTv = TKvK.

Generators of this set are
• The Fourier transform F1 in x1 associated with

F1(x1, x′, ξ1, ξ
′) = (ξ1, x′,−x1, ξ

′).
• A linear change of variables VGf (x) = (det G)1/2f (Gx) is

associated with VG(x, ξ) = (G−1x,G>ξ).
• The multiplication operatorWAf (x) = eπix·Axf (x), where A is

symmetric, is associated with WA(x, ξ) = (x, ξ + Ax).
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More on metaplectic operators

The (linear) transformation K is canonical (preserves σ) or

K =

(
A B
C D

)
, K−1 =

(
D −B
−C A

)
.

If det B 6= 0,

Kf (x) = ±(det(−iB))−1/2
∫

e−πi(x·B−1Dx−2x·B−1y+y·B−1Ay)f (y) dy.

In this way, there are two (and only two) metaplectic operators
associated with K.
These operators are also generated by exp(−itqw) for q(x, ξ) and qw

defined on the next slide.
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A quantization respecting the metaplectic group
A quantization is an association function→ operator, like a Fourier
multiplier takes a function of ξ and gives an operator.

The Weyl quantization takes the Fourier inversion formula

a(x, ξ) =

∫
e2πi(x,ξ)·(x∗,ξ∗)â(x∗, ξ∗) dx∗dξ∗

and replaces (x, ξ) with (x,Dx). Since

e2πi(x∗,ξ∗)·(x,Dx) = T(−ξ∗,x∗),

we write
aw(x,Dx) =

∫
â(x∗, ξ∗)T(−ξ∗,x∗) dx∗dξ∗

“Egorov theorem:”

Kaw =

∫
â(x∗, ξ∗)TK(−ξ∗,x∗) dx∗dξ∗

= (a ◦K−1)wK
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Explicit computations1 and the integral kernel

We can obtain an integral kernel for aw(x,Dx)u(x) =∫∫
e−2πi(x∗,ξ∗)(x∗,ξ∗)a(x∗, ξ∗)eπix∗ξ∗+2πix∗xu(x + ξ∗) dx∗ dξ∗ dx∗dξ∗.

Upon making the change of variables ξ∗ + x→ ξ∗, the exponent
becomes

2πix∗(
x + ξ∗

2
− x∗) + 2πi(x− ξ∗)ξ∗.

We traditionally write (y, ξ) instead of (ξ∗, ξ∗); Fourier inversion in
x∗, x∗ gives

aw(x,Dx)u(x) =

∫
e2πi(x−y)·ξa(

x + y
2

, ξ)u(y) dy dξ.

1not to be read seriously
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For polynomials

Most concretely, xαDβ
x can be obtained by expanding ( x+y

2 )αξβ and
using xα1Dβ

x yα2 → xα1Dβ
x xα2 :

xξ → 1
2

(xDx + Dxx)

and
x3ξ2 → 1

8
(x3D2

x + 3x2D2
xx + 3xD2

xx2 + D3
xx2)
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1 Translations in phase space

2 The Bargmann transform
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As an integral kernel for a metaplectic operator

The general format for a metaplectic operator quantizing(
a b
c d

)
∈ SL(2,R), if b 6= 0, is

Mf (x) =
1√
ib

∫
e

πi
b (dx2−2xy+ay2)f (y) dy.

(Reminder: F corresponds to a = d = 0 and b = −c = 1.)

The Bargmann transform

Bf (x) = 21/4
∫

e−
π
2 x2+2πxy−πy2

f (y) dy

corresponds to B =

(
1 −i
−i/2 1/2

)
.
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Consequences of the Egorov theorem

Writing q0(x, ξ) = π(x2 + ξ2), we expect BQ0B
∗ to be the

quantization of

(q0 ◦ B−1)(x, ξ) = π
(
(x/2 + iξ)2 + (ix/2 + ξ)2)

= 2πixξ.

And it is true that

Q0 := BQ0B
∗ =

2πi
2

(xDx + Dxx) = x∂x +
1
2
.
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Formal consequences of Q0 = x · ∂x +
1
2

We obtain the “Hermite functions”

Q0f (x) = (k +
1
2

)f (x) ⇐⇒ f (x) = Cxk

and the Schrödinger evolution e−itQ0

(i∂t −Q0)F(t, x) = 0 ⇐⇒ F(t, x) = e−it/2F(0, e−itx)

But:
• The transformation B is complex,
• F(0, e−itx) makes no sense for F(0, ·) ∈ L2(R),
• xk is not integrable.

