Bilinear Rubio de Francia inequalities

Marco Vitturi

Atelier d'Analyse Harmonique 2018, 30th March 2018

Joint work with Frédéric Bernicot

Classical Littlewood-Paley theory

For I interval, let Δ_{I} be the freq. proj. $\widehat{\Delta_{\mathrm{I}} \mathrm{f}}=\mathbb{1}_{\mathrm{I}} \widehat{\mathrm{f}}$.
Littewood-Paley inequality

Can work as a substitute of $\|f\|_{L^{2}}=\|\widehat{f}\|_{L^{2}}$ when $p \neq 2$ (can analyse multipliers piece by piece \rightarrow e.g. Marcinkiewicz multiolier theorem) Hugely important for all harmonic analysis

Classical Littlewood-Paley theory

For I interval, let Δ_{I} be the freq. proj. $\widehat{\Delta_{\mathrm{I}} \mathrm{f}}=\mathbb{1}_{\mathrm{I}} \widehat{\mathrm{f}}$.
Littlewood-Paley inequality

$$
\left\|\left(\sum_{k}\left|\Delta_{\left[2^{k}, 2^{k+1}\right]} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \sim\|f\|_{L^{p}} \quad 1<p<\infty
$$

Can work as a substitute of $\|f\|_{L^{2}}=\|f\|_{L^{2}}$ when $p \neq 2$ (can analyse multipliers piece by piece \rightarrow e.g. Marcinkiewicz multiplier theorem) Hugely important for all harmonic analysis

Classical Littlewood-Paley theory

For I interval, let Δ_{I} be the freq. proj. $\widehat{\Delta_{\mathrm{I}} \mathrm{f}}=\mathbb{1}_{\mathrm{I}} \hat{\mathrm{f}}$.
Littlewood-Paley inequality

$$
\left\|\left(\sum_{k}\left|\Delta_{\left[2^{k}, 2^{k+1}\right]} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \sim\|f\|_{L^{p}} \quad 1<p<\infty
$$

Can work as a substitute of $\|\mathbf{f}\|_{L^{2}}=\|\widehat{\mathfrak{f}}\|_{L^{2}}$ when $p \neq 2$ (can analyse multipliers piece by piece \rightarrow e.g. Marcinkiewicz multiplier theorem) Hugely important for all harmonic analysis

Generalizations

Carleson in ' 67 was the first to generalize to non-dyadic freq. intervals:

False for $p<2$ (!) (frequencies no longer incomparable...)
Rubio de Francia proved the general case: 'let $\left\{I_{k}\right\} k$ be disjoint arbitrary intervals, then

- $\left\|\left(\sum_{k}\left|\Delta_{\mathrm{I}_{\mathrm{k}}} f\right|^{2}\right)^{1 / 2}\right\|_{\mathrm{L}^{p}} \lesssim\|f\|_{\mathrm{L}^{p}}, 2 \leqslant \mathrm{p}<\infty$
- for $r>2,\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{r}\right)^{1 / r}\right\|_{L p} \lesssim\|f\|_{L p}, r^{\prime}<p<\infty$

Proof works by interpolation between $\mathrm{p}=2$ (Plancherel) and a suitable substitute for $p=\infty$ (e.g. $\|G f\|_{\text {BMO }} \lesssim\|f\|_{L^{\infty}, G}$
smoothed out square function...)

Generalizations

Carleson in ' 67 was the first to generalize to non-dyadic freq. intervals:

$$
\left\|\left(\sum_{n}\left|\Delta_{[n, n+1]} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \quad 2 \leqslant p<\infty
$$

False for $p<2$ (!) (frequencies no longer incomparable...)
Rubio de Francia proved the general case: let $\left\{\mathrm{I}_{\mathrm{k}}\right\}_{\mathrm{k}}$ be disjoint arbitrary intervals, then

- $\left\|\left(\sum_{k}\left|\Delta_{\mathrm{I}_{\mathrm{k}}} f\right|^{2}\right)^{1 / 2}\right\|_{\mathrm{L}^{p}} \lesssim\|f\|_{\mathrm{L}^{p}}, 2 \leqslant \mathrm{p}<\infty$
- for $r>2,\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{r}\right)^{1 / r}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}}, r^{\prime}<p<\infty$

Proof works by interpolation between $p=2$ (Plancherel) and a suitable substitute for $p=\infty$ (e.g. $\|G f\|_{\text {BMO }} \lesssim\|f\|_{L^{\infty}, G}$
smoothed out square function...)

Generalizations

Carleson in ' 67 was the first to generalize to non-dyadic freq. intervals:

$$
\left\|\left(\sum_{n}\left|\Delta_{[n, n+1]} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \quad 2 \leqslant p<\infty
$$

False for $p<2$ (!) (frequencies no longer incomparable...)
Rubio de Francia proved the general case: let $\left\{I_{k}\right\}_{k}$ be disjoint arbitrary intervals, then

- $\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{2}\right)^{1 / 2}\right\|_{L p} \lesssim\|f\|_{L p}, 2 \leqslant p<\infty$
- for $r>2$, $\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{r}\right)^{1 / r}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}}, r^{\prime}<p<\infty$

Proof works by interpolation between $p=2$ (Plancherel) and a suitable substitute for $p=\infty$ (e.g. $\|G f\|_{\mathrm{BMO}} \lesssim\|f\|_{\mathrm{I}^{\infty}, G}$ smoothed out square function...)

Generalizations

Carleson in ' 67 was the first to generalize to non-dyadic freq. intervals:

$$
\left\|\left(\sum_{n}\left|\Delta_{[n, n+1]} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \quad 2 \leqslant p<\infty
$$

False for $p<2$ (!) (frequencies no longer incomparable...)
Rubio de Francia proved the general case: let $\left\{\mathrm{I}_{\mathrm{k}}\right\}_{\mathrm{k}}$ be disjoint arbitrary intervals,

Generalizations

Carleson in ' 67 was the first to generalize to non-dyadic freq. intervals:

$$
\left\|\left(\sum_{n}\left|\Delta_{[n, n+1]} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \quad 2 \leqslant p<\infty
$$

False for $p<2$ (!) (frequencies no longer incomparable...)
Rubio de Francia proved the general case: let $\left\{\mathrm{I}_{\mathrm{k}}\right\}_{\mathrm{k}}$ be disjoint arbitrary intervals, then

- $\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leqslant\|f\|_{L^{p}}, 2 \leqslant p<\infty$

Proof works by interpolation between $p=2$ (Plancherel) and a suitable substitute for $p=\infty$ (e.g. $\|G f\|_{B M O} \lesssim\|f\|_{L^{\infty}}, G$ smoothed out square function...)

Generalizations

Carleson in ' 67 was the first to generalize to non-dyadic freq. intervals:

$$
\left\|\left(\sum_{n}\left|\Delta_{[n, n+1]} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \quad 2 \leqslant p<\infty
$$

False for $p<2$ (!) (frequencies no longer incomparable...)
Rubio de Francia proved the general case: let $\left\{\mathrm{I}_{\mathrm{k}}\right\}_{\mathrm{k}}$ be disjoint arbitrary intervals, then

- $\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leqslant\|f\|_{L^{p}}, 2 \leqslant p<\infty$
- for $r>2,\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{r}\right)^{1 / r}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}}, r^{\prime}<p<\infty$

Proof works by interpolation between $p=2$ (Plancherel) and a suitable substitute for $p=\infty$ (e.g. $\|G f\|_{B M O} \lesssim\|f\|_{L^{\infty}, G}$ smoothed out square function...)

Generalizations

Carleson in ' 67 was the first to generalize to non-dyadic freq. intervals:

$$
\left\|\left(\sum_{n}\left|\Delta_{[n, n+1]} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \quad 2 \leqslant p<\infty
$$

False for $p<2$ (!) (frequencies no longer incomparable...)
Rubio de Francia proved the general case: let $\left\{\mathrm{I}_{\mathrm{k}}\right\}_{\mathrm{k}}$ be disjoint arbitrary intervals, then

- $\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}}, 2 \leqslant p<\infty$
- for $r>2,\left\|\left(\sum_{k}\left|\Delta_{I_{k}} f\right|^{r}\right)^{1 / r}\right\|_{L^{p}} \lesssim\|f\|_{L^{p}, r^{\prime}}<p<\infty$

Proof works by interpolation between $\mathrm{p}=2$ (Plancherel) and a suitable substitute for $p=\infty$ (e.g. $\|G f\|_{\text {BMO }} \lesssim\|f\|_{L^{\infty}, G}$ smoothed out square function...)

Bilinear analogues

Question: Suppose $m_{\mathfrak{j}}(\xi, \eta)$ are (reasonable) multipliers with disjoint supports in \mathbb{R}^{2}. Under what conditions on the m_{j} 's and their supports can we have

and for which range of p, q, s ?

First results: Strips

- (Lacey, '96): $p, q \geqslant 2, s=2,1 / p+1 / q=1 / 2 ;$
- (Bernicot, '08)

$p, q, s^{\prime} \geqslant 2,1 / p+1 / q=1 / s$

Bilinear analogues

Question: Suppose $m_{j}(\xi, \eta)$ are (reasonable) multipliers with disjoint supports in $\widehat{\mathbb{R}^{2}}$. Under what conditions on the m_{j} 's and their supports can we have

$$
\left\|\left(\sum_{j}\left|T_{m_{j}}(f, g)\right|^{2}\right)^{1 / 2}\right\|_{L^{s}} \lesssim\|f\|_{L^{p}}\|g\|_{L^{q}} \quad ?
$$

and for which range of p, q, s ?
First results: Strips

- (Bernicot, '08)
$T_{j}(f, g)(x)=\int \widehat{f}(\xi) \hat{g}(\eta) 1_{-1 / 2,1 / 2}(\xi-\eta-j) e^{2 \pi i(\xi+\eta) x} d \xi d \eta$,
$p, q, s^{\prime} \geqslant 2,1 / p+1 / q=1 / s$.

