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Wave packet decompositions

Our goal is to recall some techniques in “wave packet
decompositions”

Wf(p) = {f(x), 0p(x))

such as the Bargmann transform and to describe how one can adapt
the decomposition to the operator investigated, in particular for
quadratic non-self-adjoint operators.



Wave packet decompositions

Our goal is to recall some techniques in “wave packet
decompositions”

Wf(p) = {f(x), 0p(x))

such as the Bargmann transform and to describe how one can adapt
the decomposition to the operator investigated, in particular for
quadratic non-self-adjoint operators.

Example: for the Bargmann transform, the family {,},ec is made

up of phase-space translations of the Gaussian g (x) = e ™,



Application to non-self-adjoint operators

If0 € (—m/2,7/2) and
Op =1 <eiex2 _ eieldz>

identify the eigenfunctions u; ¢ and the L?-operator norm of the
spectral projections

1 1+ |sing]\ ">
“log |yl ~ (A 0+ 0.
i log Mol (1—\sin9|) 07

[Davies, Kuijlaars 2004; Bagarello, 2010; V. 2013]
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Phase-space translations

We know how to translate a function by xq in physical space:

(Xo ,O)f X - XO)
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Phase-space translations

We know how to translate a function by xg in physical space:

(xo ,O)f -x - X())

We know how to translate a function by £y in momentum:

T, (%) = €790 (x).

To do both simultaneously, there’s a natural correction factor.

,T(xo,&))f(x) — e—7rix0§0+27ri§0xf(x _ XO)-
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Why the correction factor?

ﬁxo,&))f(x) _ e—7rixo£0+27ri§0xf(x N xO)-
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27
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Why the correction factor?

T (1) = & THOOF2mE (4 yq).

1. We’d like {7;(y, ¢, }1cr to be a group.
2. Note that, if D, = 59, (as in Folland)

Zm
Dy ™ (x) = Eoxe® ™0 (x).
Moreover, if D, = ﬁ@x as well,
D f (x — txg) = —x0(Dyf ) (x — tx0).
We’d actually like {7y, ¢,) }er to be the group

7;(xo,£o) = exp(2mit(§ox — x0Dx))-
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Composition law

One can compute directly that, for v,w € R?" and

(v, ve), (Wx, We)) = vewy — Wevy,

the shifts obey _
ToTw = e7r10(v7w)7;+w.
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Composition law

One can compute directly that, for v,w € R?" and

(v, ve), (Wx, We)) = vewy — Wevy,

the shifts obey _
ToTw = e7r10(v7w)7;+w.

Another way of saying this is that
{ewis% . (S, V) c RH—Zn}

is the Heisenberg group.
Remark: the sympletic product also appears in

Ty = exp (2wio (v, (x, Dy)))



What the correction factor is good for

Let _
Ffx)=e? / &2 (y) dy

be the Fourier transform.
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What the correction factor is good for

Let _
T =¥ [emri)a
be the Fourier transform.
We know that Ff(- — xo)(x) = e~ 27X0% I'f (x) and that
Fermé f(-)(x) = Ff(x — &). But the two together. ..
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What the correction factor is good for

Let

Ffx)=e? / 21 (y) dy

be the Fourier transform.
We know that Ff (- — x)(x) = e 2™%* Ff(x) and that
Fe?™eof () (x) = Ff(x — &). But the two together. . .
We have the general rule

]:7Exo7£o) = 7E£o,*XO)]:’

with no constants.
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A more complicated example

A more involved computation comes from tracking the quantum
Schrodinger evolution

e 120y (x — xp)

when

——7nx2

QOO(X) =¢ )
Qo = 7(D* 4 x?).
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Ansatz and ODEs

We could guess that e 720 (x — xg) should take the form

efith efrr(szra(t)erb(t))

Po(x —x) =

for a(0) = —2x and by = x3.
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Ansatz and ODEs

We could guess that e 720 (x — xg) should take the form

e 10y (x — xp) = e~ (@ Fa(Dx+b(1)

for a(0) = —2x and by = x3.
We can obtain ODEs for a’ and b’ which give us

. . 1t
a(t) = —2e7'xy, b(t) =xde cost + 21—
s
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Using Egorov

