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@ Presentation of the problem and main result
@ The equation
e Existence and uniqueness
@ Numerical approximation : monotone finite volume schemes
@ The result : existence, uniqueness and convergence of the finite
volume approximation

© Proof : case of a 1D upwind scheme
@ The 1D upwind scheme
o Convergence of the numerical approximation to a measure-valued
solution, up to a subsequence
@ Uniqueness of the measure-valued solution and conclusion
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A stochastic hyperbolic scalar conservation law

e We consider the following hyperbolic scalar conservation law on R?
with a multiplicative noise:

{ du+ div, [ f(z,t,u)]dt = g(u)dW in QxR?x(0,7), 1)

w(w,z,0) =ug(z), wecQ, zecRe

o It can be rewritten as

t
8t(u —/ g(u)dW) + divg [f(z,t,u)] =0,
N
1t6 Integral

~ the multiplicative noise can be used to model uncertainties in
the model/ small scale phenomenons
~ goal : applications to fluid mechanics, for example the study of
flow in porous media ...

@ Questions : existence, uniqueness and numerical approximation of
the solution ?
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The weak formulation of the stochastic hyperbolic scalar
conservation law

e The corresponding weak formulation is: for almost all w in 2 and
for all ¢ in D(Q), with Q = R? x [0,T)

/ u(w, z, )Op(x,t) + fx, t,u(w, z,t)).Vep(z, t)dedt
Q

+ /Rd uo(x)p(z,0)dr = /Q </Otg(u(w,:z,s))dW(3)> Opp(z, t)dxdt.

~
[to Integral

@ As in the deterministic case, there is no uniqueness of the weak
solution in general.
~> In the deterministic case, we can use the concept of entropy
solution to get uniqueness.

o We now generalize the concept of entropy solution to the stochastic
case.
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Stochastic entropy solution

o D (R? x [0,T)) is the subset of nonnegative elements of
DR x [0,T))

o A denotes the set of C3(R) convex functions 1 such that ” has
compact support

e &, denotes the entropy flux defined for any a € R and for any
neAvy et = [ @) w10
0 u

Definition

A function u of N* (0, T, L*(R%)) N L> (0, T; L*(Q2 x RY)) is a
stochastic entropy solution of (1) if P-a.s in , for any n € A and for
any ¢ € DT(R? x [0,T))

/ n(uo)p(z, O)dx—l—/@n(u)@tgo(a:,t)da:dt—l—/Q@n(:c,t,u).vzgo(x,t)da:dt

/ /]Rd o(z, t)dxdW (t) + ; /Qg2(u)77”(u)<,0($,t)dxdt >0
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Existence, uniqueness results : state of the art
For the equation : du + divy [ f(u)]dt = g(u)dW

o W. E K. KHANIN A. MAzEL & Y. SiNal (2000) ~~ Existence,
uniqueness and invariant measures for stochastic Burgers equation,
d =1 on the torus (through Lax-Oleinik formula).
J. FENG & D. NUALART (2008), G.-Q CHEN, Q. DiNG & K.H.
KARLSEN (2012) , I.H. Biswas & A.K. MAJEE (2014)

¢

~ Existence and uniqueness under “ an extra property”
e A. DEBUSSCHE & J. VOVELLE (2010)
~ FExistence and uniqueness of the stochastic entropy solution on
the torus with a more general noise (through a kinetic approach)
e C. BauzeT G. VALLET P. WITTBOLD (2012)
~ Existence and uniqueness of the stochastic entropy solution on
R4 (through an entropic approach)
o K. KoBAYASI & D. NOBORIGUCHI (2015)
~ FExistence and uniqueness of the stochastic entropy solution on
bounded domains (through a kinetic approach)
o ...
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Numerical analysis: state of the art

H. HOLDEN & N.H. RISEBRO (1991) : Time-splitting (d = 1).

C. BAUZET (2013) : Time-splitting (d > 1)

I. KROKER & C. ROHDE (2012) : Semi-discrete finite volume
discretisation (d = 1) ~ No time discretisation and additionnal
assumptions.

