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Motivations

- Fractional diffusion phenomena in complex flows/media
droplets/bubbles in turbulent plumes
plumes in complex media (ocean, soil, . . .)

- Particle methods
ease of accounting for far field B.C.
low numerical diffusion
particularly suitable for advection-dominated transport

- Finite difference methods
non-constant diffusion coefficient (loss of coersivity in H1−β/2

0 × H1−β/2
0 of

Galerkin approaches)
easier treatment of boundary conditions
extension to stochastic case

- UQ and Bayesian inference
uncertainty in fractional coefficient and diffusion coefficient
inference from data
design of experiments
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Fractional diffusion

- general 1D diffusion equation :

∂u(x , t)
∂t

= −∂Qβ(x , t)
∂x

- fractional diffusion flux Qβ(x , t), (Fickian for β = 1)

Qβ(x , t) := − D
2 sinβπ/2

[
∂βu(x , t)
∂xβ

− ∂βu(x , t)
∂(−x)β

]
- Riemann-Liouville fractional derivative for u(x , t) and 0 < β < 1 :

∂β

∂xβ
u(x , t) ≡ 1

Γ(1− β)

∂

∂x

∫ x

−∞

u(ξ, t)
(x − ξ)β

dξ

∂β

∂(−x)β
u(x , t) ≡ −1

Γ(1− β)

∂

∂x

∫ ∞
x

u(ξ, t)
(ξ − x)β

dξ

- Fractional diffusion flux :

Qβ(x , t) = − D
2 sin(βπ/2)Γ(1− β)

∂

∂x

∫ ∞
−∞

u(ξ, t)
|x − ξ|β dξ
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Riesz fractional derivative, fundamental solution and particle approximation

- For D = 1 and 1 < α = β + 1 < 2, Riesz fractional derivative

∂u(x , t)
∂t

:= x Dα
0 u =

Γ(α)

π(α− 1)
sin
(απ

2

) ∂2

∂x2

∫ ∞
−∞

u(ξ, t)
|x − ξ|α−1 dξ

- Fundamental solution 1for 1 < α < 2 :

G0
α(x , t) = t

−1
α L0

α(t
−1
α x), L0

α(x) =
1

xπ

∞∑
n=1

(−x)n Γ(1 + n/α)

n!
sin
[−nπ

2

]
, −∞ < x < +∞

- Particle representation of u(x , t) :

u(x) =
∑
i∈I

Viuiηε(x − xi )

- Vi , ui and ε : particle volume,strength and kernel width
- kernel ηε(x − xi ) : [second order]

ηε(x − xi ) =
1√
πε

exp

[
−
(x − xi

ε

)2
]

1. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fractional Calculus and
Applied Analysis, 4, 153-192, (2001).

O. Le Maître Numerical Method for Fractional Diffusion equations - 4 of 34



Particle methods
Finite Difference method

Uncertainty and Bayesian inference

General
Direct differentiation method
PSE methods
Results

Direct differentiation method

- Inserting particle representation in Riemann-Liouville expression of Qβ ,
for D = 1, gives

Qβ(x) = − 2
β−3

2

√
πεβ sin

(
βπ
2

) ∑
i∈I

Viui
∂

∂x

[
exp

(
−X 2

i

4

)
[Dβ−1(−Xi ) + Dβ−1(Xi )]

]

where Xi ≡
√

2(x − xi )/ε and Dν denotes the parabolic cylinder function

- using the identity

∂

∂x

[
exp

(
−x2

4

)
Dν(x)

]
= − exp

(
−x2

4

)
Dν+1(x)

one obtains

Qβ(x) = − 2
β−2

2

√
πεβ+1 sin

(
βπ
2

) ∑
i∈I

Viui exp

(
−X 2

i

4

)
[Dβ(−Xi )− Dβ(Xi )] .
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Direct differentiation method

- Similarly, differentiating the flux it comes

∂Qβ(x)

∂x
= − 2

β−1
2

√
πεβ+2 sin

(
βπ
2

) ∑
i∈I

Viui exp

(
−X 2

i

4

)
[Dβ+1(−Xi ) + Dβ+1(Xi )] .

