Wave packet decompositions adapted to (non-self-adjoint) operators

Joe Viola
Laboratoire de Mathématiques Jean Leray
Université de Nantes
Joseph.Viola@univ-nantes.fr

26 March 2018

Outline

(1) Translations in phase space

(2) The Bargmann transform

Wave packet decompositions

Our goal is to recall some techniques in "wave packet decompositions"

$$
W f(\rho)=\left\langle f(x), \varphi_{\rho}(x)\right\rangle
$$

such as the Bargmann transform and to describe how one can adapt the decomposition to the operator investigated, in particular for quadratic non-self-adjoint operators.

Wave packet decompositions

Our goal is to recall some techniques in "wave packet decompositions"

$$
W f(\rho)=\left\langle f(x), \varphi_{\rho}(x)\right\rangle
$$

such as the Bargmann transform and to describe how one can adapt the decomposition to the operator investigated, in particular for quadratic non-self-adjoint operators.
Example: for the Bargmann transform, the family $\left\{\varphi_{\rho}\right\}_{\rho \in \mathbb{C}}$ is made up of phase-space translations of the Gaussian $\varphi_{0}(x)=\mathrm{e}^{-\pi x^{2}}$.

Application to non-self-adjoint operators

If $\theta \in(-\pi / 2, \pi / 2)$ and

$$
Q_{\theta}=\pi\left(\mathrm{e}^{\mathrm{i} \theta} x^{2}-\mathrm{e}^{-\mathrm{i} \theta} \frac{1}{4 \pi^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}\right)
$$

identify the eigenfunctions $u_{k, \theta}$ and the L^{2}-operator norm of the spectral projections

$$
\frac{1}{k} \log \left\|\Pi_{k, \theta}\right\| \sim\left(\frac{1+|\sin \theta|}{1-|\sin \theta|}\right)^{1 / 2}, \quad \theta \neq 0
$$

[Davies, Kuijlaars 2004; Bagarello, 2010; V. 2013]

Phase-space translations

We know how to translate a function by x_{0} in physical space:

$$
\mathcal{T}_{\left(x_{0}, 0\right)} f(x)=f\left(x-x_{0}\right)
$$

Phase-space translations

We know how to translate a function by x_{0} in physical space:

$$
\mathcal{T}_{\left(x_{0}, 0\right)} f(x)=f\left(x-x_{0}\right)
$$

Phase-space translations

We know how to translate a function by x_{0} in physical space:

$$
\mathcal{T}_{\left(x_{0}, 0\right)} f(x)=f\left(x-x_{0}\right)
$$

Phase-space translations

We know how to translate a function by x_{0} in physical space:

$$
\mathcal{T}_{\left(x_{0}, 0\right)} f(x)=f\left(x-x_{0}\right)
$$

We know how to translate a function by ξ_{0} in momentum:

$$
\mathcal{T}_{\left(0, \xi_{0}\right)} f(x)=\mathrm{e}^{2 \pi \mathrm{i} \xi_{0} x} f(x)
$$

Phase-space translations

We know how to translate a function by x_{0} in physical space:

$$
\mathcal{T}_{\left(x_{0}, 0\right)} f(x)=f\left(x-x_{0}\right)
$$

We know how to translate a function by ξ_{0} in momentum:

$$
\mathcal{T}_{\left(0, \xi_{0}\right)} f(x)=\mathrm{e}^{2 \pi \mathrm{i} \xi_{0} x} f(x)
$$

Phase-space translations

We know how to translate a function by x_{0} in physical space:

$$
\mathcal{T}_{\left(x_{0}, 0\right)} f(x)=f\left(x-x_{0}\right)
$$

We know how to translate a function by ξ_{0} in momentum:

$$
\mathcal{T}_{\left(0, \xi_{0}\right)} f(x)=\mathrm{e}^{2 \pi \mathrm{i} \xi_{0} x} f(x)
$$

Phase-space translations

We know how to translate a function by x_{0} in physical space:

$$
\mathcal{T}_{\left(x_{0}, 0\right)} f(x)=f\left(x-x_{0}\right)
$$

We know how to translate a function by ξ_{0} in momentum:

$$
\mathcal{T}_{\left(0, \xi_{0}\right)} f(x)=\mathrm{e}^{2 \pi \mathrm{i} \xi_{0} x} f(x)
$$

To do both simultaneously, there's a natural correction factor.

$$
\mathcal{T}_{\left(x_{0}, \xi_{0}\right)} f(x)=\mathrm{e}^{-\pi \mathrm{i} x_{0} \xi_{0}+2 \pi \mathrm{i} \xi_{0} x} f\left(x-x_{0}\right)
$$

Why the correction factor?

$$
\mathcal{T}_{\left(x_{0}, \xi_{0}\right)} f(x)=\mathrm{e}^{-\pi \mathrm{i} x_{0} \xi_{0}+2 \pi \mathrm{i} \xi_{0} x} f\left(x-x_{0}\right)
$$

Why the correction factor?

$$
\mathcal{T}_{\left(x_{0}, \xi_{0}\right)} f(x)=\mathrm{e}^{-\pi \mathrm{i} x_{0} \xi_{0}+2 \pi \mathrm{i} \xi_{0} x} f\left(x-x_{0}\right)
$$

1. We'd like $\left\{\mathcal{T}_{t\left(x_{0}, \xi_{0}\right)}\right\}_{t \in \mathbb{R}}$ to be a group.

Why the correction factor?

$$
\mathcal{T}_{\left(x_{0}, \xi_{0}\right)} f(x)=\mathrm{e}^{-\pi \mathrm{i} x_{0} \xi_{0}+2 \pi \mathrm{i} \xi_{0} x} f\left(x-x_{0}\right)
$$

1. We'd like $\left\{\mathcal{T}_{t\left(x_{0}, \xi_{0}\right)}\right\}_{t \in \mathbb{R}}$ to be a group.
2. Note that, if $D_{t}=\frac{1}{2 \pi \mathrm{i}} \partial_{t}$ (as in Folland)

$$
D_{t} \mathrm{e}^{2 \pi \mathrm{i} t \xi_{0} x} f(x)=\xi_{0} x \mathrm{e}^{2 \pi \mathrm{i} t \xi_{0} x} f(x)
$$

Moreover, if $D_{x}=\frac{1}{2 \pi \mathrm{i}} \partial_{x}$ as well,

$$
D_{t} f\left(x-t x_{0}\right)=-x_{0}\left(D_{x} f\right)\left(x-t x_{0}\right)
$$

Why the correction factor?

$$
\mathcal{T}_{\left(x_{0}, \xi_{0}\right)} f(x)=\mathrm{e}^{-\pi \mathrm{i} x_{0} \xi_{0}+2 \pi \mathrm{i} \xi_{0} x} f\left(x-x_{0}\right)
$$

1. We'd like $\left\{\mathcal{T}_{t\left(x_{0}, \xi_{0}\right)}\right\}_{t \in \mathbb{R}}$ to be a group.
2. Note that, if $D_{t}=\frac{1}{2 \pi \mathrm{i}} \partial_{t}$ (as in Folland)

$$
D_{t} \mathrm{e}^{2 \pi \mathrm{i} t \xi_{0} x} f(x)=\xi_{0} x \mathrm{e}^{2 \pi \mathrm{i} t \xi_{0} x} f(x)
$$

Moreover, if $D_{x}=\frac{1}{2 \pi \mathrm{i}} \partial_{x}$ as well,

$$
D_{t} f\left(x-t x_{0}\right)=-x_{0}\left(D_{x} f\right)\left(x-t x_{0}\right)
$$

We'd actually like $\left\{\mathcal{T}_{t\left(x_{0}, \xi_{0}\right)}\right\}_{t \in \mathbb{R}}$ to be the group

$$
\mathcal{T}_{t\left(x_{0}, \xi_{0}\right)}=\exp \left(2 \pi \mathrm{i} t\left(\xi_{0} x-x_{0} D_{x}\right)\right)
$$