Instead, we can use that ¢o(x) is chosen such that

1 & |
Qowo(x) =7 <_(27r)2dx2 +x2> e = EGDO(X)

and that e 790 follows a rule for shifts like that of F:

t .
e 1T, = Trye Q0 F! = ( 0 1 ) _ < cost sint >

-1 0 —sint cost
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Using Egorov

Instead, we can use that ¢o(x) is chosen such that

1 & |
Qowo(x) =7 <_(27r)2dx2 —|—x2> e = EGDO(X)

and that e 790 follows a rule for shifts like that of F:

t .
e 1T, = Trye Q0 F! = < 0 1 ) _ < cost sint >

-1 0 —sint cost
Therefore

e 11 7Ex070) wo(x) = 7;()(005 t,— sint) e e wo(x)
=€ 2Tyy(cos 1, sin1) PO (x)-
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Metaplectic operators

There are many such operators /C, unitary on L?(R"), associated with
linear transformations K such that

KTy = TgvK.

Generators of this set are
e The Fourier transform F; in x; associated with
Fi(x,x,&1,8) = (&,%, —x1, ).
o A linear change of variables Vsf (x) = (det G)'/?f(Gx) is
associated with Vg (x, &) = (G~ 'x,GT¢).

e The multiplication operator Wuf(x) = e™4%f(x), where A is
symmetric, is associated with Wy (x, &) = (x, £ + Ax).
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More on metaplectic operators

The (linear) transformation K is canonical (preserves o) or

(A B 4 ( D -B
(en) (%)
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More on metaplectic operators

The (linear) transformation K is canonical (preserves o) or

(A B 4 ( D -B
(en) (%)

If detB # 0,

le(x) — i(det(_iB))—l/Z/eﬂi(x-BlDXZX-Bl}’+y-B'Ay)f(y) dy.

In this way, there are two (and only two) metaplectic operators
associated with K.

These operators are also generated by exp(—itg") for g(x, ) and ¢"
defined on the next slide.
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A quantization respecting the metaplectic group

A quantization is an association function — operator, like a Fourier
multiplier takes a function of £ and gives an operator.
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A quantization respecting the metaplectic group

A quantization is an association function — operator, like a Fourier
multiplier takes a function of £ and gives an operator.
The Weyl quantization takes the Fourier inversion formula

a(x’ g) — /CZWi(x’E)'(x*vf*)&(x*,g*)dx*df*

and replaces (x, ) with (x, D,). Since

ZWi(X* 75*)'(X7DX)

€ — 7?—5*,)6*)’

we write

aw(x,Dx) - /&(X*,g*)ﬁ_f*ﬂ*) dx*df*
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A quantization respecting the metaplectic group

A quantization is an association function — operator, like a Fourier
multiplier takes a function of £ and gives an operator.
The Weyl quantization takes the Fourier inversion formula

a(x’ g) — /CZWi(x’E)'(x*vf*)&(x*,g*)dx*df*

and replaces (x, ) with (x, D,). Since

ZWi(X* 75*)'(X7DX)

€ — 7?—6*,)6*)’

we write
aw(x, D)C) - /&(X*, g*)ﬁ_&-*’x*) dx*df*
“Egorov theorem:”
ICCZW = /&(x*,é-*)&(_s*’x*) dx*df*
= (aocK YK
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Explicit computations' and the integral kernel

We can obtain an integral kernel for a" (x, Dy )u(x) =

// e—2ﬂl(x*7§*)(x*7£*)a(x*75*)e7Tlx*E*+27Tl)C*xu(x+ g*)dx* dé—* dx*df*

Upon making the change of variables £* + x — £*, the exponent

becomes
x4+ &*

27ix™( — Xs) + 27i(x — £7)&..

We traditionally write (y, ) instead of (£*, &,); Fourier inversion in
x*, x* gives

xX+Yy

o (x, Dy)u(x) = / 2ri €Y 60 dyae.