- discrete particle approximation

∂ui

∂t
=

1
εα

∑
j∈I

VjujGd
ε (xi − xj ) ,

- radial kernel Gd
ε (r) = 1

ε
Gd
α

( r
ε

)
with

Gd
α(r) = − 2

α−2
2

√
π cos

(
πα
2

)Sα+1(r), Sν(z) ≡ e−z2/2(Dν−1(−
√

2z)+Dν−1(
√

2z))

- Non conservative
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Riemann-Liouville treatment

1 Start from

∂u
∂t

=
∂2

∂x2 ũ(x , t), ũ(x , t) ≡ cβ
∫ +∞

−∞

u(ξ, t)
|x − ξ|β

dξ.

2 Inserting the particle representation of u it comes

ũ(x , t) =
1

εβ−1

∑
i∈I

Viuiκ
β
ε (x − xi )

where κβε (r) = 1
ε
κβ
( r
ε

)
with

κβ(r) =
2

β−3
2

√
π sin

(
βπ
2

)Sβ(r)

3 Evaluate Laplacian of ũ(x , t) by PSE method

∂ui

∂t
=

2
ε2

∑
j∈I

Vj (ũj − ũi )Φε(xj − xi ), Φ(r) =
2√
π

exp(−r 2)

- Conservative method, but low decay of the Kernel κβε ∼ x−β for x →∞
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Flux PSE method (FPSE)

1 Start from approximating the flux Qβ at the particle centers

Qβ
i = − 1

εβ

∑
j∈I

VjujFε(xi − xj ),

where

F (r) =
2

β−2
2

√
π sin

(
βπ
2

)Tα(r), T ν(z) ≡ e
−z2

2

(
Dν−1(−

√
2z)− Dν−1(

√
2z)
)

2 Estimate the divergence of Qβ by PSE 2 :

∂Qβ

∂x
(xi ) =

1
ε

∑
j∈I

Vj (Qβ
j + Qβ

i )η1
ε(xi − xj )

3 Resulting in the particle scheme :

∂ui

∂t
= −1

ε

∑
j∈I

Vj (Qβ
j + Qβ

i )η1
ε(xi − xj ), η1(r) = − 2r√

π
exp(−r 2)

[case of the first-derivative, full-space, second-order kernel]
2. J. D. Eldredge, A. Leonard, T. Colonius, A general deterministic treatment of derivatives in particle methods, JCP, 180 :2, 686-709,

(2002)
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Riesz treatment

- For 1 < α < 2 and u ∈ C2(R)

x Dα
0 u(x) =

Γ(1 + α)

π
sin
(απ

2

)∫ ∞
0

u(x + ξ)− 2u(x) + u(x − ξ)

ξ1+α
dξ

- By change of variable

x Dα
0 u(x) =

Γ(1 + α)

π
sin
(απ

2

)∫ ∞
−∞

u(y)− u(x)

|y − x |1+α
dy .

- Considering

u(x) ≈ uε(x) ≡
∫ ∞
−∞

u(z)ηε(x − z)dz,

- we got

x Dα
0 u(x) ≈ x Dα

0 uε(x) =
1
εα

∫ ∞
−∞

u(z)Gε(x − z)dz,

with

Gε(r) ≡ Γ(1 + α)

π
sin
(απ

2

)
εα
∫ ∞

0

ηε(r + ξ)− 2ηε(r) + ηε(r − ξ)

ξ1+α
dξ

Same as the Direct Differentiation kernel.
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Kernel PSE method (KPSE)

- For conservation we choose the template

I(ε, x) ≡ c
εα

∫ ∞
−∞

(f (y)− f (x)) Kε(x − y)dy

with c a constant to be determine and K a smooth, radial kernel such
that I(ε, x)→ x Dα

0 f as ε→ 0

- a suitable choice is

K (r) = −1
r
∂κβ

∂r
- with corresponding KPSE scheme

∂ui

∂t
=

α

εα

∑
j∈I

Vj (uj − ui ) Kε(xj − xi ).

- Conservation is immediate.
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Green function treatment

- Recall the elementary solution

G0
α(x , t) =

1
tγ

L0
α

( x
tγ
)

where γ ≡ 1/α
- For ∆t > 0 it comes

u(x , t + ∆t)− u(x , t) = G0
α(x ,∆t) ∗ u(x , t)− u(x , t)

=

∫ ∞
−∞
G0
α(x − y ,∆t)u(y , t)dy − u(x , t)

=

∫ ∞
−∞
G0
α(x − y ,∆t) [u(y , t)− u(x , t)] dy .

