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Classical Littlewood-Paley theory

For I interval, let ∆I be the freq. proj. y∆If = 1Ipf.

Littlewood-Paley inequality
›

›

›

(
ÿ

k

|∆[2k,2k+1]f|
2
)1/2›

›

›

Lp
„ }f}Lp 1 ă p ă∞

Can work as a substitute of }f}L2 = }pf}L2 when p ‰ 2 (can analyse
multipliers piece by piece Ñ e.g. Marcinkiewicz multiplier theorem)
Hugely important for all harmonic analysis
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Generalizations

Carleson in ’67 was the first to generalize to non-dyadic freq.
intervals:

›

›

›

(
ÿ

n

|∆[n,n+1]f|
2
)1/2›

›

›

Lp
À }f}Lp 2 ď p ă∞.

False for p ă 2 (!) (frequencies no longer incomparable...)

Rubio de Francia proved the general case: let tIkuk be disjoint
arbitrary intervals, then

›

›

›

(
ř

k |∆Ikf|
2
)1/2›

›

›

Lp
À }f}Lp , 2 ď p ă∞

for r ą 2,
›

›

›

(
ř

k |∆Ikf|
r
)1/r›

›

›

Lp
À }f}Lp , r 1 ă p ă∞

Proof works by interpolation between p = 2 (Plancherel) and a
suitable substitute for p = ∞ (e.g. }Gf}BMO À }f}L∞ , G
smoothed out square function...)
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Bilinear analogues

Question: Suppose mj(ξ,η) are (reasonable) multipliers with

disjoint supports in xR2.Under what conditions on the mj’s and
their supports can we have

›

›

›

(
ÿ

j

|Tmj
(f,g)|2

)1/2›
›

›

Ls
À }f}Lp}g}Lq ?

and for which range of p,q, s?

First results: Strips

(Lacey, ’96): Tj(f,g)(x)=
´
pf(ξ)pg(η)χ[´1,1](ξ´η´j)e

2πi(ξ+η)x dξ dη,
p,qě2, s=2, 1/p+1/q=1/2;

(Bernicot, ’08):
Tj(f,g)(x)=

´
pf(ξ)pg(η)1[´1/2,1/2](ξ´η´j)e

2πi(ξ+η)x dξ dη,
p,q,s 1ě2, 1/p+1/q=1/s.
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Bilinear Rubio de Francia for squares

Benea and Bernicot proved a bilinear generalization for squares:for
ω a square, define bilinear frequency projection

πω(f,g)(x) :=

ˆ
R
pf(ξ)pg(η)χω(ξ,η)e2πi(ξ+η)x dξ dη.

Theorem [Benea,Bernicot,’16]

Let Ω = tωu be a family of disjoint squares in xR2 and r ą 2. Then

›

›

›

(
ÿ

ωPΩ

|πω(f,g)|r
)1/r›

›

›

Ls
À }f}Lp}g}Lq

for 1/p+ 1/q = 1/s, p,q ą r 1 (sharp), r ą s ą r 1/2.

Proof relies on typical time-frequency analysis arguments
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Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

›

›

›

(
ÿ

ωPΩ

|πω(f,g)|r
)1/r›

›

›

Ls
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›

›

›

(
ÿ

ωPΩ

|πω(f,g)|r
)1/r›

›

›

Ls

Ñ

›

›

›

ÿ

ωPΩ

πω(f,g)(x)aω(x)
›

›

›

Ls
a P `r

1

(Ω)
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›

›

ÿ

ωPΩ

πω(f,g)(x)aω(x)
›

›

›

Ls
a P `r

1

(Ω)

Ñ Λ(f,g,h) =
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ÿ

ωPΩ
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1
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We have resolved our quantity into wavepackets:

|ωj|
´1/2

qχωj(|ωj|
´1n´ ¨) is L2-norm.d, smooth, freq. supported

in ωj, concentrated in |ωj|[n,n+ 1] and decays rapidly outside it.
It’s a wavepacket!