Bilinear analogues

Question: Suppose $m_{j}(\xi, \eta)$ are (reasonable) multipliers with disjoint supports in $\widehat{\mathbb{R}^{2}}$. Under what conditions on the m_{j} 's and their supports can we have

$$
\left\|\left(\sum_{j}\left|T_{m_{j}}(f, g)\right|^{2}\right)^{1 / 2}\right\|_{L^{s}} \lesssim\|f\|_{L^{p}}\|g\|_{L^{q}} \quad ?
$$

and for which range of p, q, s ?
First results: Strips

- (Lacey, '96): $T_{j}(f, g)(x)=\int \hat{f}(\xi) \hat{\boldsymbol{g}}(\eta) \chi_{[-1,1]}(\xi-\eta-\mathfrak{j}) e^{2 \pi i(\xi+\eta) x} d \xi d \eta$, $p, q \geqslant 2, s=2,1 / p+1 / q=1 / 2 ;$
- (Bernicot, '08)
$T_{j}(f, g)(x)=\int \widehat{f}(\xi) \hat{g}(\eta) \mathbb{1}_{[-1 / 2,1 / 2]}(\xi-\eta-j) e^{2 \pi i(\xi+\eta) x} d \xi, d \eta$,
$p, q, s^{\prime} \geqslant 2,1 / n+1 / q=1 / s$.

Bilinear analogues

Question: Suppose $m_{\mathfrak{j}}(\xi, \eta)$ are (reasonable) multipliers with disjoint supports in $\widehat{\mathbb{R}^{2}}$. Under what conditions on the m_{j} 's and their supports can we have

$$
\left\|\left(\sum_{j}\left|T_{m_{j}}(f, g)\right|^{2}\right)^{1 / 2}\right\|_{L^{s}} \lesssim\|f\|_{L^{p}}\|g\|_{L^{q}} \quad ?
$$

and for which range of p, q, s ?
First results: Strips

- (Lacey, '96): $T_{j}(f, g)(x)=\int \hat{f}(\xi) \hat{\boldsymbol{g}}(\eta) \chi_{[-1,1]}(\xi-\eta-\mathfrak{j}) e^{2 \pi i(\xi+\eta) x} d \xi d \eta$, $p, q \geqslant 2, s=2,1 / p+1 / q=1 / 2 ;$
- (Bernicot, '08):

$$
\begin{aligned}
& T_{j}(f, g)(x)=\int \hat{f}(\xi) \hat{g}(\eta) \mathbb{1}_{[-1 / 2,1 / 2]}(\xi-\eta-j) e^{2 \pi i(\xi+\eta) x} d \xi d \eta, \\
& p, q, s^{\prime} \geqslant 2,1 / p+1 / q=1 / s .
\end{aligned}
$$

Bilinear Rubio de Francia for squares

Benea and Bernicot proved a bilinear generalization for squares:
cu a square, detine bilinear trequency projection

[^0]
Bilinear Rubio de Francia for squares

Benea and Bernicot proved a bilinear generalization for squares:for ω a square, define bilinear frequency projection

$$
\pi_{\omega}(f, g)(x):=\int_{\mathbb{R}} \widehat{\mathfrak{f}}(\xi) \widehat{\mathfrak{g}}(\eta) \chi_{\omega}(\xi, \eta) e^{2 \pi \mathfrak{i}(\xi+\eta) x} \mathrm{~d} \xi \mathrm{~d} \eta
$$

\square
for $1 / p+1 / q=1 / s, p, q>r^{\prime}(\operatorname{sharp}), r>s>r^{\prime} / 2$.
Proof relies on typical time-frequency analysis arguments

Bilinear Rubio de Francia for squares

Benea and Bernicot proved a bilinear generalization for squares:for ω a square, define bilinear frequency projection

$$
\pi_{\omega}(f, g)(x):=\int_{\mathbb{R}} \widehat{\mathfrak{f}}(\xi) \widehat{\mathfrak{g}}(\eta) \chi_{\omega}(\xi, \eta) e^{2 \pi \mathfrak{i}(\xi+\eta) x} \mathrm{~d} \xi \mathrm{~d} \eta
$$

Theorem [Benea,Bernicot,'16]

Let $\Omega=\{\omega\}$ be a family of disjoint squares in $\widehat{\mathbb{R}^{2}}$ and $r>2$. Then

$$
\left\|\left(\sum_{\omega \in \Omega}\left|\pi_{\omega}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \lesssim\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $1 / p+1 / q=1 / s, p, q>r^{\prime}$ (sharp), $r>s>r^{\prime} / 2$.

Proof relies on typical time-frequency analysis arguments

Bilinear Rubio de Francia for squares

Benea and Bernicot proved a bilinear generalization for squares:for ω a square, define bilinear frequency projection

$$
\pi_{\omega}(f, g)(x):=\int_{\mathbb{R}} \widehat{\mathfrak{f}}(\xi) \widehat{\mathfrak{g}}(\eta) \chi_{\omega}(\xi, \eta) e^{2 \pi \mathfrak{i}(\xi+\eta) x} \mathrm{~d} \xi \mathrm{~d} \eta
$$

Theorem [Benea,Bernicot,'16]

Let $\Omega=\{\omega\}$ be a family of disjoint squares in $\widehat{\mathbb{R}^{2}}$ and $r>2$. Then

$$
\left\|\left(\sum_{\omega \in \Omega}\left|\pi_{\omega}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \lesssim\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $1 / p+1 / q=1 / s, p, q>r^{\prime}$ (sharp), $r>s>r^{\prime} / 2$.
Proof relies on typical time-frequency analysis arguments

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\left\|\left(\sum_{\omega \in \Omega}\left|\pi_{\omega}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
& \left\|\left(\sum_{\omega \in \Omega}\left|\pi_{\omega}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \\
\rightarrow & \left\|\sum_{\omega \in \Omega} \pi_{\omega}(f, g)(x) a_{\omega}(x)\right\|_{L^{s}} \quad \mathbf{a} \in \ell^{r^{\prime}}(\Omega)
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{gathered}
\left\|\sum_{\omega \in \Omega} \pi_{\omega}(f, g)(x) a_{\omega}(x)\right\|_{L^{s}} \quad \mathbf{a} \in \ell^{r^{\prime}}(\Omega) \\
\rightarrow \Lambda(f, g, h)=\int \sum_{\omega \in \Omega} \pi_{\omega}(f, g)(x) a_{\omega}(x) h(x) d x \quad h \in L^{s^{\prime}}
\end{gathered}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h) & =\int \sum_{\omega \in \Omega} \pi_{\omega}(f, g)(x) a_{\omega}(x) h(x) d x \quad h \in L^{s^{\prime}} \\
\rightarrow \Lambda(f, g, h) & =\int \sum_{\omega \in \Omega} \pi_{\omega}(f, g)(x) h_{\omega}(x) d x \quad \mathbf{h} \in L^{s^{\prime}}\left(\ell^{r^{\prime}}(\Omega)\right)
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, \mathbf{h}) & =\int \sum_{\omega \in \Omega} \pi_{\omega}(f, g)(x) h_{\omega}(x) d x \quad \mathbf{h} \in L^{s^{\prime}}\left(\ell^{r^{\prime}}(\Omega)\right) \\
\rightarrow \Lambda(f, g, h) & =\int \sum_{\omega \in \Omega} \pi_{\omega_{1}}(f)(x) \pi_{\omega_{2}}(g)(x) h_{\omega}(x) d x
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h) & =\int \sum_{\omega \in \Omega} \pi_{\omega_{1}}(f)(x) \pi_{\omega_{2}}(g)(x) h_{\omega}(x) d x \\
\rightarrow \Lambda(f, g, h) & =\sum_{\omega \in \Omega_{\xi_{1}+\xi_{2}+\xi_{3}=0}} \int_{\hat{f}\left(\xi_{1}\right) \chi_{\omega_{1}}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) \chi_{\omega_{2}}\left(\xi_{2}\right) \widehat{h_{\omega}}\left(\xi_{3}\right) d \sigma}
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
& \Lambda(f, g, \mathbf{h})=\sum_{\omega \in \Omega_{\xi_{1}+\xi_{2}+\xi_{3}=0}} \widehat{f}\left(\xi_{1}\right) \chi_{\omega_{1}}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) \chi_{\omega_{2}}\left(\xi_{2}\right) \widehat{h_{\omega}}\left(\xi_{3}\right) d \sigma \\
& \rightarrow \Lambda(f, g, \mathbf{h})=\sum_{\omega \in \Omega_{\xi_{1}+\xi_{2}+\xi_{3}=0}} \hat{f}\left(\xi_{1}\right) \chi_{\omega_{1}}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) \chi_{\omega_{2}}\left(\xi_{2}\right) \\
& \times \widehat{h_{\omega}}\left(\xi_{3}\right) \chi_{-\omega_{1}-\omega_{2}}\left(\xi_{3}\right) d \sigma
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
& \Lambda(f, g, h)= \sum_{\omega \in \Omega^{\xi_{1}}+\xi_{2}+\xi_{3}=0} \int_{\widehat{f}\left(\xi_{1}\right) \chi_{\omega_{1}}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) \chi_{\omega_{2}}\left(\xi_{2}\right)} \\
& \times \Lambda(f, g, \mathbf{h})=\sum_{\omega \in \Omega} \int \pi_{\omega_{1}}(f)(x) \pi_{\omega_{2}}(g)(x) \pi_{-\omega_{1}-\omega_{2}} h_{\omega}(x) d x
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h) & =\sum_{\omega \in \Omega} \int \pi_{\omega_{1}}(f)(x) \pi_{\omega_{2}}(g)(x) \pi_{-\omega_{1}-\omega_{2}} h_{\omega}(x) d x \\
\rightarrow \Lambda(f, g, h) & =\sum_{\omega \in \Omega} \int f * \check{x}_{\omega_{1}}(x) g * \check{x}_{\omega_{2}}(x) h_{\omega} * \check{x}_{\omega_{3}}(x) d x
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h)= & \sum_{\omega \in \Omega} \int f * \check{\chi}_{\omega_{1}}(x) g * \check{\chi}_{\omega_{2}}(x) h_{\omega} * \check{\chi}_{\omega_{3}}(x) d x \\
\rightarrow \Lambda(f, g, h)= & \sum_{\omega \in \Omega} \int\left|\omega_{1}\right|^{-1} f * \check{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1} y\right) \\
& \times g * \check{\chi}_{\omega_{2}}\left(\left|\omega_{2}\right|^{-1} y\right) h_{\omega} * \check{\chi}_{\omega_{3}}\left(\left|\omega_{3}\right|^{-1} y\right) d y
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h)= & \sum_{\omega \in \Omega} \int\left|\omega_{1}\right|^{-1} \mathrm{f} * \check{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1} y\right) \\
& \times g * \check{\chi}_{\omega_{2}}\left(\left|\omega_{2}\right|^{-1} y\right) h_{\omega} * \check{\chi}_{\omega_{3}}\left(\left|\omega_{3}\right|^{-1} y\right) d y \\
\rightarrow \Lambda(f, g, \mathbf{h})= & \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}} \int_{0}^{1}\left|\omega_{1}\right|^{-1} f * \check{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1}(n+z)\right) \\
& \times g * \check{\chi}_{\omega_{2}}\left(\left|\omega_{2}\right|^{-1}(n+z)\right) h_{\omega} * \check{\chi}_{\omega_{3}}\left(\left|\omega_{3}\right|^{-1}(n+z)\right) d z
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h)= & \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}} \int_{0}^{1}\left|\omega_{1}\right|^{-1} \mathrm{f} * \widetilde{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1}(n+z)\right) \\
\rightarrow \Lambda(f, g, h)= & \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}}\left|\omega_{1}\right|^{-1} f * \check{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1} n\right) \\
& \times g * \check{\chi}_{\omega_{2}}\left(\left|\omega_{2}\right|^{-1} n\right) h_{\omega} * \check{\chi}_{\omega_{3}}\left(\left|\omega_{3}\right|^{-1} n\right)
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h)= & \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}}\left|\omega_{1}\right|^{-1} f * \check{\chi} \omega_{1}\left(\left|\omega_{1}\right|^{-1} n\right) \\
\rightarrow \Lambda(f, g, \mathbf{h})= & \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}}\left|\omega_{1}\right|^{-1}\left\langle f, \check{\chi} \omega_{1}\left(\left|\omega_{1}\right|^{-1} n-\cdot\right)\right\rangle \\
& \quad \times\left\langle g, \check{\chi}_{\omega_{2}}\left(\left|\omega_{2}\right|^{-1} n-\cdot\right)\right\rangle\left\langle h_{\omega}, \check{\chi}_{\omega_{3}}\left(\left|\omega_{3}\right|^{-1} n-\cdot\right)\right\rangle
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h)= & \sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}}\left|\omega_{1}\right|^{-1}\left\langle f, \check{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1} n-\cdot\right)\right\rangle \\
\rightarrow \Lambda(f, g, \mathbf{h})= & \left.\left.\sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}}\left|\omega_{1}\right|^{1 / 2}\langle f,| \omega_{1}\right|^{-1 / 2} \check{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1} n-\cdot\right)\right\rangle \\
& \left.\quad \times\left.\langle\mathrm{g},| \omega_{2}\right|^{-1 / 2} \check{\chi}_{\omega_{2}}\left(\left|\omega_{2}\right|^{-1} n-\cdot\right)\right\rangle \\
& \left.\quad \times\left.\left\langle h_{\omega},\right| \omega_{3}\right|^{-1 / 2} \check{\chi}_{\omega_{3}}\left(\left|\omega_{3}\right|^{-1} n-\cdot\right)\right\rangle
\end{aligned}
$$

