In this talk, we show that using repulsive random variables, it is possible to build Monte Carlo methods that converge faster than vanilla Monte Carlo. More precisely, we build estimators of integrals, the variance of which decreases as $N^{-1-1/d}$, where $N$ is the number of integrand evaluations, and $d$ is the ambient dimension. To do so, we propose stochastic numerical quadratures involving determinantal point processes (DPPs) associated to multivariate orthogonal polynomials. The proposed method can be seen as a stochastic version of Gauss' quadrature, where samples from a determinantal point process replace zeros of orthogonal polynomials. Furthermore, integration with DPPs is close in spirit to randomized quasi-Monte Carlo methods, leveraging repulsive point processes to ensure low discrepancy samples.
Monte Carlo with determinantal point processes
Title - HTML
Monte Carlo with determinantal point processes
- Se connecter pour publier des commentaires
Nom de l'orateur
Rémi Bardenet
Etablissement de l'orateur
Université de Lille
Date et heure de l'exposé
09-02-2017 - 11:00:00
Lieu de l'exposé
salle des séminaires
Résumé de l'exposé
comments