6 / 23



Introduction Bil. RdF for squares Bil. RdF for rectangles Bil. RdF for non-smooth rectangles

Tiles

Introduce then tiles

P = (ω1 ˆ IP,ω2 ˆ IP,ω3 ˆ IP), IP = |ωj|
´1[n,n+ 1],

and the wavepackets

φ
j
P(x) = |ωj|

´1/2
qχωj(|ωj|

´1n´x) = e2πic(ωj)x
1

|IP|1/2
φ
(x´ c(IP)

|IP|

)
.

The trilinear form then becomes

ΛP(f,g, h) =
ÿ

PPP
|IP|

´1/2xf,φ1
Pyxg,φ2

Pyxhω(P),φ3
Py
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The plan

Here’s the plan:

find good collections of tiles Q such that you can estimate
ΛQ(f,g,h) explicitely by

|ΛQ(f,g, h)| À “Avg1f”¨“Avg2g”¨“Avg3}h}`r 1”¨|time support of Q|;

control the measure of the time supports by suitable Lp norms
of f,g, h;

use stopping-time arguments to decompose P into good
collections as above with uniformly controlled “averages”;

use the estimates for good collections on each one and sum
everything up.

8 / 23



Introduction Bil. RdF for squares Bil. RdF for rectangles Bil. RdF for non-smooth rectangles

The plan

Here’s the plan:

find good collections of tiles Q such that you can estimate
ΛQ(f,g,h) explicitely by

|ΛQ(f,g, h)| À “Avg1f”¨“Avg2g”¨“Avg3}h}`r 1”¨|time support of Q|;

control the measure of the time supports by suitable Lp norms
of f,g, h;

use stopping-time arguments to decompose P into good
collections as above with uniformly controlled “averages”;

use the estimates for good collections on each one and sum
everything up.

8 / 23



Introduction Bil. RdF for squares Bil. RdF for rectangles Bil. RdF for non-smooth rectangles

The plan

Here’s the plan:

find good collections of tiles Q such that you can estimate
ΛQ(f,g,h) explicitely by

|ΛQ(f,g, h)| À “Avg1f”¨“Avg2g”¨“Avg3}h}`r 1”¨|time support of Q|;

control the measure of the time supports by suitable Lp norms
of f,g, h;

use stopping-time arguments to decompose P into good
collections as above with uniformly controlled “averages”;

use the estimates for good collections on each one and sum
everything up.

8 / 23



Introduction Bil. RdF for squares Bil. RdF for rectangles Bil. RdF for non-smooth rectangles

The plan

Here’s the plan:

find good collections of tiles Q such that you can estimate
ΛQ(f,g,h) explicitely by

|ΛQ(f,g, h)| À “Avg1f”¨“Avg2g”¨“Avg3}h}`r 1”¨|time support of Q|;

control the measure of the time supports by suitable Lp norms
of f,g, h;

use stopping-time arguments to decompose P into good
collections as above with uniformly controlled “averages”;

use the estimates for good collections on each one and sum
everything up.

8 / 23



Introduction Bil. RdF for squares Bil. RdF for rectangles Bil. RdF for non-smooth rectangles

Columns and rows

Some good collections are columns and rows
[see drawings on the board!]
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Columns and rows

Some good collections are columns and rows
[see drawings on the board!]

For a column C we can estimate

|ΛC(f,g,h)| À
(

sup
PPC

|xf,φ1
Py|

|IP|1/2

)(
sup
PPC

|xg,φ2
Py|

|IP|1/2

) r´2
r

ˆ

[ 1

|Itop|

ÿ

PPC

|xg,φ2
Py|

2
] 1
r

ˆ

( 1

|Itop|

ÿ

ωPC

ˆ

Itop

Mhr
1

ω(P)

) 1
r 1

|Itop|
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Some good collections are columns and rows
[see drawings on the board!]