This is solved by saying Bf is holomorphic in a weighted space:

‖f‖L2(R) = ‖e−
π
2 |x|

2
Bf (x)‖L2(C).
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Other points of view

We can also view the Bargmann transform as the wave packet
decomposition: if x = x0 + iξ0,

e−
π
2 |x|

2
Bf (x) = 〈f , T(x0,−ξ0)ϕ0〉.

We can also formally view the Bargmann transform as the
Schrödinger evolution

Bf (x) = e
π
4 (x2−D2

x).
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Some computations2 around the ground state

If ϕ0(x) = 21/4e−πx2
is a normalized Gaussian,

Bf (x) = 21/2
∫

e−
π
2 x2+2xy−πy2

e−πy2
dy

= 21/2
∫

e−2π(y− x
2 )2

dy

= 1.

Note that (x∂x + 1
2)1 = 1

2 1 and

‖e−
π
2 |x|

2
1‖L2(C) =

∫
e−π(x2

1+x2
2) dx1dx2 = 1 = ‖ϕ0‖L2(R).

2not to be read seriously
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Some computations3 around the Hermite functions

To normalize the Hermite functions, we note that

〈xje−
π
2 |x|

2
, xke−

π
2 |x|

2〉 =

∫
xjx̄ke−π|x|

2
dx1 dx2

=

∫ 2π

0
ei(j−k)θ dθ

∫
rj+k+1e−πr2

dr

=
k!

πk δ(j− k).

So the real-side Hermite functions {hk} are

hk(x) =

√
πk

k!
B∗(xk)

Egorov
=

√
πk

k!
(x− iDx)

kB∗(1)

= 2−1/4

√
πk

k!
(x− iDx)

ke−πx2 Egorov
=

√
πk

k!
ϕ0(x)(2x− iDx)

k1.

3not to be read seriously
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rj+k+1e−πr2

dr

=
k!

πk δ(j− k).

So the real-side Hermite functions {hk} are

hk(x) =

√
πk

k!
B∗(xk)

Egorov
=

√
πk

k!
(x− iDx)

kB∗(1)

= 2−1/4

√
πk

k!
(x− iDx)

ke−πx2 Egorov
=

√
πk

k!
ϕ0(x)(2x− iDx)

k1.

3not to be read seriously
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Visualizing the Hermite functions

The first Hermite function is a Gaussian:
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Visualizing the Hermite functions

When numerical error makes it difficult to analyze hk, the Bargmann
transform is computable and understandable, k = 100:
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And the Schwartz space

In this way, the Hermite decomposition ( = the Taylor series)
corresponds to projection onto annuli in phase space.

On the Bargmann side, the harmonic oscillator corresponds to
multiplying by |x|2:

〈Q0u, u〉 =

∫
u(x)(∂x · x−

1
2

)u(x)e−π|x|
2

dx1 dx2

=

∫
(π|x|2 − 1

2
)|u(x)|2e−π|x|

2
dx1 dx2.

This allows us to identify

S (R)
B→ {f ∈ Hol(C) : ∀k ∈ N, (1 + |x|)kf (x)e−

π
2 |x|

2 ∈ L2(C)},

S ′(R)
B→ {f ∈ Hol(C) : ∃k ∈ N, (1 + |x|)−kf (x)e−

π
2 |x|

2 ∈ L2(C)}.
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Smoothness estimates
Let’s suppose that f ∈ S ′(R) such that

e−
π
2 |x|

2 |Bf (x)| ≤ C.

Then, using integration in polar coordinates and Stirling’s formula,
we can show that

|〈Bf (x)e−
π
2 |x|

2
Bf (x),

√
πk

k!
xk〉| ≤ C

√
πk

k!

∫
|x|ke−

π
2 |x|

2
dx1 dx2

∼ 2C(2πk)1/4.

If p > 3/4, we can conclude that

‖〈Q−pf , hk〉‖ . k−1/2,

so
Q−pf ∈ L2(R).
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Application to Dirac comb

We can apply this to obtain non-optimal results on the Dirac comb
u(x) =

∑
k∈Z δ(x− k), where =Bu(x)e−

π
2 |x|

2
is
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Application to Dirac comb

We can apply this to obtain non-optimal results on the Dirac comb
u(x) =

∑
k∈Z δ(x− k), where =Bu(x)e−

π
2 |x|

2
is

The lattice of symmetries in phase space become more evident with
the absolute value:
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True values

Of course, the reality is much more complicated (NB: these functions
particularly like giving numerical errors).
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Gap with interpolation

What’s more, we showed

‖Q1/2
0 f‖L2(R) ∼ ‖(1 + |x|2)Bf e−

π
2 |x|

2‖L2(C).

