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Introduction

Classical Littlewood-Paley theory

For I interval, let A1 be the freq. proj. Kl\f = 1111?.

Littlewood-Paley inequality

N\ 1/2
H(Z Ak ki fl ) HL ~fle  1<p<oo
k

Can work as a substitute of ||f|{2 = ||ﬂ|Lz when p # 2 (can analyse
multipliers piece by piece — e.g. Marcinkiewicz multiplier theorem)
Hugely important for all harmonic analysis
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Introduction

Generalizations

Carleson in '67 was the first to generalize to non-dyadic freq.
intervals:

,\1/2
H (Z ’A[n,n—o—l}ﬂ )
n

False for p < 2 (!) (frequencies no longer incomparable...)

o Sl 2<p <co.

Rubio de Francia proved the general case: let {Iy }x be disjoint
arbitrary intervals, then

1/2
o |(Selant®) "], < 1fln 25 p <00

1/r
o fort> 2, ‘ (zk ]Alkﬂ‘”) HLP < e, v <p < o0

Proof works by interpolation between p = 2 (Plancherel) and a
suitable substitute for p = co (e.g. |Gf|gmo < [f]li=, G
smoothed out square function...)
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Bilinear analogues

Question: Suppose/rilj(ci,n) are (reasonable) multipliers with

disjoint supports in R2.Under what conditions on the m;'s and
their supports can we have

/
(S 1Tms(t.0P) ], < Iflirlgles 2
)

and for which range of p, g, s?

First results: Strips
o (Lacey, '96): Tj(f,g)(x)=[f(&)G(M)x(_11)(E—n—j)e2HEMx dg dn,
P.9=2, s=2, 1/p+1/q=1/2;
° (Bernicot '08)'
T ff —1/2,1/2] (5 -n—jle 27l aﬂ'xd&dﬂ.
P.q,s 22. l/p—l—l/qfl/s.
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w a square, define bilinear frequency projection

Mo (f, )(x) = /R FE)5()xw (£ )2 EI% 4
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Bilinear Rubio de Francia for squares

Benea and Bernicot proved a bilinear generalization for squares:for
w a square, define bilinear frequency projection

Mo (f, )(x) = /R FE)5()xw (£ )2 EI% 4

Theorem [Benea,Bernicot,'16]

Let QO = {w} be a family of disjoint squares in R2 and t > 2. Then

I( 3 it 0)) ] < I lols
we

for1/p+1/q=1/s, p,q > 1’ (sharp), r > s > 1'/2.

Proof relies on typical time-frequency analysis arguments
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Time-frequency analysis of the operator

It suffices to assume all w dyadic and study
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Ao = Y [ e ()56 (€ ha (&) do

WEQ gyt E5=0

~

SAMen = Y [ e )5 e €
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Time-frequency analysis of the operator

It suffices to assume all w dyadic and study
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Time-frequency analysis of the operator

It suffices to assume all w dyadic and study

Alf,gh) = > > |wr

Xan (Jo1] 7 =)

we nez
x (g, [wa| "X w, (Jwa| = ))
x (heo, W3] 7Y %X, (|ws| I — 1))

We have resolved our quantity into wavepackets:
;| ~1/2% In —)is L2- d h, f

Xw; (|wj|~*n — ) is L*-norm.d, smootbh, freq. supported
in wj, concentrated in |w;|n, n + 1] and decays rapidly outside it.
It's a wavepacket!
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Introduce then tiles

P:(Llelp,nglp,w3><1p), IP:’(U]‘|_1[T1,TL+ 1]1

and the wavepackets

j ielw: 1 x —c(Ip)
) — -2y =10 y) — e2mmic(wj)x ( P )
Pp0) =l Xy s ) = e |Tp|t/2 |Ip|

The trilinear form then becomes

Ap(f, g, h) = ) [Ip|V2F, bb (g, 05 (he(p), DB

PeP



The plan

Here's the plan:

e find good collections of tiles QQ such that you can estimate
Ag(f, g, h) explicitely by

|[Ag(f, g, h)| < “Avg,f"-“Avg,g"-"“Avgs|h,./" -|time support of Q;



The plan

Here's the plan:

e find good collections of tiles QQ such that you can estimate
Ag(f, g, h) explicitely by

|[Ag(f, g, h)| < “Avg,f"-“Avg,g"-"“Avgs|h,./" -|time support of Q;

@ control the measure of the time supports by suitable LP norms
of f,g,h;