Composition law

One can compute directly that, for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{2 n}$ and

$$
\sigma\left(\left(v_{x}, v_{\xi}\right),\left(w_{x}, w_{\xi}\right)\right)=v_{\xi} w_{x}-w_{\xi} v_{x},
$$

the shifts obey

$$
\mathcal{T}_{\mathbf{v}} \mathcal{T}_{\mathbf{w}}=\mathrm{e}^{\pi \mathrm{i} \sigma(\mathbf{v}, \mathbf{w})} \mathcal{T}_{\mathbf{v}+\mathbf{w}}
$$

Composition law

One can compute directly that, for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{2 n}$ and

$$
\sigma\left(\left(v_{x}, v_{\xi}\right),\left(w_{x}, w_{\xi}\right)\right)=v_{\xi} w_{x}-w_{\xi} v_{x},
$$

the shifts obey

$$
\mathcal{T}_{\mathbf{v}} \mathcal{T}_{\mathbf{w}}=\mathrm{e}^{\pi \mathrm{i} \sigma(\mathbf{v}, \mathbf{w})} \mathcal{T}_{\mathbf{v}+\mathbf{w}} .
$$

Another way of saying this is that

$$
\left\{\mathrm{e}^{\pi \mathrm{i} s} \mathcal{T}_{\mathbf{v}}:(s, \mathbf{v}) \in \mathbb{R}^{1+2 n}\right\}
$$

is the Heisenberg group.

Composition law

One can compute directly that, for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{2 n}$ and

$$
\sigma\left(\left(v_{x}, v_{\xi}\right),\left(w_{x}, w_{\xi}\right)\right)=v_{\xi} w_{x}-w_{\xi} v_{x},
$$

the shifts obey

$$
\mathcal{T}_{\mathbf{v}} \mathcal{T}_{\mathbf{w}}=\mathrm{e}^{\pi \mathrm{i} \sigma(\mathbf{v}, \mathbf{w})} \mathcal{T}_{\mathbf{v}+\mathbf{w}} .
$$

Another way of saying this is that

$$
\left\{\mathrm{e}^{\pi \mathrm{i} s} \mathcal{T}_{\mathbf{v}}:(s, \mathbf{v}) \in \mathbb{R}^{1+2 n}\right\}
$$

is the Heisenberg group.
Remark: the sympletic product also appears in

$$
\mathcal{T}_{\mathbf{v}}=\exp \left(2 \pi \mathrm{i} \sigma\left(\mathbf{v},\left(x, D_{x}\right)\right)\right)
$$

What the correction factor is good for

Let

$$
\mathcal{F} f(x)=\mathrm{e}^{-\frac{\pi \mathrm{i}}{4}} \int \mathrm{e}^{-2 \pi \mathrm{i} x y} f(y) \mathrm{d} y
$$

be the Fourier transform.

What the correction factor is good for

Let

$$
\mathcal{F} f(x)=\mathrm{e}^{-\frac{\pi \mathrm{i}}{4}} \int \mathrm{e}^{-2 \pi \mathrm{i} x y} f(y) \mathrm{d} y
$$

be the Fourier transform.
We know that $\mathcal{F} f\left(\cdot-x_{0}\right)(x)=\mathrm{e}^{-2 \pi \mathrm{i} x_{0} x} \mathcal{F} f(x)$ and that $\mathcal{F} \mathrm{e}^{2 \pi \mathrm{i} \xi_{0}} \cdot f(\cdot)(x)=\mathcal{F} f\left(x-\xi_{0}\right)$. But the two together...

What the correction factor is good for

Let

$$
\mathcal{F} f(x)=\mathrm{e}^{-\frac{\pi \mathrm{i}}{4}} \int \mathrm{e}^{-2 \pi \mathrm{i} x y} f(y) \mathrm{d} y
$$

be the Fourier transform.
We know that $\mathcal{F} f\left(\cdot-x_{0}\right)(x)=\mathrm{e}^{-2 \pi \mathrm{i} x_{0} x} \mathcal{F} f(x)$ and that $\mathcal{F} \mathrm{e}^{2 \pi \mathrm{i} \xi_{0}} \cdot f(\cdot)(x)=\mathcal{F} f\left(x-\xi_{0}\right)$. But the two together... We have the general rule

$$
\mathcal{F} \mathcal{T}_{\left(x_{0}, \xi_{0}\right)}=\mathcal{T}_{\left(\xi_{0},-x_{0}\right)} \mathcal{F}
$$

with no constants.

A more complicated example

A more involved computation comes from tracking the quantum Schrödinger evolution

$$
\mathrm{e}^{-\mathrm{i} t Q_{0}} \varphi_{0}\left(x-x_{0}\right)
$$

when

$$
\begin{aligned}
\varphi_{0}(x) & =\mathrm{e}^{-\pi x^{2}} \\
Q_{0} & =\pi\left(D_{x}^{2}+x^{2}\right)
\end{aligned}
$$

Ansatz and ODEs

We could guess that $\mathrm{e}^{-\mathrm{i} t Q_{0}} \varphi_{0}\left(x-x_{0}\right)$ should take the form

$$
\mathrm{e}^{-\mathrm{i} t Q_{0}} \varphi_{0}\left(x-x_{0}\right)=\mathrm{e}^{-\pi\left(x^{2}+a(t) x+b(t)\right)}
$$

for $a(0)=-2 x_{0}$ and $b_{0}=x_{0}^{2}$.

Ansatz and ODEs

We could guess that $\mathrm{e}^{-\mathrm{i} t Q_{0}} \varphi_{0}\left(x-x_{0}\right)$ should take the form

$$
\mathrm{e}^{-\mathrm{i} t Q_{0}} \varphi_{0}\left(x-x_{0}\right)=\mathrm{e}^{-\pi\left(x^{2}+a(t) x+b(t)\right)}
$$

for $a(0)=-2 x_{0}$ and $b_{0}=x_{0}^{2}$.
We can obtain ODEs for a^{\prime} and b^{\prime} which give us

$$
a(t)=-2 \mathrm{e}^{-\mathrm{i} t} x_{0}, \quad b(t)=x_{0}^{2} \mathrm{e}^{-\mathrm{i} t} \cos t+\frac{\mathrm{i} t}{2 \pi} .
$$

Using Egorov

Instead, we can use that $\varphi_{0}(x)$ is chosen such that

$$
Q_{0} \varphi_{0}(x)=\pi\left(-\frac{1}{(2 \pi)^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+x^{2}\right) \mathrm{e}^{-\pi x^{2}}=\frac{1}{2} \varphi_{0}(x)
$$

and that $\mathrm{e}^{-\mathrm{i} t Q_{0}}$ follows a rule for shifts like that of \mathcal{F} :

$$
\mathrm{e}^{-\mathrm{i} t Q_{0}} \mathcal{T}_{\mathbf{v}}=\mathcal{T}_{\mathbf{F}^{\prime} \mathbf{v}} \mathrm{e}^{-\mathrm{i} t Q_{0}}, \quad \mathbf{F}^{t}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)^{t}=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)
$$

Using Egorov

Instead, we can use that $\varphi_{0}(x)$ is chosen such that

$$
Q_{0} \varphi_{0}(x)=\pi\left(-\frac{1}{(2 \pi)^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+x^{2}\right) \mathrm{e}^{-\pi x^{2}}=\frac{1}{2} \varphi_{0}(x)
$$

and that $\mathrm{e}^{-\mathrm{i} t Q_{0}}$ follows a rule for shifts like that of \mathcal{F} :

$$
\mathrm{e}^{-\mathrm{i} t Q_{0}} \mathcal{T}_{\mathbf{v}}=\mathcal{T}_{\mathbf{F}^{\prime} \mathbf{v}} \mathrm{e}^{-\mathrm{i} t Q_{0}}, \quad \mathbf{F}^{t}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)^{t}=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)
$$