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
& \Lambda(f, g, h)= \sum_{\omega \in \Omega} \\
&\left.\left.\sum_{n \in \mathbb{Z}}\left|\omega_{1}\right|^{1 / 2}\langle f,| \omega_{1}\right|^{-1 / 2} \check{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1} n-\cdot\right)\right\rangle \\
&\left.\times\left.\langle g,| \omega_{2}\right|^{-1 / 2} \check{\chi}_{\omega_{2}}\left(\left|\omega_{2}\right|^{-1} n-\cdot\right)\right\rangle \\
&\left.\times\left.\left\langle h_{\omega},\right| \omega_{3}\right|^{-1 / 2} \check{\chi}_{\omega_{3}}\left(\left|\omega_{3}\right|^{-1} n-\cdot\right)\right\rangle
\end{aligned}
$$

We have resolved our quantity into wavepackets:

Time-frequency analysis of the operator

It suffices to assume all ω dyadic and study

$$
\begin{aligned}
\Lambda(f, g, h)= & \left.\left.\sum_{\omega \in \Omega} \sum_{n \in \mathbb{Z}}\left|\omega_{1}\right|^{1 / 2}\langle f,| \omega_{1}\right|^{-1 / 2} \check{\chi}_{\omega_{1}}\left(\left|\omega_{1}\right|^{-1} n-\cdot\right)\right\rangle \\
& \left.\times\left.\langle g,| \omega_{2}\right|^{-1 / 2} \check{\chi} \omega_{\omega_{2}}\left(\left|\omega_{2}\right|^{-1} n-\cdot\right)\right\rangle \\
& \left.\times\left.\left\langle h_{\omega},\right| \omega_{3}\right|^{-1 / 2} \check{\chi}_{\omega_{3}}\left(\left|\omega_{3}\right|^{-1} n-\cdot\right)\right\rangle
\end{aligned}
$$

We have resolved our quantity into wavepackets:
$\left|\omega_{j}\right|^{-1 / 2} \check{\chi} \omega_{j}\left(\left|\omega_{j}\right|^{-1} n-\cdot\right)$ is L^{2}-norm.d, smooth, freq. supported in ω_{j}, concentrated in $\left|\omega_{j}\right|[n, n+1]$ and decays rapidly outside it. It's a wavepacket!

Tiles

Introduce then tiles

$$
P=\left(\omega_{1} \times I_{P}, \omega_{2} \times I_{P}, \omega_{3} \times I_{P}\right), \quad I_{P}=\left|\omega_{j}\right|^{-1}[n, n+1]
$$

and the wavepackets

The trilinear form then becomes

Tiles

Introduce then tiles

$$
P=\left(\omega_{1} \times I_{P}, \omega_{2} \times I_{P}, \omega_{3} \times I_{P}\right), \quad I_{P}=\left|\omega_{j}\right|^{-1}[n, n+1]
$$

and the wavepackets
$\phi_{P}^{j}(x)=\left|\omega_{j}\right|^{-1 / 2} \check{\chi} \omega_{j}\left(\left|\omega_{j}\right|^{-1} n-x\right)=e^{2 \pi i c\left(\omega_{j}\right) x} \frac{1}{\left|\mathrm{I}_{\mathrm{P}}\right|^{1 / 2}} \phi\left(\frac{x-\mathrm{c}\left(\mathrm{I}_{\mathrm{P}}\right)}{\left|\mathrm{I}_{\mathrm{P}}\right|}\right)$.
The trilinear form then becomes

Tiles

Introduce then tiles

$$
P=\left(\omega_{1} \times I_{P}, \omega_{2} \times I_{P}, \omega_{3} \times I_{P}\right), \quad I_{P}=\left|\omega_{j}\right|^{-1}[n, n+1],
$$

and the wavepackets
$\phi_{\mathrm{P}}^{\mathrm{j}}(\mathrm{x})=\left|\omega_{\mathrm{j}}\right|^{-1 / 2} \check{\chi} \omega_{j}\left(\left|\omega_{\mathfrak{j}}\right|^{-1} n-x\right)=e^{2 \pi i c\left(\omega_{j}\right) x} \frac{1}{\left|\mathrm{I}_{\mathrm{P}}\right|^{1 / 2}} \phi\left(\frac{x-\mathrm{c}\left(\mathrm{I}_{\mathrm{P}}\right)}{\left|\mathrm{I}_{\mathrm{P}}\right|}\right)$.
The trilinear form then becomes

$$
\Lambda_{\mathbb{P}}(f, g, h)=\sum_{P \in \mathbb{P}}\left|I_{P}\right|^{-1 / 2}\left\langle f, \phi_{P}^{1}\right\rangle\left\langle g, \phi_{P}^{2}\right\rangle\left\langle h_{\omega(P)}, \phi_{P}^{3}\right\rangle
$$

The plan

Here's the plan:

- find good collections of tiles \mathbb{Q} such that you can estimate $\Lambda_{\mathbb{Q}}(f, g, h)$ explicitely by
$\left|\Lambda_{\mathbb{Q}}(f, g, h)\right| \lesssim " \operatorname{Avg}_{1} f " \cdot " \operatorname{Avg}_{2} g " \cdot " \operatorname{Avg}_{3}\|\mathbf{h}\|_{\ell^{r}} " \cdot \mid$ time support of $\mathbb{Q} \mid ;$
- control the measure of the time supports by suitable L^{p} norms of f, g, h;
- use stopping-time arguments to decompose \mathbb{P} into good collections as above with uniformly controlled "averages"
- use the estimates for good collections on each one and sum everything up.

The plan

Here's the plan:

- find good collections of tiles \mathbb{Q} such that you can estimate $\Lambda_{\mathbb{Q}}(f, g, h)$ explicitely by
$\left|\Lambda_{\mathbb{Q}}(f, g, h)\right| \lesssim " \operatorname{Avg}_{1} f " \cdot " \operatorname{Avg}_{2} g " \cdot " \operatorname{Avg}_{3}\|\mathbf{h}\|_{\ell^{r}} " \cdot \mid$ time support of $\mathbb{Q} \mid ;$
- control the measure of the time supports by suitable L^{p} norms of f, g, h;
- use stopping-time arguments to decompose \mathbb{P} into good collections as above with uniformly controlled "averages"
- use the estimates for good collections on each one and sum everything up.

The plan

Here's the plan:

- find good collections of tiles \mathbb{Q} such that you can estimate $\Lambda_{\mathbb{Q}}(f, g, h)$ explicitely by
$\left|\Lambda_{\mathbb{Q}}(f, g, \mathbf{h})\right| \lesssim " \operatorname{Avg}_{1} \mathrm{f} " \cdot " \operatorname{Avg}_{2} \mathrm{~g} " \cdot \cdot " \operatorname{Avg}_{3}\|\mathbf{h}\|_{\ell^{r}} \gg \cdot \mid$ time support of $\mathbb{Q} \mid ;$
- control the measure of the time supports by suitable L^{p} norms of f, g, h;
- use stopping-time arguments to decompose \mathbb{P} into good collections as above with uniformly controlled "averages";
- use the estimates for good collections on each one and sum everything up.

The plan

Here's the plan:

- find good collections of tiles \mathbb{Q} such that you can estimate $\Lambda_{\mathbb{Q}}(f, g, h)$ explicitely by
$\left|\Lambda_{\mathbb{Q}}(f, g, \mathbf{h})\right| \lesssim " \operatorname{Avg}_{1} \mathrm{f} " \cdot " \operatorname{Avg}_{2} \mathrm{~g} " \cdot \cdot " \operatorname{Avg}_{3}\|\mathbf{h}\|_{\ell^{r}} \gg \cdot \mid$ time support of $\mathbb{Q} \mid ;$
- control the measure of the time supports by suitable L^{p} norms of f, g, h;
- use stopping-time arguments to decompose \mathbb{P} into good collections as above with uniformly controlled "averages";
- use the estimates for good collections on each one and sum everything up.