Inot to be read seriously
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For polynomials

Most concretely, x*D¥ can be obtained by expanding (%)aﬁﬂ and
using xO”Df Y2 — xa'Df x92:

1
x§ — E(xDx + D,x)

and
1
x3§2 — 3 ()c3D)2C + 3x2D)2€x + SxDJZCx2 + D?sz)
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Outline

@ The Bargmann transform
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As an integral kernel for a metaplectic operator

The general format for a metaplectic operator quantizing

a b ) .
( e d ) € SL(2,R),if b # 0, is

1 s —2xy+a
M) = [ R

(Reminder: F correspondstoa =d =0and b = —c = 1.)
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As an integral kernel for a metaplectic operator

The general format for a metaplectic operator quantizing

a b ) .
< ¢ d ) € SL(2,R),if b # 0, is

1 s —2xy+a
M) = [ R

(Reminder: F correspondstoa =d =0and b = —c = 1.)
The Bargmann transform

B(x) =2/ [ T )y
1 —i
corresponds to B = ( i) 12 )
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Consequences of the Egorov theorem

Writing go(x, &) = w(x? + £2), we expect BQyB* to be the
quantization of

(g0 o B~ (x,&) = 7 ((x/2+i&)* + (ix/2 + €)?)
= 2mix€.
And it is true that

2mi 1
Qp = BOYB* = %l(xDx + Do) = 20 + 5.
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Formal consequences of Qg = x - 0, + %

We obtain the “Hermite functions”

Q010 = (k+ )/ (x) = () = €

and the Schrodinger evolution e =2

(i0, — Qo)F(t,x) =0 <= F(t,x) = "/2F(0,e x)

20/42



Formal consequences of Qg = x - 0, + %

We obtain the “Hermite functions”
1
Quf (x) = (k+ )f () = fx) = &

and the Schrodinger evolution e =2

(i0, — Qo)F(t,x) =0 <= F(t,x) = "/2F(0,e x)

But:
e The transformation B is complex,
e F(0,e"x) makes no sense for F(0,-) € L*(R),

k

e x" is not integrable.

20/42



Formal consequences of Qg = x - 0, + %

We obtain the “Hermite functions”
1
Quf (x) = (k+ )f () = fx) = &

and the Schrodinger evolution e =2

(i0, — Qo)F(t,x) =0 <= F(t,x) = "/2F(0,e x)

But:
e The transformation B is complex,
e F(0,e"x) makes no sense for F(0,-) € L*(R),

k

e x" is not integrable.

This is solved by saying Bf is holomorphic in a weighted space:
T 4|2
12y = lle™ 2" BF () |2

20/42



Other points of view

We can also view the Bargmann transform as the wave packet
decomposition: if x = xy + 1&g,

e_%lxlz%f(X) = <fa 7-()(07_&))@0)'



Other points of view

We can also view the Bargmann transform as the wave packet
decomposition: if x = xy + 1&g,

e_%‘ﬂz%f(X) = <fa 7-()(07—50)@0)'

We can also formally view the Bargmann transform as the
Schrodinger evolution

Bf (x) = ed @D,



Some computations® around the ground state

If o (x) = 2!/4¢~™ is a normalized Gaussian,
Bf (x) = 2/2 / e~ 2 2 memmy? gy

_ 21/2/627r(y’2‘)2 dy

=1.

2not to be read seriously
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Some computations® around the ground state

If o (x) = 2!/4¢~™ is a normalized Gaussian,
%f()() _ 21/2/e—gx2+2xy—7ryze—7ry2 dy
=212 [[earboigy
=1.

Note that (xd, + 1)1 = 11 and

_m g2 —7 (23
o T ey = [ D anan = 1 = e

2not to be read seriously

22/42



Some computations® around the Hermite functions

To normalize the Hermite functions, we note that

T 2 _ T 2 . _ 2
(e S e TPy — / wke ™ dy; s

21
:/ eio_k)edﬂ/rj+k+le_m2dr
0
k!
= —040(j — k).
Ksi-#

So the real-side Hermite functions {/;} are

*not to be read seriously
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T 2 _ T 2 . _ 2
(e S e TPy — / wke ™ dy; s