Therefore

$$
\begin{aligned}
\mathrm{e}^{-\mathrm{i} t Q_{0}} \mathcal{T}_{\left(x_{0}, 0\right)} \varphi_{0}(x) & =\mathcal{T}_{x_{0}(\cos t,-\sin t)} \mathrm{e}^{-\mathrm{i} t Q_{0}} \varphi_{0}(x) \\
& =\mathrm{e}^{-\frac{\mathrm{it}}{2}} \mathcal{T}_{x_{0}(\cos t,-\sin t)} \varphi_{0}(x)
\end{aligned}
$$

Metaplectic operators

There are many such operators \mathcal{K}, unitary on $L^{2}\left(\mathbb{R}^{n}\right)$, associated with linear transformations \mathbf{K} such that

$$
\mathcal{K} \mathcal{T}_{\mathbf{v}}=\mathcal{T}_{\mathbf{K} \mathbf{v}} \mathcal{K}
$$

Generators of this set are

- The Fourier transform \mathcal{F}_{1} in x_{1} associated with $\mathbf{F}_{1}\left(x_{1}, x^{\prime}, \xi_{1}, \xi^{\prime}\right)=\left(\xi_{1}, x^{\prime},-x_{1}, \xi^{\prime}\right)$.
- A linear change of variables $\mathcal{V}_{G} f(x)=(\operatorname{det} G)^{1 / 2} f(G x)$ is associated with $\mathbf{V}_{G}(x, \xi)=\left(G^{-1} x, G^{\top} \xi\right)$.
- The multiplication operator $\mathcal{W}_{A} f(x)=\mathrm{e}^{\pi i x \cdot A x} f(x)$, where A is symmetric, is associated with $\mathbf{W}_{A}(x, \xi)=(x, \xi+A x)$.

More on metaplectic operators

The (linear) transformation \mathbf{K} is canonical (preserves σ) or

$$
\mathbf{K}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad \mathbf{K}^{-1}=\left(\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right)
$$

More on metaplectic operators

The (linear) transformation \mathbf{K} is canonical (preserves σ) or

$$
\mathbf{K}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad \mathbf{K}^{-1}=\left(\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right)
$$

If $\operatorname{det} B \neq 0$,

$$
\mathcal{K} f(x)= \pm(\operatorname{det}(-\mathrm{i} B))^{-1 / 2} \int \mathrm{e}^{-\pi \mathrm{i}\left(x \cdot B^{-1} D x-2 x \cdot B^{-1} y+y \cdot B^{-1} A y\right)} f(y) \mathrm{d} y
$$

More on metaplectic operators

The (linear) transformation \mathbf{K} is canonical (preserves σ) or

$$
\mathbf{K}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad \mathbf{K}^{-1}=\left(\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right) .
$$

If $\operatorname{det} B \neq 0$,

$$
\mathcal{K} f(x)= \pm(\operatorname{det}(-\mathrm{i} B))^{-1 / 2} \int \mathrm{e}^{-\pi \mathrm{i}\left(x \cdot B^{-1} D x-2 x \cdot B^{-1} y+y \cdot B^{-1} A y\right)} f(y) \mathrm{d} y .
$$

In this way, there are two (and only two) metaplectic operators associated with \mathbf{K}.

More on metaplectic operators

The (linear) transformation \mathbf{K} is canonical (preserves σ) or

$$
\mathbf{K}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad \mathbf{K}^{-1}=\left(\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right)
$$

If $\operatorname{det} B \neq 0$,

$$
\mathcal{K} f(x)= \pm(\operatorname{det}(-\mathrm{i} B))^{-1 / 2} \int \mathrm{e}^{-\pi \mathrm{i}\left(x \cdot B^{-1} D x-2 x \cdot B^{-1} y+y \cdot B^{-1} A y\right)} f(y) \mathrm{d} y
$$

In this way, there are two (and only two) metaplectic operators associated with \mathbf{K}.
These operators are also generated by $\exp \left(-\mathrm{i} t q^{w}\right)$ for $q(x, \xi)$ and q^{w} defined on the next slide.

A quantization respecting the metaplectic group

A quantization is an association function \rightarrow operator, like a Fourier multiplier takes a function of ξ and gives an operator.

A quantization respecting the metaplectic group

A quantization is an association function \rightarrow operator, like a Fourier multiplier takes a function of ξ and gives an operator.
The Weyl quantization takes the Fourier inversion formula

$$
a(x, \xi)=\int \mathrm{e}^{2 \pi \mathrm{i}(x, \xi) \cdot\left(x^{*}, \xi^{*}\right)} \hat{a}\left(x^{*}, \xi^{*}\right) \mathrm{d} x^{*} \mathrm{~d} \xi^{*}
$$

and replaces (x, ξ) with $\left(x, D_{x}\right)$. Since

$$
\mathrm{e}^{2 \pi \mathrm{i}\left(x^{*}, \xi^{*}\right) \cdot\left(x, D_{x}\right)}=\mathcal{T}_{\left(-\xi^{*}, x^{*}\right)}
$$

we write

$$
a^{w}\left(x, D_{x}\right)=\int \hat{a}\left(x^{*}, \xi^{*}\right) \mathcal{T}_{\left(-\xi^{*}, x^{*}\right)} \mathrm{d} x^{*} \mathrm{~d} \xi^{*}
$$

A quantization respecting the metaplectic group

A quantization is an association function \rightarrow operator, like a Fourier multiplier takes a function of ξ and gives an operator.
The Weyl quantization takes the Fourier inversion formula

$$
a(x, \xi)=\int \mathrm{e}^{2 \pi \mathrm{i}(x, \xi) \cdot\left(x^{*}, \xi^{*}\right)} \hat{a}\left(x^{*}, \xi^{*}\right) \mathrm{d} x^{*} \mathrm{~d} \xi^{*}
$$

and replaces (x, ξ) with $\left(x, D_{x}\right)$. Since

$$
\mathrm{e}^{2 \pi \mathrm{i}\left(x^{*}, \xi^{*}\right) \cdot\left(x, D_{x}\right)}=\mathcal{T}_{\left(-\xi^{*}, x^{*}\right)}
$$

we write

$$
a^{w}\left(x, D_{x}\right)=\int \hat{a}\left(x^{*}, \xi^{*}\right) \mathcal{T}_{\left(-\xi^{*}, x^{*}\right)} \mathrm{d} x^{*} \mathrm{~d} \xi^{*}
$$

"Egorov theorem:"

$$
\begin{aligned}
\mathcal{K} a^{w} & =\int \hat{a}\left(x^{*}, \xi^{*}\right) \mathcal{T}_{\mathbf{K}\left(-\xi^{*}, x^{*}\right)} \mathrm{d} x^{*} \mathrm{~d} \xi^{*} \\
& =\left(a \circ \mathbf{K}^{-1}\right)^{w} \mathcal{K}
\end{aligned}
$$

Explicit computations ${ }^{1}$ and the integral kernel

We can obtain an integral kernel for $a^{w}\left(x, D_{x}\right) u(x)=$

$$
\iint \mathrm{e}^{-2 \pi \mathrm{i}\left(x^{*}, \xi^{*}\right)\left(x_{*}, \xi_{*}\right)} a\left(x_{*}, \xi_{*}\right) \mathrm{e}^{\pi \mathrm{i} x^{*} \xi^{*}+2 \pi \mathrm{i} x^{*} x} u\left(x+\xi^{*}\right) \mathrm{d} x^{*} \mathrm{~d} \xi^{*} \mathrm{~d} x_{*} \mathrm{~d} \xi_{*} .
$$

