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Part I

INTRODUCTION
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Le contrôle optimal .

Le contrôle optimal consiste à trouver un couple trajectoire-contrôle (x,u),
minimisant (ou maximisant) un côut représenté par une fonction g.

Un problème en contrôle optimal est:

(PS,x0)



Minimize g(x(T )) (côut final)

sur le arcs x ∈ W 1,1([S, T ],Rn) vérifiant

ẋ(t) = f(t, x(t), u(t)), p.p. (contrainte dynamique)

u(t) ∈ U (ensemble des contôles)

x(0) = x0 (condition initiale)

où g : Rn −→ R, est la fonction côut
f : [S, T ]×Rn ×Rm −→ Rn est la dynamique
U ⊂ Rm l’ensemble des contrôles
(S, x0) la donnée initiale.

Processus admissible: Un couple (x, u) vérifiant la contrainte dynamique
et la condition initiale est dit admissible au problème PS,x0 .

Un minimiseur: On dit que (x̄, ū) est une solution du problème/un
minimiseur lorsque pour tout processus admissible (x, u), on a :

g(x(T )) ≥ g(x̄(T )).

Version avec inclusion différentielle: La contrainte dynamique appar-
ente dans le problème PS,x0 peut exister dans d’autres problèmes en contrôle
optimal sous forme d’une inclusion différentielle.

Le problème se voit donc sous la forme:
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(PS,x0)



Minimize g(x(T )) (côut final)

sur le arcs x ∈ W 1,1([S, T ],Rn) vérifiant

ẋ(t) ∈ F (t, x(t)), p.p. (contrainte dynamique)

u(t) ∈ U (ensemble des contôles)

x(0) = x0 (condition initiale)

où F : [S, T ] × Rn  Rn une multifonction, avec F (t, x) := {f(t, x, u) :
u ∈ U}.

On voit donc qu’une trajectoire admissible au problème PS,x0 qui vérifie
une équation différentielle vérifie certainement une inclusion différentielle.
La réciproque que pour toute vitesse contenu dans l’ensemble des vitesse il
existe un contrôle u dans l’ensemble des contrôles U tel que (x, u) est un pro-
cessus admissible se voit par le théorème de sélection (Filippov’s selection
theorem).

Contrôle optimal-Méthodes classiques de résolution: En contrôle
optimal on a deux grandes approches:

1.Le principe du maximum (Pontryagin).
I Conditions nécessaires du premier ordre pour l’optimalité.

2.Dynamic programming (Bellman).
I Relation entre le problème de contrôle optimal et une équation de Hamilton-
Jacobi.

On s’interesse ici au principe du maximum.

Principe du maximum-Conditions nécessaires d’optimalité
.
On considère l’Hamiltonien non maximisé
H(t, p, x, u) = f(t, x, u) · p

Énoncé:
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Soit (x̄, ū) un minimiseur pour (PS,x0). Sous les bonnes hypothèses il existe
une fonction p ∈ W 1,1([0, T ],Rn) et λ ≥ 0 (multiplicateurs de Lagrange) tels
que :

(i) (p, λ) 6= (0, 0) (non trivialité)

(ii) −ṗ(t) ∈ co ∂xH(t, x̄(t), p(t), ū(t)) p.p. (système adjoint)

(iii) H(t, x̄(t), p(t), ū(t)) = max
u∈U(t)

H(t, x̄(t), p(t), u) (condition de maxi-

malité ou de Weierstrass)

(iv) −p(T ) ∈ λ∂g(x̄(T )) (condition de transversalité).

Problèmes avec structures stratifiés .

La nature de la stratification dans un problème d’optimisation dépend du
modèle et des hypothèses sur ce modèle. Chaque type d’un problème en
contrôle optimal où on a pas un cas classique ou simple impose une stratifi-
cation pour le bien résoudre.

Stratification au sens de Clarke La phrase ”sous les bonnes hypothèses”
introduite dans le principe du maximum signifie par exemple une borne sur
l’esemble des vitesses F ou une inégalité de type lipschitz (Figure.1). Dans
des cas cette hypothèse n’existe pas. Un ensemble F par exemple définis
comme:

F (x = (x1, x2)) := {(v1, v2)|v1 < x1v2}
est non borné et ne vérifie pas un relation lipschitz de la forme

F (t, x′) ⊂ F (t, x) + k(t)|x− x′|B

ce qui exige une stratification par une fonction appelée fonction rayon dépendante
du temps qu’on l’intersecte avec l’ensemble des vitesse pour obtenir une borne
ou controler la variation. On parle donc des vitesses dans un esemble de la
forme F (t, x) ∩R(t).
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y = x

Figure 1:

Stratification avec des Multiprocessus Nous considérons ici une mod-
ification du problème de contrôle optimal standard dans lequel les trajec-
toires d’état sont autorisées à être discontinues à un nombre fini de fois et
sur des intervales de temps finis. On parle donc d’un processus de la forme
{τ i0, τ i1, yi, ui} avec i = 1, ..., k. Un exemple d’un tel problème est la dérivation
de la loi de réfraction de Snell à partir du principe du moindre temps de Fer-
mat.

Y1

Y2
k = 2 :
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Notation

B closed unit ball in Euclidean space

|x| Euclidean norm of x

dC(x) Euclidean distance of x from C

int C interior of C

NP
C Proximal normal cone to C at x

NL
C , NC Limiting normal cone to C at x

epi f Epigraph of f

∂Pf(x) Proximal subdifferential of f at x

∂Lf(x) Limiting subdifferential of f at x

Gr F Graph of F

∇f(x) Gradient vector of f at x

ΨC(x) Indicator fuction of the set C

H,H Unmaximized hamiltonian

dom f Domain of f

C̄ Closure of C
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Part II

MAXIMUM PRINCIPLE
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This chapter focus on optimality condition in a smooth case where the dy-
namic constraint is smooth with respect to the state varialble. We will start
by a general case of the problem then go back to the proof in the snooth
case. The optimal control studied here is

(P)



Minimize g(x(S),x(T))

over x ∈ W 1,1([S, T ];Rn)

and mesurable function u : [S, T ] −→ Rm satisfying

ẋ(t) = f(t, x(t), u(t)) a.e.,

u(t) ∈ U(t) a.e.,

(x(S), x(T )) ∈ C

the data for which comprise an interval [S, T ], functions g : Rn ×Rn −→ R

and f : [S, T ]×Rn×Rm −→ Rn, a nonempty multifunction U :[S, T ] Rm,
and a closed set C ⊂ Rn ×Rn.