- or, setting ∆t = tn+1 − tn,

un+1
i − un

i =
∑
j∈I

Vj
(
un

j − un
i
)

Eε(xj − xi )

- with the GPSE radial kernel

E(r) = L0
α(r), ε = (∆t)γ
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Kernels I

Figures
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Figure C.1: Gd
↵(r) (Eq. (18)), K(r) (Eq. (53)), and L0

↵(r) (Eq. (A.2) and (A.3)) (solid, dashed line, and symbols respectively),

for three di↵erent values of �, at small (left) and large (right) values of the argument.
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Figure C.2: F (r) (Eq. (29)) for three di↵erent values of � =, at small (left) and large (right) values of the argument.

27

Kernels Gd
α(r) of direct differentiation (solid lines), K (r) of KPSE method

(dashed lines) and L0
α(r) of GPSE (dotted lines)
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Figure C.1: Gd
↵(r) (Eq. (18)), K(r) (Eq. (53)), and L0

↵(r) (Eq. (A.2) and (A.3)) (solid, dashed line, and symbols respectively),

for three di↵erent values of �, at small (left) and large (right) values of the argument.
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Figure C.2: F (r) (Eq. (29)) for three di↵erent values of � =, at small (left) and large (right) values of the argument.
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Kernel F (r) of the flux reconstruction in FPSE.
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Figure C.3: �(r) (Eq. (22)) for three di↵erent values of �, at small (left) and large (right) values of the argument.
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Figure C.4: Fundamental solution at t = 1.5 for � = 0.5 computed with the four proposed methods, in the reference case.
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Figure C.5: Relative error ✏D0 at t = 1.5 for � = 0.1, as a function of the particle volume h (left, with D = 160t
1/↵
f R↵) and of

the domain truncation (right, with h = 1.21 · 10�2).

28

Fundamental solution at tf = 1.5, for β = 0.5 and approximation by different
methods.
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Figure C.3: �(r) (Eq. (22)) for three di↵erent values of �, at small (left) and large (right) values of the argument.
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Figure C.4: Fundamental solution at t = 1.5 for � = 0.5 computed with the four proposed methods, in the reference case.
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Figure C.5: Relative error ✏D0 at t = 1.5 for � = 0.1, as a function of the particle volume h (left, with D = 160t
1/↵
f R↵) and of

the domain truncation (right, with h = 1.21 · 10�2).

28

Error at tf = 1.5, for β = 0.1 as a function of particle volume h (left, with
D = 160t1/α

f Rα) and domain truncation (right, with h0.0121).
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Figure C.6: Relative error ✏D0 at t = 1.5 for � = 0.5, as a function of the particle volume h (left, with D = 160t
1/↵
f R↵) and of

the domain truncation (right, with h = 1.11 · 10�2).
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Figure C.7: Relative error ✏D0 at t = 1.5 for � = 0.9, as a function of the particle volume h (left, with D = 160t
1/↵
f R↵) and of

the domain truncation (right, with h = 1.47 · 10�2).
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29

Error at tf = 1.5, for β = 0.9 as a function of particle volume h (left, with
D = 160t1/α

f Rα) and domain truncation (right, with h0.0121).
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� h · 102 DD FPSE KPSE DVM

II ord. IV ord. II ord. IV ord. II ord. IV ord. II ord.

0.1 4.83 2.01 3.88 2.04 3.97 1.98 3.79 2.00

0.5 4.46 2.00 3.97 2.01 3.86 2.00 4.06 2.00

0.9 5.89 2.00 4.00 2.01 3.96 2.00 3.99 2.42

Table 2: Summary of the order of self-convergence in space for di↵erent values of �.

✏ = 2h; as before, the RK2 time-scheme is used with a fixed time step �t = 5 ·10�5. For the coarsest spatial

discretizations (the largest values of h), we observe a relative error decreasing as O(h2) for the second-order

methods, as expected from the moment properties of the kernels. The error committed by the fourth-order

implementations of the schemes shows the same behaviour, but decreasing as O(h4), which is evident for

the larger values of h. The FPSE method is seen to have the highest spatial error compared to the others

at the same h. For the smallest h tested, the error of the KPSE method is seen to level-o↵ as the time

discretization error then becomes dominant, because of the fixed time-step.

