Finite Difference and Particle Methods for Fractional Diffusion Equations

<u>Olivier Le Maître¹</u>, with Omar Knio², K. Mustapha³ M. Lucchesi², K. Furati³ and S. Hallouche²

¹LIMSI CNRS, Orsay, France ²KAUST & ³KFUPM, Saudi-Arabia

Journées Multiphasiques et Incertitudes, Nantes

O. Le Maître

 < □ > < □ > < □ > < ⊇ > < ⊇ >
 ≥

 Numerical Method for Fractional Diffusion equations - 1 of 34

Motivations

- Fractional diffusion phenomena in complex flows/media
 - droplets/bubbles in turbulent plumes
 - plumes in complex media (ocean, soil, ...)
- Particle methods
 - ease of accounting for far field B.C.
 - Iow numerical diffusion
 - particularly suitable for advection-dominated transport
- Finite difference methods
 - non-constant diffusion coefficient (loss of coersivity in $H_0^{1-\beta/2} \times H_0^{1-\beta/2}$ of Galerkin approaches)
 - easier treatment of boundary conditions
 - extension to stochastic case
- UQ and Bayesian inference
 - uncertainty in fractional coefficient and diffusion coefficient
 - inference from data
 - design of experiments

・ (川) (引) ・ (口)

Direct differentiation method PSE methods Results

Fractional diffusion

- general 1D diffusion equation :

$$\frac{\partial u(x,t)}{\partial t} = -\frac{\partial Q^{\beta}(x,t)}{\partial x}$$

- fractional diffusion flux $Q^{\beta}(x, t)$,

$$\boldsymbol{Q}^{\beta}(\boldsymbol{x},t) := -\frac{\mathcal{D}}{2\sin\beta\pi/2} \left[\frac{\partial^{\beta}\boldsymbol{u}(\boldsymbol{x},t)}{\partial\boldsymbol{x}^{\beta}} - \frac{\partial^{\beta}\boldsymbol{u}(\boldsymbol{x},t)}{\partial(-\boldsymbol{x})^{\beta}} \right]$$

- Riemann-Liouville fractional derivative for u(x, t) and $0 < \beta < 1$:

$$\frac{\partial^{\beta}}{\partial x^{\beta}}u(x,t) \equiv \frac{1}{\Gamma(1-\beta)}\frac{\partial}{\partial x}\int_{-\infty}^{x}\frac{u(\xi,t)}{(x-\xi)^{\beta}}\,\mathrm{d}\xi$$
$$\frac{\partial^{\beta}}{\partial (-x)^{\beta}}u(x,t) \equiv \frac{-1}{\Gamma(1-\beta)}\frac{\partial}{\partial x}\int_{x}^{\infty}\frac{u(\xi,t)}{(\xi-x)^{\beta}}\,\mathrm{d}\xi$$

- Fractional diffusion flux :

$$Q^{\beta}(x,t) = -\frac{\mathcal{D}}{2\sin(\beta\pi/2)\Gamma(1-\beta)}\frac{\partial}{\partial x}\int_{-\infty}^{\infty}\frac{u(\xi,t)}{|x-\xi|^{\beta}}d\xi$$

(Fickian for $\beta = 1$)

General Direct differentiation method PSE methods Results

Riesz fractional derivative, fundamental solution and particle approximation

- For $\mathcal{D} = 1$ and $1 < \alpha = \beta + 1 < 2$, Riesz fractional derivative

$$\frac{\partial u(x,t)}{\partial t} := {}_x D_0^{\alpha} u = \frac{\Gamma(\alpha)}{\pi(\alpha-1)} \sin\left(\frac{\alpha\pi}{2}\right) \frac{\partial^2}{\partial x^2} \int_{-\infty}^{\infty} \frac{u(\xi,t)}{|x-\xi|^{\alpha-1}} d\xi$$

- Fundamental solution ¹ for $1 < \alpha < 2$:

$$\mathcal{G}^{0}_{\alpha}(x,t) = t^{\frac{-1}{\alpha}} \mathcal{L}^{0}_{\alpha}(t^{\frac{-1}{\alpha}}x), \quad \mathcal{L}^{0}_{\alpha}(x) = \frac{1}{x\pi} \sum_{n=1}^{\infty} (-x)^{n} \frac{\Gamma(1+n/\alpha)}{n!} \sin\left[\frac{-n\pi}{2}\right],$$

- Particle representation of u(x, t):

$$u(x) = \sum_{i \in \mathcal{I}} V_i u_i \eta_{\epsilon} (x - x_i)$$

- V_i , u_i and ϵ : particle *volume*, *strength* and kernel width
- kernel $\eta_{\epsilon}(x x_i)$:

$$\eta_{\epsilon}(\mathbf{x} - \mathbf{x}_i) = \frac{1}{\sqrt{\pi}\epsilon} \exp\left[-\left(\frac{\mathbf{x} - \mathbf{x}_i}{\epsilon}\right)^2\right]$$

1. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and Applied Analysis, 4, 153-192, (2001).