Bil. RdF for squares

The plan

Here's the plan:

e find good collections of tiles QQ such that you can estimate
Ag(f, g, h) explicitely by

|[Ag(f, g h)| < “Avg " “Avgzg”-“Avg3|\h|\er/”-|time support of Q;

@ control the measure of the time supports by suitable LP norms
of f,g,h;

@ use stopping-time arguments to decompose P into good
collections as above with uniformly controlled “averages”;



Bil. RdF for squares

The plan

Here's the plan:

e find good collections of tiles QQ such that you can estimate
Ag(f, g, h) explicitely by

|[Ag(f, g h)| < “Avg " “Avgzg”-“Avg3|\h|\er/”-|time support of Q;

@ control the measure of the time supports by suitable LP norms
of f,g,h;

@ use stopping-time arguments to decompose P into good
collections as above with uniformly controlled “averages”;

@ use the estimates for good collections on each one and sum
everything up.
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Some good collections are columns and rows
[see drawings on the board!]
For a column € we can estimate

[(f, dp)l g, d3)|
Ae(f,g,h
e o) = (sp 7 ) (s |1p|1/2>

3 (g, o))"

PeC
L
/ MR p ) [Teop

[uopr

|It°p‘ weey
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Columns and rows

Some good collections are columns and rows
[see drawings on the board!]
For a column € we can estimate

|/\e(f,g,h)\sSize}(G)(Sizezg(G))rrg[“][ ygﬂ Size ()| Trop|

It¢:>p
where we have defined Sizes
f, 1
Size}:(IP) = sup w Sizefl([P) = sup

PelP |IP|1/2 , CcP ‘Itop’
column

L
/ l\/lhr

we@
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Columns and rows

Some good collections are columns and rows
[see drawings on the board!]
For a column € we can estimate

1

[Ae(f, g.1)| < Size}(€)(Size (€)) [“][ 192" | Size}(€) L

p

where we have defined Sizes

f 1
Sizel(P) := Sp|< di/"Z’ Size] (P) := sup :
pep |Ip| ecP \top’
column

L
/ T\/lhT

we@

These are our averages! They are good averages indeed:

Size}(P) S sup " [f]", Sizej (P) < sup ][ || ;,
PeP IP PeP Ip
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Energies

We need to control collections that are uniform in size:
1/2
Energy(P) := sup 2“(2 ITe > ,
e

sup taken over collections of disjoint columns s.t.

[KEOb] o K Piop(e)! .
\IP\1/2~ ' [1/2 g

e

1/v’
Energyy (P) := sup 2“(2 \Ie|> ,
e
sup taken over collections of disjoint columns s.t.

1
7

(\IC\ Ywee J1p MAG ) z2m.
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Bil. RdF for squares

Energies

We need to control collections that are uniform in size:
1/2
Energy(P) := sup 2“(2 ITe > ,
e

sup taken over collections of disjoint columns s.t.

[KEOb] o K Pope)] o
“P\l/2~ ' [1/2 g

e

Energyy, (P) := sup 2“(2 \Ie|>1/r/,
e

sup taken over collections of disjoint columns s.t.
L/
(\IC\ Ywee J1p MAG ) z2m.
These quantities are good too!

Energy () < ||f[12,  Energyy(P) <[],

-~

—
(by orthogonality) (bv disiointness of subports) 10/23
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By stopping-time arguments we can essentially reduce to a
situation like: P =| |C and

Sizef(P) ~ A, Size(P) ~ B, Sizej(P) ~ C,

and

’

Z IIe| S A2Energy,(P)?, or BfZEnergyg(]P)Z, or C™" Energyy,(P)" .
¢

By summing up over all columns (and rows) we get for
01 +62+063=1

1

IAp(f, g, h)| < [sup ][ 19\2"} "Sizek(P)Size? (P) T Size}(P)
PeP JIp

. (Energyr(P))Qel (Energyg (P)>292 (Energyh(IP’)>293
Size}(P) Sizeé (IP) Sizeﬁ(P)
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By stopping-time arguments we can essentially reduce to a
situation like: P =] |€ and

Sizef(P) ~ A, Sizel(P) ~ B, Sizej(P) ~ C,

and
Z IIe| < A"2Energy,(P)?, or B*2Energyg(P)2, or C " Energyy,(P)"
¢

By summing up over all columns (and rows) we get for
01 +0,+03=1

Ar(t g, <[sup " f 02"] Sizeh(B)1 29" Energy ()2
PeP Ip

. Sizeé (IP) 20, Energy, (P)?92
. Sizeﬁ(P)I*rlef"Energyh(IP)293
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Now we use the good bounds for Size and Energy: we can assume

AL/r!
fl<tr lol<tc, (Dhel”)’ <in;
w

for interpolation purposes, we can also throw away « |H| of H, so
assume also that for any P there is x € Ip s.t.