To have a better characterization of the spatial convergence rates of the proposed DD, FPSE and KPSE

methods, we estimate their orders of self-convergence. Specifically, the self convergence order p(`) is estimated

from

p(`+1) = log2

P
2I(`) |u(l)

i � u
(l+1)
i |

P
i2I(`) |u(`+1)

i � u
(`+2)
i |

(69)

where ` denotes the discretization level and I(`) the index set of particles belonging to levels ` to ` + 2.

When going from a level to the next, the numerical parameter investigated is halved. Table 2 summarizes

the order of self-convergence in space for the proposed methods. The expected rate of self convergence is

indeed observed.

We finally note that all the methods presently considered exhibit almost no sensitivity to the choice of

the smoothing parameter, when the latter is varied in the range ✏/h � 2 (not shown). In addition, we have

examined the convergence in time of DD, KPSE, and FPSE methods, both the RK1 and RK2 schemes.

These tests revealed an order of self convergence that is consistent with the order of time integration. For

brevity, results from time convergence study are also omitted.

4.4. Time Stability

Because it relies on the analytical Green’s function, the GPSE method is unconditionally stable. The

DVM is inherently stable as well, because the particle strengths are invariant during time integration and

the particle velocities are bounded. However, the other proposed methods, namely DD, FPSE, and KPSE,

are generally subject to a stability time-step constraint when an explicit time-scheme is employed. It is then

15

Error at tf = 1.5, reported convergence rate of the methods.
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Fractional diffusion

- 1-d two-sided conservative fractional order differential equations with
variable coefficient κ :

−∂x

(
κ(x)∂α,θx u(x)

)
= f (x), for x ∈ Ω := (a, b)

with u(a) = u(b) = 0.
- two-sided fractional order differential operator :

∂α,θx φ := θaDαx φ+ (1− θ)x Dαb φ

- left-sided (LS) and right-sided (RS) Riemann-Liouville fractional
derivatives :

aDαx v(x) :=
∂

∂x aI1−α
x v(x) =

∂

∂x

∫ x

a
ω1−α(x − z)v(z) dz

and

x Dαb v(x) :=
∂

∂x x I1−α
b =

∂

∂x

∫ b

x
ω1−α(z − x)v(z)dz

aI1−α
x and x I1−α

b are the LS and RS Riemann-Liouville fractional
integrals, with kernel ω1−α(x) := x−α

Γ(1−α)
, where Γ is the gamma function.
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Finite difference

- Partition of Ω in P subintervals I1≤n≤P using the sequence of P + 1 points

a = x0 < x1 < x2 < · · · < xP = b

- Uniform partition :

h = xn − xn−1 =
b − a

P
- xn+1/2 := (xn + xn+1)/2 is the center of interval In+1

- Backward difference operator :

δv(x) = δvn := vn − vn−1, ∀x ∈ In

where vn := v(xn)
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LS fractional derivative

For θ = 1 :
−∂x (κ(x) aDαx u) (x) = f (x).

- forward type difference treatment of the operator ∂x :

∂x (κ aDαx u(xn)) ≈ h−1
[
κn+1/2

aDαx u(xn+1)− κn−1/2
aDαx u)(xn)

]
,

where κn+1/2 := κ(xn+1/2)

- Noting aDαx u = aI1−α
x u′, because u(a) = 0

∂x (κ aDαx u)(xn) ≈ h−1[κn+1/2
aI1−α

x u′(xn+1)− κn−1/2
aI1−α

x u′(xn)]

- backward difference approximation to the derivatives :

∂x (κaDαx u)(xn) ≈ h−2[κn+1/2(aI1−α
x δu)(xn+1)− κn−1/2(aI1−α

x δu)(xn)]
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Finite difference scheme for LS fractional derivative

aI1−α
x δu(xn) =

n∑
j=1

∫
Ij

ω1−α(xn − s)δu j ds = ω2−α(h)
n∑

j=1

wn,jδu j

= ω2−α(h)
( n−1∑

j=1

[wn,j − wn,j+1]u j + un
)
,

with the weights

wn,j := (n + 1− j)1−α − (n − j)1−α for n ≥ j ≥ 1.