A mesurable function u : [S, T ] −→ Rm that satisfies

u(t) ∈ U(t) a.e.

is called a control function.The set of all control functions is written U .
A process (x, u) comprises a control function u together with an arc x ∈
W 1,1([S, T ];Rn) which is a solution to the differential equation

ẋ(t) = f(t, x(t), u(t)) a.e.

A state trajectory x is the first component of some process (x, u). A process
(x, u) is said to be feasible for (P) if the state trajectory x satisfies the
endpoint constraint

(x(S), x(T )) ∈ C.

1.Definition Take a feasible process (x̄, ū).
(x̄, ū) is a W 1,1 local minimizer if there exist δ > 0 such that

g(x(S), x(T )) ≥ g(x̄(S), x̄(T )),
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for all feasible processes (x, u) which satisfy

||x− x̄||W 1,1 ≤ δ.

(x̄, ū) is a strong local minimixer if there exist δ > 0 such that

g(x(S), x(T )) ≥ g(x̄(S), x̄(T )),

for all feasible processes (x, u) which satisfy

||x− x̄||L∞ ≤ δ.

2.THE MAXIMUM PRINCIPLE .

Denote by H : [S, T ] × Rn × Rn × Rm −→ R the unmaximied Hmiltonian
function

H(t, x, p, u) := p.f(t, x, u)

.

Theorem 2.1(The maximum Principle) Let (x̄, ū) be a W 1,1 local min-
imizer for (P). Assume that, for some δ > 0, the following hypotheses are
satisfied.

(H1) For fixed x, f(., x, .) is L × Bm mesurable. There exist an L × Bm
mesurable function k : [S, T ] × Rm −→ R such that t → k(t, ū(t)) is inte-
grable and, for a.e. t ∈ [S, T ],

|f(t, x, u)− f(t, x′, u)| ≤ k(t, u)|x− x′|

for all x, x′ ∈ x̄(t) + δB and u ∈ U(t);

(H2) GrU is an L × Bm mesurable set;

(H3) g is locally lipschitz continuous.
Then there exist p ∈ W 1,1([S, T ];Rn) and λ ≥ 0 such that

(i) (p, λ) 6= (0, 0);
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(ii) −ṗ(t) ∈ co∂xH(t, x̄(t), p(t), ū(t)) a.e.;

(iii) H(t, x̄(t), p(t), ū(t)) = maxu∈U(t)H(t, x̄(t), p(t), u) a.e.;

(iv) (p(S),−p(T )) ∈ ∂g(x̄(S), x̄(T )) +NC(x̄(S), x̄(T )).

Now assume, also, that f(t, x, u) and U(t) are independant of t.
Then, in addition to the above conditions, there exist a constant r such that:

(v) H(t, x̄(t), p(t) = r
(∂xH denotes the limiting subdifferential of H(t, ., p, u) for fixed (t, p, u).)

Elements (λ, p) whose existence is asserted in the Maximum Principle are
called multipliers for (P).The componentes λ and p are refered to as the cost
multiplier and adjoint arc, repectively.

Remark :
The adjoint inclusion (Condition (ii) in the Theorem statement often stated
in terms of the Clarke’s generalized jacobian:

3.Definition Take a point y ∈ R and a function L : Rn −→ Rm that is
Lipschitz continuous on a neighborhood of y· Then the Generalized Jacobian
DL(y) of L at y is the set of m× n matrices:

DL(y) := co{η : ∃yi −→ y such that ∇L(yi) exist ∀i and ∇L(yi) −→ η}.
A noteworthy property of the generalized Jacobian DL(y) of a function L :
Rn −→ Rm at a point y is that, for any row vector r ∈ Rm,

rDL(y) = co∂(rL)(y)

Here, ∂(rL)(y) is the limiting subdifferential of the function y −→ rL(y).It
follows immediately that the adjoint inclusion can be equivalently written

−ṗ(t) ∈ pDxf(t, x̄(t), ū(t)),

in which Dxf(t, x, u) denote the generalized jacobian with respect to the x
variable.
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4.A SMOOTH MAXIMUM PRINCIPLE .
This part , provides a self-contained proof of Conditions (i) throught (iv) of
the Maximum Principle, Theorem 2.1, in the case when the dynamics con-
strait is ”smooth” with respect to the state variable. The problem of interst
remains:

(P)



Minimize g(x(S),x(T))

overx ∈ W 1,1([S, T ];Rn)

and mesurable function u : [S, T ] −→ Rm satisfying

ẋ(t) = f(t, x(t), u(t)) a.e.,

u(t) ∈ U(t) a.e.,

(x(S), x(T )) ∈ C

with data an interval [S, T ], functions g : Rn × Rn −→ R and f : [S, T ] ×
Rn × Rm −→ Rn, with a nonempty multifunction U : [S, T ]  Rm, and a
closed set C ⊂ Rn ×Rn.

theorem 4.1 (A smooth Maximum Principle) Let (x̄, ū) be a W 1,1

local minimizer for (P). Assume that in addition to hypotheses of Theorem
6.2.1, nmely, there exist δ > 0 sych that

(H1): f(., x, .) is L × Bm mesurable for a fixed x. There exist a Borel mea-
surable function k : [S, T ]×Rm −→ R such that t −→ k(t, ū(t)) is integrable
and, for a.e. t ∈ [S, T ],

|f(t, x, u)− f(t, x′, u)| ≤ k(t, u)|x− x′|

for all x, x′ ∈ x̄(t) + δB, u ∈ U(t),

(H2): GrU is L × Bm mesurable,

(H3): g is locally Lipschitz continuous,

and the following hypothesis satisfied.
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(S1) : f(t, ., u) is a continously differentiable on x̄(t)+δ int B for all u ∈ U(t)
a.e. t ∈ [S, T ].

