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DISPOSAL FACILITIES IN FRANCE 

Managed by                (National agency for radioactive waste management) 

 

1) Context 
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•  A classical Nuclear Facility… 
-  Multi-barrier (« matrix-pack », seals, host-rock) 
-  Redondancy… 

•  … though quite a special one 
-  No existing one (studies since early 1980’s) 
-  Very long exploitation period (> century) 
-  Very Long time scales (uncertainty on phenomenology) 
-  Large spatial scales. 

HL 

ILLL 

…THE FUTURE CIGEO (2014 DGD CONCEPT) 

1) Context 
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High Level 
Waste 

Intermediate 
Level Waste Horizontal 

view 

3D view 

CIGEO PROJECT 

2 to 3 km 

- 4.3 millions of nodes 
- 25 millions of meshes 

5/32 



•  MELODIE v5.1 – A software allowing to model flow and transport in porous saturated 
and unsaturated media in 2D et 3D 

-  Currently in an optimization step à Adaptive mesh based on an a posteriori estimator  

-  Expertise tool for HLW disposals facilities (historical use of the software), as well as for surface 
repositories (more recent) 

 
•  OBJECTIVES 

ü  to have a tool for the assessment of the safety demonstration of a storage  
ü  To model the behavior of a storage in global way 
ü  To assess the impact on population 

 

•   REQUIREMENTS 
ü  To seek a envelop character of the phenomena 
ü  To fix the operational limits 

•   MEANS 

ü  classification and simplification of the phenomena  

ü  search for means of validation of the hypotheses  

Introduction on MELODIE 

MELODIE 5.1 
(Modèle d’Evaluation à Long terme des Déchets Irradiants Enterrés) 
 

6/32 



Conceptual model (1) 

 
Ø  Equation of the water flow 

Ø  In saturated medium, the continuity equation (mass conservation) and Darcy's law 
are applied 

 

 

 

Ø  In unsaturated medium Richard's equation is applied: 
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∂
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h  S h) graddiv(K    s

h gradK - U   =
! K   : permeability tensor (m.unit of time-1) 

h   : hydraulic charge (m) 
U   : Darcy velocity (m/unit of time) 
Ss  : specific storage coefficient of the aquifer 
in (m-1) 
q   : volumetric flow rate injected or 
withdrawn per unit of rock volume (unit of 
time-1). 
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K (ψ): permeability tensor, function of moisture content 
or capillary pressure (m/unit of time) 

 
S (ψ): specific moisture capacity of the aquifer (m-1) 

function of capillary pressure (m.unit of time-1) 
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Conceptual model (2) 

 
Ø  Transport equation 

 

ω   : porosity (-) 
A   : activity field (Bq,m-3) 
U   : Darcy velocity(m/unit of time) 
D   : diffusion-dispersion tensor (m2 ,unit of time-1)   

R   :  Delay coefficient (Kd approach) due to adsorption on the solid phase and 
retention in the immobile fluid phase. It corresponds to a coefficient multiplier of 
the porosity, which modifies the apparent speed of transfer of the elements. 
 
λ   :  radioactive decay constant of an element (unit of  time-1) 
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▌ To solve this system, it is advisable to transform the partial differential 
equation into a finished number of algebraic equations, corresponding 
to the number of nodes of a grid, which spatially discretize the field 
studied. 

▌ The differential operators characterizing the system of equations call 
upon physical parameters such as: permeability, porosity, dispersivity, 
diffusion.... These parameters are viewed as uniforms on each 
element. The values of these parameters are assigned to all elements.  
 

Space approximation 
Mathematical model 
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.  