Upon making the change of variables $\xi^{*}+x \rightarrow \xi^{*}$, the exponent becomes

$$
2 \pi \mathrm{i} x^{*}\left(\frac{x+\xi^{*}}{2}-x_{*}\right)+2 \pi \mathrm{i}\left(x-\xi^{*}\right) \xi_{*} .
$$

We traditionally write (y, ξ) instead of $\left(\xi^{*}, \xi_{*}\right)$; Fourier inversion in x^{*}, x^{*} gives

$$
a^{w}\left(x, D_{x}\right) u(x)=\int \mathrm{e}^{2 \pi \mathrm{i}(x-y) \cdot \xi} a\left(\frac{x+y}{2}, \xi\right) u(y) \mathrm{d} y \mathrm{~d} \xi .
$$

For polynomials

Most concretely, $x^{\alpha} D_{x}^{\beta}$ can be obtained by expanding $\left(\frac{x+y}{2}\right)^{\alpha} \xi^{\beta}$ and using $x^{\alpha_{1}} D_{x}^{\beta} y^{\alpha_{2}} \rightarrow x^{\alpha_{1}} D_{x}^{\beta} x^{\alpha_{2}}$:

$$
x \xi \rightarrow \frac{1}{2}\left(x D_{x}+D_{x} x\right)
$$

and

$$
x^{3} \xi^{2} \rightarrow \frac{1}{8}\left(x^{3} D_{x}^{2}+3 x^{2} D_{x}^{2} x+3 x D_{x}^{2} x^{2}+D_{x}^{3} x^{2}\right)
$$

Outline

(1) Translations in phase space

(2) The Bargmann transform

As an integral kernel for a metaplectic operator

The general format for a metaplectic operator quantizing

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{R}), \text { if } b \neq 0, \text { is } \\
& \\
& \qquad \mathcal{M} f(x)=\frac{1}{\sqrt{\mathrm{i} b}} \int \mathrm{e}^{\frac{\pi \mathrm{i}}{b}\left(d x^{2}-2 x y+a y^{2}\right)} f(y) \mathrm{d} y .
\end{aligned}
$$

(Reminder: \mathcal{F} corresponds to $a=d=0$ and $b=-c=1$.)

As an integral kernel for a metaplectic operator

The general format for a metaplectic operator quantizing

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{R}), \text { if } b \neq 0, \text { is } \\
& \qquad \mathcal{M} f(x)=\frac{1}{\sqrt{\mathrm{i} b}} \int \mathrm{e}^{\frac{\pi \mathrm{i}}{b}\left(d x^{2}-2 x y+a y^{2}\right)} f(y) \mathrm{d} y .
\end{aligned}
$$

(Reminder: \mathcal{F} corresponds to $a=d=0$ and $b=-c=1$.)
The Bargmann transform

$$
\mathfrak{B} f(x)=2^{1 / 4} \int \mathrm{e}^{-\frac{\pi}{2} x^{2}+2 \pi x y-\pi y^{2}} f(y) \mathrm{d} y
$$

corresponds to $\mathbf{B}=\left(\begin{array}{cc}1 & -\mathrm{i} \\ -\mathrm{i} / 2 & 1 / 2\end{array}\right)$.

Consequences of the Egorov theorem

Writing $q_{0}(x, \xi)=\pi\left(x^{2}+\xi^{2}\right)$, we expect $\mathfrak{B} Q_{0} \mathfrak{B}^{*}$ to be the quantization of

$$
\begin{aligned}
\left(q_{0} \circ \mathbf{B}^{-1}\right)(x, \xi) & =\pi\left((x / 2+\mathrm{i} \xi)^{2}+(\mathrm{i} x / 2+\xi)^{2}\right) \\
& =2 \pi \mathrm{i} x \xi
\end{aligned}
$$

And it is true that

$$
\mathfrak{Q}_{0}:=\mathfrak{B} Q_{0} \mathfrak{B}^{*}=\frac{2 \pi \mathrm{i}}{2}\left(x D_{x}+D_{x} x\right)=x \partial_{x}+\frac{1}{2}
$$

Formal consequences of $\mathfrak{Q}_{0}=x \cdot \partial_{x}+\frac{1}{2}$

We obtain the "Hermite functions"

$$
\mathfrak{Q}_{0} f(x)=\left(k+\frac{1}{2}\right) f(x) \Longleftrightarrow f(x)=C x^{k}
$$

and the Schrödinger evolution $\mathrm{e}^{-\mathrm{it} \mathfrak{\Sigma}_{0}}$

$$
\left(\mathrm{i} \partial_{t}-\mathfrak{Q}_{0}\right) F(t, x)=0 \Longleftrightarrow F(t, x)=\mathrm{e}^{-\mathrm{i} t / 2} F\left(0, \mathrm{e}^{-\mathrm{i} t} x\right)
$$

Formal consequences of $\mathfrak{Q}_{0}=x \cdot \partial_{x}+\frac{1}{2}$

We obtain the "Hermite functions"

$$
\mathfrak{Q}_{0} f(x)=\left(k+\frac{1}{2}\right) f(x) \Longleftrightarrow f(x)=C x^{k}
$$

and the Schrödinger evolution $\mathrm{e}^{-\mathrm{it} \mathfrak{\Sigma}_{0}}$

$$
\left(\mathrm{i} \partial_{t}-\mathfrak{Q}_{0}\right) F(t, x)=0 \Longleftrightarrow F(t, x)=\mathrm{e}^{-\mathrm{i} t / 2} F\left(0, \mathrm{e}^{-\mathrm{i} t} x\right)
$$

But:

- The transformation \mathbf{B} is complex,
- $F\left(0, \mathrm{e}^{-\mathrm{i} t} x\right)$ makes no sense for $F(0, \cdot) \in L^{2}(\mathbb{R})$,
- x^{k} is not integrable.

Formal consequences of $\mathfrak{Q}_{0}=x \cdot \partial_{x}+\frac{1}{2}$

We obtain the "Hermite functions"

$$
\mathfrak{Q}_{0} f(x)=\left(k+\frac{1}{2}\right) f(x) \Longleftrightarrow f(x)=C x^{k}
$$

and the Schrödinger evolution $\mathrm{e}^{-\mathrm{it} \mathscr{\Sigma}_{0}}$

$$
\left(\mathrm{i} \partial_{t}-\mathfrak{Q}_{0}\right) F(t, x)=0 \Longleftrightarrow F(t, x)=\mathrm{e}^{-\mathrm{i} t / 2} F\left(0, \mathrm{e}^{-\mathrm{i} t} x\right)
$$

But:

- The transformation \mathbf{B} is complex,
- $F\left(0, \mathrm{e}^{-\mathrm{i} t} x\right)$ makes no sense for $F(0, \cdot) \in L^{2}(\mathbb{R})$,
- x^{k} is not integrable.