Denoting Un ≈ un the finite difference solution, it comes

n∑
j=1

(
an,j − an+1,j

)
U j − κn+1/2Un+1 = f̃ n

h , for n = 1, · · · ,P − 1

where

an,j≤n =

{
κn−1/2 j = n,
κn−1/2[wn,j − wn−1,j ] j < n
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Finite difference scheme for LS fractional derivative

aI1−α
x δu(xn) =

n∑
j=1

∫
Ij

ω1−α(xn − s)δu j ds = ω2−α(h)
n∑

j=1

wn,jδu j

= ω2−α(h)
( n−1∑

j=1

[wn,j − wn,j+1]u j + un
)
,

with the weights

wn,j := (n + 1− j)1−α − (n − j)1−α for n ≥ j ≥ 1.

Denoting Un ≈ un the finite difference solution, it solves BLU = F, where
U = [U1,U2, · · · ,UP−1]T , F = [̃f 1

h , f̃
2
h , · · · , f̃ P−1

h ]T , and the matrix BL = [cn,j ]
having lower-triagonal entries

cn,j =

{
κn−1/2 − κn+1/2[21−α − 2] j = n,
an,j − an+1,j j < n,

while cn,n+1 = −κn+1/2

O. Le Maître Numerical Method for Fractional Diffusion equations - 23 of 34



Particle methods
Finite Difference method

Uncertainty and Bayesian inference

General
LS, RS and two-sided fractional derivative
Examples

Finite difference scheme for LS fractional derivative

BLU = F, where U = [U1,U2, · · · ,UP−1]T , F = [̃f 1
h , f̃

2
h , · · · , f̃ P−1

h ]T , and the
matrix BL = [cn,j ] having lower-triagonal entries

cn,j =

{
κn−1/2 − κn+1/2[21−α − 2] j = n,
an,j − an+1,j j < n,

while cn,n+1 = −κn+1/2

- solution U exists and is unique

- truncature error

T n
h = ∂x (κaDαx u)(xn)− 1

h2

(
κn+1/2(aI1−α

x δu)(xn+1)−κn−1/2(aI1−α
x δu)(xn)

)
- we prove (for sufficient continuity of u)

T n
h = O(h)(1 + (xn − a)−α), for 1 ≤ n ≤ P − 1.

- for 0 < α < 1, the truncation error T n
h is of order h for xn not too close to

the left boundary x = a
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Finite difference scheme for RS fractional derivative

Similarly, for θ = 0, we obtain BRU = F, with the system matrix BR = [dn,j ]
having upper-triagonal entries

dn,j =

{
−κn−1/2wj,n−1 + (κn−1/2 + κn+1/2)wj,n − κn+1/2wj,n+1, j > n,
κn+1/2 − κn−1/2[21−α − 2], j = n,

while dn+1,n = −κn+1/2

- solution U exists and is unique
- truncature error

T n
h = ∂x (κ x Dαb u)(xn)− 1

h2

(
κn+1/2(x I1−α

b δu)(xn)−κn−1/2(x I1−α
b δu)(xn−1)

)
- we prove (for sufficient continuity of u)

T n
h = O(h) + En, for 1 ≤ n ≤ P − 1.

where
En = O(h)ω1−α(ξ − xn−1), for some ξ ∈ IP

- for 0 < α < 1, the truncation error T n
h is of order h for xn not too close to

the right boundary x = b
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Finite difference scheme for two sided fractional derivative

For θ ∈ [0, 1], Un ≈ un solves

κn−1/2[θ aI1−α
x ∂U(xn) + (1− θ) x I1−α

b ∂U(xn−1)]

− κn+1/2[θ aI1−α
x ∂U(xn+1) + (1− θ) x I1−α

b ∂U(xn)] = h2f n,

for n = 1, · · · ,P − 1, and U0 = UP = 0.
The two sided fractional derivative system is

BU = F, B = θBL + (1− θ)BR
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Example I

Case of smooth solution in Ω = (0, 1) for κ = 1 + exp(x) :

uex(x) = x4−θ(1−α)(1− x)4−(1−θ)(1−α)

Finite differences for fractional elliptic models 13

Since both AWα andWαA are positive definite matrices, Equation (20) implies Φ ≡
0 for any 0≤ θ ≤ 1, and it follows thatUn = 0 for 1≤ n≤P−1 becauseU0=UP = 0.
This completes the proof of the existence and uniqueness of the numerical solution.

Furthermore, by combining the results of sections 2 and 3, it is trivial to show that
the truncation error is of order O(h) (not near the boundaries at x = a,b), provided
that the regularity conditions on κ , f and u stated in subsections 2.3 and 3.3 are met.