K. H. KARLSEN & E. B. STORR@STEN (preprint) : Analysis of a
time-splitting method ~- No spatial discretisation.

K. MOHAMED, M. SEAID& M. ZAHRI (2013) : Semi-discretisation
in space

C. BAuzZET, J.CHARRIER & T.GALLOURT (2016/2017) :
Convergence of the finite volume scheme through an entropic
approach

S.DoTT1, J.VOVELLE (preprint) : Convergence of the finite volume
scheme through a kinetic approach (on the torus, general noise)
T.FuNaKI, Y.GAO, D.HILLHORST (preprint) : Convergence of the
finite volume scheme through an entropic approach (on the torus,
general noise)
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Mesh and notations

Notations
e k=T/N the time step, N € N*.

o 7 an admissible mesh: |K| < h, ah? < |K|, |[0K| < L1hd-l, VK eT
e N(K) the set of control volumes neighbors of K € T.

° 1 (n+1)k
Jrp(s) = 77— f(@,t,u).ng pdy(z)dt.
klO'K’L‘ nk OK,L
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The scheme

Definition (monotone numerical fluxes)
A family (F}éL) of functions is said to be a family of monotone
numerical fluzes if:
° FI’Q’L(a,b) s nondecreasing with respect to a and nonincreasing
with respect to b.
o There exists F1, Fy > 0 such that for any a,b € R we have
|Fi 1(b,a) = Fi (a,a)| < Fila —b|
|Fi (a;b) = Fi 1 (a,a)| < Fala —b|
o Fg(a,a) = fg (a) for alla € R
o Fg(a,b) =—Fp k(b a) for all a,b € R.
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The scheme

Definition (The scheme)

We consider the following monotone scheme: we define P-as in Q and
for any K € T the approzimation u% by

K| ., n n om om o WLy
K] % | (Uit uk) +§ lok,L|Fi,r(uk,ur) = |K\Q(UK)7,€
LEN (K)

0 1 /
Uy = — uo(x)dx,

where W" = W (nk).

The approzimate finite volume solution ur i is then defined P-a.s in Q on R x [0, T
by:

ur k(w,z,t) = ug forw € Q,z € K and t € [nk, (n + 1)k). (2)
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Assumptions and result

du+ div, [f(z,t,u)]dt = g(u)dW in QxR x (0,T), (3)
w(w,z,0) =ug(z), we, vk

ug € L?(RY)
o fcC'R?x[0,T] xR), % is bounded and lipschitz continuous
w.r.t. (z,t), uniformly w.r.t. u

g : R — R is lipschitz continuous with g(0) = 0 and g is bounded
div,[f(x,t,u)] = 0 ¥(x,t) € R? x [0, T).

Theorem (Bauzet,Castel,C.)

Under these assumptions, there ezists a unique stochastic entropy
solution to (3), and the finite volume approzimation converges to this
solution in LY (2 x RY x [0,T]) (for 1 <p<2) as (h,k/h) goes to 0.

~> if g has compact support and ug € L™, we can take unbounded

and 85 lipschitz continuous with respect to (x,t), not necesserely
uniformly w.r.t. w : it allows to treat the case of Burger’s equation.
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© Proof : case of a 1D upwind scheme
@ The 1D upwind scheme
o Convergence of the numerical approximation to a measure-valued
solution, up to a subsequence
@ Uniqueness of the measure-valued solution and conclusion
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The equation and the mesh in a particular case

du + divy [f(u)]dt = g(u)dW in QxR x(0,T), .
{ u(w,z,0) =wug(z), we, xR, (4)

~» we consider the 1D case, with f(x,t,u) = f(u) and we suppose
moreover that f is nondecreasing.

Definition (Admissible mesh)

An admissible mesh is T = {K;,i € Z}, where K; = (2;_1/2, Ti11/2) for
all i € Z and R = {;cz[Ti—1/2, Tiv1/2]-
We assume that h = size(T) = sup h; < 400 and that for some & > 0
1EZ
we have inf h; > ah.
1EZ
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The 1D upwind scheme in the case f nondecreasing

Definition
Let k > 0 be the time step, such that T' = Nk. We consider the
Jollowing upwind scheme: we define P-as in § the u}' by

n+l__ n ny_ n . .
s SR (B g<n<N-1VieZ,
w) =g [ uo(z)dz, Viel,

I
Q

where W" = W (nk).
The approzimate finite volume solution ut j s then defined P-a.s in )
on R x [0,T] by:

urk(x,t) =uy foriecZ,t € nk,(n+1)k)
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The result in the 1D upwind scheme

Theorem

The equation (4) admits a unique entropic solution and the approzimate
solution ur j converges to this solution in LY (€ x [0,T] x R?) for any
p <2 as (h,k/h) tends to 0.