This is solved by saying $\mathfrak{B f}$ is holomorphic in a weighted space:

$$
\|f\|_{L^{2}(\mathbb{R})}=\left\|\mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} f(x)\right\|_{L^{2}(\mathbb{C})}
$$

Other points of view

We can also view the Bargmann transform as the wave packet decomposition: if $x=x_{0}+\mathrm{i} \xi_{0}$,

$$
\mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} f(x)=\left\langle f, \mathcal{T}_{\left(x_{0},-\xi_{0}\right)} \varphi_{0}\right\rangle
$$

Other points of view

We can also view the Bargmann transform as the wave packet decomposition: if $x=x_{0}+\mathrm{i} \xi_{0}$,

$$
\mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} f(x)=\left\langle f, \mathcal{T}_{\left(x_{0},-\xi_{0}\right)} \varphi_{0}\right\rangle
$$

We can also formally view the Bargmann transform as the Schrödinger evolution

$$
\mathfrak{B} f(x)=\mathrm{e}^{\frac{\pi}{4}\left(x^{2}-D_{x}^{2}\right)} .
$$

Some computations ${ }^{2}$ around the ground state

If $\varphi_{0}(x)=2^{1 / 4} \mathrm{e}^{-\pi x^{2}}$ is a normalized Gaussian,

$$
\begin{aligned}
\mathfrak{B} f(x) & =2^{1 / 2} \int \mathrm{e}^{-\frac{\pi}{2} x^{2}+2 x y-\pi y^{2}} \mathrm{e}^{-\pi y^{2}} \mathrm{~d} y \\
& =2^{1 / 2} \int \mathrm{e}^{-2 \pi\left(y-\frac{x}{2}\right)^{2}} \mathrm{~d} y \\
& =1 .
\end{aligned}
$$

Some computations ${ }^{2}$ around the ground state

If $\varphi_{0}(x)=2^{1 / 4} \mathrm{e}^{-\pi x^{2}}$ is a normalized Gaussian,

$$
\begin{aligned}
\mathfrak{B} f(x) & =2^{1 / 2} \int \mathrm{e}^{-\frac{\pi}{2} x^{2}+2 x y-\pi y^{2}} \mathrm{e}^{-\pi y^{2}} \mathrm{~d} y \\
& =2^{1 / 2} \int \mathrm{e}^{-2 \pi\left(y-\frac{x}{2}\right)^{2}} \mathrm{~d} y \\
& =1 .
\end{aligned}
$$

Note that $\left(x \partial_{x}+\frac{1}{2}\right) 1=\frac{1}{2} 1$ and

$$
\left\|\mathrm{e}^{-\frac{\pi}{2}|x|^{2}} 1\right\|_{L^{2}(\mathbb{C})}=\int \mathrm{e}^{-\pi\left(x_{1}^{2}+x_{2}^{2}\right)} \mathrm{d} x_{1} \mathrm{~d} x_{2}=1=\left\|\varphi_{0}\right\|_{L^{2}(\mathbb{R})}
$$

Some computations ${ }^{3}$ around the Hermite functions

To normalize the Hermite functions, we note that

$$
\begin{aligned}
\left\langle x^{j} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}, x^{k} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}\right\rangle & =\int x^{j} \bar{x}^{k} \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& =\int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i}(j-k) \theta} \mathrm{d} \theta \int r^{j+k+1} \mathrm{e}^{-\pi r^{2}} d r \\
& =\frac{k!}{\pi^{k}} \delta(j-k)
\end{aligned}
$$

So the real-side Hermite functions $\left\{h_{k}\right\}$ are

$$
h_{k}(x)=\sqrt{\frac{\pi^{k}}{k!}} \mathfrak{B}^{*}\left(x^{k}\right)
$$

Some computations ${ }^{3}$ around the Hermite functions

To normalize the Hermite functions, we note that

$$
\begin{aligned}
\left\langle x^{j} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}, x^{k} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}\right\rangle & =\int x^{j} \bar{x}^{k} \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& =\int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i}(j-k) \theta} \mathrm{d} \theta \int r^{j+k+1} \mathrm{e}^{-\pi r^{2}} d r \\
& =\frac{k!}{\pi^{k}} \delta(j-k)
\end{aligned}
$$

So the real-side Hermite functions $\left\{h_{k}\right\}$ are

$$
h_{k}(x)=\sqrt{\frac{\pi^{k}}{k!}} \mathfrak{B}^{*}\left(x^{k}\right) \stackrel{\text { Egorov }}{=} \sqrt{\frac{\pi^{k}}{k!}}\left(x-\mathrm{i} D_{x}\right)^{k} \mathfrak{B}^{*}(1)
$$

Some computations ${ }^{3}$ around the Hermite functions

To normalize the Hermite functions, we note that

$$
\begin{aligned}
\left\langle x^{j} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}, x^{k} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}\right\rangle & =\int x^{j} \bar{x}^{k} \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& =\int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i}(j-k) \theta} \mathrm{d} \theta \int r^{j+k+1} \mathrm{e}^{-\pi r^{2}} d r \\
& =\frac{k!}{\pi^{k}} \delta(j-k)
\end{aligned}
$$

So the real-side Hermite functions $\left\{h_{k}\right\}$ are

$$
\begin{aligned}
h_{k}(x) & =\sqrt{\frac{\pi^{k}}{k!}} \mathfrak{B}^{*}\left(x^{k}\right) \stackrel{\text { Egorov }}{=} \sqrt{\frac{\pi^{k}}{k!}}\left(x-\mathrm{i} D_{x}\right)^{k} \mathfrak{B}^{*}(1) \\
& =2^{-1 / 4} \sqrt{\frac{\pi^{k}}{k!}}\left(x-\mathrm{i} D_{x}\right)^{k} \mathrm{e}^{-\pi x^{2}}
\end{aligned}
$$

Some computations ${ }^{3}$ around the Hermite functions

To normalize the Hermite functions, we note that

$$
\begin{aligned}
\left\langle x^{j} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}, x^{k} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}\right\rangle & =\int x^{j} \bar{x}^{k} \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& =\int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i}(j-k) \theta} \mathrm{d} \theta \int r^{j+k+1} \mathrm{e}^{-\pi r^{2}} d r \\
& =\frac{k!}{\pi^{k}} \delta(j-k)
\end{aligned}
$$

So the real-side Hermite functions $\left\{h_{k}\right\}$ are

$$
\begin{aligned}
h_{k}(x) & =\sqrt{\frac{\pi^{k}}{k!}} \mathfrak{B}^{*}\left(x^{k}\right) \stackrel{\text { Egorov }}{=} \sqrt{\frac{\pi^{k}}{k!}}\left(x-\mathrm{i} D_{x}\right)^{k} \mathfrak{B}^{*}(1) \\
& =2^{-1 / 4} \sqrt{\frac{\pi^{k}}{k!}}\left(x-\mathrm{i} D_{x}\right)^{k} \mathrm{e}^{-\pi x^{2}} \stackrel{\text { Egorov }}{=} \sqrt{\frac{\pi^{k}}{k!}} \varphi_{0}(x)\left(2 x-\mathrm{i} D_{x}\right)^{k} 1 .
\end{aligned}
$$

Visualizing the Hermite functions

The first Hermite function is a Gaussian:

Visualizing the Hermite functions

We compare the Hermite function to $\Im \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} h_{k}(x)$ when $k=6$:

Visualizing the Hermite functions

We compare the Hermite function to $\Im \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} h_{k}(x)$ when $k=15$:

Visualizing the Hermite functions

We compare the Hermite function to $\Im \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} h_{k}(x)$ when $k=40$:

Visualizing the Hermite functions

We compare the Hermite function to $\Im \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} h_{k}(x)$ when $k=70$:

Visualizing the Hermite functions

When numerical error makes it difficult to analyze h_{k}, the Bargmann transform is computable and understandable, $k=100$:

Visualizing the Hermite functions

When numerical error makes it difficult to analyze h_{k}, the Bargmann transform is computable and understandable, $k=200$:

And the Schwartz space

In this way, the Hermite decomposition (= the Taylor series) corresponds to projection onto annuli in phase space.