Then there exist p ∈ W 1,1([S, , T ];Rn) and λ ≥ 0 such that

(i) (p, λ) 6= (0, 0),

(ii) −ṗ(t) = Hx(t, x̄(t), p(t), ū(t)) a.e,

(iii) (p(S),−p(T )) ∈ ∂g(x̄(S), x̄(T )) +NC(x̄(S), x̄(T ),

(iv) H(t, x̄(t), p(t), ū(t)) = maxu∈U(t)H(t, x̄(t), p(t), u) a.e.

The smooth Maximum Principle is built up in stages, in which the op-
timality conditions are proved under hypotheses that are progressively less
restrictive. The firt case treated is when the velocity set is compact and
convex, the cost function is smooth, there is no end point constraints, and,
finally, (x̄, ū) is a strong local minimizer.

Proposition 4.2 Let (x̄, ū) eb a strong local minimizer of Theorem 4.1
Then the assertions of Theorem 4.1 are valid with λ = 1 when we assumed
that, in addition to (H1) to (H3) and (S1), the following hypothese are sat-
isfied:

(S2) There exist kf ∈ L1 such that, for a.e t ∈ [S, T ],

|f(t, x, u)− f(t, x′, u)| ≤ kf (t)|x− x′| and |f(t, x, u)| ≤ cf (t)

for all x, x′ ∈ x̄(t) + δB, u ∈ U(t);

(S3) : f(t, x, U(t)) is a compact set for all x ∈ x̄(t) + δB, a.e. t ∈ [S, T ];

(S4)f(t, x, U(t)) is a convex set for all x ∈ x̄(t) + δB, a.e. t ∈ [S, T ];

(S5) g is continously differentiable;
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(S6) C = Rn ×Rn.

Remark: Proofs of all theorems in this section are similar and use the
same techniques, therefore it is sufficient to prove a single theorem which will
be the following.

Proposition 4.3 The assertions of Proposition 4.2 are valid when, in addi-
tion to (H1) throught (H3) and (S1), we impose merely (S2) throught (S5).

Proof .
Fix ε ∈ (0, 1]. Reduce the sixe of δ > 0, if neccesary, to ensure that (x̄, ū)
is minimizing with respect to all feasible process (x, u) for (P ) satisfying
||x − x̄||L∞ ≤ δ. Embed (P ) (augmented by the constraint ||x − x̄||L∞ ≤ δ)
in family of problems {P (a) : a ∈ Rn ×Rn}

P(a)



Minimize g(x(S),x(T))

overx ∈ W 1,1([S, T ];Rn)

and mesurable function u : [S, T ] −→ Rm satisfying

ẋ(t) = (1− ε)f(t, x(t), ū(t)) + εf(t, x(t), u(t)), a.e.,

u(t) ∈ U(t) a.e.,

(x(S), x(T )) ∈ C + a

||x− x̄||L∞ ≤ δ

Since f(t, x, U(t) is convex and in view of the Generalized Filipov Selection
Theorem (Theorem 2.3.13 R.Vinter ”optimal Control”), (x̄, ū) is a minimizer
for P (0).
We impose an interim hypothesis,
(HS): If (x, u) is a minimizer fo P (0) then x = x̄.

(It is discrated later in the proof.)
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Denote by V(a) the infimum cost of P(a).(Set V (a) = +∞ if there exist
no (x, u)s satisfying the cinstraints of P(a).)
Note the following properties of V.

(i) V (a) > −∞ for all a ∈ Rn × Rn and if V (a) < +∞ then P(a) has a
minimizer

(ii)V is a lower semicontinous function on Rn ×Rn.

(iii) if ai −→ 0 and V (ai) −→ V (0) and if (xi, ui) is a minimizer for P (ai)
for each i, then xi −→ x̄ uniformly and ẋi −→ ˙̄x weakly in L1 as i −→∞.

These are straintforward consequences of the Compactness of Trajectories
Thoerem(theorem 2.5.3R.V.”Optimalcontrol”), result of section 2.6 applied
to the multifunction

F (t, x) := {(1− ε)f(t, x(t), ū(t)) + εf(t, x(t), u(t)) : u ∈ U(t)},
and the Generalied Filippov Selection Theorem, which tells that if x ∈ W 1,1,
satisfies the differential inclusion

ẋ ∈ F (t, x(t)) a.e,

then there is a ū ∈ U such that

ẋ(t) = (1− ε)f(t, x(t), ū(t)) + εf(t, x(t), ũ(t)) a.e.

Since V is lower semicontinous and V (0) < +∞, there exist a sequence
ai −→ 0 such that V (ai) −→ V (0) as i −→ ∞ and V has a proximal
subdifferential ξi at ai for each i. This means that, for each i, there exist
αi > 0 and Mi such that

V (a)− V (ai) ≥ ξi.(a− ai)−Mi|a− ai|2 (11)

for all a ∈ {ai}+ αiB.
In view of the above properties of V, P (ai) has a minimizer (xi, ui) for

each i and xi −→ x̄ uniformaly. By eliminating initial terms in the sequence
we may arrange that

||xi − x̄||L∞ <
δ

4
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for all i.
Fix i.Take any (x, u) such that u ∈ U , x satisfies the differential equation
constraint of P(a), and also

||x− xi||L∞ <
δ

2

choose an arbitrary point c ∈ C. Notice that

x(S), x(T )) ∈ C + (x(S), x(T ))− c).