IF| 2 |G G|
Mf(x) < —. M(g])x) < . Mglx) < -
[H]| [H]| [H]
Then
‘G’ v |F‘ 1-26, 0 \G\ 20, 0 r'0
A W< (o) (0 FIO (1 2[H|" 03
Aefoml s (i) () () el

O




Now we use the good bounds for Size and Energy: we can assume

N1/
If| < 1f, |g] <1g, (Z’hw’r> < Iy;
w

for interpolation purposes, we can also throw away « |H| of H, so
assume also that for any P there is x € Ip s.t.

M) < L Mg < :ﬁ: Mg(x) < 1SI.

Then
As(f, g, h)| < [FI*P|G[Y9|H|/<

for p,q > 2, s > 1v'/2 (not quite the true range in the full case,
but reasoning is the same). O



What about rectangles?

Assume % =: ecc(R) » 1, dyadic rectangles Z = {R}.

13/23



Bil. RdF for rectangles

What about rectangles?

Assume % =: ecc(R) » 1, dyadic rectangles Z = {R}.

First proLIem: we have two scales for each R!

13/23



Bil. RdF for rectangles

What about rectangles?

Assume % =: ecc(R) » 1, dyadic rectangles Z = {R}.
First proLIem: we have two scales for each R!
We do the same reductions we did as for squares, but now

everything has to be w.r.t. the smallest scale, |[Rp|~?:

13/23



What about rectangles?

Assume [R2l — ecc(R) » 1, dyadic rectangles Z = {R}.

First proLIem we have two scales for each R!

We do the same reductions we did as for squares, but now
everything has to be w.r.t. the smallest scale, |[Rp|~!: in the end
we study
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What about rectangles?

[Ro| _.

Assume =: ecc(R) » 1, dyadic rectangles Z = {R}.

First proLIem we have two scales for each R!

We do the same reductions we did as for squares, but now
everything has to be w.r.t. the smallest scale, |[Rp|~!: in the end
we study

= >0 3 RV Ry |72, (R T — 1))

ReZz n
(g, [Ra| A X5 (|R2| ' — 1))
- Chrepy, [Re|7H2XR, (IR2| 7' — 1))

But notice the different scales in the wavepackets above...

13/23
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What's the problem? |Ry|~*/2x%, (|R2|~*n — -) is a wavepacket,
but is concentrated in the |nterva|

_ (R) (R)
(e = e el e

as N increases, we don’t get disjoint intervals!
[see drawing on the board] = Bad combinatorics!
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The way around is: reduce to a trilinear form with better
(algebraic) structure

o Morally, | Xr: (|R2| 7' — )] ~
[<FL R |~ 1/2XR1 (IRe|Hn/ecc(R)| = ))|

@ not quite true, but we have (k = |n/ecc(R)|, {=n
mod ecc(R), @ wavepacket above for shortness)
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The way around is: reduce to a trilinear form with better
(algebraic) structure
o Morally, [{f, [Re|™"2XR, (|R2| 'n — )| ~
[CF, [Ra| 72X, ([R1| [ /ece(R)] — )
@ not quite true, but we have (k = |n/ecc(R)], £ =n
mod ecc(R), @ wavepacket above for shortness)

[KF, @r i)l SN D I, @ kmno) ()™

nez

@ we reduce to study shifted trilinear forms

f 9, h ZZ ‘R1’1/2<f (D R k— nO>
R keZ
ecc(R)—1

Z (g, (D2R,k,k’><th q)?z,k,e>
=0
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We need tiles that are adapted to the two scales |Ry|, |R2|:let

[":=T1+nl,

R3 = —Rl — R2 (|R3| ~ |R2| > |R1‘).
Then they are of the form

P =(Ry x Ip,ip = (Ro x I, Rz x Ip): |Ro||Ip| =1,1, < Ip})

=:5p

with [Ry||Ip| = 1. [see drawing on the board)]
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We need tiles that are adapted to the two scales |Ry|, |R2|:let

[":=T1+nl,

R3 = —Rl — R2 (|R3| ~ |R2| > |R1‘).
Then they are of the form

P=(Ry xIp, {p=(RoxIy,R3xIy): |Ro||Ip] =11, cIp})

=:5p

with [Ry||Ip| = 1. [see drawing on the board)]
Thus the trilinear form can be written as

AB(f,g.0) = Y |Tp |72, dpd| D] (g, 02| [Khgepy, 03))]

PeP pPESH

— better structure!