5 Numerical results

In this section we present several numerical experiments to support the theoretical
analyses of the previous sections. Specifically, we consider the model problem in (1)
over Ω = (0,1), subject to homogeneous Dirichlet (absorbing) boundary conditions,
and we set κ = 1+ exp(x). The finite difference discretization uses uniform spatial
meshes with P= 2l subintervals, for l > 1, such that h = 1/P. The solution error Eh
is measured using the discrete L∞-norm ∥v∥h =max0≤i≤P |v(xi)|. Based on this error
definition, the numerical estimate of convergence rates σh of the finite difference
solutions is obtained from the relation σh = log2(E2h/Eh).
Example 1. (smooth solutions) We first consider the source term f leading to the

exact solution

uex(x) = x4−θ(1−α)(1− x)4−(1−θ)(1−α). (21)

The determination of f corresponding to uex is detailed in Appendix A.
We first fix θ = 1/2,P= 4192 and report in Figure 1 the estimates σh as a function

of α . The plot shows that σh ∼ 1, denoting an error inO(h), for almost all values of α
except in the immediate neighborhood of α = 1. When α → 1, σh exhibits a rapidly
varying behavior to reach the expected second order convergence rate at α = 1.
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Fig. 1 Graphical plot of the numerical convergence rates σh against the diffusion exponent α . Computa-
tions use θ = 1/2 and P= 4192.

Convergence rate as a function of α for θ = 1/2 and P = 4192
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Example I

Case of smooth solution in Ω = (0, 1) for κ = 1 + exp(x) :

uex(x) = x4−θ(1−α)(1− x)4−(1−θ)(1−α)
14 K. Mustapha et al.

Table 1 Discrete L∞-norm errors Eh and estimated numerical convergence rates σh for different values of
α , θ and spatial discretization step size h.

α = 0.25 α = 0.50 α = 0.75
θ − log2 h Eh σh Eh σh Eh σh

6 2.069e-04 0.9877 1.568e-04 0.9493 9.656e-05 0.8750
7 1.040e-04 0.9929 8.028e-05 0.9659 5.164e-05 0.9030

0.0 8 5.214e-05 0.9960 4.080e-05 0.9765 2.723e-05 0.9234
9 2.611e-05 0.9976 2.064e-05 0.9834 1.421e-05 0.9382
10 1.307e-05 0.9986 1.040e-05 0.9882 7.357e-06 0.9496

6 3.528e-04 0.9535 1.876e-04 0.9239 8.120e-05 0.8739
7 1.784e-04 0.9838 9.622e-05 0.9636 4.275e-05 0.9255

0.25 8 8.875e-05 1.0071 4.843e-05 0.9905 2.200e-05 0.9588
9 4.325e-05 1.0369 2.393e-05 1.0173 1.108e-05 0.9887
10 2.033e-05 1.0894 1.150e-05 1.0569 5.432e-06 1.0290

6 5.451e-04 0.8593 2.024e-04 0.8990 7.127e-05 8.7540
7 2.865e-04 0.9280 1.045e-04 0.9530 3.705e-05 9.4381

0.5 8 1.461e-04 0.9713 5.269e-05 0.9883 1.868e-05 9.8776
9 7.289e-05 1.0036 2.599e-05 1.0198 9.157e-06 1.0287
10 3.545e-05 1.0398 1.243e-05 1.0643 4.304e-06 1.0893

6 3.353e-04 0.9282 1.818e-04 0.9071 7.899e-05 0.8529
7 1.714e-04 0.9672 9.392e-05 0.9527 4.190e-05 0.9147

0.75 8 8.632e-05 0.9898 4.757e-05 0.9812 2.167e-05 0.9513
9 4.289e-05 1.0092 2.370e-05 1.0054 1.097e-05 0.9820
10 2.094e-05 1.0341 1.156e-05 1.0359 5.408e-06 1.0205

6 2.047e-04 0.9728 1.537e-04 0.9289 9.350e-05 0.8512
7 1.034e-04 0.9855 7.929e-05 0.9546 5.048e-05 0.8893

1.0 8 5.197e-05 0.9922 4.048e-05 0.9700 2.677e-05 0.9149
9 2.607e-05 0.9956 2.053e-05 0.9794 1.403e-05 0.9326
10 1.306e-05 0.9975 1.037e-05 0.9857 7.283e-06 0.9457