This means that (x, u) is feasble process for P (x(S), x(T ))− c). The cost of
(x, u) cannot be smaller than the infimum cost V (x(S), x(T ))− c). It follows
that

g(x(S), x(T )) ≥ V (x(S), x(T ))− c) (12)

Define
ci := (xi(S), xi(T ))− ai

Since (xi, ui) solves P (ai) = P ((xi(S), xi(T ))− ci)), we have

g(xi(S), xi(T )) = V (xi(S), xi(T ))− ci) (13)

Now define the function

Ji((x, u), c) := g(x(S), x(T ))−ξ.(x(S), x(T ))−c)+Mi(|(x(S), x(T ))−(xi(S), xi(T ))−(c−ci)|2).

From (11) throught (13), we deduce that

Ji((x, u), c) ≥ Ji((xi, ui), ci) (14)

for all c ∈ C and all (x, u)s satisfying

ẋ(t) = (1− ε)f(t, x(t), ū(t)) + εf(t, x(t), u(t)) a.e
u(t) ∈ U(t) a.e,
||x− x̄||L∞ ≤ δ

Set (x, u) = (xi, ui) in (14). The inequality implies

−ξ.(c− ci) ≤Mi|c− ci|2forallc ∈ C.

We conclude that
−ξi ∈ NP

C ((xi(S), xi(T ))− ai),
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Next set c = ci. We see that (xi, ui) is a strong local minimizer for

Minimize g(x(S), x(T )) +Mi(|(x(S), x(T ))− (xi(S), xi(T ))|2 − ξi((x(S), x(T ))

over x ∈ W 1,1

and mesurable function u satisfying

ẋ(t) = (1− ε)f(t, x(t), ū(t)) + εf(t, x(t), u(t)), a.e.,

u(t) ∈ U(t) a.e.,

This is an ”endpoint constraint-free” optimal control problem to which the
necessary conditions of the special case of the Maximum Principle (4.2), are
applicable.We deduce the existence of an adjoint arc pi ∈ W 1,1 such that

−ṗi(t) = pi(t)((1−ε)fx(t, xi(t), ū(t))+εfx(t, xi(t), ui(t))), (15)

pi(t).ẋi(t) ≥ pi(t).((1−ε)f(t, xi(t), ū(t))+εf(t, xi(t), u)) for all u ∈ U(t), (16)

(pi(S),−pi(T ))(= λi∇g(xi(S), xi(T ))− λiξi)
∈ λi∇g(xi(S), xi(T ))+NC(xi(S), xi(T ))−ai), (17)

in which λi = 1. Now scale pi and λi (we do not relabel) so that

|pi(S)|+λi = 1 (18)

Recall that
xi −→ x̄ uniformly.

Since {pi(S)} is a bounded sequence, we deduce from (15) that the pis
are uniformly bounded and ṗis are uniformly integrably bounded. Along
a subsequence then pi −→ p uniformly for some p ∈ W 1,1. Since {λi} is
a bounded sequence, we may arrange by yet another subsequence extrac-
tion that λi −→ λ. We deduce from (15) with the help of compactness of
trajectories Theorem that p satifies

−ṗ(t) ∈ p(t)fx(t, x̄(t), ū(t))+2ε|p(t)|kf (t)B.

From (16) we see that, for arbitrary u ∈ U ,∫ T
S
pi(t).ẋi(t) dt ≥

∫ T
S
pi(t).((1− ε)f(t, xi(t), ū(t)) + εf(t, xi(t), u(t))) dt.
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Now ẋi −→ ˙̄x weakly in L1 and pi −→ p and xi −→ x̄ uniformly. Passing to
the limit (with the help of the dominated convergence theorem), noting that
˙̄x = f(t, x̄(t), ū(t)) and deviding across the resulting inequality by ε yields∫ T

S

p(t).(f(t, x̄(t), u(t))− f(t, x̄(t), ū(t))) dt ≤ 0 (20)

From (17) and the closure properties of the limiting normal cone we deduce
that

(p(S),−p(T )) ∈ λ∇g(x̄(S), x̄(T )), NC(x̄(S), x̄(T )). (21)

It follows from (18) that

|p(S)|+ λ = 1 (22)

All the assertions of the proposition have been verified except that condition
(20) is an ”integral” form of the weierstrass condition and a perturbation
term 2εkf |p|B currently appears in the adjoint inclusion (19).Notice however
that p and λ have been constructed for a particular ε > 0. Take a sequence
εj ↓ 0. For each j, there are elements pj and λj satisfying (18) to (22) (when
pj, λj, and εj replace p, λ, and ε). A by now familiar convergence analysis
yields limits p and λ satisfying (18) to (22), but with the perturabtion absent.

We next allow a possibility nonconvex velocity set and a general Lipschitz
continuous coast function, provided that a constraint is imposed only on the
left endpoint of state trajectories.

Proposition 4.4 Consider the special cas of (P) in wich the endpoint con-
straint set C can be expressed

C = C0 ×Rn

for some closed set C0 ⊂ Rn. Let (x̄, ū) be a strong local minimizer. Then
the assertions of Theorem 4.1 are valid with λ = 1 when, in addition to (H1)
throught (H3) and (S1), we impose merely the hypotheses (S2) and (S3).

The final step is to allow a general endpoint constraint.
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Proposition 4.5 The assertions of theorem 4.1 are valid when (x̄, ū) is
assumed to be a strong local minimizer and when, in addition to (H1) throuht
(H3) and (S1) of theorem 4.1, Hypotheses (S2) and (S3) of Proposition 4.2
are imposed.