Columns and rows

Some good collections are columns and rows
[see drawings on the board!]
For a column C we can estimate

Columns and rows

Some good collections are columns and rows [see drawings on the board!]
For a column \mathcal{C} we can estimate

$$
\begin{aligned}
\left|\Lambda_{\mathcal{C}}(f, g, h)\right| \lesssim & \left(\sup _{\mathrm{P} \in \mathcal{C}} \frac{\left|\left\langle\mathrm{f}, \phi_{\mathrm{P}}^{1}\right\rangle\right|}{\left|\mathrm{I}_{\mathrm{P}}\right|^{1 / 2}}\right)\left(\sup _{\mathrm{P} \in \mathcal{C}} \frac{\left|\left\langle\mathrm{~g}, \phi_{\mathrm{P}}^{2}\right\rangle\right|}{\left|\mathrm{I}_{\mathrm{P}}\right|^{1 / 2}}\right)^{\frac{r-2}{r}} \\
& \times\left[\frac{1}{\left|\mathrm{I}_{\text {top }}\right|} \sum_{\mathrm{P} \in \mathcal{C}}\left|\left\langle\mathrm{~g}, \phi_{\mathrm{P}}^{2}\right\rangle\right|^{2}\right]^{\frac{1}{r}} \\
& \times\left(\frac{1}{\left|\mathrm{I}_{\text {top }}\right|} \sum_{\omega \in \mathcal{C}_{\mathrm{I}_{\text {top }}}} \int_{\mathrm{Mh}_{\omega(\mathrm{P})}}^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}}\left|\mathrm{I}_{\text {top }}\right|
\end{aligned}
$$

Columns and rows

Some good collections are columns and rows [see drawings on the board!]
For a column \mathcal{C} we can estimate

$$
\left|\Lambda_{\mathfrak{C}}(\mathrm{f}, \mathrm{~g}, \mathbf{h})\right| \lesssim \operatorname{Size}_{\mathrm{f}}^{1}(\mathbb{C})\left(\operatorname{Size}_{\mathrm{g}}^{2}(\mathbb{C})\right)^{\frac{r-2}{r}}\left[" f_{\mathrm{I}_{\text {top }}}|\mathrm{g}|^{2 "}\right]^{\frac{1}{r}} \operatorname{Size}_{\mathbf{h}}^{3}(\mathcal{C})\left|\mathrm{I}_{\text {top }}\right|
$$

where we have defined Sizes
$\operatorname{Size}_{\mathrm{f}}^{1}(\mathbb{P}):=\sup _{\mathbb{P} \in \mathbb{P}} \frac{\left|\left\langle\mathrm{f}, \phi_{\mathrm{P}}^{1}\right\rangle\right|}{\left|\mathrm{I}_{\mathrm{P}}\right|^{1 / 2}}, \quad \operatorname{Size}_{\mathbf{h}}^{3}(\mathbb{P}):=\sup _{\substack{\mathrm{e} \in \mathbb{P} \\ \text { column }}}\left(\frac{1}{\left|\mathrm{I}_{\text {top }}\right|} \sum_{\omega \in \mathbb{C}_{\mathrm{I}_{\text {top }}}} \int_{\mathrm{I}^{2}} M h_{\omega}^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}}$

Columns and rows

Some good collections are columns and rows [see drawings on the board!]
For a column \mathcal{C} we can estimate

$$
\left|\Lambda_{\mathcal{C}}(f, g, \mathbf{h})\right| \lesssim \operatorname{Size}_{f}^{1}(\mathcal{C})\left(\operatorname{Size}_{g}^{2}(\mathcal{C})\right)^{\frac{r-2}{r}}\left[" f_{\mathrm{I}_{\text {top }}}|g|^{2 "}\right]^{\frac{1}{r}} \operatorname{Size}_{\mathbf{h}}^{3}(\mathcal{C})\left|\mathrm{I}_{\text {top }}\right|
$$

where we have defined Sizes
$\operatorname{Size}_{f}^{1}(\mathbb{P}):=\sup _{\mathrm{P} \in \mathbb{P}} \frac{\left|\left\langle\mathrm{f}, \phi_{\mathrm{P}}^{1}\right\rangle\right|}{\left|\mathrm{I}_{\mathrm{P}}\right|^{1 / 2}}, \quad \operatorname{Size}_{\mathbf{h}}^{3}(\mathbb{P}):=\sup _{\substack{\mathrm{e} \in \mathbb{P} \\ \text { column }}}\left(\frac{1}{\left|\mathrm{I}_{\text {top }}\right|} \sum_{\omega \in \mathbb{C}_{\mathrm{I}_{\text {top }}}} \int_{\omega} M h_{\omega}^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}}$
These are our averages! They are good averages indeed:

$$
\operatorname{Size}_{f}^{1}(\mathbb{P}) \lesssim \sup _{P \in \mathbb{P}} \text { "f } \quad|f| \text { ", } \quad \operatorname{Size}_{\mathbf{h}}^{3}(\mathbb{P}) \lesssim \sup _{P \in \mathbb{P}} \text { " } f_{I_{P}}\|\mathbf{h}\|_{\ell^{r}}^{r^{\prime}} \text { " }
$$

Energies

We need to control collections that are uniform in size:

sup taken over collections of disjoint columns s.t

These quantities are good too!

Energies

We need to control collections that are uniform in size:

$$
\operatorname{Energy}_{f}(\mathbb{P}):=\sup 2^{n}\left(\sum_{\mathcal{C}}\left|I_{\mathcal{C}}\right|\right)^{1 / 2}
$$

sup taken over collections of disjoint columns s.t.

$$
\frac{\left|\left\langle f, \phi_{\mathrm{P}}^{1}\right\rangle\right|}{\left|\mathrm{I}_{\mathrm{P}}\right|^{1 / 2}} \lesssim 2^{n}, \quad \frac{\left|\left\langle\mathrm{f}, \phi_{\operatorname{top}(\mathcal{e}}^{1}\right\rangle\right|}{\left|\mathrm{I}_{\mathrm{e}}\right|^{1 / 2}} \sim 2^{n} ;
$$

sup taken over collections of disjoint columns s.t.

These quantities are good too!

Energies

We need to control collections that are uniform in size:

$$
\operatorname{Energy}_{f}(\mathbb{P}):=\sup 2^{n}\left(\sum_{\mathcal{C}}\left|I_{\mathcal{C}}\right|\right)^{1 / 2}
$$

sup taken over collections of disjoint columns s.t.

$$
\begin{gathered}
\frac{\left|\left\langle\mathrm{f}, \phi_{\mathrm{P}}^{1}\right\rangle\right|}{\left|\mathrm{I}_{\mathrm{P}}\right|^{1 / 2}} \lesssim 2^{\mathrm{n}}, \quad \frac{\left|\left\langle\mathrm{f}, \phi_{\operatorname{top}(\mathcal{C}}^{1}\right\rangle\right|}{\left|\mathrm{I}_{\mathcal{C}}\right|^{1 / 2}} \sim 2^{n} ; \\
\text { Energy }_{\mathbf{h}}(\mathbb{P}):=\sup 2^{\mathrm{n}}\left(\sum_{\mathcal{C}}\left|\mathrm{I}_{\mathcal{C}}\right|\right)^{1 / \mathrm{r}^{\prime}},
\end{gathered}
$$

sup taken over collections of disjoint columns s.t.

$$
\left(\frac{1}{I_{\mathrm{e}}} \sum_{\omega \in \mathrm{e}} \int_{\mathrm{I}_{\mathrm{e}}} M \mathrm{~h}_{\omega}^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}} \gtrsim 2^{n}
$$

These quantities are good too!

Energies

We need to control collections that are uniform in size:

$$
\operatorname{Energy}_{f}(\mathbb{P}):=\sup 2^{n}\left(\sum_{\mathcal{C}}\left|I_{\mathcal{C}}\right|\right)^{1 / 2}
$$

sup taken over collections of disjoint columns s.t.

$$
\begin{gathered}
\frac{\left|\left\langle f, \phi_{\mathrm{p}}^{1}\right\rangle\right|}{\left|\mathrm{I}_{\mathrm{p}}\right|^{1 / 2}} \lesssim 2^{n}, \quad \frac{\mid\left\langle\mathrm{f}, \phi_{\left.\operatorname{top}(\mathcal{C})^{\prime}\right\rangle \mid}^{\left|\mathrm{I}_{\mathcal{C}}\right|^{1 / 2}} \sim 2^{n} ;\right.}{\text { Energy }_{\mathbf{h}}(\mathbb{P}):=\sup 2^{n}\left(\sum_{\mathcal{C}}\left|I_{\mathcal{C}}\right|\right)^{1 / \mathrm{r}^{\prime}},}
\end{gathered}
$$

sup taken over collections of disjoint columns s.t.

$$
\left(\frac{1}{I_{\mathbb{C}}} \sum_{\omega \in \mathbb{e}} \int_{\mathrm{I}_{\mathbb{C}}} M \mathrm{~h}_{\omega}^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}} \gtrsim 2^{n} .
$$

These quantities are good too!