For a column C we can estimate

|ΛC(f,g, h)| À Size1
f(C)(Size2

g(C))
r´2
r

[
“

 
Itop

|g|2”
] 1
r
Size3

h(C)|Itop|

where we have defined Sizes

Size1
f(P) := sup

PPP

|xf,φ1
Py|

|IP|1/2
, Size3

h(P) := sup
CĂP

column

( 1

|Itop|

ÿ

ωPC

ˆ

Itop

Mhr
1

ω

) 1
r 1
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Columns and rows

Some good collections are columns and rows
[see drawings on the board!]

For a column C we can estimate

|ΛC(f,g, h)| À Size1
f(C)(Size2

g(C))
r´2
r

[
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Itop

|g|2”
] 1
r
Size3

h(C)|Itop|

where we have defined Sizes

Size1
f(P) := sup

PPP

|xf,φ1
Py|

|IP|1/2
, Size3

h(P) := sup
CĂP

column

( 1

|Itop|

ÿ

ωPC

ˆ

Itop

Mhr
1

ω

) 1
r 1

These are our averages! They are good averages indeed:

Size1
f(P) À sup

PPP
“

 
IP

|f|”, Size3
h(P) À sup

PPP
“

 
IP

}h}r
1

`r
1”
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Energies

We need to control collections that are uniform in size:

Energyf(P) := sup 2n
(
ÿ

C

|IC|
)1/2

,

sup taken over collections of disjoint columns s.t.

|xf,φ1
P
y|

|IP |
1/2 À2n,

|xf,φ1
top(C)

y|

|IC|
1/2 „2n;

Energyh(P) := sup 2n
(
ÿ

C

|IC|
)1/r 1

,

sup taken over collections of disjoint columns s.t.(
1
|IC|

ř

ωPC

´
IC
Mhr

1

ω

) 1
r 1

Á2n.

These quantities are good too!

Energyf(P) À }f}L2
looooooooooomooooooooooon

(by orthogonality)

, Energyh(P) À }h}Lr 1(`r 1)
loooooooooooooomoooooooooooooon

(by disjointness of supports) 10 / 23
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By stopping-time arguments we can essentially reduce to a
situation like: P =

Ů

C and

Size1
f(P) „ A, Size2

g(P) „ B, Size3
h(P) „ C,

and

ÿ

C

|IC| À A
´2Energyf(P)2, or B´2Energyg(P)2, or C´r

1

Energyh(P)r
1

.

By summing up over all columns (and rows) we get for
θ1 + θ2 + θ3 = 1
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By summing up over all columns (and rows) we get for
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|ΛP(f,g,h)| À
[

sup
PPP
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IP
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] 1
r
Size1

f(P)Size2
g(P)

r´2
r Size3

h(P)

¨

(Energyf(P)
Size1

f(P)

)2θ1
(Energyg(P)

Size2
g(P)

)2θ2
(Energyh(P)

Size3
h(P)

)2θ3
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sup
PPP
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IP

|g|2”
] 1
r
Size1

f(P)1´2θ1Energyf(P)2θ1

¨ Size2
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Now we use the good bounds for Size and Energy: we can assume

|f| ď 1F, |g| ď 1G,
(
ÿ

ω

|hω|
r 1
)1/r 1

ď 1H;

for interpolation purposes, we can also throw away ! |H| of H, so
assume also that for any P there is x P IP s.t.

Mf(x) À
|F|

|H|
, M(|g|2)(x) À

|G|

|H|
, Mg(x) À

|G|

|H|
.

Then

for p,q ą 2, s ą r 1/2 (not quite the true range in the full case,
but reasoning is the same).
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What about rectangles?

Assume |R2|

|R1|
=: ecc(R) " 1, dyadic rectangles R = tRu.