18



Part III

A GENERAL VERSION OF
EULER-LAGRANGE
CONDITIONS
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Till now we derived necessary conditions of optimality for different opti-
misation problems over standard hypotheses, most of times. Now we will
intreduce a proof for an optimisation problem with more general hypotheses.
To be more precise, the bound hypothese on the velocity sets or the lipschitz
continuity are not always valid.

For exemple let’s take the velocity set F dependent only on x and expressed
by

F (x = (x1, x2)) := {v = v1, v2)/v1 ≤ x1v2}
we notive that this set is not bounded nor verify a lipschitz inequality so we
have an unvalid hypothese... To make things work, and so derive some neces-
sary conditions of optimality, an hypothese of pseudo-lipschitz or a bounded
slope conditions comes... Let’s begin first by introducing ower problem.

Minimize J(x) := l(x(a), x(b)) over an arc x satisfying the differential in-
clusion and boundary condition

ẋ(t) ∈ F (t, x(t)) a.e, (x(a), x(b)) ∈ E (1)

An arc x refers to an absolutely continous function, x : [a, b] −→ Rn; is said
to be admissible fo the problem if it satisfies (1)

F here is a mulifunction mapping [a, b]×Rn to the subsets of Rn

For each t ∈ [a, b] the graph of the multifunction Ft(.) is the set

Gt := {(x, v) ∈ Rn ×Rn : v ∈ F (t, x)}

Local minimizer let x∗ be an admissible trajectory for the problem, and
let R be multifunction from [a, b] to Rn such that x′∗ ∈ R(t) a.e. We say
that x∗ is a local minimum for the problem in the following sense: for some
ε∗ > 0, for all admissible arc x satisfying

|x(t)− x∗| ≤ ε∗,

∫ a

b

|ẋ(t)− ẋ′∗(t)| dt ≤ ε∗, ẋ(t) ∈ F (t, x(t)) ∩R(t) a.e,

we have J(x∗) ≤ J(x). The multifunction R will be called a radius.

We make the hypothesis that all functions and multifunctions that appear
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in the formulations of problems and theorems are mesurable, in the sens of
Lebesgue if they depend only on t, or else in the L × B sens if they depend
on t and x.

Hypotheses of Theorem 1.1 .

(H1) The function l is locally lipschitz; the set E is closed; for almost ev-
ery t, the set Gt is locally closed in the following sens:

|x− x∗(t)| < ε∗, v ∈ F (t, x) ∩R(t), Ccompact⇒ Gt ∩ C

(H2) (bounded slope condition) There exist a summable function k such
that, for almost every t, we have

|x− x∗(t)| < ε∗, v ∈ F (t, x) ∩R(t), (α, β) ∈ NP
Gt
⇒ |α| ≤ Kt|β|.

(H3) For some η > 0, for almost every t, we have: R(t) is an open con-
vex set satisfying

R(t) ⊃ B(x′∗(t), ηkt).

Theorem 1.1 Under the hypotheses (H1), (H2), (H3) above there exist an
arc p and λ0 ∈ {0, 1} with (λ0, p(t)) 6= 0 ∀t satisfying the Euler inclusion

p′(t) ∈ co{w : (w, p(t)) ∈ NL
Gt

(x∗(t), x
′
∗(t))}a.e (2)

together with the Weierstrass condition of radius R: for almost every t we
have

p(t).v ≤ p(t).x′∗(t) ∀v ∈ F (t, x∗(t)) ∩R(t), (3)

21



and the transversality condition

(p(a),−p(b)) ∈ ∂Lλ0l(x∗(a), x∗(b)) +NL
E(x∗(a), x∗(b)). (4)

Theorem 2.1 Let Y be a compact, convex ofRn, and φ : Rn −→ R∪{+∞}
a lower semicontinous function. Let any real number m no greater than the
quantity minY φ − φ(x0). Then there exist a point z in the δ-neighberhood
of the interval

[x0, Y ] := co[Y ∪ {x0}]

together with an element ζ ∈ ∂Pφ(z) such that

m < ζ.(y − x0) + δ ∀u ∈ Y, φ(z) < min
[x0,Y ]

φ+ |m|+ δ

Lipschitz continous function Let Γ be a multifunction from Rn to Rn,
with closed graph, and let dG denote the euclidean distance function.

Proposition 1 Suppose that Γ satisfies the Lipschitz condition

Γ(y) ⊂ Γ(z) +B(0, k|y − z|) (5)

for all y, z ∈ B(x0, r), where x0 ∈ Rn, r > 0. Let v0 ∈ Γ(x0). Then

(α, β) ∈ NL
G(x0, v0)⇒ |α| < k|β| (6)

If (5) holds for all y, z ∈ Rn then for any (x, v) ∈ Rn ×Rn,

(α, β) ∈ ∂LdG(x, v)⇒ |α| < k|β| (7)

and
dG(x, v) > 0, (α, β) ∈ ∂LdG(x, v)⇒ |β| ≥ (1 + k2)−1/2 (8)
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Proof It suffices to prove (6) for (α, β) ∈ NP
G (x0, v0) since NP

G generateN
L
G

via Limits.
Sinxe (x0, v0) ∈ G, it suffices to consider (α, β) ∈ ∂PdG(x0, v0)
The proximal inequality asserts that locally for some σ ≥ 0, we have

dG(x, v) + σ|(x− x0, v − v0|2 ≥ (α, β).(x− x0, v − v0).

for all x near x0 . By (5) there exist v ∈ Γ(x) such that |v − v0| ≤ k|x− x0|.
Since dG(x, v) = 0 the proximal inequality leads to

α.(x−x0) ≤ β.(v−v0)+σ(|x−x0|2+|v−v0|2) ≤ |β|k|x−x0|+σ(1+k2)|x−x0|2

for all x near x0. Suppose that |x − x0| ≤ ε and Letε ↓ 0 then |α| ≤ |β| as
we want.
Now consider (7)(8), for wich only the case dG(x, v) > 0 need to be consid-

ered. We know that (α, β) takes the form
(x− x̄), (v − v̄)

|(x− x̄), (v − v̄)|
where (x̄, v̄) is

the closest point in G to (x, v). We have (α, β) ∈ NL
G(x̄, v̄), then by (6) we

have |α| ≤ |β|. Note also that |(α, β)| = 1⇒ |α|2 + |β|2 = 1, then

|β|2 = 1−|α|2| or|β|2 ≥ |α|
2

k2
then |β|2 ≥ 1

k2
− |β|

2

k2
and so |β| ≥ (1 +k2)−1/2.

