Non-loose Legendrian spheres with trivial contact homology DGA

Title - HTML
Nom de l'orateur
Tobias Ekholm
Etablissement de l'orateur
Université d'Uppsala
Date et heure de l'exposé
13-02-2015 - 11:30:00
Lieu de l'exposé
IHP Salle 201 (Paris)

Séminaire Orsay - Nantes

Séminaire joint entre l'université Paris 11 et l'université de Nantes - Spécialisé en géometrie symplectique et de contact

Résumé de l'exposé

Loose Legendrian n-submanifolds, n>1, were introduced by Murphy and proved to be flexible in the h-principle sense: any two loose Legendrian submanifolds that are formally Legendrian isotopic are in fact actually Legendrian isotopic. Legendrian contact homology is a Floer theoretic invariant that associates a differential graded algebra (DGA) to a Legendrian submanifold. The DGA of a loose Legendrian submanifold is trivial. We show that the converse is not true by constructing non-loose Legendrian n-spheres in standard contact (2n+1)-space, n > 1, with trivial DGA.

comments