Résumé de l'exposé
In this talk we will discuss criteria for the $L^2 \times L^2 \to L^1$ boundedness of bilinear Fourier multiplier operators with symbols with bounded partial derivatives of all (or sufficiently many) orders. Results of this type have applications for proving boundedness of various operators in harmonic analysis, including rough bilinear singular integrals and bilinear spherical maximal functions. Our main focus will be on the question of optimality of these bilinear multiplier theorems. This is a joint work with Loukas Grafakos and Danqing He.
comments