16 /23
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We can control the inner sum by

||g\|Loo(2\<g W) ( / Mhe)) "

We need shifted columns to adapt to the situation:
[see drawing on the board]
Using Holder as before we obtain for a shifted column

1
A%t g.1)| < Sizeh €y [ £ 16| " SizeR(©)]Lcn
top




We can control the inner sum by

r|g\|§(2\<gw>|) ([, My o

We need shifted columns to adapt to the situation:
[see drawing on the board]
Using Holder as before we obtain for a shifted column

1

=2 e
A"t g.)| < Sizeh€)lgli [ £ Iof?] Sizeqce)

P

similar to square estimates, but non-trivial to get there...

| Ltop|




Energy estimates

Energy? (P) is defined as before but the notion of (shifted) column
disjointness is different (shifted tiles Ry x I} are disjoint instead)
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Energy estimates

Energy? (P) is defined as before but the notion of (shifted) column
disjointness is different (shifted tiles Ry x I} are disjoint instead)
We have as a consequence a slightly worse estimate:

Energy} (P) < log(n)|f]2

(for Energyj (IP) we have the same as before, thanks to the
modified definition of the shifted columns! (which makes it
natural))

18/23
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The rest of the argument mimicks the one for squares, with some
important differences:

o we freeze g and consider only columns, not rows;

@ we have to be careful in dealing with the different structure of
the (shifted) columns.

Running stopping-times as before and doing similar computations
we end up with

[AB(f, g, )| < (log(n)) O [FIM/PIGY/T[H[Y*

for2<p <t |fl <1p gl <1g, Xk |he/™)Y™ < “Ty".
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The rest of the argument mimicks the one for squares, with some
important differences:

o we freeze g and consider only columns, not rows;

@ we have to be careful in dealing with the different structure of
the (shifted) columns.

Running stopping-times as before and doing similar computations
we end up with

[AB(f, g, )| < (log(n)) O [FIM/PIGY/T[H[Y*

for2<p <t |fl <1p gl <1g, Xk |he/™)Y™ < “Ty".
So we have some restricted weak estimates only with g € L fixed!
But...
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We have for r = oo the operator is much easier:

sup |mg, f - TR, g| < Cf - Cg,
R

where C is the Carleson operator;
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Multilinear vector-valued interpolation

We have for r = oo the operator is much easier:
sup |mg, f - TR, g| < Cf - Cg,
R

where € is the Carleson operator; so it's bounded for all

1 < p,q < oco. There is an interpolation argument for
vector-valued situations (due to Silva) that allows us to interpolate
between 19 = 0o and 11 close to 2 to obtain for any T > 2 that

’/\rectangles(f: 9,h)| < |F‘1/p|G|1/q|H|1/S,

forv/ <p,q<r. O
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We can replace xgr by 1g:
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Non-smooth rectangles

We can replace xgr by 1g:

r(f, 9)(x) :=/ﬂa)am)wa,n) 2mi(En)x g dn

This is more singular because of the discontinuity at the boundary
(same phenomenon as for the Bilinear Hilbert transform).

We can't quite prove the same inequalities (for now...) but at least
we can say

Thm.[Bernicot, V.,'18]

For all ¢ > 0 and finite family % of disjoint dyadic rectangles

1/r
I( 1R (.9)7) s <e (#2)F[flo gl

ReZ#

forr' <p,q<rm, 1/p+1/q=1/s.
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Non-smooth rectangles

Thm.[Bernicot, V.,'18]

For all ¢ > 0 and finite family & of disjoint dyadic rectangles

I( 3 1r (F9)T) s Se #2) lurlglie

Re#

forv' <p,gq<r, 1/p+1/q=1/s.

Proof uses a time-frequency analysis similar to the previous one,
except:

@ we don't resolve the singularities (no wavepackets!) but look
at some local 12 and L™ norms:

@ no wavepackets means no Bessel inequalities, so we replace
them with pointwise estimates using Variational Carleson
operators.

We suspect this should be enough for some " bilinear Marcinkiewicz rough

multioliers” results but as of now we don't now for sure 22/23



Thank you for your attention!



	Introduction
	Bil. RdF for squares
	Bil. RdF for rectangles
	Bil. RdF for non-smooth rectangles