First problem: we have two scales for each R!
We do the same reductions we did as for squares, but now
everything has to be w.r.t. the smallest scale, |R2|

´1: in the end
we study

Λ(f,g,h) =
ÿ

RPR

ÿ

n

|R1|
1/2xf, |R1|

´1/2
}χR1(|R2|

´1n´ ¨)y

¨ xg, |R2|
´1/2

}χR2(|R2|
´1n´ ¨)y

¨ xhR(P), |R2|
´1/2

}χR3(|R2|
´1n´ ¨)y

But notice the different scales in the wavepackets above...
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What’s the problem? |R1|
´1/2

}χR1(|R2|
´1n´ ¨) is a wavepacket,

but is concentrated in the interval

|R1|
´1
[Y n

ecc(R)

]

+
n mod ecc(R)

ecc(R)
,
Y n

ecc(R)

]

+
n mod ecc(R)

ecc(R)
+1
]

as n increases, we don’t get disjoint intervals!
[see drawing on the board] ñ Bad combinatorics!

14 / 23



Introduction Bil. RdF for squares Bil. RdF for rectangles Bil. RdF for non-smooth rectangles

What’s the problem? |R1|
´1/2

}χR1(|R2|
´1n´ ¨) is a wavepacket,

but is concentrated in the interval

|R1|
´1
[Y n

ecc(R)

]

+
n mod ecc(R)

ecc(R)
,
Y n

ecc(R)

]

+
n mod ecc(R)

ecc(R)
+1
]

as n increases, we don’t get disjoint intervals!
[see drawing on the board] ñ Bad combinatorics!

14 / 23



Introduction Bil. RdF for squares Bil. RdF for rectangles Bil. RdF for non-smooth rectangles

The way around is: reduce to a trilinear form with better
(algebraic) structure

Morally, |xf, |R1|
´1/2

}χR1(|R2|
´1n´ ¨)y| «

|xf, |R1|
´1/2

}χR1(|R1|
´1tn/ecc(R)u´ ¨)y|

not quite true, but we have (k = tn/ecc(R)u, ` = n
mod ecc(R), Φ wavepacket above for shortness)

|xf,ΦR,k,`y| ÀN

ÿ

nPZ
|xf,ΦR,k´n,0y|xny

´N

we reduce to study shifted trilinear forms
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We need tiles that are adapted to the two scales |R1|, |R2|:let

In := I+ n|I|,

R3 = ´R1 ´ R2 (|R3| „ |R2| " |R1|).
Then they are of the form

P = (R1 ˆ IP, tρ = (R2 ˆ Iρ,R3 ˆ Iρ) : |R2||Iρ| = 1, Iρ Ă I
n
Pu

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

=:SnP

)

with |R1||IP| = 1. [see drawing on the board]
Thus the trilinear form can be written as

Λn
P(f,g,h) =

ÿ

PPP
|IP|

´1/2|xf,φPy|
ÿ

ρPSnP

|xg,ψ2
ρy||xhR(P),ψ3

ρy|

Ñ better structure!
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We can control the inner sum by

ÿ

ρPSnP

|xg,ψ2
ρy||xhR,ψ3

ρy|
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ď
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ÿ

ρ

|Iρ|
1´r/2|xg,ψ2

ρy|
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)1/r(ÿ

ρ
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)1/r 1
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|Iρ|1/2
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|Iρ|1/2
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)1/r(ÿ

ρ

ˆ
Iρ

(MhR)
r 1
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We need shifted columns to adapt to the situation:
[see drawing on the board]
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We need shifted columns to adapt to the situation:
[see drawing on the board]
Using Hölder as before we obtain for a shifted column

|Λn(f,g, h)| À Size1
f(C)}g}

r´2
r

L∞ “
[ 
Itop

|g|2
] 1
r
”Sizenh(C)|Itop|

17 / 23



Introduction Bil. RdF for squares Bil. RdF for rectangles Bil. RdF for non-smooth rectangles