Theorem 2.2 Let Γ : [a, b] × Rn → Rm be a measurable multifunction,
fi, xi, ri measurable multifunctions, and Ωi measurable subset of [a, b](i =
1, 2, ....) such that for each i we have

fi(t) ∈ Γt(xi(t)) +B(0, ri(t))t ∈ Ωi.

We suppose more that:

1. limi−→∞ meas Ωi = b− a and ri converges weakly to 0 in L1(a, b).
2.Γt(.) has closed graph for each t, and Γ has convex values.
3. There is a function x such that xi(t) −→ x(t) a.e. in [a, b].
4. There is a summable function φ such that, for each i, |fi(t)| ≤ φ(t) a.e. in
[a, b].
5.fi converges weakly in L1(a, b) to a limit f .
Then f(t) ∈ Γt(x(t)) a.e in [a, b].
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The lipschitz problem of Bolza We now consider the problem of mini-
mizing for thr bolza functional

J(x) := l0(x(a)) + l1(x(b)) +

∫ b

a

Λt(x(t), ẋ(t)) dt (9)

over all arcs x : [a, b] −→ Rn satisfying the constraints

x(a) ∈ C0, x(b) ∈ C1, ẋ(t) ∈ V (t) a.e. (10)

Where [a, b] is a given fixed interval in R, C0, C1 are closed subset of Rn, l0, l1 :
Rn −→ R are locally lipschitz functions, and V is a measurable mapping from
[a, b] to the closed convex subsets of Rn

x∗ is said to be a local minimizer if for some ε∗, for any arc x admissible
satisfying

|x(t)− x∗(t)| ≤ ε∗,∀t ∈ [a, b],

∫ b

a

|ẋ(t)− x′∗(t)| dt ≤ ε∗

We have J(x∗) ≤ J(x).

Λ is a mapping from [a, b] × Rn × Rn to R with Λt locally lipschitz. There
exist a summable function k : [a, b] −→ R such that for almost all t, for all
x, y ∈ B(x∗(t), ε∗) and v, w ∈ Vt,

|Λt(x, v)− Λt(y, w)| ≤ kt{|x− y|+ |v − w|} (11)

We suppose more That there is a positive δ such that Vt ⊃ B(x′∗(t), δ)a.e.

Theorem 2.3 Under these hypotheses, there exist an arc p wich satisfies
the Euler inclusion

p′(t) ∈ co{w : (w, p(t)) ∈ ∂LΛt(x∗(t), x
′
∗(t))a.e. t ∈ [a, b] (12)

together with the Weierstrass condition, for almost every t we have

p(t).v − Λt(x∗(t), v) ≤ p(t).x′∗(t)) ∀v ∈ Vt (13)

and the transversality condition

p(a) ∈ ∂Ll0(x∗(a)) +NL
C0

(x∗(a)), −p(b) ∈ ∂Ll1(x∗(b)) +NL
C1

(x∗(b)). (14)
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We will focus on doing a full long proof of one of the theorems then as ususal
the rest will be similar or a spetial case. F now is taken lipschitz, hypothese
(H3) holds since the radius R(t) is taken to be Rn

We consider the following minimization problem

J(x) := l(x(a), x(b)) +

∫ b

a

Γt(x(t), ẋ(t)) dt (15)

over the arc x satisfying the differential inclusion and boundary condition

ẋ(t) ∈ F (t, x(t))a.e., (x(a), x(b)) ∈ E (16)

an arc is said to be admissible if it satisfes (16), and if the integral (15) is
well defined and finite.

An arc x∗ is said to bed local minimizer for our problem if for some ε∗,
for any arc x admissible satisfying

|x(t)− x∗(t)| ≤ ε∗,∀t ∈ [a, b],

∫ b

a

|ẋ(t)− ẋ∗(t)| dt ≤ ε∗

We have J(x∗) ≤ J(x).

3.Basic theorem :

Hypotheses of the theorem 3.1 .

(HP1) The function l is locally lipschitz, the set E is colsed, the following set
is closed for almost every t

{(x, v) ∈ Gt : |x− x∗(t)| ≤ ε}

(HP2) There exist a constant k such that, for almost every t,

x, y ∈ B(x∗(t), ε∗)⇒ F (t, y) ⊂ F (t, (x) +B(0, k|x− y|).
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(HP3) for almost every t, Λt is locally lipschitz function, there exist a summable
functions kx, kv such that, for almost every t, for all y, z ∈ B(x∗(t), ε∗), for
all (u,w) ∈ F (t, y)× F (t, z), we have

|Λt(y, u)− Λt(z, w)| ≤ kxt |y − z|+ kvt |u− w|.