Discretization of equations 

• Very well adapted for the diffusive problems 
• Unspecified grid 
• Numerical oscillations due to the advective term 
• Negative values of the concentration - instability  

Finite Element method FE  

• Finite volume method for the advective term and  
finite element method for the diffusive term 

• Respect of the principle of maximum with conditions on 
the meshes 

• Stability of calculation 
• Local mass conservation 
• Numerical diffusion 
• Strong requirements on the mesh 

Finite Volumes - Finite Elements FVFE   

Numerical model 
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FE method FVFE method 

Discretization of equations – COUPLEX benchmark 
Numerical model 
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How to control error due to discretization? 
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Rigorous quantitative procedures must be in place to 
quantify errors. 

To reduce the impact of these errors, there is a well 
known way which consists in refining the mesh by 
using smaller elements. 

ü  The amplitude of the error decreases 

ü  Increase the calculation time 

ü  Example: if we divide the size of the elements by 
two, we multiply the total number of nodes by 8 (in 
3D) and the computation time by a few hundred. 

Pb: identify areas of singular behavior + refine so that the overall error 
is evenly distributed across the entire domain 
Ø   A posteriori error estimate 
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Transport equation 

Flux reconstruction: 

FVFE method 
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Transport equation 

Flux reconstruction: 

FVFE method 
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A posteriori error estimate for transport equation 

A posteriori error estimate : M. 
Vohralik    
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Adaptive Algorithm 

Stationary Pb 

i. Let a given initial mesh 

ii. Solve the problem on the initial mesh 

iii. Calculate the a posteriori error estimate for this 
mesh 

iv. If the calculation of this estimator does not satisfy 
the stopping criterion, then choose the elements to 
refine, build the new mesh and go back to step ii. 

Non-Stationary Pb 

a. The refinement process must combine 
the control of space step and time step 

b. Coarsening in some areas of the mesh 
must be considered when the solution 
evolves in time 

Numerical 
solution Error estimate Marking 

elements 
Refinement/ 
Coarsening 
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Technique of refinement/coarsening 

Two refinement strategies to preserve the regularity in the mesh 

A.  Regular refinement : divide the 
elements into 4 (in 2D) or 8 (in 3D) 
by joining the midpoints of the 
edges 

B.  Longest edge bisection : divide 
the elements by joining the 
middle of the longest edge to 
the opposite vertex to this 
edge. 
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TITRE DE LA PRESENTATION - DATE DE LA PRESENTATION 

MELODIE test cases 
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Refinement strategy 
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Heterogeneous and anisotropic model  (1) 

Permeability 
   X       Y       

Porosity      Dispersion  
   αl           αt  

Diffusion 

5. 5. 0.1 1. 5.e-4 0 

1. 1. 0.05 0.5 0.5 0 

Flow boundary condition : 
Hydraulic head = 
left side : 30 m 
right side : 0 m 

Direction of water flow 

Injection pulse condition : 
Duration : 0.01 unit of time 
Quantity : 600 Bq 
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Results of the simulation  (2) 
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uniform static mesh 

Comparison with uniform static mesh  (3) 
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TITRE DE LA PRESENTATION - DATE DE LA PRESENTATION 

Profiling MELODIE code 
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Test case : 2D Permanent flow   

ü  Pecaln = GC solver 
ü  Hierarchical mesh = saving the results.  
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Test case : 3D Permanent flow   

•  In 3D, the estimator takes a long time; 
ü  In the computation of the flow th; 
ü  Construction of the local mesh; 
ü  Construction of normal vectors 
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Test case : 2D Transient flow   

ü  Tecaln = GC solver;  
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TITRE DE LA PRESENTATION - DATE DE LA PRESENTATION 

Optimization 
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Refinement strategy 

-  Cuting mesh into 4 triangles 
-  Doing conformity using Longest edge bisection  

29/32 



30/32 



31/32 



Conclusion  
▌  2D and 3D flow and transport in porous saturated and unsaturated media. 

▌  Refinement/coarsening mesh using a posteriori error estimate. 

Perspective 
▌  Optimizing the algorithm of the a posteriori error estimate computation. 

▌  Parallelization of 2D and 3D codes using domain decomposition.  
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