By stopping-time arguments we can essentially reduce to a situation like: $\mathbb{P}=\bigsqcup \mathcal{C}$ and

$$
\operatorname{Size}_{f}^{1}(\mathbb{P}) \sim A, \quad \operatorname{Size}_{g}^{2}(\mathbb{P}) \sim B, \quad \operatorname{Size}_{h}^{3}(\mathbb{P}) \sim C
$$

and
$\sum_{\mathcal{C}}\left|\mathrm{I}_{\mathcal{C}}\right| \lesssim A^{-2}$ Energy $_{f}(\mathbb{P})^{2}$, or B^{-2} Energy $_{g}(\mathbb{P})^{2}$, or $C^{-r^{\prime}}$ Energy $_{\mathbf{h}}(\mathbb{P})^{r^{\prime}}$.
By summing up over all columns (and rows) we get for $\theta_{1}+\theta_{2}+\theta_{3}=1$

By stopping-time arguments we can essentially reduce to a situation like: $\mathbb{P}=\bigsqcup \mathcal{C}$ and

$$
\operatorname{Size}_{f}^{1}(\mathbb{P}) \sim A, \quad \operatorname{Size}_{g}^{2}(\mathbb{P}) \sim B, \quad \operatorname{Size}_{h}^{3}(\mathbb{P}) \sim C
$$

and
$\sum_{\mathcal{C}}\left|I_{\mathcal{C}}\right| \lesssim A^{-2}$ Energy $_{f}(\mathbb{P})^{2}$, or $B^{-2} \operatorname{Energy}_{g}(\mathbb{P})^{2}$, or $C^{-r^{\prime}}$ Energy $_{\mathbf{h}}(\mathbb{P})^{r^{\prime}}$.
By summing up over all columns (and rows) we get for $\theta_{1}+\theta_{2}+\theta_{3}=1$

$$
\begin{aligned}
\left|\Lambda_{\mathbb{P}}(f, g, \mathbf{h})\right| \lesssim & {\left[\sup _{\mathrm{P} \in \mathbb{P}} " f_{\mathrm{I}_{P}}|g|^{2 "}\right]^{\frac{1}{r}} \operatorname{Size}_{f}^{1}(\mathbb{P}) \operatorname{Size}_{g}^{2}(\mathbb{P})^{\frac{r-2}{r}} \operatorname{Size}_{\mathbf{h}}^{3}(\mathbb{P}) } \\
& \cdot\left(\frac{\operatorname{Energy}_{f}(\mathbb{P})}{\operatorname{Size}_{f}^{1}(\mathbb{P})}\right)^{2 \theta_{1}}\left(\frac{\operatorname{Energy}_{g}(\mathbb{P})}{\operatorname{Size}_{g}^{2}(\mathbb{P})}\right)^{2 \theta_{2}}\left(\frac{\operatorname{Energy}_{\mathbf{h}}(\mathbb{P})}{\operatorname{Size}_{\mathbf{h}}^{3}(\mathbb{P})}\right)^{2 \theta_{3}}
\end{aligned}
$$

By stopping-time arguments we can essentially reduce to a situation like: $\mathbb{P}=\bigsqcup \mathcal{C}$ and

$$
\operatorname{Size}_{f}^{1}(\mathbb{P}) \sim A, \quad \operatorname{Size}_{g}^{2}(\mathbb{P}) \sim B, \quad \operatorname{Size}_{h}^{3}(\mathbb{P}) \sim C
$$

and
$\sum_{\mathcal{C}}\left|I_{\mathcal{C}}\right| \lesssim A^{-2}$ Energy $_{f}(\mathbb{P})^{2}$, or B^{-2} Energy $_{g}(\mathbb{P})^{2}$, or $C^{-r^{\prime}}$ Energy $_{\mathbf{h}}(\mathbb{P})^{r^{\prime}}$.
By summing up over all columns (and rows) we get for $\theta_{1}+\theta_{2}+\theta_{3}=1$

$$
\begin{aligned}
\left|\Lambda_{\mathbb{P}}(f, g, \mathbf{h})\right| \lesssim & {\left[\sup _{\mathrm{P} \in \mathbb{P}} \text { " } f_{\mathrm{I}_{\mathbb{P}}}|g|^{2 " \prime}\right]^{\frac{1}{r}} \operatorname{Size}_{f}^{1}(\mathbb{P})^{1-2 \theta_{1}} \text { Energy }_{f}(\mathbb{P})^{2 \theta_{1}} } \\
& \cdot \operatorname{Size}_{g}^{2}(\mathbb{P})^{\frac{r-2}{r}-2 \theta_{2}} \text { Energy }_{g}(\mathbb{P})^{2 \theta_{2}} \\
& \cdot \operatorname{Size}_{\mathbf{h}}^{3}(\mathbb{P})^{1-r^{\prime} \theta_{3}} \operatorname{Energy}_{\mathbf{h}}(\mathbb{P})^{2 \theta_{3}}
\end{aligned}
$$

Now we use the good bounds for Size and Energy:

for interpolation purposes, we can also throw away << $|\mathrm{H}|$ of H , so assume also that for any P there is $x \in I p$ s.t.

Now we use the good bounds for Size and Energy: we can assume

$$
|f| \leqslant \mathbb{1}_{F}, \quad|g| \leqslant \mathbb{1}_{G}, \quad\left(\sum_{\omega}\left|h_{\omega}\right|^{r^{\prime}}\right)^{1 / r^{\prime}} \leqslant \mathbb{1}_{H}
$$

for interpolation purposes, we can also throw away «<|H| of H, so assume also that for any P there is $x \in I P$ s.t.

Now we use the good bounds for Size and Energy: we can assume

$$
|f| \leqslant \mathbb{1}_{F}, \quad|g| \leqslant \mathbb{1}_{G}, \quad\left(\sum_{\omega}\left|h_{\omega}\right|^{r^{\prime}}\right)^{1 / r^{\prime}} \leqslant \mathbb{1}_{H} ;
$$

for interpolation purposes, we can also throw away $<|\mathrm{H}|$ of H , so assume also that for any P there is $x \in \mathrm{I}_{\mathrm{P}}$ s.t.

$$
M f(x) \lesssim \frac{|F|}{|H|}, \quad M\left(|g|^{2}\right)(x) \lesssim \frac{|G|}{|H|}, \quad M g(x) \lesssim \frac{|G|}{|H|} .
$$

Now we use the good bounds for Size and Energy: we can assume

$$
|f| \leqslant \mathbb{1}_{F}, \quad|g| \leqslant \mathbb{1}_{G}, \quad\left(\sum_{\omega}\left|h_{\omega}\right|^{r^{\prime}}\right)^{1 / r^{\prime}} \leqslant \mathbb{1}_{H} ;
$$

for interpolation purposes, we can also throw away $<|\mathrm{H}|$ of H , so assume also that for any P there is $x \in I_{P}$ s.t.

$$
M f(x) \lesssim \frac{|\mathrm{F}|}{|\mathrm{H}|}, \quad M\left(|g|^{2}\right)(x) \lesssim \frac{|\mathrm{G}|}{|\mathrm{H}|}, \quad M g(x) \lesssim \frac{|\mathrm{G}|}{|\mathrm{H}|} .
$$

Then
$\left|\Lambda_{\mathbb{P}}(f, g, \mathbf{h})\right| \lesssim\left(\frac{|\mathrm{G}|}{|\mathrm{H}|}\right)^{\frac{1}{r}}\left(\frac{|\mathrm{~F}|}{|\mathrm{H}|}\right)^{1-2 \theta_{1}}|\mathrm{~F}|^{\theta_{1}}\left(\frac{|\mathrm{G}|}{|\mathrm{H}|}\right)^{\frac{r-2}{r}-2 \theta_{2}}|\mathrm{G}|^{\theta_{2}}|\mathrm{H}|^{\mathrm{r}^{\prime} \theta_{3}}$
for $p, q>2, s>r^{\prime} / 2$ (not quite the true range in the full case,
but reasoning is the same).

Now we use the good bounds for Size and Energy: we can assume

$$
|f| \leqslant \mathbb{1}_{\mathrm{F}}, \quad|g| \leqslant \mathbb{1}_{\mathrm{G}}, \quad\left(\sum_{\omega}\left|h_{\omega}\right|^{r^{\prime}}\right)^{1 / r^{\prime}} \leqslant \mathbb{1}_{\mathrm{H}}
$$

for interpolation purposes, we can also throw away « |H| of H , so assume also that for any P there is $x \in \mathrm{I}_{\mathrm{P}}$ s.t.

$$
M f(x) \lesssim \frac{|F|}{|H|}, \quad M\left(|g|^{2}\right)(x) \lesssim \frac{|G|}{|H|}, \quad M g(x) \lesssim \frac{|G|}{|H|} .
$$

Then

$$
\left|\Lambda_{\mathbb{P}}(\mathrm{f}, \mathrm{~g}, \mathrm{~h})\right| \lesssim|\mathrm{F}|^{1 / \mathrm{p}}|\mathrm{G}|^{1 / \mathrm{q}}|\mathrm{H}|^{1 / \mathrm{s}^{\prime}}
$$

for $p, q>2, s>r^{\prime} / 2$ (not quite the true range in the full case, but reasoning is the same).

What about rectangles?

Assume $\frac{\left|\mathrm{R}_{2}\right|}{\left|\mathrm{R}_{1}\right|}=: \operatorname{ecc}(\mathrm{R}) \gg 1$, dyadic rectangles $\mathscr{R}=\{\mathrm{R}\}$. First problem: we have two scales for each R! We do the same reductions we did as for squares, but now everything has to be w.r.t. the smallest scale, $\left|R_{2}\right|^{-1}$: in the end we study

But notice the different scales in the wavepackets above...

What about rectangles?

Assume $\frac{\left|\mathrm{R}_{2}\right|}{\mathrm{R}_{1} \mid}=: \operatorname{ecc}(\mathrm{R}) \gg 1$, dyadic rectangles $\mathscr{R}=\{\mathrm{R}\}$.
First problem: we have two scales for each R!
We do the same reductions we did as for squares, but now everything has to be w.r.t. the smallest scale, $\left|R_{2}\right|^{-1}$: in the end we study

But notice the different scales in the wavepackets above..

What about rectangles?

Assume $\frac{\left|\mathrm{R}_{2}\right|}{\mathrm{R}_{1} \mid}=: \operatorname{ecc}(\mathrm{R}) \gg 1$, dyadic rectangles $\mathscr{R}=\{\mathrm{R}\}$.
First problem: we have two scales for each R!
We do the same reductions we did as for squares, but now everything has to be w.r.t. the smallest scale, $\left|R_{2}\right|^{-1}$:
we study

But notice the different scales in the wavepackets above.

What about rectangles?

Assume $\frac{\left|\mathrm{R}_{2}\right|}{\mathrm{R}_{1} \mid}=$: ecc $(\mathrm{R}) \gg 1$, dyadic rectangles $\mathscr{R}=\{\mathrm{R}\}$.
First problem: we have two scales for each R!
We do the same reductions we did as for squares, but now everything has to be w.r.t. the smallest scale, $\left|R_{2}\right|^{-1}$: in the end we study

$$
\begin{aligned}
\Lambda(f, g, \mathbf{h})= & \left.\left.\sum_{R \in \mathscr{R}} \sum_{n}\left|R_{1}\right|^{1 / 2}\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle \\
& \left.\left.\cdot\langle g,| R_{2}\right|^{-1 / 2} \overline{\chi_{R_{2}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle \\
& \left.\left.\cdot\left\langle h_{R(P)},\right| R_{2}\right|^{-1 / 2} \overline{\chi_{R_{3}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle
\end{aligned}
$$

But notice the different scales in the wavepackets above.

What about rectangles?