If this extends to Q−p
0 , we’d have

p >
1
2
, |Bf (x)|e−

π
2 |x|

2 ∈ L∞ =⇒ Q−p
0 f ∈ L2(R).
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As a composition of metaplectic operators

Can we represent the Bargmann transform using more familiar
operators?

We have the metaplectic operators
• F , the Fourier transform;
• VG, change of variables;
• andWA, multiplication by a Gaussian.

To construct the Bargmann transform, we need a way to pass from Rx

to C ∼ Rx × Ry and to add a holomorphy condition.
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Doubling variables

A natural way to extend a function, preserving the L2 norm, is to take
the tensor product with a normalized Gaussian:

Etf (x) = (2t)−1/4e−πty2
f (x).

But we certainly don’t obtain every function in L2(R2): we can
identify these functions as the kernel of the operator annihilating the
Gaussian:

Et : L2(R)→ ker(Dy − ity) ⊂ L2(R2
(x,y)).

Everything which follows is an attempt to turn Dy − iy into
Dz̄ = 1

2(Dx + iDy).
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Main ideas

Without going into details...
• A change of variables turns Dy − iy into Dy − i(y− x).

• The Fourier transform in x gives

Dy − iDx − iy = −2i(Dz̄ +
1
2
=z).

• Since Dz̄ψ = 1
2=z when ψ(z) = 1

2i(|z|
2 + =(z2)), multiplying by

eπiψ(z) puts us in ker Dz̄.
• But |eπiψ(z)| = e

π
2 |x|

2
, the weight corrects this!

Note that we have many points of flexibility!
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Different Bargmann transforms for different operators

Johannes Sjöstrand [1974] showed that, for many quadratic forms (qw

for q quadratic), one can find Bq such that

BqqwB∗q = Gx · ∂x +
1
2

tr G

for a matrix G in Jordan normal form.

Example: For the operator π(eiθx2 + e−iθD2
x), we have the same

operator x · ∂x + 1
2 , but with the weight

e−
π

cos θ |x|
2−<(πieiθ tan θx2)
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Eigenfunctions and evolution for Gx · Dx +
1

4πi tr G

[Sjöstrand, 1974] The generalized eigenfunctions of qw are

B∗K(xα), α ∈ Nn.

As for Schrödinger,

e−2πit(Gx·Dx+tr G/4πi)f (x) = e−t 1
2 tr Gf (e−tGx),

so boundedness and compactness depend on Φ(etGx)− Φ(x)
[Aleman, V. 2018]
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Decomposition

The projections onto eigenfunctions ( = Taylor series)

Παg(x) =
∂αg(0)

α!
xα

and the low-high energy decomposition ( = truncated Taylor series)
Π|α|≤N grow (at most) exponentially rapidly in operator norm,

‖Πα‖, ‖Π|α|≤N‖ ≤ CeCN , ∀|α| ≤ N,

see [Hitrik, Sjöstrand, V. 2013], [§3, V. 2013]

These estimates are elementary from 1
C |x|

2 ≤ Φ(x) ≤ C|x|2 and the
exponent is optimal for the non-self-adjoint harmonic oscillator, [§3,
V. 2013]
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Resolvents with low-high decomposition

The low-high decomposition allows us [Hitrik, Sjöstrand, V. 2013] to
obtain

‖(qw − z)−1‖L(L2) ≤ CeC|z|

if z is not too close to Spec qw.

From [Dencker, Sjöstrand, Zworski 2005], this type of exponential
growth is optimal (and is connected to unsolvability of certain PDEs
in the C∞ category).
The proof is
• a low-high energy decomposition (with exponential error),
• ellipticity on high energies,
• and straightening to Φ(x) = π

2 |x|
2 on low energies (with

exponential error).
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Brief explanation of process

The process works for quadratic forms such that, for good matrices,

q(x, ξ) = B(ξ − A∗−x) · (ξ − A+x),

happily <q positive definite is sufficient.