~ two difficulties coming from the stochastic framework:

O In the deterministic framework, one works classically in
L>([0,T] x RY) and it is very easy to get L™ estimates, whereas in
the stochastic case v and w7 do not belong to L>.
~~ a natural space is then L%([0,T] x R?) (because of Ito calculus),
but it raises some difficulties.

@ In the deterministic framework, one works classically with Kruzkov
entropies, whereas in the stochastic case, we cannot use them
because 1t6 formula requires smoothness of the test functions.
~» we work with smooth entropies, but it also raises some
difficulties.
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Idea of the proof : deterministic case

@ Stability result on the numerical approximation
= convergence of a subsequence
~ compacity result (Young measures)

@ The limit of the subsequence is a generalized solution

@ UNIQUENESS of the generalized solution = entropic solution
~ Kato inequality : comparaison between two generalized
solutions

@ Uniqueness = CONVERGENCE of the scheme
+ EXISTENCE of the solution
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Idea of the proof : existence and uniqueness in the
stochastic case

@ Stability result on the viscous approximation
= convergence of a subsequence
~» compacity result (Young measures)
@ The limit of the subsequence is a generalized solution
@ UNIQUENESS of the generalized solution = entropic solution
~» Kato inequality : comparaison between a generalized solutions
and a viscous approximation

@ Uniqueness = EXISTENCE of the solution
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Idea of the proof : previous work

@ Stability result on the numerical approximation
= convergence of a subsequence
~ compacity result (Young measures)

@ The limit of the subsequence is a generalized solution

@ UNIQUENESS of the generalized solution = entropic solution
~ Kato inequality : comparaison between the viscous
approximation and a generalized solution

@ Uniqueness = CONVERGENCE of the scheme
+ EXISTENCE of the solution
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Idea of the new proof

@ Stability result on the wiseows numerical approximation
= convergence of a subsequence
~» compacity result (Young measures)

@ The limit of the subsequence is a generalized solution
@ UNIQUENESS of the generalized solution = entropic solution

~ Kato inequality : comparaison between the wiseets numerical
approximation and a generalized solution

@ Uniqueness = CONVERGENCE of the scheme
+ EXISTENCE of the solution

~ morevoer we hope that this proof of uniquenness is the first step to
get strong error estimates
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Step 1: stability result

e In the deterministic case, it is easy to prove an L>(Q x [0,T] x R)
bound for wy : um < up(x) < upy ae. = Uy < urp < uy
~» In the stochastic case, we cannot get such bounds. We work in
L2(Q2 x [0, T] x R), which is a natural space to deal with the noise
(because of 1to calculus).

e We denote by Cy the lipschitz constant of f and by C, the
lipschitz constant of g.

Proposition (stability estimate)

Under the CFL condition k < g—’;, we have:

< ech/2

w7kl Loo (0,12 (2 xR) ) lwoll L2 (w)

C2T
lu kll72xo1xm) < T w0l 72
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Step 2: convergence to an entropy process

o We deduce from the stability estimate that, up to a subsequence,
ur ) converges to an entropy process u € L?(2 x @ x (0,1)) in the
sense of Young measures.

e More precisely, given a Caratheodory function
U:Qx[0,7] xR xR — R such that ¥(-,u7 ) is uniformly
integrable we have, up to a subsequence,

/ (-, ur)dadt / / dmdadt]
[0,T]xR [0,T]xR

~> it is a compacity result.

E — E
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Step 2: convergence to an entropy process

Definition (Measure-valued stochastic entropy solution)
A function u of

N2 (0,7, L2(R x (0,1))) N L (0,T; L*(2 x R x (0,1))) is a

measure-valued entropy solution of (1), if P-a.s in Q, for any n € A and
for any ¢ € DT (R x [0,7))

/ n(uo)p(z,0) dx—i—/ / u(z,t,))0pp(x, t)dadzdt
[0,T]xR
/ / u(x, t, )z (x, t)dadxdt
[0,T]xR

/ /Rd/ u(z,t,o))g(u(z,t, o))p(x, t)dadzdW (t)
/[OT]X]R/ u(z, t,a))n” (u(z, t,))e(z, t)dadzdt > 0.
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Step 2: convergence to an entropy process