And the Schwartz space

In this way, the Hermite decomposition (= the Taylor series) corresponds to projection onto annuli in phase space.
On the Bargmann side, the harmonic oscillator corresponds to multiplying by $|x|^{2}$:

$$
\begin{aligned}
\left\langle\mathfrak{Q}_{0} u, u\right\rangle & =\int \overline{u(x)}\left(\partial_{x} \cdot x-\frac{1}{2}\right) u(x) \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& =\int\left(\pi|x|^{2}-\frac{1}{2}\right)|u(x)|^{2} \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2}
\end{aligned}
$$

And the Schwartz space

In this way, the Hermite decomposition (= the Taylor series) corresponds to projection onto annuli in phase space.
On the Bargmann side, the harmonic oscillator corresponds to multiplying by $|x|^{2}$:

$$
\begin{aligned}
\left\langle\mathfrak{Q}_{0} u, u\right\rangle & =\int \overline{u(x)}\left(\partial_{x} \cdot x-\frac{1}{2}\right) u(x) \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& =\int\left(\pi|x|^{2}-\frac{1}{2}\right)|u(x)|^{2} \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2}
\end{aligned}
$$

This allows us to identify

$$
\begin{aligned}
& \mathscr{S}(\mathbb{R}) \xrightarrow{\mathfrak{B}}\left\{f \in \operatorname{Hol}(\mathbb{C}): \forall k \in \mathbb{N},(1+|x|)^{k} f(x) \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \in L^{2}(\mathbb{C})\right\}, \\
& \mathscr{S}^{\prime}(\mathbb{R}) \xrightarrow{\mathfrak{B}}\left\{f \in \operatorname{Hol}(\mathbb{C}): \exists k \in \mathbb{N},(1+|x|)^{-k} f(x) \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \in L^{2}(\mathbb{C})\right\} .
\end{aligned}
$$

Smoothness estimates

Let's suppose that $f \in \mathscr{S}^{\prime}(\mathbb{R})$ such that

$$
\mathrm{e}^{-\frac{\pi}{2}|x|^{2}}|\mathfrak{B} f(x)| \leq C
$$

Then, using integration in polar coordinates and Stirling's formula, we can show that

$$
\begin{aligned}
\left|\left\langle\mathfrak{B} f(x) \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} f(x), \sqrt{\frac{\pi^{k}}{k!}} x^{k}\right\rangle\right| & \leq C \sqrt{\frac{\pi^{k}}{k!}} \int|x|^{k} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& \sim 2 C(2 \pi k)^{1 / 4} .
\end{aligned}
$$

Smoothness estimates

Let's suppose that $f \in \mathscr{S}^{\prime}(\mathbb{R})$ such that

$$
\mathrm{e}^{-\frac{\pi}{2}|x|^{2}}|\mathfrak{B} f(x)| \leq C
$$

Then, using integration in polar coordinates and Stirling's formula, we can show that

$$
\begin{aligned}
\left|\left\langle\mathfrak{B} f(x) \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathfrak{B} f(x), \sqrt{\frac{\pi^{k}}{k!}} x^{k}\right\rangle\right| & \leq C \sqrt{\frac{\pi^{k}}{k!}} \int|x|^{k} \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& \sim 2 C(2 \pi k)^{1 / 4} .
\end{aligned}
$$

If $p>3 / 4$, we can conclude that

$$
\left\|\left\langle Q^{-p} f, h_{k}\right\rangle\right\| \lesssim k^{-1 / 2}
$$

SO

$$
Q^{-p} f \in L^{2}(\mathbb{R})
$$

Application to Dirac comb

We can apply this to obtain non-optimal results on the Dirac comb

$$
u(x)=\sum_{k \in \mathbb{Z}} \delta(x-k), \text { where } \Im \mathfrak{B} u(x) \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \text { is }
$$

Application to Dirac comb

We can apply this to obtain non-optimal results on the Dirac comb

$$
u(x)=\sum_{k \in \mathbb{Z}} \delta(x-k) \text {, where } \Im \mathfrak{B} u(x) \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \text { is }
$$

Application to Dirac comb

We can apply this to obtain non-optimal results on the Dirac comb

$$
u(x)=\sum_{k \in \mathbb{Z}} \delta(x-k), \text { where } \Im \mathfrak{B} u(x) \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \text { is }
$$

Application to Dirac comb

We can apply this to obtain non-optimal results on the Dirac comb

$$
u(x)=\sum_{k \in \mathbb{Z}} \delta(x-k) \text {, where } \Im \mathfrak{B} u(x) \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \text { is }
$$

The lattice of symmetries in phase space become more evident with the absolute value:

True values

Of course, the reality is much more complicated (NB: these functions particularly like giving numerical errors).

True values

Of course, the reality is much more complicated (NB: these functions particularly like giving numerical errors).

True values

Of course, the reality is much more complicated (NB: these functions particularly like giving numerical errors).

Gap with interpolation

What's more, we showed

$$
\left\|Q_{0}^{1 / 2} f\right\|_{L^{2}(\mathbb{R})} \sim\left\|\left(1+|x|^{2}\right) \mathfrak{B} f \mathrm{e}^{-\frac{\pi}{2}|x|^{2}}\right\|_{L^{2}(\mathbb{C})}
$$

If this extends to Q_{0}^{-p}, we'd have

$$
p>\frac{1}{2},|\mathfrak{B} f(x)| \mathrm{e}^{-\frac{\pi}{2}|x|^{2}} \in L^{\infty} \Longrightarrow Q_{0}^{-p} f \in L^{2}(\mathbb{R})
$$

As a composition of metaplectic operators

Can we represent the Bargmann transform using more familiar operators?

As a composition of metaplectic operators

Can we represent the Bargmann transform using more familiar operators?
We have the metaplectic operators

- \mathcal{F}, the Fourier transform;
- \mathcal{V}_{G}, change of variables;
- and \mathcal{W}_{A}, multiplication by a Gaussian.

To construct the Bargmann transform, we need a way to pass from \mathbb{R}_{x} to $\mathbb{C} \sim \mathbb{R}_{x} \times \mathbb{R}_{y}$ and to add a holomorphy condition.

Doubling variables

A natural way to extend a function, preserving the L^{2} norm, is to take the tensor product with a normalized Gaussian:

$$
\mathcal{E}_{t} f(x)=(2 t)^{-1 / 4} \mathrm{e}^{-\pi t y^{2}} f(x)
$$

Doubling variables

A natural way to extend a function, preserving the L^{2} norm, is to take the tensor product with a normalized Gaussian:

$$
\mathcal{E}_{t} f(x)=(2 t)^{-1 / 4} \mathrm{e}^{-\pi t y^{2}} f(x)
$$

But we certainly don't obtain every function in $L^{2}\left(\mathbb{R}^{2}\right)$: we can identify these functions as the kernel of the operator annihilating the Gaussian:

$$
\mathcal{E}_{t}: L^{2}(\mathbb{R}) \rightarrow \operatorname{ker}\left(D_{y}-\mathrm{i} t y\right) \subset L^{2}\left(\mathbb{R}_{(x, y)}^{2}\right)
$$

Doubling variables

A natural way to extend a function, preserving the L^{2} norm, is to take the tensor product with a normalized Gaussian:

$$
\mathcal{E}_{t} f(x)=(2 t)^{-1 / 4} \mathrm{e}^{-\pi t y^{2}} f(x)
$$

But we certainly don't obtain every function in $L^{2}\left(\mathbb{R}^{2}\right)$: we can identify these functions as the kernel of the operator annihilating the Gaussian:

$$
\mathcal{E}_{t}: L^{2}(\mathbb{R}) \rightarrow \operatorname{ker}\left(D_{y}-\mathrm{i} t y\right) \subset L^{2}\left(\mathbb{R}_{(x, y)}^{2}\right)
$$

Everything which follows is an attempt to turn $D_{y}-\mathrm{i} y$ into $D_{\bar{z}}=\frac{1}{2}\left(D_{x}+\mathrm{i} D_{y}\right)$.

Main ideas

Without going into details...

- A change of variables turns $D_{y}-\mathrm{i} y$ into $D_{y}-\mathrm{i}(y-x)$.

Main ideas

Without going into details...

- A change of variables turns $D_{y}-\mathrm{i} y$ into $D_{y}-\mathrm{i}(y-x)$.
- The Fourier transform in x gives

$$
D_{y}-\mathrm{i} D_{x}-\mathrm{i} y=-2 \mathrm{i}\left(D_{\bar{z}}+\frac{1}{2} \Im z\right)
$$

Main ideas

Without going into details...