This is “supersymmetric” because qw can be written as conjugated
derivatives.
To change q(x, ξ) into Mx · ξ, it’s enough to have

K{(x,A+x)} = {(z, 0)},
K{(x,A∗−x)} = {(0, ζ)}.

But the weight e−π|x|
2

will change!
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Some purely self-adjoint concerns
If q1(x, ξ), q2(x, ξ) are real-valued positive definite quadratic forms,
each is unitarily equivalent to C(x2 + D2

x) — but not at the same time!
We can therefore ask whether

et1qw
1 e−t2qw

2 ∈ L(L2(Rn)), t1, t2 > 0.

By bridging the gap with

q3(x, ξ) = (creation of q1)(annihilation of q2)

we can show that
• For t1, t2 small it is necessary that t1 ≤ Ct2 and sufficient that

t1 ≤ 1
C t2 and

• unless the same transformation works for q1 and q2, there exists
tc
1 > 0 such that there exists a t2 for every 0 < t1 < tc

1 and if
t1 > tc

1 then et1qw
1 e−t2qw

2 is never bounded (because the ground
state of q2 leaves L2 under etc1qw

1 ).

38 / 42



Some purely self-adjoint concerns
If q1(x, ξ), q2(x, ξ) are real-valued positive definite quadratic forms,
each is unitarily equivalent to C(x2 + D2

x) — but not at the same time!
We can therefore ask whether

et1qw
1 e−t2qw

2 ∈ L(L2(Rn)), t1, t2 > 0.

By bridging the gap with

q3(x, ξ) = (creation of q1)(annihilation of q2)

we can show that
• For t1, t2 small it is necessary that t1 ≤ Ct2 and sufficient that

t1 ≤ 1
C t2 and

• unless the same transformation works for q1 and q2, there exists
tc
1 > 0 such that there exists a t2 for every 0 < t1 < tc

1 and if
t1 > tc

1 then et1qw
1 e−t2qw

2 is never bounded (because the ground
state of q2 leaves L2 under etc1qw

1 ).

38 / 42



Some purely self-adjoint concerns
If q1(x, ξ), q2(x, ξ) are real-valued positive definite quadratic forms,
each is unitarily equivalent to C(x2 + D2

x) — but not at the same time!
We can therefore ask whether

et1qw
1 e−t2qw

2 ∈ L(L2(Rn)), t1, t2 > 0.

By bridging the gap with

q3(x, ξ) = (creation of q1)(annihilation of q2)

we can show that
• For t1, t2 small it is necessary that t1 ≤ Ct2 and sufficient that

t1 ≤ 1
C t2 and

• unless the same transformation works for q1 and q2, there exists
tc
1 > 0 such that there exists a t2 for every 0 < t1 < tc

1 and if
t1 > tc

1 then et1qw
1 e−t2qw

2 is never bounded (because the ground
state of q2 leaves L2 under etc1qw

1 ).

38 / 42



Summary

What I hoped to say is:
• what are translations in phase space,
• how their transformation properties are useful,
• what the Bargmann transform is,
• how the Bargmann transform simplifies the search for the

Hermite functions,
• how the spectral decomposition of Q0 corresponds to

“decomposing into annuli in phase space”,
• how there are different Bargmann transforms which work better

for different operators,
• and how we still have decomposition ( = Taylor series) into low

and high energies ( = distance from the origin).
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Other techniques

Other techniques include:
• Approximating an operator by multiplication

([Cordoba-Fefferman 1978], Martinez, Sjöstrand, and many
others.)

• “Adapting” a Bargmann space by changing the weight, which
can for instance solve a Hamilton-Jacobi equation.
([Herau-Sjöstrand-Stolk 2005], many other works of Sjöstrand,
Hitrik, Pravda-Starov.)

• For quadratic operators, solving differential equations for the
phase of the Weyl symbol of the Schrödinger evolution (Howe,
Robert, Combescure, Derezinski and Karczmarczyk, Graefe and
Schuman...)

• Studying complex canonical transformations as a holomorphic
extension of the metaplectic group ([Hörmander 1983, 1995],
also Howe).
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Some open questions

• When are simple estimates for spectral projections optimal?
• Optimal exponential rate of resolvent growth.
• How rapidly does the resolvent norm decay when restricted to

large energies?
• Geometric understanding of what happens to Gaussians of

different shapes under certain operators.
• “Beyond ellipticity”: can one make more rigorous claims like
B = e

π
4 (x2−D2

x)?

41 / 42



Merci!

Thanks for listening!
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