Problèmes aux valeurs propres non-linéaires

Non spécifié
Nom de l'auteur
Aboud
Prénom de l'auteur
Fatima
Date de soutenance
Nom du ou des directeurs de thèse
D. Robert
Résumé de la thèse

Ce travail porte sur l'étude de familles polynomiales d'opérateurs de la forme : L(z)=H0+z H1+...+ zm-1Hm-1+zm , où H0,H1,...,Hm-1 sont des opérateurs définis sur l'espace de Hilbert H et z est un paramètre complexe. On s'intéresse au spectre de la famille L(z). Le problème L(z)u(x)=0 est un problème aux valeurs propres non-linéaires lorsque m≥2 (Un nombre complexe z est appelé valeur propre de L(z), s'il existe u dans H, u≠0$ tel que L(z)u=0). Ici nous considérons des familles quadratiques (m=2) et nous nous intéressons en particulier au cas LP(z)=-∆x+(P(x)-z)2, définie dans l'espace de Hilbert L2(Rn), où P est un polynôme positif elliptique de degré M≥2. Dans cet exemple les résultats connus d'existence de valeurs propres concernent les cas $n=1$ et $n$ paire. L'objectif principal de ce travail est de progresser vers la preuve de la conjecture suivante, formulée par Helffer-Robert-Wang : « Pour toute dimension n, pour tout M≥2, le spectre de LP est non vide. » Nous prouvons cette conjecture dans les cas suivants : (1) n=1,3, pour tout polynôme P de degré M≥2. (2) n=5, pour tout polynôme P convexe vérifiant de plus des conditions techniques. (3) n=7, pour tout polynôme P convexe. Ce résultat s'étend à des polynômes quasi-homogènes et quasi-elliptiques comme par exemple P(x,y)=x2+y4, x dans Rn1, y dans Rn2, n1+n2=n, et n paire. Nous prouvons ces résultats en calculant les coefficients d'une formule de trace semi-classique et en utilisant le théorème de Lidskii.