- A change of variables turns $D_{y}-\mathrm{i} y$ into $D_{y}-\mathrm{i}(y-x)$.
- The Fourier transform in x gives

$$
D_{y}-\mathrm{i} D_{x}-\mathrm{i} y=-2 \mathrm{i}\left(D_{\bar{z}}+\frac{1}{2} \Im z\right)
$$

- Since $D_{\bar{z}} \psi=\frac{1}{2} \Im z$ when $\psi(z)=\frac{1}{2 \mathrm{i}}\left(|z|^{2}+\Im\left(z^{2}\right)\right)$, multiplying by $\mathrm{e}^{\pi \mathrm{i} \psi(z)}$ puts us in $\operatorname{ker} D_{\bar{z}}$.

Main ideas

Without going into details...

- A change of variables turns $D_{y}-\mathrm{i} y$ into $D_{y}-\mathrm{i}(y-x)$.
- The Fourier transform in x gives

$$
D_{y}-\mathrm{i} D_{x}-\mathrm{i} y=-2 \mathrm{i}\left(D_{\bar{z}}+\frac{1}{2} \Im z\right)
$$

- Since $D_{\bar{z}} \psi=\frac{1}{2} \Im z$ when $\psi(z)=\frac{1}{2 \mathrm{i}}\left(|z|^{2}+\Im\left(z^{2}\right)\right)$, multiplying by $\mathrm{e}^{\pi \mathrm{i} \psi(z)}$ puts us in $\operatorname{ker} D_{\bar{z}}$.
- But $\left|\mathrm{e}^{\pi \mathrm{i} \psi(z)}\right|=\mathrm{e}^{\frac{\pi}{2}|x|^{2}}$, the weight corrects this!

Main ideas

Without going into details...

- A change of variables turns $D_{y}-\mathrm{i} y$ into $D_{y}-\mathrm{i}(y-x)$.
- The Fourier transform in x gives

$$
D_{y}-\mathrm{i} D_{x}-\mathrm{i} y=-2 \mathrm{i}\left(D_{\bar{z}}+\frac{1}{2} \Im z\right)
$$

- Since $D_{\bar{z}} \psi=\frac{1}{2} \Im z$ when $\psi(z)=\frac{1}{2 \mathrm{i}}\left(|z|^{2}+\Im\left(z^{2}\right)\right)$, multiplying by $\mathrm{e}^{\pi \mathrm{i} \psi(z)}$ puts us in $\operatorname{ker} D_{\bar{z}}$.
- But $\left|\mathrm{e}^{\pi \mathrm{i} \psi(z)}\right|=\mathrm{e}^{\frac{\pi}{2}|x|^{2}}$, the weight corrects this!

Note that we have many points of flexibility!

Different Bargmann transforms for different operators

Johannes Sjöstrand [1974] showed that, for many quadratic forms (q^{w} for q quadratic), one can find \mathfrak{B}_{q} such that

$$
\mathfrak{B}_{q} q^{w} \mathfrak{B}_{q}^{*}=G x \cdot \partial_{x}+\frac{1}{2} \operatorname{tr} G
$$

for a matrix G in Jordan normal form.

Different Bargmann transforms for different operators

Johannes Sjöstrand [1974] showed that, for many quadratic forms (q^{w} for q quadratic), one can find \mathfrak{B}_{q} such that

$$
\mathfrak{B}_{q} q^{w} \mathfrak{B}_{q}^{*}=G x \cdot \partial_{x}+\frac{1}{2} \operatorname{tr} G
$$

for a matrix G in Jordan normal form.
Example: For the operator $\pi\left(\mathrm{e}^{\mathrm{i} \theta} x^{2}+\mathrm{e}^{-\mathrm{i} \theta} D_{x}^{2}\right)$, we have the same operator $x \cdot \partial_{x}+\frac{1}{2}$, but with the weight

$$
\mathrm{e}^{-\frac{\pi}{\cos \theta}|x|^{2}-\Re\left(\pi \mathrm{ie}^{\mathrm{i} \theta} \tan \theta x^{2}\right)}
$$

Eigenfunctions and evolution for $G x \cdot D_{x}+\frac{1}{4 \pi \mathrm{i}} \operatorname{tr} G$

[Sjöstrand, 1974] The generalized eigenfunctions of q^{w} are

$$
\mathfrak{B}_{\mathbf{K}}^{*}\left(x^{\alpha}\right), \quad \alpha \in \mathbf{N}^{n} .
$$

Eigenfunctions and evolution for $G x \cdot D_{x}+\frac{1}{4 \pi \mathrm{i}} \operatorname{tr} G$

[Sjöstrand, 1974] The generalized eigenfunctions of q^{w} are

$$
\mathfrak{B}_{\mathbf{K}}^{*}\left(x^{\alpha}\right), \quad \alpha \in \mathbf{N}^{n} .
$$

As for Schrödinger,

$$
\mathrm{e}^{-2 \pi \mathrm{i} t\left(G x \cdot D_{x}+\operatorname{tr} G / 4 \pi \mathrm{i}\right)} f(x)=\mathrm{e}^{-t \frac{1}{2} \operatorname{tr} G} f\left(\mathrm{e}^{-t G} x\right)
$$

so boundedness and compactness depend on $\Phi\left(\mathrm{e}^{t G} x\right)-\Phi(x)$
[Aleman, V. 2018]

Decomposition

The projections onto eigenfunctions (= Taylor series)

$$
\Pi_{\alpha} g(x)=\frac{\partial^{\alpha} g(0)}{\alpha!} x^{\alpha}
$$

and the low-high energy decomposition (= truncated Taylor series) $\Pi_{|\alpha| \leq N}$ grow (at most) exponentially rapidly in operator norm,

$$
\left\|\Pi_{\alpha}\right\|,\left\|\Pi_{|\alpha| \leq N}\right\| \leq C \mathrm{e}^{C N}, \quad \forall|\alpha| \leq N
$$

see [Hitrik, Sjöstrand, V. 2013], [§3, V. 2013]

Decomposition

The projections onto eigenfunctions (= Taylor series)

$$
\Pi_{\alpha} g(x)=\frac{\partial^{\alpha} g(0)}{\alpha!} x^{\alpha}
$$

and the low-high energy decomposition (= truncated Taylor series) $\Pi_{|\alpha| \leq N}$ grow (at most) exponentially rapidly in operator norm,

$$
\left\|\Pi_{\alpha}\right\|,\left\|\Pi_{|\alpha| \leq N}\right\| \leq C \mathrm{e}^{C N}, \quad \forall|\alpha| \leq N
$$

see [Hitrik, Sjöstrand, V. 2013], [§3, V. 2013]
These estimates are elementary from $\frac{1}{C}|x|^{2} \leq \Phi(x) \leq C|x|^{2}$ and the exponent is optimal for the non-self-adjoint harmonic oscillator, [$\$ 3$,
V. 2013]

Resolvents with low-high decomposition

The low-high decomposition allows us [Hitrik, Sjöstrand, V. 2013] to obtain

$$
\left\|\left(q^{w}-z\right)^{-1}\right\|_{\mathcal{L}\left(L^{2}\right)} \leq C \mathrm{e}^{C|z|}
$$

if z is not too close to $\operatorname{Spec} q^{w}$.

Resolvents with low-high decomposition

The low-high decomposition allows us [Hitrik, Sjöstrand, V. 2013] to obtain

$$
\left\|\left(q^{w}-z\right)^{-1}\right\|_{\mathcal{L}\left(L^{2}\right)} \leq C \mathrm{e}^{C|z|}
$$

if z is not too close to $\operatorname{Spec} q^{w}$.
From [Dencker, Sjöstrand, Zworski 2005], this type of exponential growth is optimal (and is connected to unsolvability of certain PDEs in the C^{∞} category).