Next, we fix P= 512 and plot the L∞-norm of Eh against α for different values of
θ . Results are reported in Figure 2. We observe that the errors are almost the same for
θ = 0.25 and θ = 0.75, and for θ = 0 and θ = 1. This is due to the similar singularity
behavior near the boundaries of the exact solution uex in (21) for any choice of θ = c
and θ = 1− c. Note that the errors are decreasing as α → 1 for all θ . Interestingly
enough, Figure 2 also shows that for α < 0.6, the error is lower for extreme values
of θ , that is close to 0 or 1, and on the contrary Eh is lower for intermediate values
(θ ≈ 1/2) when α > 0.6.

Table 1 reports the L∞-norm of Eh and the corresponding estimates of conver-
gence rate for different values of α , θ and the discretization step size h. The table
confirms the O(h) errors, for all the values of α and θ shown, as h goes to zero.
Example 2. (non-smooth solutions) In practice, due to the presence of the two-

sided fractional derivative, the solution u of (1) admits end-point singularities even
if the source term f is smooth. It was proved recently in [12,18] that, for θ = 1/2,
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Example II

Case of non-smooth solutions in Ω = (0, 1) for κ = 1 + exp(x) :

uex(x) = x1−θ(1−α)(1− x)1−(1−θ)(1−α)

16 K. Mustapha et al.

Table 2 Discrete L∞-norm errors Eh and estimated numerical convergence rates σh for different values of
α , θ and spatial discretization step size h.

α = 0.25 α = 0.50 α = 0.75
θ − log2 h Eh σh Eh σh Eh σh

7 5.057e-02 0.2752 1.916e-02 0.5123 4.624e-03 0.7626
8 4.214e-02 0.2632 1.348e-02 0.5068 2.732e-03 0.7590

0.0 9 3.527e-02 0.2567 9.510e-03 0.5037 1.618e-03 0.7556
10 2.959e-02 0.2534 6.716e-03 0.5019 9.601e-04 0.7533
11 2.485e-02 0.2517 4.745e-03 0.5010 5.702e-04 0.7518
12 2.088e-02 0.2509 3.354e-03 0.5005 3.388e-04 0.7510

7 4.895e-02 0.2297 1.881e-02 0.4877 4.496e-03 0.7289
8 4.145e-02 0.2399 1.336e-02 0.4940 2.692e-03 0.7402

1.0 9 3.498e-02 0.2449 9.465e-03 0.4970 1.606e-03 0.7454
10 2.946e-02 0.2475 6.700e-03 0.4985 9.562e-04 0.7478
11 2.480e-02 0.2487 4.740e-03 0.4993 5.690e-04 0.7490
12 2.086e-02 0.2494 3.352e-03 0.4996 3.384e-04 0.7495

γ = 3 when using the same number of discretization points P = 256, 512, 1024 and
2048. The reduction of the error due to the mesh refinement is clearly visible. Note
that similar results can be obtained for θ = 0 using discretization points defined by
xi = 1− ((P− i)/P)γ to refine the mesh at the endpoint x= 1.

Table 3 Discrete L∞-norm errors Eh and estimated numerical convergence rates σh for α = 0.25, θ = 1
(LS fractional derivatives), different number of discretization points (P) and refinement parameters γ .

γ = 2 γ = 3 γ = 4
log2P Eh σh Eh σh Eh σh

6 2.300e-02 8.128e-03 2.871e-03
7 1.628e-02 0.4988 4.838e-03 0.7484 1.438e-03 0.9976
8 1.151e-02 0.4996 2.878e-03 0.7495 7.194e-04 0.9992
9 8.140e-03 0.4998 1.711e-03 0.7498 3.597e-04 0.9997
10 5.756e-03 0.4999 1.018e-03 0.7499 1.800e-04 0.9999
11 4.070e-03 0.4999 6.051e-04 0.7499 8.994e-05 0.9999
12 2.878e-03 0.5002 3.600e-04 0.7500 4.497e-05 0.9998

6 Concluding remarks

The objective of this work was to propose and analyze a finite-difference scheme for
the solution of general one-dimensional fractional elliptic problems with a variable
diffusion coefficient. For the proposed scheme, we proved the existence and unique-
ness of the numerical solution and established the order of convergence for the trun-

Convergence in O(hα) (here θ = 1).
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Example II

Case of non-smooth solutions in Ω = (0, 1) for κ = 1 + exp(x) :

uex(x) = x1−θ(1−α)(1− x)1−(1−θ)(1−α)

Adapted discretization with refinement parameter γ ≥ 1 : xi = (i/P)γ

16 K. Mustapha et al.

Table 2 Discrete L∞-norm errors Eh and estimated numerical convergence rates σh for different values of
α , θ and spatial discretization step size h.