Assume $\frac{\left|\mathrm{R}_{2}\right|}{\mathrm{R}_{1} \mid}=$: ecc $(\mathrm{R}) \gg 1$, dyadic rectangles $\mathscr{R}=\{\mathrm{R}\}$.
First problem: we have two scales for each R!
We do the same reductions we did as for squares, but now everything has to be w.r.t. the smallest scale, $\left|R_{2}\right|^{-1}$: in the end we study

$$
\begin{aligned}
\Lambda(f, g, h)= & \left.\left.\sum_{R \in \mathscr{R}} \sum_{n}\left|R_{1}\right|^{1 / 2}\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle \\
& \left.\left.\cdot\langle g,| R_{2}\right|^{-1 / 2} \overline{\chi R_{2}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle \\
& \left.\left.\cdot\left\langle h_{R(P)},\right| R_{2}\right|^{-1 / 2} \overline{{\chi R_{3}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle
\end{aligned}
$$

But notice the different scales in the wavepackets above...

What's the problem? $\left|R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)$ is a wavepacket, but is concentrated in the interval

$$
\left|R_{1}\right|^{-1}\left[\left\lfloor\frac{n}{\operatorname{ecc}(R)}\right\rfloor+\frac{n \bmod \operatorname{ecc}(R)}{\operatorname{ecc}(R)},\left\lfloor\frac{n}{\operatorname{ecc}(R)}\right\rfloor+\frac{n \bmod \operatorname{ecc}(R)}{\operatorname{ecc}(R)}+1\right]
$$

as n increases, we don't get disjoint intervals!
[see drawing on the board] \Rightarrow Bad combinatorics!

What's the problem? $\left|R_{1}\right|^{-1 / 2} \widetilde{\chi_{R_{1}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)$ is a wavepacket, but is concentrated in the interval
$\left|R_{1}\right|^{-1}\left[\left\lfloor\frac{n}{\operatorname{ecc}(R)}\right\rfloor+\frac{n \bmod \operatorname{ecc}(R)}{\operatorname{ecc}(R)},\left\lfloor\frac{n}{\operatorname{ecc}(R)}\right\rfloor+\frac{n \bmod \operatorname{ecc}(R)}{\operatorname{ecc}(R)}+1\right]$
as n increases, we don't get disjoint intervals! [see drawing on the board] \Rightarrow Bad combinatorics!

The way around is: reduce to a trilinear form with better (algebraic) structure

- we reduce to study shifted trilinear forms

The way around is: reduce to a trilinear form with better (algebraic) structure

- Morally, $\left.\left|\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle \mid \approx$ $\left.\left|\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{1}\right|^{-1}\lfloor n / \operatorname{ecc}(R)\rfloor-\cdot\right)\right\rangle \mid$ $\bmod \operatorname{ecc}(R), \Phi$ wavepacket above for shortness)
- we reduce to study shifted trilinear forms

The way around is: reduce to a trilinear form with better (algebraic) structure

- Morally, $\left.\left|\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle \mid \approx$ $\left.\left|\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{1}\right|^{-1}\lfloor n / \operatorname{ecc}(R)\rfloor-\cdot\right)\right\rangle \mid$
- not quite true, but we have $(k=\lfloor n / \operatorname{ecc}(R)\rfloor, \ell=n$ $\bmod \operatorname{ecc}(R), \Phi$ wavepacket above for shortness)

$$
\left|\left\langle f, \Phi_{R, k, \ell}\right\rangle\right| \lesssim N \sum_{\mathfrak{n} \in \mathbb{Z}}\left|\left\langle f, \Phi_{R, k-\mathfrak{n}, 0}\right\rangle\right|\langle\mathfrak{n}\rangle^{-N}
$$

- we reduce to study shifted trilinear forms

The way around is: reduce to a trilinear form with better (algebraic) structure

- Morally, $\left.\left|\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle \mid \approx$ $\left.\left|\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{1}\right|^{-1}\lfloor n / \operatorname{ecc}(R)\rfloor-\cdot\right)\right\rangle \mid$
- not quite true, but we have ($k=\lfloor n / \operatorname{ecc}(R)\rfloor, \ell=n$ $\bmod \operatorname{ecc}(R), \Phi$ wavepacket above for shortness)

$$
\left|\left\langle f, \Phi_{R, k, \ell}\right\rangle\right| \lesssim N \sum_{\mathfrak{n} \in \mathbb{Z}}\left|\left\langle f, \Phi_{R, k-\mathfrak{n}, 0}\right\rangle\right|\langle\mathfrak{n}\rangle^{-N}
$$

- we reduce to study shifted trilinear forms

$$
\begin{aligned}
& \Lambda^{\mathfrak{n}}(\mathrm{f}, \mathrm{~g}, \mathbf{h})=\sum_{\mathrm{R}} \sum_{\mathrm{k} \in \mathbb{Z}} \sum_{\ell=0}^{\mathrm{ecc}(\mathrm{R})-1}\left|\mathrm{R}_{1}\right|^{1 / 2}\left\langle\mathrm{f}, \Phi_{\mathrm{R}, \mathrm{k}-\mathfrak{n}, 0}^{1}\right\rangle \\
& \cdot\left\langle\mathrm{g}, \Phi_{\mathrm{R}, \mathrm{k}, \ell}^{2}\right\rangle\left\langle\mathrm{h}_{\mathrm{R}}, \Phi_{\mathrm{R}, \mathrm{k}, \ell}^{3}\right\rangle
\end{aligned}
$$

The way around is: reduce to a trilinear form with better (algebraic) structure

- Morally, $\left.\left|\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{2}\right|^{-1} n-\cdot\right)\right\rangle \mid \approx$ $\left.\left|\langle f,| R_{1}\right|^{-1 / 2} \overline{\chi_{R_{1}}}\left(\left|R_{1}\right|^{-1}\lfloor n / \operatorname{ecc}(R)\rfloor-\cdot\right)\right\rangle \mid$
- not quite true, but we have $(k=\lfloor n / \operatorname{ecc}(R)\rfloor, \ell=n$ $\bmod \operatorname{ecc}(R), \Phi$ wavepacket above for shortness)

$$
\left|\left\langle f, \Phi_{R, k, \ell}\right\rangle\right| \lesssim N \sum_{\mathfrak{n} \in \mathbb{Z}}\left|\left\langle f, \Phi_{R, k-\mathfrak{n}, 0}\right\rangle\right|\langle\mathfrak{n}\rangle^{-N}
$$

- we reduce to study shifted trilinear forms

$$
\begin{aligned}
& \Lambda^{\mathfrak{n}}(f, g, \mathbf{h})=\sum_{\mathrm{R}} \sum_{\mathrm{k} \in \mathbb{Z}}\left|\mathrm{R}_{1}\right|^{1 / 2}\left\langle\mathrm{f}, \Phi_{\mathrm{R}, \mathrm{k}-\mathfrak{n}, 0}^{1}\right\rangle \\
& \quad \cdot \sum_{\ell=0}^{\operatorname{ecc}(\mathrm{R})-1}
\end{aligned} \quad\left\langle g, \Phi_{R, k, \ell}^{2}\right\rangle\left\langle h_{R}, \Phi_{R, k, \ell}^{3}\right\rangle .
$$

We need tiles that are adapted to the two scales $\left|R_{1}\right|,\left|R_{2}\right|$:
\square
$R_{3}=-R_{1}-R_{2}\left(\left|R_{3}\right| \sim\left|R_{2}\right| \gg\left|R_{1}\right|\right)$.
Then they are of the form

with $\left|R_{1}\right|\left|I_{P}\right|=1$. [see drawing on the board]
Thus the trilinear form can be written as

\rightarrow better structure!

We need tiles that are adapted to the two scales $\left|R_{1}\right|,\left|R_{2}\right|$:let

We need tiles that are adapted to the two scales $\left|R_{1}\right|,\left|R_{2}\right|$:let

$$
\mathrm{I}^{\mathfrak{n}}:=\mathrm{I}+\mathfrak{n}|\mathrm{I}|,
$$

$R_{3}=-R_{1}-R_{2}\left(\left|R_{3}\right| \sim\left|R_{2}\right| \gg\left|R_{1}\right|\right)$.
Then they are of the form

$$
P=(R_{1} \times I_{P}, \underbrace{\left\{\rho=\left(R_{2} \times I_{\rho}, R_{3} \times I_{\rho}\right):\left|R_{2}\right|\left|I_{\rho}\right|=1, I_{\rho} \subset I_{P}^{n}\right\}}_{=: S_{P}^{n}})
$$

with $\left|\mathrm{R}_{1}\right|\left|\mathrm{I}_{\mathrm{P}}\right|=1$. [see drawing on the board]

We need tiles that are adapted to the two scales $\left|R_{1}\right|,\left|R_{2}\right|$:let

$$
\mathrm{I}^{\mathfrak{n}}:=\mathrm{I}+\mathfrak{n}|\mathrm{I}|,
$$

$R_{3}=-R_{1}-R_{2}\left(\left|R_{3}\right| \sim\left|R_{2}\right| \gg\left|R_{1}\right|\right)$.
Then they are of the form

$$
P=(R_{1} \times I_{P}, \underbrace{\left\{\rho=\left(R_{2} \times I_{\rho}, R_{3} \times I_{\rho}\right):\left|R_{2}\right|\left|I_{\rho}\right|=1, I_{\rho} \subset I_{P}^{n}\right\}}_{=: S_{P}^{n}})
$$

with $\left|\mathrm{R}_{1}\right|\left|\mathrm{I}_{\mathrm{P}}\right|=1$. [see drawing on the board]
Thus the trilinear form can be written as

$$
\Lambda_{\mathbb{P}}^{\mathfrak{n}}(\mathrm{f}, \mathrm{~g}, \mathbf{h})=\sum_{\mathrm{P} \in \mathbb{P}}\left|\mathrm{I}_{\mathrm{P}}\right|^{-1 / 2}\left|\left\langle\mathrm{f}, \phi_{\mathrm{P}}\right\rangle\right| \sum_{\rho \in \mathbb{S}_{\mathrm{P}}^{\mathfrak{n}}}\left|\left\langle\mathrm{g}, \psi_{\rho}^{2}\right\rangle\right|\left|\left\langle h_{\mathrm{R}(\mathrm{P})}, \psi_{\rho}^{3}\right\rangle\right|
$$

\rightarrow better structure!