Resolvents with low-high decomposition

The low-high decomposition allows us [Hitrik, Sjöstrand, V. 2013] to obtain

$$
\left\|\left(q^{w}-z\right)^{-1}\right\|_{\mathcal{L}\left(L^{2}\right)} \leq C \mathrm{e}^{C|z|}
$$

if z is not too close to $\operatorname{Spec} q^{w}$.
From [Dencker, Sjöstrand, Zworski 2005], this type of exponential growth is optimal (and is connected to unsolvability of certain PDEs in the C^{∞} category).
The proof is

- a low-high energy decomposition (with exponential error),
- ellipticity on high energies,
- and straightening to $\Phi(x)=\frac{\pi}{2}|x|^{2}$ on low energies (with exponential error).

Brief explanation of process

The process works for quadratic forms such that, for good matrices,

$$
q(x, \xi)=B\left(\xi-A_{-}^{*} x\right) \cdot\left(\xi-A_{+} x\right)
$$

happily $\Re q$ positive definite is sufficient.

Brief explanation of process

The process works for quadratic forms such that, for good matrices,

$$
q(x, \xi)=B\left(\xi-A_{-}^{*} x\right) \cdot\left(\xi-A_{+} x\right)
$$

happily $\Re q$ positive definite is sufficient.
This is "supersymmetric" because q^{w} can be written as conjugated derivatives.

Brief explanation of process

The process works for quadratic forms such that, for good matrices,

$$
q(x, \xi)=B\left(\xi-A_{-}^{*} x\right) \cdot\left(\xi-A_{+} x\right)
$$

happily $\Re q$ positive definite is sufficient.
This is "supersymmetric" because q^{w} can be written as conjugated derivatives.
To change $q(x, \xi)$ into $M x \cdot \xi$, it's enough to have

$$
\begin{aligned}
& \mathbf{K}\left\{\left(x, A_{+} x\right)\right\}=\{(z, 0)\}, \\
& \mathbf{K}\left\{\left(x, A_{-}^{*} x\right)\right\}=\{(0, \zeta)\} .
\end{aligned}
$$

Brief explanation of process

The process works for quadratic forms such that, for good matrices,

$$
q(x, \xi)=B\left(\xi-A_{-}^{*} x\right) \cdot\left(\xi-A_{+} x\right)
$$

happily $\Re q$ positive definite is sufficient.
This is "supersymmetric" because q^{w} can be written as conjugated derivatives.
To change $q(x, \xi)$ into $M x \cdot \xi$, it's enough to have

$$
\begin{aligned}
& \mathbf{K}\left\{\left(x, A_{+} x\right)\right\}=\{(z, 0)\}, \\
& \mathbf{K}\left\{\left(x, A_{-}^{*} x\right)\right\}=\{(0, \zeta)\} .
\end{aligned}
$$

But the weight $\mathrm{e}^{-\pi|x|^{2}}$ will change!

Some purely self-adjoint concerns

If $q_{1}(x, \xi), q_{2}(x, \xi)$ are real-valued positive definite quadratic forms, each is unitarily equivalent to $C\left(x^{2}+D_{x}^{2}\right)$ - but not at the same time! We can therefore ask whether

$$
\mathrm{e}^{t_{1} q_{1}^{w}} \mathrm{e}^{-t_{2} q_{2}^{w}} \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right), \quad t_{1}, t_{2}>0
$$

Some purely self-adjoint concerns

If $q_{1}(x, \xi), q_{2}(x, \xi)$ are real-valued positive definite quadratic forms, each is unitarily equivalent to $C\left(x^{2}+D_{x}^{2}\right)$ - but not at the same time! We can therefore ask whether

$$
\mathrm{e}^{t_{1} q_{1}^{w}} \mathrm{e}^{-t_{2} q_{2}^{w}} \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right), \quad t_{1}, t_{2}>0 .
$$

By bridging the gap with

$$
q_{3}(x, \xi)=\left(\text { creation of } q_{1}\right)\left(\text { annihilation of } q_{2}\right)
$$

we can show that

- For t_{1}, t_{2} small it is necessary that $t_{1} \leq C t_{2}$ and sufficient that $t_{1} \leq \frac{1}{C} t_{2}$ and
- unless the same transformation works for q_{1} and q_{2}, there exists $t_{1}^{c}>0$ such that there exists a t_{2} for every $0<t_{1}<t_{1}^{c}$ and if $t_{1}>t_{1}^{c}$ then $\mathrm{e}^{t_{1} q_{1}^{w}} \mathrm{e}^{-t_{2} q_{2}^{w}}$ is never bounded (because the ground state of q_{2} leaves L^{2} under $\left.\mathrm{e}^{t^{t} q_{1}^{w}}\right)$.

Some purely self-adjoint concerns

If $q_{1}(x, \xi), q_{2}(x, \xi)$ are real-valued positive definite quadratic forms, each is unitarily equivalent to $C\left(x^{2}+D_{x}^{2}\right)$ - but not at the same time! We can therefore ask whether

$$
\mathrm{e}^{t_{1} q_{1}^{w}} \mathrm{e}^{-t_{2} q_{2}^{w}} \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right), \quad t_{1}, t_{2}>0 .
$$

By bridging the gap with

$$
q_{3}(x, \xi)=\left(\text { creation of } q_{1}\right)\left(\text { annihilation of } q_{2}\right)
$$

we can show that

- For t_{1}, t_{2} small it is necessary that $t_{1} \leq C t_{2}$ and sufficient that $t_{1} \leq \frac{1}{C} t_{2}$ and
- unless the same transformation works for q_{1} and q_{2}, there exists $t_{1}^{c}>0$ such that there exists a t_{2} for every $0<t_{1}<t_{1}^{c}$ and if $t_{1}>t_{1}^{c}$ then $\mathrm{e}^{t_{1} q_{1}^{w}} \mathrm{e}^{-t_{2} q_{2}^{w}}$ is never bounded (because the ground state of q_{2} leaves L^{2} under $\left.\mathrm{e}^{t^{t} q_{1}^{w}}\right)$.

Summary

What I hoped to say is:

- what are translations in phase space,
- how their transformation properties are useful,
- what the Bargmann transform is,
- how the Bargmann transform simplifies the search for the Hermite functions,
- how the spectral decomposition of Q_{0} corresponds to "decomposing into annuli in phase space",
- how there are different Bargmann transforms which work better for different operators,
- and how we still have decomposition (= Taylor series) into low and high energies (= distance from the origin).

Other techniques

Other techniques include:

- Approximating an operator by multiplication ([Cordoba-Fefferman 1978], Martinez, Sjöstrand, and many others.)
- "Adapting" a Bargmann space by changing the weight, which can for instance solve a Hamilton-Jacobi equation. ([Herau-Sjöstrand-Stolk 2005], many other works of Sjöstrand, Hitrik, Pravda-Starov.)
- For quadratic operators, solving differential equations for the phase of the Weyl symbol of the Schrödinger evolution (Howe, Robert, Combescure, Derezinski and Karczmarczyk, Graefe and Schuman...)
- Studying complex canonical transformations as a holomorphic extension of the metaplectic group ([Hörmander 1983, 1995], also Howe).

Some open questions

- When are simple estimates for spectral projections optimal?
- Optimal exponential rate of resolvent growth.
- How rapidly does the resolvent norm decay when restricted to large energies?
- Geometric understanding of what happens to Gaussians of different shapes under certain operators.
- "Beyond ellipticity": can one make more rigorous claims like $\mathfrak{B}=\mathrm{e}^{\frac{\pi}{4}\left(x^{2}-D_{x}^{2}\right)}$?

Merci!

Thanks for listening!