21
:/ eio_k)edﬂ/rj+k+le_m2dr
0
k!
= —040(j — k).
Ksi-#

So the real-side Hermite functions {/;} are

mk % Egorov mk . *
hi(x) = ||y B () =T [ (= D) B (1)

[ —k
— 2—1/4 %(X _ li)ke—ﬂxz
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Some computations® around the Hermite functions

To normalize the Hermite functions, we note that

T 2 _ T 2 . _ 2
(e S e TPy — / wke ™ dy; s

21
:/ eio_k)edﬂ/rj+k+le_m2dr
0
k!
= —040(j — k).
Ksi-#

So the real-side Hermite functions {/;} are

mk % Egorov mk . *
hi(x) = ||y B () =T [ (= D) B (1)

k k
=27 1/4 %(x — D ke ™ PRI T o0 (x) (2x — iDy)FI.

x|

*not to be read seriously



Visualizing the Hermite functions

The first Hermite function is a Gaussian:

24/42



Visualizing the Hermite functions

We compare the Hermite function to Se™ 2 B (x) when k = 6:

24/42



Visualizing the Hermite functions

We compare the Hermite function to Se 2 By (x) when k = 15:
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Visualizing the Hermite functions

We compare the Hermite function to Sezh B, (x) when k = 40:
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Visualizing the Hermite functions

We compare the Hermite function to Se™ 2 ¥ "B (x) when k = 70:
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Visualizing the Hermite functions

When numerical error makes it difficult to analyze /i, the Bargmann
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Visualizing the Hermite functions

When numerical error makes it difficult to analyze &, the Bargmann
transform is computable and understandable, k = 200:

=
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And the Schwartz space

In this way, the Hermite decomposition ( = the Taylor series)
corresponds to projection onto annuli in phase space.
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multiplying by |x|?:
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And the Schwartz space

In this way, the Hermite decomposition ( = the Taylor series)
corresponds to projection onto annuli in phase space.

On the Bargmann side, the harmonic oscillator corresponds to
multiplying by |x|?:

1 _
N /(WMQ = 5)lulx) )[Pe ™ dxy dry.
This allows us to identify

Z(R) B [f € Hol(C) : VkeN, (1+ x])*f(x)e 2h € L2(C)},
Z'(R) B {f € Hol(C) : Ik eN, (1+ x|)Frx)e 2 e L2(C)}.



Smoothness estimates
Let’s suppose that f € .#/(R) such that

e 3H|mr ()| < C.

Then, using integration in polar coordinates and Stirling’s formula,
we can show that

|<%f( x)e 2|X| %f \/> \/>/‘X‘ke 2\x| dx1 de

~ 2C(27k) V4.
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Smoothness estimates
Let’s suppose that f € .#/(R) such that

e 3H|mr ()| < C.

Then, using integration in polar coordinates and Stirling’s formula,
we can show that

|<%f( x)e 2|X| %f \/> \/>/‘X‘ke 2\x| dx1 de

~ 2C(2mk) "4
If p > 3/4, we can conclude that
{Q7f hil| < k172,

SO

Q'f € L*(R).
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Application to Dirac comb

We can apply this to obtain non-optimal results on the Dirac comb
)2
u(x ) Zkez ( k), Where IBu(x )e—§|X\ is
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Application to Dirac comb

the Dirac comb

optimal results on

We can apply this to obtain non

is

7 I?

€

)

X

(

SBu

where

).

k

(x —

0

= ZkeZ

)

X

(

u

27142



Application to Dirac comb

We can apply this to obtain non-optimal results on the Dirac comb

u(x) = Y ez 6(x — k), where SBu(x)e~ T is
The lattice of symmetries in phase space become more evident with
the absolute Value

27142



True values

Of course, the reality is much more complicated (NB: these functions
particularly like giving numerical errors).