We can control the inner sum by

$$
\sum_{\rho \in \mathbb{S}_{P}^{n}}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|\left|\left\langle h_{R}, \psi_{\rho}^{3}\right\rangle\right|
$$

We can control the inner sum by

$$
\begin{aligned}
& \sum_{\rho \in \mathbb{S}_{\mathrm{P}}^{n}}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|\left|\left\langle h_{R}, \psi_{\rho}^{3}\right\rangle\right| \\
\leqslant & \left(\sum_{\rho}\left|\mathrm{I}_{\rho}\right|^{1-r / 2}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|^{r}\right)^{1 / r}\left(\sum_{\rho}\left|\mathrm{I}_{\rho}\right|^{1-r^{\prime} / 2}\left|\left\langle h_{R}, \psi_{\rho}^{3}\right\rangle\right|^{r^{\prime}}\right)^{1 / r^{\prime}}
\end{aligned}
$$

We can control the inner sum by

$$
\begin{aligned}
& \left(\sum_{\rho}\left|I_{\rho}\right|^{1-r / 2}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|^{r}\right)^{1 / r}\left(\sum_{\rho}\left|I_{\rho}\right|^{1-r^{\prime} / 2}\left|\left\langle h_{R}, \psi_{\rho}^{3}\right\rangle\right|^{r^{\prime}}\right)^{1 / r^{\prime}} \\
\leqslant & \left(\sum_{\rho}\left|I_{\rho}\right|\left(\frac{\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|}{\left|I_{\rho}\right|^{1 / 2}}\right)^{2}\left(\frac{\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|}{\left|I_{\rho}\right|^{1 / 2}}\right)^{r-2}\right)^{1 / r}\left(\sum_{\rho} \int_{I_{\rho}}\left(M h_{R}\right)^{r^{\prime}}\right)^{1 / r^{\prime}}
\end{aligned}
$$

We can control the inner sum by

$$
\begin{aligned}
& \left(\sum_{\rho}\left|I_{\rho}\right|\left(\frac{\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|}{\left|I_{\rho}\right|^{1 / 2}}\right)^{2}\left(\frac{\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|}{\left|I_{\rho}\right|^{1 / 2}}\right)^{r-2}\right)^{1 / r}\left(\sum_{\rho} \int_{I_{\rho}}\left(M h_{R}\right)^{r^{\prime}}\right)^{1 / r^{\prime}} \\
\leqslant & \|g\|_{L^{\infty}}^{\frac{r-2}{r}}\left(\sum_{\rho}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|^{2}\right)^{1 / r}\left(\int_{I_{P}^{n}}\left(M h_{R}\right)^{r^{\prime}}\right)^{1 / r^{\prime}}
\end{aligned}
$$

We can control the inner sum by

$$
\|g\|_{L^{\infty}}^{\frac{r-2}{r}}\left(\sum_{\rho}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|^{2}\right)^{1 / r}\left(\int_{I_{p}^{n}}\left(M h_{R}\right)^{r^{\prime}}\right)^{1 / r^{\prime}}
$$

We can control the inner sum by

$$
\|g\|_{L^{\infty}}^{\frac{r-2}{\tau_{0}}}\left(\sum_{\rho}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|^{2}\right)^{1 / r}\left(\int_{I_{P}^{r}}\left(M h_{R}\right)^{r^{\prime}}\right)^{1 / r^{\prime}}
$$

We need shifted columns to adapt to the situation: [see drawing on the board]

We can control the inner sum by

$$
\|g\|_{L^{\infty}}^{\frac{r-2}{r^{\infty}}}\left(\sum_{\rho}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|^{2}\right)^{1 / r}\left(\int_{I_{p}^{n}}\left(M h_{R}\right)^{r^{\prime}}\right)^{1 / r^{\prime}}
$$

We need shifted columns to adapt to the situation: [see drawing on the board]
Using Hölder as before we obtain for a shifted column

$$
\left|\Lambda^{\mathfrak{n}}(\mathbf{f}, \mathrm{g}, \mathbf{h})\right| \lesssim \operatorname{Size}_{\mathrm{f}}^{1}(\mathcal{C})\|\boldsymbol{g}\|_{\mathrm{L}^{\infty}}^{\frac{r-2}{\tau_{\infty}}} "\left[f_{\mathrm{I}_{\text {top }}}|\boldsymbol{g}|^{2}\right]^{\frac{1}{r^{n}} "} \operatorname{Size}_{\mathbf{h}}^{\mathfrak{n}}(\mathcal{C})\left|\mathrm{I}_{\text {top }}\right|
$$

We can control the inner sum by

$$
\|g\|_{L^{\infty}}^{\frac{r-2}{r^{\infty}}}\left(\sum_{\rho}\left|\left\langle g, \psi_{\rho}^{2}\right\rangle\right|^{2}\right)^{1 / r}\left(\int_{I_{P}^{n}}\left(M h_{R}\right)^{r^{\prime}}\right)^{1 / r^{\prime}}
$$

We need shifted columns to adapt to the situation:
[see drawing on the board]
Using Hölder as before we obtain for a shifted column

$$
\left|\Lambda^{\mathfrak{n}}(\mathbf{f}, \mathrm{g}, \mathbf{h})\right| \lesssim \operatorname{Size}_{\mathrm{f}}^{1}(\mathcal{C})\|\boldsymbol{g}\|_{\mathrm{L}^{\infty}}^{\frac{r-2}{r}} u\left[f_{\mathrm{I}_{\text {top }}}|\boldsymbol{g}|^{2}\right]^{\frac{1}{r}} " \operatorname{Size}_{\mathbf{h}}^{\mathfrak{n}}(\mathcal{C})\left|\mathrm{I}_{\text {top }}\right|
$$

similar to square estimates, but non-trivial to get there...

Energy estimates

Energy ${ }_{f}^{n}(\mathbb{P})$ is defined as before but the notion of (shifted) column disjointness is different (shifted tiles $R_{1} \times I_{P}^{n}$ are disjoint instead) We have as a consequence a slightly worse estimate:
(for Energy ${ }_{h}^{n}(\mathbb{P})$ we have the same as before, thanks to the modified definition of the shifted columns! (which makes it natural))

Energy estimates

Energy ${ }_{f}^{n}(\mathbb{P})$ is defined as before but the notion of (shifted) column disjointness is different (shifted tiles $R_{1} \times I_{P}^{n}$ are disjoint instead) We have as a consequence a slightly worse estimate:

$$
\operatorname{Energy}_{\mathfrak{f}}^{\mathfrak{n}}(\mathbb{P}) \lesssim \log (\mathfrak{n})\|\mathfrak{f}\|_{\mathrm{L}^{2}}
$$

(for Energy ${ }_{\mathrm{h}}^{\mathrm{n}}(\mathbb{P})$ we have the same as before, thanks to the modified definition of the shifted columns! (which makes it natural))

Energy estimates

$E^{\text {Energy }}{ }_{f}^{n}(\mathbb{P})$ is defined as before but the notion of (shifted) column disjointness is different (shifted tiles $R_{1} \times I_{p}^{n}$ are disjoint instead) We have as a consequence a slightly worse estimate:

$$
\operatorname{Energy}_{\mathfrak{f}}^{\mathfrak{n}}(\mathbb{P}) \lesssim \log (\mathfrak{n})\|\mathfrak{f}\|_{L^{2}}
$$

(for Energy ${ }_{\mathbf{h}}^{\mathfrak{n}}(\mathbb{P})$ we have the same as before, thanks to the modified definition of the shifted columns! (which makes it natural))

The rest of the argument mimicks the one for squares, with some important differences:

- we freeze g and consider only columns, not rows;
- we have to be careful in dealing with the different structure of the (shifted) columns.

Running stopping-times as before and doing similar computations we end up with

$$
\left|\Lambda_{\mathbb{P}}^{\mathfrak{n}}(\mathrm{f}, \mathrm{~g}, \mathbf{h})\right| \lesssim(\log (\mathfrak{n}))^{\mathrm{O}(1)}|\mathrm{F}|^{1 / \mathrm{p}}|\mathrm{G}|^{1 / \mathrm{r}}|\mathrm{H}|^{1 / \mathrm{s}^{\prime}}
$$

So we have some restricted weak estimates only with $g \in L^{r}$ fixed! But..

The rest of the argument mimicks the one for squares, with some important differences:

- we freeze g and consider only columns, not rows;
- we have to be careful in dealing with the different structure of the (shifted) columns.

Running stopning-times as before and doing similar computations we end up with

$$
\left|\Lambda_{\mathbb{P}}^{\mathfrak{n}}(\mathrm{f}, \mathrm{~g}, \mathrm{~h})\right| \lesssim(\log (\mathfrak{n}))^{\mathrm{O}(1)}|\mathrm{F}|^{1 / \mathrm{p}}|\mathrm{G}|^{1 / \mathrm{r}}|\mathrm{H}|^{1 / \mathrm{s}^{\prime}}
$$

So we have some restricted weak estimates only with $g \in L^{r}$ fixed!

The rest of the argument mimicks the one for squares, with some important differences:

- we freeze g and consider only columns, not rows;
- we have to be careful in dealing with the different structure of the (shifted) columns.

Running stopping-times as before and doing similar computations we end up with

for $2<p<r,|f| \leqslant \mathbb{1}_{F},|g| \leqslant \mathbb{1}_{G},\left(\sum_{R}\left|h_{R}\right|^{r^{\prime}}\right)^{1 / r^{\prime}} \leqslant " \mathbb{1}_{H} "$. So we have some restricted weak estimates only with $g \in L^{r}$ fixed!

The rest of the argument mimicks the one for squares, with some important differences:

- we freeze g and consider only columns, not rows;
- we have to be careful in dealing with the different structure of the (shifted) columns.
Running stopping-times as before and doing similar computations we end up with

$$
\left|\Lambda_{\mathbb{P}}^{\mathfrak{n}}(\mathrm{f}, \mathrm{~g}, \mathbf{h})\right| \lesssim(\log (\mathfrak{n}))^{\mathrm{O}(1)}|\mathrm{F}|^{1 / \mathrm{p}}|\mathrm{G}|^{1 / \mathrm{r}}|\mathrm{H}|^{1 / \mathrm{s}^{\prime}}
$$

for $2<\mathrm{p}<\mathrm{r},|\mathrm{f}| \leqslant \mathbb{1}_{\mathrm{F}},|\mathrm{g}| \leqslant \mathbb{1}_{\mathrm{G}},\left(\sum_{\mathrm{R}}\left|h_{\mathrm{R}}\right|^{\mathrm{r}^{\prime}}\right)^{1 / \mathrm{r}^{\prime}} \leqslant \mathbb{1}_{\mathrm{H}}$ ".