[second order]

General Direct differentiation method PSE methods Results

Direct differentiation method

- Inserting particle representation in Riemann-Liouville expression of Q^{β} , for $\mathcal{D}=1$, gives

$$Q^{\beta}(x) = -\frac{2^{\frac{\beta-3}{2}}}{\sqrt{\pi}\epsilon^{\beta}\sin\left(\frac{\beta\pi}{2}\right)}\sum_{i\in\mathcal{I}} V_{i}u_{i}\frac{\partial}{\partial x}\left[\exp\left(-\frac{X_{i}^{2}}{4}\right)\left[D_{\beta-1}(-X_{i})+D_{\beta-1}(X_{i})\right]\right]$$

where $X_i \equiv \sqrt{2}(x - x_i)/\epsilon$ and D_{ν} denotes the parabolic cylinder function

- using the identity

$$\frac{\partial}{\partial x}\left[\exp\left(-\frac{x^2}{4}\right)D_{\nu}(x)\right] = -\exp\left(-\frac{x^2}{4}\right)D_{\nu+1}(x)$$

one obtains

$$Q^{\beta}(x) = -\frac{2^{\frac{\beta-2}{2}}}{\sqrt{\pi}\epsilon^{\beta+1}\sin\left(\frac{\beta\pi}{2}\right)}\sum_{i\in\mathcal{I}} V_i u_i \exp\left(-\frac{X_i^2}{4}\right) \left[D_{\beta}(-X_i) - D_{\beta}(X_i)\right].$$

3

General Direct differentiation method PSE methods Results

Direct differentiation method

- Similarly, differentiating the flux it comes

$$\frac{\partial Q^{\beta}(x)}{\partial x} = -\frac{2^{\frac{\beta-1}{2}}}{\sqrt{\pi}\epsilon^{\beta+2}\sin\left(\frac{\beta\pi}{2}\right)}\sum_{i\in\mathcal{I}} V_i u_i \exp\left(-\frac{X_i^2}{4}\right) \left[D_{\beta+1}(-X_i) + D_{\beta+1}(X_i)\right].$$

- discrete particle approximation

$$\frac{\partial u_i}{\partial t} = \frac{1}{\epsilon^{\alpha}} \sum_{j \in \mathcal{I}} V_j u_j G_{\epsilon}^{d} (x_i - x_j),$$

- radial kernel $G^d_\epsilon(r) = rac{1}{\epsilon} G^d_\alpha\left(rac{r}{\epsilon}
ight)$ with

$$G^{d}_{\alpha}(r) = -\frac{2^{\frac{\alpha-2}{2}}}{\sqrt{\pi}\cos\left(\frac{\pi\alpha}{2}\right)}S^{\alpha+1}(r), \quad S^{\nu}(z) \equiv e^{-z^{2}/2}(D_{\nu-1}(-\sqrt{2}z)+D_{\nu-1}(\sqrt{2}z))$$

- Non conservative

General Direct differentiation method PSE methods Results

Riemann-Liouville treatment

1 Start from

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} \tilde{u}(x,t), \quad \tilde{u}(x,t) \equiv c_\beta \int_{-\infty}^{+\infty} \frac{u(\xi,t)}{|x-\xi|^\beta} \,\mathrm{d}\xi.$$

2 Inserting the particle representation of *u* it comes

$$\tilde{u}(x,t) = \frac{1}{\epsilon^{\beta-1}} \sum_{i \in \mathcal{I}} V_i u_i \kappa_{\epsilon}^{\beta}(x-x_i)$$

where $\kappa^{\beta}_{\epsilon}(r) = rac{1}{\epsilon}\kappa^{\beta}\left(rac{r}{\epsilon}
ight)$ with

$$\kappa^{\beta}(r) = rac{2^{rac{eta-3}{2}}}{\sqrt{\pi}\sin\left(rac{eta\pi}{2}
ight)}S^{eta}(r)$$

3 Evaluate Laplacian of $\tilde{u}(x, t)$ by PSE method

$$\frac{\partial u_i}{\partial t} = \frac{2}{\epsilon^2} \sum_{j \in \mathcal{I}} V_j (\tilde{u}_j - \tilde{u}_i) \Phi_\epsilon(x_j - x_i), \quad \Phi(r) = \frac{2}{\sqrt{\pi}} \exp(-r^2)$$

- Conservative method, but low decay of the Kernel $\kappa_{\epsilon}^{\beta} \sim x^{-\beta}$ for $x \to \infty$

Limsi

General Direct differentiation method PSE methods Results

Flux PSE method (FPSE)