Theorem 3.1. Under these hypothese, there exist an arc p and λ0 ∈ {0, 1}
with (λ0, p(t)) 6= 0∀t satisfying the Euler inclusion

p′(t) ∈ co{w : (w, p(t)) ∈ ∂Lλ0Λt(x∗(t), x
′
∗(t)) +NL

Gt
(x∗(t), x

′
∗(t))}a.e. (17)

together with the Weierstrass condition, for almost every t we have

p(t).v− λ0Λt(x∗(t), v) ≤ p(t).x′∗(t))− λ0Λt(x∗(t), x
′
∗(t)) ∀v ∈ Ft(x∗(t). (18)

and the transversality condition

(p(a)− p(b)) ∈ ∂Lλ0l(x∗(a), x∗(b)) +NL
E(x∗(a), x∗(b)). (19)

Proof we will prove the thoerem first in the presence of two additional
hypotheses, then we will remove them

(TH1) l(x1, x2) in on the form l(x2) and E is of the form C0 × C1

(TH2) Λ is identically zero

For a positive sequence εi decreasing to 0, we consider the problem of mini-
mizing

Ji(x) := li(x(b)) + (
1

εi
)

∫ b

a

dGt(xt, ẋ(t)) dt

over the set A of arcs x satisfying

x(a) ∈ C0, x(b) ∈ C1, |x(t), x∗(t)| ≤ ε∗∀t,
∫ b

a

|ẋ(t)

where
li(x) := [l(x)− l(x∗(b) + ε2i ]+
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avec [a]+ := max{0, a}.

The set A is a complete metric space when equipped with the norm

d(x, y) := |x(a)− y(a)|+
∫ b

a

|ẋ(t)− y′(t)| dt

Note that the infimum of this problem is nonnegative, we remark also that
Ekeland’s Theorem is applcable since x∗ is an ε2i − minimum(Ji(x∗) =
l(x∗(b) − l(x∗(b) + ε2i + 0 = ε2i ). So we now now that there exist an arc
xi minimizer for the perturbed new cost

li(x(b)) + εi|x(a)− xi(a)|+ (
1

εi
)

∫ b

a

dGt(xt, ẋ(t)) dt+ εi

∫ b

a

|ẋ(t)− ẋi(t)| dt.

and we have
||xi − x∗||∞ + ||ẋi − ẋ∗||1 < ε∗

for i sufficiently large. By theorem 2.3 xi is a local minimum( with Vt ≡ Rn)).
Then there exist an arc pi such that

−pi(b) ∈ ∂Lli(xi(b))+NL
C1(xi(b)), pi(a) ∈ ∂Lli(xi(a))+NL

C0(xi(a))+εiB (20)

p′i(t) ∈ co{w : (w, pi(t) ∈ (
1

εi
)∂LdGt(xi(t), x

′
I(t))+{0}×εiB} a.e (21)

pi(t).v−(
1

εi
)dGt(xi(t), v)−εi|v−x′i(t) ≤ pi(t).x

′
i(t)−(

1

εi
)dGt(xi(t), x

′
i(t))∀ v a.e (22).

Note that Gt is locally closed a.e. at (xi(t), x
′
i(t)) by hypotheses (HP1)

and since ||xi − x∗||∞ + ||x′i − x′∗||1 < ε∗. Applying proposition 1, with the
lipschitz hypothese (HP2) we deduce that

|p′i(t)| ≤ k(|pi(t)|+ εi) a.e (23)

and that’s because p′i(t) ∈ co{w : (w, pi(t) :∈ (
1

εi
)∂LdGt(xi(t), x

′
I(t)) + {0} ×

εiB}, so p′i(t) ∈ co{w : εi(w, pi(t) − εiB) ∈ ∂dGt(xi(t), x
′
i(t)). Proposition 1

implies that εi|w| ≤ kεi(pi(t)+εi) and by Carathéodory’s theorem for convex
hull we have the desire |p′i(t)| ≤ k(|pi(t)|+ εi).

Note also that (22) implies, for almost every t:

pi(t).v − εi|v − x′i(t)| ≤ pi(t).x
′
i(t) ∀v ∈ Ft(xi(t). (24)
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Convergence: By taking a subsequence as necessary (without relabeling), we

may arrenge that
∫ b
a
dGt(xi, x

′
i(t)) dt is strictly positive for all i or lese zero

for every i. We also arrange to have x′i converge almost everywhere to x′∗.

Case1 :
∫ b
a
dGt(xi, x

′
i(t)) dt > 0 ∀i.

In this case there exist a set Si of positive measure on which dGt(xi, x
′
i) > 0.

Proposition 1 and (21) implies

1/εi
(1 + k2)1/2

− εi ≤ |pi(t)| ≤ 1/εi + εi a.e.t ∈ Si (25)

We proceed to write (20)− (22) with pi replaced by εipi, we obtain then

−pi(b) ∈ ∂Lεli(xi(b))+NL
C1(xi(b)), pi(a) ∈ ∂Lli(xi(a))+NL

C0(xi(a))+ε2iB (26)

p′i(t) ∈ co{w : (w, pi(t) :∈ ∂LdGt(xi(t), x
′
I(t)) +{0}× ε2iB} a.e (27)

pi(t).v−dGt(xi(t), v)−ε2i |v−x′i(t) ≤ pi(t).x
′
i(t)−(

1

εi
)dGt(xi(t), x

′
i(t))∀ v a.e (28).

The inequality (23) becomes |p′i(t)| ≤ k(|pi(t)|+ ε2i ), and (25) yields

1/εi
(1 + k2)1/2

− ε2i ≤ |pi(t)| ≤ 1 + ε2i ∀t ∈ Si.

All these fact allow us to deduce with the aid of Gronwall’s Lemma and
Ascoli’s Thoerem that for a subsequence, pi converge uniformaly to an arc p
: and p′i converge weakly in L1 to p′. Note that we have ||p||∞ ≥ (1+k2)−1/2.
We want now passing to limit in (27) but it’s not simple like that so we
proceed by defining a multi function Γ

Γt(x, v, p, a
0, a1, ..., an) := co ∪nj=0 {w : (w, p) ∈ ∂LdGt(x, v) + (0, aj)},

Where aj belongs to Rn. By closure properties of ∂L we deduce that the set
{w : (w, p) ∈ ∂LdGt(x, v) + (0, a)} is closed and by Proposition1 we deduce
that it’s uniformaly bounded if x ∈ B(x∗(t), ε∗), and (a, p) is restricted to a
bouded set,then it follows that Γt has closed graph.
By caratheodory’s theorem, and (27), there exist a convex combination λj,
points aj ∈ B(0, ε2i ), and wj such that

(wj, pi) ∈ ∂LdGt(xi, x
′
i) + (0, aj), p′i =

n∑
j=0

λjwj.
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It follows that
p′i ∈ Γt(xi, x

′
i, pi, a

0, a1, ..., an).