3 E) B » E
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True values

Of course, the reality is much more complicated (NB: these functions

particularly like giving numerical errors).
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Gap with interpolation

What’s more, we showed
1/2 _ 42
105 *Fll gy ~ (1 + [x?)Bfe™F 2 -

If this extends to Q,”, we’d have

1 ™ _
p> 5 1Bl I €L = 0)"f € (R).
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As a composition of metaplectic operators

Can we represent the Bargmann transform using more familiar
operators?
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As a composition of metaplectic operators

Can we represent the Bargmann transform using more familiar
operators?
We have the metaplectic operators

e F, the Fourier transform;
¢ Vs, change of variables;
e and W,, multiplication by a Gaussian.

To construct the Bargmann transform, we need a way to pass from R,
to C ~ Ry x R, and to add a holomorphy condition.

30/42



Doubling variables

A natural way to extend a function, preserving the L? norm, is to take
the tensor product with a normalized Gaussian:

Ef(x) = (20)7 /4™ F ().
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Doubling variables

A natural way to extend a function, preserving the L? norm, is to take
the tensor product with a normalized Gaussian:

Ef(x) = (20)7 /4™ F ().

But we certainly don’t obtain every function in L?(R?): we can
identify these functions as the kernel of the operator annihilating the
Gaussian:

& L*(R) — ker(Dy — ity) C LZ(R%W))'

Everything which follows is an attempt to turn Dy — iy into
D; = 1(Dx + iDy).

31/42



Main ideas

Without going into details...

e A change of variables turns Dy, — iy into D, —i(y — x).
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Main ideas

Without going into details...
e A change of variables turns Dy, — iy into D, —i(y — x).

e The Fourier transform in x gives
. . . 1
D, —iD, — iy = —2i(D: + ESZ)
o Since Dz = 13z when ¥(z) = % (|z]? + S(z%)), multiplying by

e™¥() puts us in ker D;.

: TR : :
e But |e™¥(@)| = ¢71" the weight corrects this!
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Main ideas

Without going into details...
e A change of variables turns Dy, — iy into D, —i(y — x).

e The Fourier transform in x gives

1
Dy —iDy — iy = ~2i(D; + 532).

o Since Dz = 13z when ¥(z) = % (|z]? + S(z%)), multiplying by
e™¥() puts us in ker D;.
e But [e™V()| = ezl the weight corrects this!

Note that we have many points of flexibility!

32/42



Different Bargmann transforms for different operators

Johannes Sjostrand [1974] showed that, for many quadratic forms (g"
for g quadratic), one can find 25, such that

1
B,q" B, = Gx- Ok + EtrG

for a matrix G in Jordan normal form.



Different Bargmann transforms for different operators

Johannes Sjostrand [1974] showed that, for many quadratic forms (g"
for g quadratic), one can find 25, such that

1
B,q" B, = Gx- Ok + EtrG

for a matrix G in Jordan normal form.
Example: For the operator 7(el%x? 4+ e 7Y D?), we have the same
operator x - Oy + %, but with the weight

e oD |x|2—R(riel? tan Ox%)




Eigenfunctions and evolution for Gx - D, + 4i tr G

i

[Sjostrand, 1974] The generalized eigenfunctions of ¢" are

Bi(x®), ae N
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Eigenfunctions and evolution for Gx - D, + 4i tr G

i

[Sjostrand, 1974] The generalized eigenfunctions of ¢" are
B (x¥), aeN".
As for Schrodinger,

6727rit(Gx-DX+trG/47ri)f(x) — eft% trGf(efth)

)

so boundedness and compactness depend on ®(e’“x) — ®(x)
[Aleman, V. 2018]
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Decomposition

The projections onto eigenfunctions ( = Taylor series)

2°g(0)

al

xa

Mag(x) =

and the low-high energy decomposition ( = truncated Taylor series)
1)<y grow (at most) exponentially rapidly in operator norm,

e ], g <n ]l < CeN, V]a| < N,

see [Hitrik, Sjostrand, V. 2013], [§3, V. 2013]



Decomposition
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and the low-high energy decomposition ( = truncated Taylor series)
1)<y grow (at most) exponentially rapidly in operator norm,

e ], g <n ]l < CeN, V]a| < N,

see [Hitrik, Sjostrand, V. 2013], [§3, V. 2013]

These estimates are elementary from &[x|> < ®(x) < C|x|* and the
exponent is optimal for the non-self-adjoint harmonic oscillator, [§3,
V. 2013]