1 Start from approximating the flux Q^{β} at the particle centers

$$Q_i^{\beta} = -rac{1}{\epsilon^{eta}}\sum_{j\in\mathcal{I}} V_j u_j F_{\epsilon}(x_i - x_j),$$

where

$$F(r) = \frac{2^{\frac{\beta-2}{2}}}{\sqrt{\pi}\sin\left(\frac{\beta\pi}{2}\right)} T^{\alpha}(r), \quad T^{\nu}(z) \equiv e^{\frac{-z^2}{2}} \left(D_{\nu-1}(-\sqrt{2}z) - D_{\nu-1}(\sqrt{2}z) \right)$$

2 Estimate the divergence of Q^{β} by PSE²:

$$\frac{\partial Q^{\beta}}{\partial x}(x_i) = \frac{1}{\epsilon} \sum_{j \in \mathcal{I}} V_j (Q_j^{\beta} + Q_i^{\beta}) \eta_{\epsilon}^1 (x_i - x_j)$$

3 Resulting in the particle scheme :

$$\frac{\partial u_i}{\partial t} = -\frac{1}{\epsilon} \sum_{j \in \mathcal{I}} V_j (Q_j^\beta + Q_i^\beta) \eta_\epsilon^{\dagger} (x_i - x_j), \qquad \eta^{\dagger}(r) = -\frac{2r}{\sqrt{\pi}} \exp(-r^2)$$

[case of the first-derivative, full-space, second-order kernel]

2. J. D. Eldredge, A. Leonard, T. Colonius, A general deterministic treatment of derivatives in particle methods, JCP, 180 :2, 686-709, (2002)

General Direct differentiation method PSE methods Results

Riesz treatment

- For
$$1 < \alpha < 2$$
 and $u \in C^2(\mathbb{R})$

$${}_{x}D_{0}^{\alpha}u(x) = \frac{\Gamma(1+\alpha)}{\pi}\sin\left(\frac{\alpha\pi}{2}\right)\int_{0}^{\infty}\frac{u(x+\xi)-2u(x)+u(x-\xi)}{\xi^{1+\alpha}}\mathrm{d}\xi$$

- By change of variable

$${}_{x}D_{0}^{\alpha}u(x)=\frac{\Gamma(1+\alpha)}{\pi}\sin\left(\frac{\alpha\pi}{2}\right)\int_{-\infty}^{\infty}\frac{u(y)-u(x)}{\left|y-x\right|^{1+\alpha}}\mathrm{d}y.$$

- Considering

$$u(x) \approx u_{\epsilon}(x) \equiv \int_{-\infty}^{\infty} u(z) \eta_{\epsilon}(x-z) dz,$$

- we got

$$_{x}D_{0}^{\alpha}u(x)\approx _{x}D_{0}^{\alpha}u_{\epsilon}(x)=\frac{1}{\epsilon^{\alpha}}\int_{-\infty}^{\infty}u(z)G_{\epsilon}(x-z)dz,$$

with

$$G_{\epsilon}(r) \equiv rac{\Gamma(1+lpha)}{\pi} \sin\left(rac{lpha \pi}{2}
ight) \epsilon^{lpha} \int_{0}^{\infty} rac{\eta_{\epsilon}(r+\xi) - 2\eta_{\epsilon}(r) + \eta_{\epsilon}(r-\xi)}{\xi^{1+lpha}} \mathrm{d}\xi$$

Same as the Direct Differentiation kernel.

(日)

Limsi

Э

General Direct differentiation method PSE methods Results

Kernel PSE method (KPSE)

- For conservation we choose the template

$$\mathcal{I}(\epsilon, x) \equiv \frac{c}{\epsilon^{\alpha}} \int_{-\infty}^{\infty} \left(f(y) - f(x) \right) K_{\epsilon}(x - y) dy$$

with *c* a constant to be determine and *K* a smooth, radial kernel such that $\mathcal{I}(\epsilon, x) \to {}_x D_0^{\alpha} f$ as $\epsilon \to 0$

- a suitable choice is

$$K(r) = -\frac{1}{r} \frac{\partial \kappa^{\beta}}{\partial r}$$

- with corresponding KPSE scheme

$$\frac{\partial u_i}{\partial t} = \frac{\alpha}{\epsilon^{\alpha}} \sum_{j \in \mathcal{I}} V_j (u_j - u_i) K_{\epsilon} (x_j - x_i).$$

- Conservation is immediate.