It remains to prove that:
@ u is a measure-valued entropy solution of (1)

e the equation (1) admits a unique stochastic measure-valued
entropy solution, which is a stochastic entropy solution.
~- it will enable us to deduce that the whole sequence w7y converges to
win Li (2 x[0,T] x R).

loc
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Step 3: the weak BV estimate

Proposition (Weak BV estimate)

Under the stronger CFL condition: k < % for some & € (0,1),
have for any R > 0 and T1 > 0 the existence of a constant C such that

f:ZW n Y < ChY?,
i=ig n=0

where ig, 11 € Z and N1 € N are such that —R € fQO,R € f(il and
€ (le, (N1 + 1)]{1]

~~ Note that in the linear case it means that the discrete BV norm is
locally bounded by h~1/2.
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Step 4: continuous entropy inequalities

Using the stability estimate and the weak BV estimate, we deduce:
Proposition (Continuous entropy inequalities)

We have, P-a.s. in Q, for any n € A and for any ¢ € D (]R X [O,T)):

/ bl ) & / (T ) os(e, ) dedt
R4 [0,T]xR4

T
+ [ e ded+ [ [ i urgtur)ete Odeaw (o)
[0,T]xR4 0 R
1

5 / ) 0" (ur k)9 (urk)p(z, t)dzdt > R,
[0, T xR

where for any P-measurable set A, E[]lARh’k’"] — 0 as h — 0 with % —0

~ it remains to pass to the limit in the Young measure sense to
establish that u is a measure-valued stochastic entropy solution
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Step 5 : u is a measure-valued stochastic entropy solution

Proposition
For any P-measurable set A, anyn € A and any ¢ € DT(R*[0,T))

+E

+E

+E

+E

/ u(z, t,a))p(x, t)dadacdt]

o
/ oy / u(z,t, a))ex(, t)dadxdt]
o

/ / 7' (u(z, t,a))g(u(z, t,a))e (w,t)dadxdW(t)}
Rd

1
—/ u(z,t,« gQ(u(:r,t,oc))cp(x,t)dada:dt] >0
42 [0,T]xR¢
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Step 6 : Kato inequatity

Proposition

Let v be o measure-valued stochastic entropy solution, then for any
¢ € DT(R x (0,7T)) we have

E[/R/OT/Ol /01<|v<x,t,a>—u(w,t,mwt(x,t)

—Y(v(z,t, a),u(z, t, o)) (z, t)dadBdtds] > 0,

where (a,b) = sgn(a — b)[f(a) — f(b)] : entropy flux associated to
Krushkov entropy.

~ we deduce that v(x,t,a) = u(x,t, ) = fo x,t,a)da = u(z,t).
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Proof of Kato inequatity : Kruzkov’s doubling of variable

e Example of one the the five groups of terms : the term with times

derivatives )
First contribution :

E [/ ns(v(z,t, o) — k)i (z,t)pn(t — ) pm(x — y)pr(ur 1 (v, 8) — n)dtdmdadndsdy]
4B | [ 15(0(0,1,0) = W)@ (¢ = 5)orn (& = ({0 5) = w)deddodcsds
Second contribution :

-E [ / s (ur 1 (Y, 8) — K)(@, )5 (t = 8)pm(z — y)pr(v(a,t, ) — H)dsdydndadtdw]

~ E[ [ fo fo fo v(z,t,a) —u(z,t, B)|pi(x, t)dtdsdadf]

o To pass to the limit in each term : we take n = h™> k = h?!, we
let A — 0, then [ — +o0, then § — 0, then m — +oc.
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Sketch of the proof in the general case

L2(Q x [0, T] x R?) stability estimate + Weak BV estimate.

uT ) converges to an entropy process u in the sense of Young
measures (up to a subsequence)

Decomposition of numerical monotone flux as a convex
combination of a modified Lax-Friedrich flux and a Godunov flux.
Continuous entropy inequalities for the numerical approximation
by considering separately

» the case of flux-splitting schemes

» the case of the Godunov scheme
We pass to the limit : u is a stochastic measure-valued entropy
solution.

Uniqueness result of the stochastic measure-valued entropy
solution, which is moreover a stochastic entropy solution.

~ Kruzkov’s doubling of variable : we compare a measure-vauled
solution to the numerical approximation
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Thank you for your attention !
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