Resolvents with low-high decomposition

The low-high decomposition allows us [Hitrik, Sjostrand, V. 2013] to
obtain
1@" =2l gy < CeH

if z is not too close to Spec ¢".
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From [Dencker, Sjostrand, Zworski 2005], this type of exponential
growth is optimal (and is connected to unsolvability of certain PDEs
in the C*° category).
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Resolvents with low-high decomposition

The low-high decomposition allows us [Hitrik, Sjostrand, V. 2013] to
obtain
1@" =2l gy < CeH

if z is not too close to Spec ¢".
From [Dencker, Sjostrand, Zworski 2005], this type of exponential
growth is optimal (and is connected to unsolvability of certain PDEs
in the C*° category).
The proof is

e alow-high energy decomposition (with exponential error),

e ellipticity on high energies,

e and straightening to ®(x) = 5 |x|* on low energies (with

exponential error).
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Brief explanation of process

The process works for quadratic forms such that, for good matrices,

q(x,§) = B(§ —AZx) - (§ — Ayx),

happily Rq positive definite is sufficient.
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Brief explanation of process

The process works for quadratic forms such that, for good matrices,

q(x,§) = B(§ —AZx) - (§ — Ayx),

happily Rq positive definite is sufficient.

This is “supersymmetric” because ¢" can be written as conjugated
derivatives.

To change ¢(x, £) into Mx - &, it’s enough to have

K{(x,Ax)} = {(z,0)},
K{(x,AZx)} = {(0,0)}-

But the weight e~ will change!



Some purely self-adjoint concerns

If g1 (x, &), g2(x, &) are real-valued positive definite quadratic forms,
each is unitarily equivalent to C(x> + D?) — but not at the same time!
We can therefore ask whether

eie 2% ¢ L(LA(R")), t1,10 > 0.
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If g1 (x, &), g2(x, &) are real-valued positive definite quadratic forms,
each is unitarily equivalent to C(x> + D?) — but not at the same time!
We can therefore ask whether

edie 2% ¢ L(L*(R")), 11,1 > 0.
By bridging the gap with
q3(x,&) = (creation of g )(annihilation of ¢)

we can show that
e For 11, t, small it is necessary that #; < Ct, and sufficient that
n < lcl‘z and
e unless the same transformation works for ¢g; and ¢», there exists
t{ > 0 such that there exists a t, for every 0 < #; < f{ and if

t1 > 1§ then e'19'e~"% is never bounded (because the ground
state of ¢, leaves L? under e/191).
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Summary

What I hoped to say is:

what are translations in phase space,
how their transformation properties are useful,
what the Bargmann transform is,

how the Bargmann transform simplifies the search for the
Hermite functions,

how the spectral decomposition of Qg corresponds to
“decomposing into annuli in phase space”,

how there are different Bargmann transforms which work better
for different operators,

and how we still have decomposition ( = Taylor series) into low
and high energies ( = distance from the origin).
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Other techniques

Other techniques include:

e Approximating an operator by multiplication
([Cordoba-Fefferman 1978], Martinez, Sjostrand, and many
others.)

e “Adapting” a Bargmann space by changing the weight, which
can for instance solve a Hamilton-Jacobi equation.
([Herau-Sjostrand-Stolk 2005], many other works of Sjostrand,
Hitrik, Pravda-Starov.)

e For quadratic operators, solving differential equations for the
phase of the Weyl symbol of the Schrodinger evolution (Howe,
Robert, Combescure, Derezinski and Karczmarczyk, Graefe and
Schuman...)

e Studying complex canonical transformations as a holomorphic
extension of the metaplectic group ([Hormander 1983, 1995],
also Howe).
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Some open questions

e When are simple estimates for spectral projections optimal?
e Optimal exponential rate of resolvent growth.

e How rapidly does the resolvent norm decay when restricted to
large energies?

e Geometric understanding of what happens to Gaussians of
different shapes under certain operators.

e “Beyond ellipticity”: can one make more rigorous claims like
B =i (D9
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Merci!

Thanks for listening!
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