< ロ > < 同 > < 回 > < 回 >

General Direct differentiation method PSE methods Results

Green function treatment

- Recall the elementary solution

$$\mathcal{G}^{0}_{\alpha}(x,t) = \frac{1}{t^{\gamma}} L^{0}_{\alpha}\left(\frac{x}{t^{\gamma}}\right)$$

where $\gamma \equiv {\bf 1}/\alpha$

For Δt > 0 it comes

$$\begin{aligned} u(x,t+\Delta t) - u(x,t) &= \mathcal{G}^0_\alpha(x,\Delta t) * u(x,t) - u(x,t) \\ &= \int_{-\infty}^{\infty} \mathcal{G}^0_\alpha(x-y,\Delta t) u(y,t) dy - u(x,t) \\ &= \int_{-\infty}^{\infty} \mathcal{G}^0_\alpha(x-y,\Delta t) \left[u(y,t) - u(x,t) \right] dy. \end{aligned}$$

- or, setting $\Delta t = t^{n+1} - t^n$,

$$u_i^{n+1} - u_i^n = \sum_{j \in \mathcal{I}} V_j \left(u_j^n - u_i^n \right) E_{\epsilon}(x_j - x_i)$$

- with the GPSE radial kernel

$$E(r) = L^0_{\alpha}(r), \quad \epsilon = (\Delta t)^{\gamma}$$

3

イロト イポト イヨト イヨト

General Direct differentiation method PSE methods Results

Kernels I

Kernels $G^{d}_{\alpha}(r)$ of direct differentiation (solid lines), K(r) of KPSE method (dashed lines) and $L^{0}_{\alpha}(r)$ of GPSE (dotted lines)

< 口 > < 同

Kernel II

General Direct differentiation method PSE methods Results

Kernel F(r) of the flux reconstruction in FPSE.

Ē

< □ > < □ > < □ > < □ > < □ > < □ >

Results I

General Direct differentiation method PSE methods Results

Fundamental solution at $t_f = 1.5$, for $\beta = 0.5$ and approximation by different methods.

Image: A math a math

▶ < ≣

General Direct differentiation method PSE methods Results

Results II

Error at $t_f = 1.5$, for $\beta = 0.1$ as a function of particle volume *h* (left, with $D = 160t_f^{1/\alpha}R_{\alpha}$) and domain truncation (right, with *h*0.0121).

< □ > < 同 > < 三

General Direct differentiation method PSE methods Results

Results III

Error at $t_f = 1.5$, for $\beta = 0.9$ as a function of particle volume *h* (left, with $D = 160t_f^{1/\alpha}R_{\alpha}$) and domain truncation (right, with *h*0.0121).

< □ > < 同 > < 三

thods General Direct differentiation method PSE methods Results

Results IV

β	$h\cdot 10^2$	DD		FPSE		KPSE		DVM
		II ord.	IV ord.	II ord.	IV ord.	II ord.	IV ord.	II ord.
0.1	4.83	2.01	3.88	2.04	3.97	1.98	3.79	2.00
0.5	4.46	2.00	3.97	2.01	3.86	2.00	4.06	2.00
0.9	5.89	2.00	4.00	2.01	3.96	2.00	3.99	2.42

Error at $t_f = 1.5$, reported convergence rate of the methods.

Э

<ロト < 団ト < 臣ト < 臣ト

General Direct differentiation method PSE methods Results

Particle methods

- General
- Direct differentiation method
- PSE methods
- Results

Finite Difference method

- General
- LS, RS and two-sided fractional derivative
- Examples

Uncertainty and Bayesian inference

< □ > < 同 > < 回 > <

General LS, RS and two-sided fractional derivative Examples

Fractional diffusion

- 1-d two-sided conservative fractional order differential equations with variable coefficient κ :

$$-\partial_x\left(\kappa(x)\partial_x^{lpha, heta}u(x)
ight)=f(x), \quad ext{for } x\in\Omega:=(a,b)$$

with u(a) = u(b) = 0.

- two-sided fractional order differential operator :

$$\partial_x^{\alpha,\theta}\phi := \theta_a \mathrm{D}_x^{\alpha}\phi + (1-\theta)_x \mathrm{D}_b^{\alpha}\phi$$

- left-sided (LS) and right-sided (RS) Riemann-Liouville fractional derivatives :

$${}_{a}\mathrm{D}_{x}^{\alpha}v(x):=\frac{\partial}{\partial x}{}_{a}I_{x}^{1-\alpha}v(x)=\frac{\partial}{\partial x}\int_{a}^{x}\omega_{1-\alpha}(x-z)v(z)\,dz$$

and

$${}_{x}\mathrm{D}^{\alpha}_{b}v(x) := \frac{\partial}{\partial x}{}_{x}I^{1-\alpha}_{b} = \frac{\partial}{\partial x}\int_{x}^{b}\omega_{1-\alpha}(z-x)v(z)dz$$

 $_{a}I_{x}^{1-\alpha}$ and $_{x}I_{b}^{1-\alpha}$ are the LS and RS Riemann-Liouville fractional integrals, with kernel $\omega_{1-\alpha}(x) := \frac{x^{-\alpha}}{\Gamma(1-\alpha)}$, where Γ is the gamma function.