The rest of the argument mimicks the one for squares, with some important differences:

- we freeze g and consider only columns, not rows;
- we have to be careful in dealing with the different structure of the (shifted) columns.
Running stopping-times as before and doing similar computations we end up with

$$
\left|\Lambda_{\mathbb{P}}^{\mathfrak{n}}(\mathrm{f}, \mathrm{~g}, \mathbf{h})\right| \lesssim(\log (\mathfrak{n}))^{\mathrm{O}(1)}|\mathrm{F}|^{1 / \mathrm{p}}|\mathrm{G}|^{1 / \mathrm{r}}|\mathrm{H}|^{1 / \mathrm{s}^{\prime}}
$$

for $2<p<r,|f| \leqslant \mathbb{1}_{F},|g| \leqslant \mathbb{1}_{G},\left(\sum_{R}\left|h_{R}\right|^{r^{\prime}}\right)^{1 / r^{\prime}} \leqslant \mathbb{1}_{H}$ ".
So we have some restricted weak estimates only with $g \in L^{r}$ fixed! But...

Multilinear vector-valued interpolation

We have for $r=\infty$ the operator is much easier:

$$
\sup _{R}\left|\pi_{R_{1}} f \cdot \pi_{R_{2}} g\right| \leqslant \mathcal{C f} \cdot \mathcal{C g}
$$

where \mathcal{C} is the Carleson operator; so it's bounded for all
$1<p, q<\infty$. There is an interpolation argument for
vector-valued situations (due to Silva) that allows us to interpolate between $r_{0}=\infty$ and r_{1} close to 2 to obtain for any $r>2$ that

$$
\left|\Lambda_{\text {rectangles }}(f, g, h)\right| \lesssim|F|^{1 / p}|G|^{1 / \mathrm{q}}|\mathrm{H}|^{1 / s^{\prime}}
$$

Multilinear vector-valued interpolation

We have for $r=\infty$ the operator is much easier:

$$
\sup _{R}\left|\pi_{R_{1}} f \cdot \pi_{R_{2}} g\right| \leqslant \mathcal{C f} \cdot \mathcal{C g}
$$

where \mathcal{C} is the Carleson operator; so it's bounded for all $1<\mathrm{p}, \mathrm{q}<\infty$.
vector-valued situations (due to Silva) that allows us to interpolate between $r_{0}=\infty$ and r_{1} close to 2 to obtain for any $r>2$ that

Multilinear vector-valued interpolation

We have for $r=\infty$ the operator is much easier:

$$
\sup _{R}\left|\pi_{R_{1}} f \cdot \pi_{R_{2}} g\right| \leqslant \mathcal{C f} \cdot \mathcal{C} g
$$

where \mathcal{C} is the Carleson operator; so it's bounded for all $1<\mathrm{p}, \mathrm{q}<\infty$. There is an interpolation argument for vector-valued situations (due to Silva) that allows us to interpolate between $r_{0}=\infty$ and r_{1} close to 2 to obtain for any $r>2$ that

$$
\left|\Lambda_{\text {rectangles }}(\mathrm{f}, \mathrm{~g}, \mathrm{~h})\right| \lesssim|\mathrm{F}|^{1 / \mathrm{p}}|\mathrm{G}|^{1 / \mathrm{q}}|\mathrm{H}|^{1 / \mathrm{s}^{\prime}}
$$

for $\mathrm{r}^{\prime}<\mathrm{p}, \mathrm{q}<\mathrm{r}$.

Non-smooth rectangles

We can replace χ_{R} by $\mathbb{1}_{R}$:

$$
\nabla_{\mathrm{R}}(\mathrm{f}, \mathrm{~g})(x):=\int \hat{\mathrm{f}}(\xi) \hat{\boldsymbol{g}}(\eta) \mathbb{1}_{\mathrm{R}}(\xi, \eta) \mathrm{e}^{2 \pi i(\xi+\eta) x} \mathrm{~d} \xi \mathrm{~d} \eta
$$

This is more singular because of the discontinuity at the boundary (same phenomenon as for the Bilinear Hilbert transform) We can't quite prove the same inequalities (for now...) but at least we can say

Thm. [Bernicot, V.,'18]

For all $\varepsilon>0$ and finite family \mathscr{R} of disjoint dyadic rectangles

for $\mathrm{r}^{\prime}<\mathrm{p}, \mathrm{q}<\mathrm{r}, 1 / \mathrm{p}+1 / \mathrm{q}=1 / \mathrm{s}$.

Non-smooth rectangles

We can replace χ_{R} by $\mathbb{1}_{R}$:

$$
\nabla_{R}(f, g)(x):=\int \hat{f}(\xi) \hat{g}(\eta) \mathbb{1}_{R}(\xi, \eta) e^{2 \pi i(\xi+\eta) x} d \xi d \eta
$$

This is more singular because of the discontinuity at the boundary (same phenomenon as for the Bilinear Hilbert transform).
We can't quite prove the same inequalities (for now...) but at least
we can say
Thm.[Bernicot, V.,'18]
For all $\varepsilon>0$ and finite family \mathscr{R} of disjoint dyadic rectangles

Non-smooth rectangles

We can replace χ_{R} by $\mathbb{1}_{R}$:

$$
\nabla_{\mathrm{R}}(\mathrm{f}, \mathrm{~g})(\mathrm{x}):=\int \hat{\mathrm{f}}(\xi) \widehat{\mathfrak{g}}(\eta) \mathbb{1}_{\mathrm{R}}(\xi, \eta) \mathrm{e}^{2 \pi \mathfrak{i}(\xi+\eta) \mathrm{x}} \mathrm{~d} \xi \mathrm{~d} \eta
$$

This is more singular because of the discontinuity at the boundary (same phenomenon as for the Bilinear Hilbert transform). We can't quite prove the same inequalities (for now...) but at least we can say

Thm.[Bernicot, V.,'18]

For all $\varepsilon>0$ and finite family \mathscr{R} of disjoint dyadic rectangles

$$
\left\|\left(\sum_{R \in \mathscr{R}}\left|\sqcap_{R}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \lesssim_{\varepsilon}(\# \mathscr{R})^{\varepsilon}\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $r^{\prime}<p, q<r, 1 / p+1 / q=1 / s$.

Non-smooth rectangles

Thm.[Bernicot, V.,'18]

For all $\varepsilon>0$ and finite family \mathscr{R} of disjoint dyadic rectangles

$$
\left\|\left(\sum_{R \in \mathscr{R}}\left|\sqcap_{R}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \lesssim_{\varepsilon}(\# \mathscr{R})^{\varepsilon}\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $r^{\prime}<p, q<r, 1 / p+1 / q=1 / s$.
Proof uses a time-frequency analysis similar to the previous one, except:

- we don't resolve the singularities (no wavepackets!) but look at some local L^{2} and L^{∞} norms;
- no wavepackets means no Bessel inequalities, so we replace them with pointwise estimates using Variational Carleson operators.
We suspect this should be enough for some "bilinear Marcinkiewicz rough

Non-smooth rectangles

Thm.[Bernicot, V.,'18]

For all $\varepsilon>0$ and finite family \mathscr{R} of disjoint dyadic rectangles

$$
\left\|\left(\sum_{R \in \mathscr{R}}\left|\sqcap_{R}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \lesssim_{\varepsilon}(\# \mathscr{R})^{\varepsilon}\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $\mathrm{r}^{\prime}<\mathrm{p}, \mathrm{q}<\mathrm{r}, 1 / \mathrm{p}+1 / \mathrm{q}=1 / \mathrm{s}$.
Proof uses a time-frequency analysis similar to the previous one, except:

- we don't resolve the singularities (no wavepackets!) but look at some local L^{2} and L^{∞} norms;
- no wavepackets means no Bessel inequalities, so we replace them with pointwise estimates using Variational Carleson operators
We suspect this should be enough for some "bilinear Marcinkiewicz rough

Non-smooth rectangles

Thm.[Bernicot, V.,'18]

For all $\varepsilon>0$ and finite family \mathscr{R} of disjoint dyadic rectangles

$$
\left\|\left(\sum_{R \in \mathscr{R}}\left|\sqcap_{R}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \lesssim_{\varepsilon}(\# \mathscr{R})^{\varepsilon}\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $r^{\prime}<p, q<r, 1 / p+1 / q=1 / s$.
Proof uses a time-frequency analysis similar to the previous one, except:

- we don't resolve the singularities (no wavepackets!) but look at some local L^{2} and L^{∞} norms;
- no wavepackets means no Bessel inequalities, so we replace them with pointwise estimates using Variational Carleson onerators

Non-smooth rectangles

Thm.[Bernicot, V.,'18]

For all $\varepsilon>0$ and finite family \mathscr{R} of disjoint dyadic rectangles

$$
\left\|\left(\sum_{R \in \mathscr{R}}\left|\sqcap_{R}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \lesssim_{\varepsilon}(\# \mathscr{R})^{\varepsilon}\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $r^{\prime}<p, q<r, 1 / p+1 / q=1 / s$.
Proof uses a time-frequency analysis similar to the previous one, except:

- we don't resolve the singularities (no wavepackets!) but look at some local L^{2} and L^{∞} norms;
- no wavepackets means no Bessel inequalities, so we replace them with pointwise estimates using Variational Carleson operators.

Non-smooth rectangles

Thm.[Bernicot, V.,'18]

For all $\varepsilon>0$ and finite family \mathscr{R} of disjoint dyadic rectangles

$$
\left\|\left(\sum_{R \in \mathscr{R}}\left|\sqcap_{R}(f, g)\right|^{r}\right)^{1 / r}\right\|_{L^{s}} \lesssim_{\varepsilon}(\# \mathscr{R})^{\varepsilon}\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

for $r^{\prime}<p, q<r, 1 / p+1 / q=1 / s$.
Proof uses a time-frequency analysis similar to the previous one, except:

- we don't resolve the singularities (no wavepackets!) but look at some local L^{2} and L^{∞} norms;
- no wavepackets means no Bessel inequalities, so we replace them with pointwise estimates using Variational Carleson operators.
We suspect this should be enough for some "bilinear Marcinkiewicz rough multipliers" results. but as of now we don't now for sure.

Thank you for your attention!

[^0]: Theorem [Benea, Bernicot, '16]
 Let $\Omega=\{\omega\}$ be a family of disjoint squares in \mathbb{R}^{2} and $r>2$. Then

 for $1 / p+1 / q=1 / s, p, q>r^{\prime}$ (sharp), $r>s>r^{\prime} / 2$.
 Proof relies on typical time-frequency analysis arguments