α = 0.25 α = 0.50 α = 0.75
θ − log2 h Eh σh Eh σh Eh σh

7 5.057e-02 0.2752 1.916e-02 0.5123 4.624e-03 0.7626
8 4.214e-02 0.2632 1.348e-02 0.5068 2.732e-03 0.7590

0.0 9 3.527e-02 0.2567 9.510e-03 0.5037 1.618e-03 0.7556
10 2.959e-02 0.2534 6.716e-03 0.5019 9.601e-04 0.7533
11 2.485e-02 0.2517 4.745e-03 0.5010 5.702e-04 0.7518
12 2.088e-02 0.2509 3.354e-03 0.5005 3.388e-04 0.7510

7 4.895e-02 0.2297 1.881e-02 0.4877 4.496e-03 0.7289
8 4.145e-02 0.2399 1.336e-02 0.4940 2.692e-03 0.7402

1.0 9 3.498e-02 0.2449 9.465e-03 0.4970 1.606e-03 0.7454
10 2.946e-02 0.2475 6.700e-03 0.4985 9.562e-04 0.7478
11 2.480e-02 0.2487 4.740e-03 0.4993 5.690e-04 0.7490
12 2.086e-02 0.2494 3.352e-03 0.4996 3.384e-04 0.7495

γ = 3 when using the same number of discretization points P = 256, 512, 1024 and
2048. The reduction of the error due to the mesh refinement is clearly visible. Note
that similar results can be obtained for θ = 0 using discretization points defined by
xi = 1− ((P− i)/P)γ to refine the mesh at the endpoint x= 1.

Table 3 Discrete L∞-norm errors Eh and estimated numerical convergence rates σh for α = 0.25, θ = 1
(LS fractional derivatives), different number of discretization points (P) and refinement parameters γ .

γ = 2 γ = 3 γ = 4
log2P Eh σh Eh σh Eh σh

6 2.300e-02 8.128e-03 2.871e-03
7 1.628e-02 0.4988 4.838e-03 0.7484 1.438e-03 0.9976
8 1.151e-02 0.4996 2.878e-03 0.7495 7.194e-04 0.9992
9 8.140e-03 0.4998 1.711e-03 0.7498 3.597e-04 0.9997
10 5.756e-03 0.4999 1.018e-03 0.7499 1.800e-04 0.9999
11 4.070e-03 0.4999 6.051e-04 0.7499 8.994e-05 0.9999
12 2.878e-03 0.5002 3.600e-04 0.7500 4.497e-05 0.9998

6 Concluding remarks

The objective of this work was to propose and analyze a finite-difference scheme for
the solution of general one-dimensional fractional elliptic problems with a variable
diffusion coefficient. For the proposed scheme, we proved the existence and unique-
ness of the numerical solution and established the order of convergence for the trun-

Case of θ = 1 and α = 0.25.
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Uncertainty in fractional diffusion equation

1 Steady equation
−∂x

(
κ(x)∂α,θx u(x)

)
= f (x)

2 uncertainty in κ(x)

3 uncertainty in α, θ

4 probabilistic approach :

(κ(x , ω), α(ω), θ(ω)) ∈ P(W ,Σ, µ)

5 a priori analysis : parameters considered independent
- spectral expansion of u(x , t , κ, α, θ) : smoothness, existence of second

moments,. . .

- balancing error.
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Bayesian inference

1 A priori distribution of the parameter

π(κ, α, θ)

2 model predictions Φ : u 7→ Rm of the experimental observation y

3 likelihood of the experimental observation

L(y |κ, α, θ)

4 Bayesian update

p(κ, α, θ|y) ∝ L(y |κ, α, θ)π(κ, α, θ)

- selection of the a priori distribution

- surrogate model to reduce computational cost

- selection of the observation Φ that best inform on the parameter

- model error
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