General LS, RS and two-sided fractional derivative Examples

Finite difference

- Partition of Ω in *P* subintervals $I_{1 \le n \le P}$ using the sequence of *P*+1 points

$$a = x_0 < x_1 < x_2 < \cdots < x_P = b$$

- Uniform partition :

$$h = x_n - x_{n-1} = \frac{b-a}{P}$$

- $x_{n+1/2} := (x_n + x_{n+1})/2$ is the center of interval I_{n+1}
- Backward difference operator :

$$\delta \mathbf{v}(\mathbf{x}) = \delta \mathbf{v}^n := \mathbf{v}^n - \mathbf{v}^{n-1}, \quad \forall \mathbf{x} \in \mathbf{I}_n$$

where $v^n := v(x_n)$

General LS, RS and two-sided fractional derivative Examples

LS fractional derivative

For $\theta = 1$:

$$-\partial_x \left(\kappa(x)_a \mathrm{D}_x^{\alpha} u\right)(x) = f(x).$$

- forward type difference treatment of the operator ∂_x :

$$\partial_x \left(\kappa_a D_x^{\alpha} u(x_n)\right) \approx h^{-1} \left[\kappa^{n+1/2} {}_a D_x^{\alpha} u(x_{n+1}) - \kappa^{n-1/2} {}_a D_x^{\alpha} u(x_n)\right],$$

where $\kappa^{n+1/2} := \kappa(x_{n+1/2})$

- Noting $_{a}\mathrm{D}_{x}^{\alpha}u={}_{a}I_{x}^{1-\alpha}u'$, because u(a)=0

$$\partial_x(\kappa_a D_x^{\alpha} u)(x_n) \approx h^{-1}[\kappa^{n+1/2}{}_a I_x^{1-\alpha} u'(x_{n+1}) - \kappa^{n-1/2}{}_a I_x^{1-\alpha} u'(x_n)]$$

- backward difference approximation to the derivatives :

$$\partial_x(\kappa_a \mathcal{D}_x^{\alpha} u)(x_n) \approx h^{-2}[\kappa^{n+1/2}(_a I_x^{1-\alpha} \delta u)(x_{n+1}) - \kappa^{n-1/2}(_a I_x^{1-\alpha} \delta u)(x_n)]$$

<ロト < 同ト < 巨ト < 巨ト

General LS, RS and two-sided fractional derivative Examples

Finite difference scheme for LS fractional derivative

$$aJ_x^{1-\alpha}\delta u(x_n) = \sum_{j=1}^n \int_{I_j} \omega_{1-\alpha}(x_n-s)\delta u^j ds = \omega_{2-\alpha}(h) \sum_{j=1}^n w_{n,j}\delta u^j$$
$$= \omega_{2-\alpha}(h) \Big(\sum_{j=1}^{n-1} [w_{n,j}-w_{n,j+1}]u^j + u^n\Big),$$

with the weights

$$w_{n,j} := (n+1-j)^{1-\alpha} - (n-j)^{1-\alpha}$$
 for $n \ge j \ge 1$.

Denoting $U^n \approx u^n$ the finite difference solution, it comes

$$\sum_{j=1}^{n} \left(a_{n,j} - a_{n+1,j} \right) U^{j} - \kappa^{n+1/2} U^{n+1} = \tilde{f}_{h}^{n}, \text{ for } n = 1, \cdots, P-1$$

where

$$\mathbf{a}_{n,j\leq n} = \begin{cases} \kappa^{n-1/2} & j = n, \\ \kappa^{n-1/2} [\mathbf{W}_{n,j} - \mathbf{W}_{n-1,j}] & j < n \end{cases}$$

Э

General LS, RS and two-sided fractional derivative Examples

Finite difference scheme for LS fractional derivative

$$aI_x^{1-\alpha}\delta u(x_n) = \sum_{j=1}^n \int_{I_j} \omega_{1-\alpha}(x_n-s)\delta u^j ds = \omega_{2-\alpha}(h)\sum_{j=1}^n w_{n,j}\delta u^j$$
$$= \omega_{2-\alpha}(h)\Big(\sum_{j=1}^{n-1} [w_{n,j}-w_{n,j+1}]u^j + u^n\Big),$$

with the weights

$$w_{n,j} := (n+1-j)^{1-\alpha} - (n-j)^{1-\alpha}$$
 for $n \ge j \ge 1$.