We can control the inner sum by

}g}
r´2
r

L∞
(
ÿ

ρ

|xg,ψ2
ρy|

2
)1/r(ˆ

InP

(MhR)
r 1
)1/r 1

We need shifted columns to adapt to the situation:
[see drawing on the board]
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|Λn(f,g, h)| À Size1
f(C)}g}

r´2
r

L∞ “
[ 
Itop

|g|2
] 1
r
”Sizenh(C)|Itop|

similar to square estimates, but non-trivial to get there...
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Energy estimates

Energynf(P) is defined as before but the notion of (shifted) column
disjointness is different (shifted tiles R1 ˆ I

n
P are disjoint instead)

We have as a consequence a slightly worse estimate:

Energynf(P) À log(n)}f}L2

(for Energynh(P) we have the same as before, thanks to the
modified definition of the shifted columns! (which makes it
natural))

18 / 23
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The rest of the argument mimicks the one for squares, with some
important differences:

we freeze g and consider only columns, not rows;

we have to be careful in dealing with the different structure of
the (shifted) columns.

Running stopping-times as before and doing similar computations
we end up with

|Λn
P(f,g,h)| À (log(n))O(1)|F|1/p|G|1/r|H|1/s

1

for 2 ă p ă r, |f| ď 1F, |g| ď 1G, (
ř

R |hR|
r 1)1/r 1 ď “1H”.

So we have some restricted weak estimates only with g P Lr fixed!
But...

19 / 23
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Multilinear vector-valued interpolation

We have for r = ∞ the operator is much easier:

sup
R
|πR1f ¨ πR2g| ď Cf ¨ Cg,

where C is the Carleson operator; so it’s bounded for all
1 ă p,q ă∞. There is an interpolation argument for
vector-valued situations (due to Silva) that allows us to interpolate
between r0 = ∞ and r1 close to 2 to obtain for any r ą 2 that

|Λrectangles(f,g,h)| À |F|1/p|G|1/q|H|1/s
1

for r 1 ă p,q ă r.

20 / 23
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Non-smooth rectangles

We can replace χR by 1R:

[R(f,g)(x) :=

ˆ
pf(ξ)pg(η)1R(ξ,η)e2πi(ξ+η)x dξ dη

This is more singular because of the discontinuity at the boundary
(same phenomenon as for the Bilinear Hilbert transform).
We can’t quite prove the same inequalities (for now...) but at least
we can say

Thm.[Bernicot, V.,’18]

For all ε ą 0 and finite family R of disjoint dyadic rectangles

}

(
ÿ

RPR

| [R (f,g)|r
)1/r

}Ls Àε (#R)ε}f}Lp}g}Lq

for r 1 ă p,q ă r, 1/p+ 1/q = 1/s.
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Non-smooth rectangles

Thm.[Bernicot, V.,’18]
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}

(
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RPR

| [R (f,g)|r
)1/r

}Ls Àε (#R)ε}f}Lp}g}Lq

for r 1 ă p,q ă r, 1/p+ 1/q = 1/s.

Proof uses a time-frequency analysis similar to the previous one,
except:

we don’t resolve the singularities (no wavepackets!) but look
at some local L2 and L∞ norms;
no wavepackets means no Bessel inequalities, so we replace
them with pointwise estimates using Variational Carleson
operators.

We suspect this should be enough for some ”bilinear Marcinkiewicz rough

multipliers” results, but as of now we don’t now for sure. 22 / 23
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For all ε ą 0 and finite family R of disjoint dyadic rectangles
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for r 1 ă p,q ă r, 1/p+ 1/q = 1/s.

Proof uses a time-frequency analysis similar to the previous one,
except:

we don’t resolve the singularities (no wavepackets!) but look
at some local L2 and L∞ norms;
no wavepackets means no Bessel inequalities, so we replace
them with pointwise estimates using Variational Carleson
operators.

We suspect this should be enough for some ”bilinear Marcinkiewicz rough
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Thank you for your attention!
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