Program

Version imprimableVersion imprimable

PROGRAM 2017-2018

All courses are given on Monday or Thursday. The student seminar (first semester) is on Wednesday. This year additional courses and dedicated schools are also proposed in the two pathways in the second semester via the Lebesgue semester "dynamics and geometry".

Algebra and Geometry pathway

1st semester (September-December 2017)

  • Introduction to differential geometry (X9MF050, common course, 24H, S. Tapie)
  • Introduction aux EDP (X9MF060, common course, 24H, N. Depaw)
  • Introduction à la géométrie algébrique (X9MF070, 24H, E. Mann)
  • Groupes et complexes simpliciaux (X9MF080, 24H, S. Barré)
  • Seminar of students (X9MF030, E. Paturel et B. Chantraîne)

2nd semestre (January-April 2018)

  • Groupes et courbure strictement négative (X0MF070, 24H, S. Gouezel)
  • Introduction à la géométrie énumérative des courbes planes(X0MF080, 24H, E. Brugallé)
  • Cohomologie de Gelfand-Fuchs (X0MF090, optional course, 20H, F. Wagemann )

Master thesis preparation (March-July 2018)

Analysis and Probability pathway

1st semester (September-December 2017)

  • Introduction aux EDP (X9MF060, common course, 24H, N. Depaw
  • Introduction to differential geometry (X9MF050, common course, in English, 24H, S. Tapie)
  • Topics in harmonic analysis I (X9MF100, 24H, G. Carron)
  • Methods and tools for non linear equations and applications to kinetic models (X9MF090, 24H, F. Herau)
  • Seminar of students (X9MF030, E. Paturel et B. Chantraîne)

2nd semestre (January-April 2017)

  • Topics in Harmonic Analysis II (X0MF100, 24H, Ch. Benea)
  • Small amplitude solutions for nonlinear PDEs and normal form technics (X0MF110, 24H, B. Grébert)
  • Some probabilistic insights into the applications of Kirchhoff’s matrix tree theorem (X0MF120, optional course, 20H, L. Chaumont)

Master thesis preparation (March-July 2018)

 
 
 
 
 

Connexion utilisateur