Denoting $U^n \approx u^n$ the finite difference solution, it solves $\mathbf{B}_L \mathbf{U} = \mathbf{F}$, where $\mathbf{U} = [U^1, U^2, \dots, U^{P-1}]^T$, $\mathbf{F} = [\tilde{t}_h^1, \tilde{t}_h^2, \dots, \tilde{t}_h^{P-1}]^T$, and the matrix $\mathbf{B}_L = [c_{n,j}]$ having **lower-triagonal entries**

$$c_{n,j} = \begin{cases} \kappa^{n-1/2} - \kappa^{n+1/2} [2^{1-\alpha} - 2] & j = n, \\ a_{n,j} - a_{n+1,j} & j < n, \end{cases}$$

while $C_{n,n+1} = -\kappa^{n+1/2}$

General LS, RS and two-sided fractional derivative Examples

Finite difference scheme for LS fractional derivative

 $\mathbf{B}_{L}\mathbf{U} = \mathbf{F}$, where $\mathbf{U} = [U^{1}, U^{2}, \cdots, U^{P-1}]^{T}$, $\mathbf{F} = [\tilde{f}_{h}^{1}, \tilde{f}_{h}^{2}, \cdots, \tilde{f}_{h}^{P-1}]^{T}$, and the matrix $\mathbf{B}_{L} = [c_{n,j}]$ having **lower-triagonal entries**

$$c_{n,j} = \begin{cases} \kappa^{n-1/2} - \kappa^{n+1/2} [2^{1-\alpha} - 2] & j = n, \\ a_{n,j} - a_{n+1,j} & j < n, \end{cases}$$

while $c_{n,n+1} = -\kappa^{n+1/2}$

- solution U exists and is unique
- truncature error

$$T_h^n = \partial_x(\kappa_a \mathbf{D}_x^{\alpha} u)(x_n) - \frac{1}{h^2} \left(\kappa^{n+1/2} (a J_x^{1-\alpha} \delta u)(x_{n+1}) - \kappa^{n-1/2} (a J_x^{1-\alpha} \delta u)(x_n) \right)$$

- we prove (for sufficient continuity of *u*)

$$T_h^n = O(h)(1 + (x_n - a)^{-\alpha}), \text{ for } 1 \le n \le P - 1.$$

 for 0 < α < 1, the truncation error Tⁿ_h is of order h for x_n not too close to the left boundary x = a

General LS, RS and two-sided fractional derivative Examples

Finite difference scheme for RS fractional derivative

Similarly, for $\theta = 0$, we obtain $\mathbf{B}_R \mathbf{U} = \mathbf{F}$, with the system matrix $\mathbf{B}_R = [d_{n,j}]$ having upper-triagonal entries

$$d_{n,j} = \begin{cases} -\kappa^{n-1/2} \mathbf{W}_{j,n-1} + (\kappa^{n-1/2} + \kappa^{n+1/2}) \mathbf{W}_{j,n} - \kappa^{n+1/2} \mathbf{W}_{j,n+1}, & j > n, \\ \kappa^{n+1/2} - \kappa^{n-1/2} [2^{1-\alpha} - 2], & j = n, \end{cases}$$

while $d_{n+1,n} = -\kappa^{n+1/2}$

- solution **U** exists and is unique
- truncature error

$$T_h^n = \partial_x (\kappa_x \mathbf{D}_b^\alpha u)(x_n) - \frac{1}{h^2} \Big(\kappa^{n+1/2} (x_b^{1-\alpha} \delta u)(x_n) - \kappa^{n-1/2} (x_b^{1-\alpha} \delta u)(x_{n-1}) \Big)$$

- we prove (for sufficient continuity of *u*)

$$T_h^n = O(h) + E^n$$
, for $1 \le n \le P - 1$.

where

$$E^n = O(h)\omega_{1-\alpha}(\xi - x_{n-1}), \text{ for some } \xi \in I_P$$

- for $0 < \alpha < 1$, the truncation error T_h^n is of order *h* for x_n not too close to the right boundary x = b

General LS, RS and two-sided fractional derivative Examples

Finite difference scheme for two sided fractional derivative

For $\theta \in [0, 1]$, $U^n \approx u^n$ solves

$$\kappa^{n-1/2} [\theta_a I_x^{1-\alpha} \partial U(x_n) + (1-\theta)_x I_b^{1-\alpha} \partial U(x_{n-1})] - \kappa^{n+1/2} [\theta_a I_x^{1-\alpha} \partial U(x_{n+1}) + (1-\theta)_x I_b^{1-\alpha} \partial U(x_n)] = h^2 f^n,$$

for $n = 1, \dots, P - 1$, and $U^0 = U^P = 0$. The two sided fractional derivative system is

 $\mathbf{B}\mathbf{U}=\mathbf{F},\quad \mathbf{B}=\theta\mathbf{B}_L+(1-\theta)\mathbf{B}_R$

General LS, RS and two-sided fractional derivative Examples

Example I

Case of smooth solution in $\Omega = (0, 1)$ for $\kappa = 1 + \exp(x)$:

$$u_{\rm ex}(x) = x^{4-\theta(1-\alpha)} (1-x)^{4-(1-\theta)(1-\alpha)}$$

Convergence rate as a function of α for $\theta = 1/2$ and P = 4192

・ コ ト ・ 同 ト ・ ヨ ト ・

-

General LS, RS and two-sided fractional derivative Examples

Example I

Case of smooth solution in
$$\Omega = (0, 1)$$
 for $\kappa = 1 + \exp(x)$:

$$u_{\rm ex}(x) = x^{4-\theta(1-\alpha)}(1-x)^{4-(1-\theta)(1-\alpha)}$$

		$\alpha = 0.25$		$\alpha = 0.50$		$\alpha = 0.75$	
θ	$-\log_2 h$	E_h	σ_h	E_h	σ_h	E_h	σ_h
	6	2.069e-04	0.9877	1.568e-04	0.9493	9.656e-05	0.8750
	7	1.040e-04	0.9929	8.028e-05	0.9659	5.164e-05	0.9030
0.0	8	5.214e-05	0.9960	4.080e-05	0.9765	2.723e-05	0.9234
	9	2.611e-05	0.9976	2.064e-05	0.9834	1.421e-05	0.9382
	10	1.307e-05	0.9986	1.040e-05	0.9882	7.357e-06	0.9496
	6	3.528e-04	0.9535	1.876e-04	0.9239	8.120e-05	0.8739
	7	1.784e-04	0.9838	9.622e-05	0.9636	4.275e-05	0.9255
0.25	8	8.875e-05	1.0071	4.843e-05	0.9905	2.200e-05	0.9588
	9	4.325e-05	1.0369	2.393e-05	1.0173	1.108e-05	0.9887
	10	2.033e-05	1.0894	1.150e-05	1.0569	5.432e-06	1.0290
	6	5.451e-04	0.8593	2.024e-04	0.8990	7.127e-05	8.7540
	7	2.865e-04	0.9280	1.045e-04	0.9530	3.705e-05	9.4381
0.5	8	1.461e-04	0.9713	5.269e-05	0.9883	1.868e-05	9.8776
	9	7.289e-05	1.0036	2.599e-05	1.0198	9.157e-06	1.0287
	10	3.545e-05	1.0398	1.243e-05	1.0643	4.304e-06	1.0893
	6	3.353e-04	0.9282	1.818e-04	0.9071	7.899e-05	0.8529
	7	1.714e-04	0.9672	9.392e-05	0.9527	4.190e-05	0.9147
0.75	8	8.632e-05	0.9898	4.757e-05	0.9812	2.167e-05	0.9513
	9	4.289e-05	1.0092	2.370e-05	1.0054	1.097e-05	0.9820
	10	2.094e-05	1.0341	1.156e-05	1.0359	5.408e-06	1.0205
	6	2.047e-04	0.9728	1.537e-04	0.9289	9.350e-05	0.8512
	7	1.034e-04	0.9855	7.929e-05	0.9546	5.048e-05	0.8893
1.0	8	5.197e-05	0.9922	4.048e-05	0.9700	2.677e-05	0.9149
	9	2.607e-05	0.9956	2.053e-05	0.9794	1.403e-05	0.9326
	10	1.306e-05	0.9975	1.037e-05	0.9857	7.283e-06	0.9457

Limsi Dac

E

O. Le Maître

<ロト < 団ト < 臣ト < 臣ト

General LS, RS and two-sided fractional derivative Examples

Example II

Case of non-smooth solutions in
$$\Omega = (0, 1)$$
 for $\kappa = 1 + \exp(x)$:

$$u_{\rm ex}(x) = x^{1-\theta(1-\alpha)}(1-x)^{1-(1-\theta)(1-\alpha)}$$

		$\alpha = 0.25$		$\alpha = 0.50$		$\alpha = 0.75$	
θ	$-\log_2 h$	E_h	σ_h	E_h	σ_h	E_h	σ_h
	7	5.057e-02	0.2752	1.916e-02	0.5123	4.624e-03	0.7626
	8	4.214e-02	0.2632	1.348e-02	0.5068	2.732e-03	0.7590
0.0	9	3.527e-02	0.2567	9.510e-03	0.5037	1.618e-03	0.7556
	10	2.959e-02	0.2534	6.716e-03	0.5019	9.601e-04	0.7533
	11	2.485e-02	0.2517	4.745e-03	0.5010	5.702e-04	0.7518
	12	2.088e-02	0.2509	3.354e-03	0.5005	3.388e-04	0.7510
	7	4.895e-02	0.2297	1.881e-02	0.4877	4.496e-03	0.7289
	8	4.145e-02	0.2399	1.336e-02	0.4940	2.692e-03	0.7402
1.0	9	3.498e-02	0.2449	9.465e-03	0.4970	1.606e-03	0.7454
	10	2.946e-02	0.2475	6.700e-03	0.4985	9.562e-04	0.7478
	11	2.480e-02	0.2487	4.740e-03	0.4993	5.690e-04	0.7490
	12	2.086e-02	0.2494	3.352e-03	0.4996	3.384e-04	0.7495

Convergence in $O(h^{\alpha})$ (here $\theta = 1$).

E

イロト イポト イヨト イヨト

General LS, RS and two-sided fractional derivative Examples

Example II

Case of non-smooth solutions in $\Omega = (0, 1)$ for $\kappa = 1 + \exp(x)$:

$$u_{\rm ex}(x) = x^{1-\theta(1-\alpha)} (1-x)^{1-(1-\theta)(1-\alpha)}$$

Adapted discretization with refinement parameter $\gamma \ge 1$: $x_i = (i/P)^{\gamma}$

	$\gamma = 2$		$\gamma =$	3	$\gamma = 4$	
$\log_2 P$	E_h	σ_h	E_h	σ_h	E_h	σ_h
6	2.300e-02		8.128e-03		2.871e-03	
7	1.628e-02	0.4988	4.838e-03	0.7484	1.438e-03	0.9976
8	1.151e-02	0.4996	2.878e-03	0.7495	7.194e-04	0.9992
9	8.140e-03	0.4998	1.711e-03	0.7498	3.597e-04	0.9997
10	5.756e-03	0.4999	1.018e-03	0.7499	1.800e-04	0.9999
11	4.070e-03	0.4999	6.051e-04	0.7499	8.994e-05	0.9999
12	2.878e-03	0.5002	3.600e-04	0.7500	4.497e-05	0.9998

Case of $\theta = 1$ and $\alpha = 0.25$.

General LS, RS and two-sided fractional derivative Examples

Particle methods

- General
- Direct differentiation method
- PSE methods
- Results

Finite Difference method

- General
- LS, RS and two-sided fractional derivative
- Examples

Uncertainty and Bayesian inference

< □ > < 同 > < 回 > <

Uncertainty in fractional diffusion equation

1 Steady equation

$$-\partial_x\left(\kappa(x)\partial_x^{\alpha,\theta}u(x)\right)=f(x)$$

- **2** uncertainty in $\kappa(x)$
- **3** uncertainty in α, θ
- 4 probabilistic approach :

$$(\kappa(\mathbf{X},\omega),\alpha(\omega),\theta(\omega)) \in \mathcal{P}(\mathbf{W},\Sigma,\mu)$$

- 5 a priori analysis : parameters considered independent
- spectral expansion of u(x, t, κ, α, θ) : smoothness, existence of second moments,...
- balancing error.

Bayesian inference

1 A priori distribution of the parameter

$$\pi(\kappa, \alpha, \theta)$$

- **2** model predictions $\Phi : u \mapsto \mathbb{R}^m$ of the experimental observation *y*
- 3 likelihood of the experimental observation

$$\mathcal{L}(\mathbf{y}|\kappa, \alpha, \theta)$$

4 Bayesian update

$$p(\kappa, \alpha, \theta | \mathbf{y}) \propto \mathcal{L}(\mathbf{y} | \kappa, \alpha, \theta) \pi(\kappa, \alpha, \theta)$$

- selection of the a priori distribution
- surrogate model to reduce computational cost
- selection of the observation $\boldsymbol{\Phi}$ that best inform on the parameter
- model error

< □ > < 同 > < 回 > .

References

- S. Allouch, M. Lucchesi, O.P. Le Maître, K. Mustapha, and O.M. Knio, Particle Simulation of Fractional Diffusion Equations, *Computer Methods in Applied Mechanics and Engineering*, (in revision)
- K. Mustapha, K. Furati, O.M. Knio and O.P. Le Maître, A finite difference method for space fractional differential equations with variable diffusivity coefficients, J. Scientific Computing, (submitted)
- I. Sraj, O.P. Le Maître, I. Hoteit and O. Knio, Coordinates Transformation and Polynomial Chaos for the Bayesian inference of a Gaussian Field with Parametrized Prior Covariance Function, *Computer Methods in Applied Mechanics and Engineering*, **298**, pp. 205-228, (2016)
- L. Giraldi, O.P. Le Maître, K.T. Mandli, C.N. Dawson, I. Hoteit and O. M. Knio, Bayesian inference of earthquake parameters from buoy data using a polynomial chaos based surrogate, *Computational Geo-sciences*, 21 :4, pp. 683-699, (2017)
- L. Giraldi, O.P. Le Maître, I. Hoteit and O. Knio, Optimal projection of observations in a Bayesian Setting, *Computers and Statistics*, (Submitted)

・ コ ト ・ 同 ト ・ ヨ ト ・