Now using Compactness theorem 2.2 and passing to the limit we deduce that

p′(t) ∈ Γt(x∗(t), x
′
∗(t), p(t), a

0, a1, 0, ..., 0) = co{w : (w, p(t) ∈ ∂LdGt(x∗(t), x
′
∗(t))}a.e.

This implies (17) since (x∗(t), x
′
∗(t)) ∈ Gt and ∂LdGt(x∗(t), x

′
∗(t)) = NGt(x∗(t), x

′
∗(t))

and Γ = 0(TH2) A further consequence is that |p′(t)| ≤ k|p(t)| a.e., or else
it would be identically zero by Gronwall’s lemma and that’s a contradiction
since |p| is bigger that (1 + k2)−1/2 Finally it’s clear that (26) leads to (19),
with λ0 = 0 amd (28) gives (18) in limits, so all conditions are now verified
in case 1.

Case2 :
∫ b
a
dGt(xi, x

′
i) dt = 0 ∀i.

It follows in this case taht xi verifies the differential inclusion and it’s a
F trajectory . Then li(x(b)) > 0∀i since x∗ is a local minimizer. Now observe
that (21) implies

p′i(t) ∈ co{w : (w, p(t)) ∈ NL
Gt

(xi(t), x
′
i(t)) + {0} × εiB}a.e (30)

Now seperate the two cases ||P ||∞ bouded or ||P ||∞ −→ 0

In the first case, Since pi bounded(Gronwall’s lemma) together with (23)
implies that for a subsequence

pi ⇒ p and p′i ⇀ p′ inL1

So we pass to the limits in (30) as expalined above to deduce (17) with
Γ ≡ 0, and it’s clear that (20) leads to (19), with λ0 = 1. Now it’s remains
(18
Fix any t for wich x′i(t) −→ x′∗(t) as well as x′i(t) ∈ ft(xi(t))∀i, for which
(HP2) and (24) holds. choose now any v ∈ Ft(x∗(t)), for each i, and by(HP2)
there exist vi ∈ Ft(xi(t)) such that |v−vi| ≤ k|xi(t)−x∗(t)|. Then (24) holds
for vi and passing to the limit we deduce that p(t).v ≤ p(t).x′∗(t) as required.

In the second case, when ||p||∞ −→ ∞, we devide by ||pi||∞ in (20)(24)(30)
then buy the same convergence argument give the existence of an arc p with
||p||∞ = 1 which satisfies the conditions needed with λ0 = 0
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Removal of temporary hypotheses .

Suppose now that (TH2) is not satisfied and that only (TH1) is given. We
extend the state by a new coordinate y,and a new multifunction

F̂ (x, y) := {(v,Γt(x, v)) : v ∈ Ft(x)}.

We also define the new l̂ by

l̂(x, y) := l(x)+y, Γ̂ ≡ 0, Ĉ0 := C0×{0}, Ĉ1 := C1×R, y∗(t) :=

∫ t

a

Γs(x∗(s), x
′
∗(s)) ds.

It follows that the arc (x∗, y∗) is a solution to the new extended problem (in
the saame local sens). Since F̂ and l̂ satisfies the hypothese of the theorem
as we as (TH1)(TH2) and then buy the same steps above we prove the ex-
istence of all conditions without (TH2)

Finally consider the theorem with absence of any temporary hypothesis, we
define a new extended sate (x, y) a new multifunction F+

t , new l+ and Γ+

such taht

F+
t (x, y) := {(v, 0) : v ∈ ft(x)}, l+(x, y) := l(y, x),Γ+

t (x, y, v, w) := Γt(x, v)

and the boundary constraint

C+
0 := {(x, y) : x = y}, C+

1 := {(x, y) : (y, x) ∈ E}

Then the arc (x∗, x∗(a)) is a solution to the problem corresponding to the
cost l+(x(b), y(b)). Sice (HP1)to(HP3) are verified as well as (TH1) and by
the same way as above we have ower results.
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Part IV

OPTIMAL
MULTIPROCESSES
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1.Introduction We consider now optimisation problems in which the pro-
cess is replaced by a multiple processes, this is a modification to the old
problems at a finite number of times and change of dynamics in each in-
tervale. An exemple to this type of study is the refraction of light or the
problems studied in different environments which imposes a change in the
dynamics. Let’s begin first buy some essential definitions to our new study.

2. Essential values Let S ⊂ R be an open subset subset , T a point in S,
and ψ : S −→ Rk a mesurable function. The set of essential values of ψ at
T , denoted esst−→TΨ(t), is defined as follows.ζ belongs to this set if and only
if, for any positive number ε > 0, the following set has positive Lebesgue
measure:

{t : T − ε < t < T + ε, |ζ − ψ(t)| < ε}.

If a point lies in co esst−→T ξ(t) we say it is a convex essential value of ψ at
T .
It’s clear that if ψ is continous at T then:

esst−→Tψ(t) = {ψ(T )}

Closed multifunction Given a set D ⊂ Rl and a multifunction A :
D  Rk, we say that A is colsed if , for any convergence subsequences
{yi} ⊂ D and {ai} ⊂ Rk sunch that ai ∈ Ayi and y ∈ D we have a ∈ Ay(y, a
limits of {yi} and ai respectively).

Lemma.2.1 Let P,Q be open subsets of R,Rn, respectively, and let h :
P × Q −→ Rk be a given finction. Suppose x −→ h(t, x) is continuous,
umifornaly in t, and
t −→ h(t, x) is measurable for every x ∈ Q.

Then the multifunction G : P ×Q Rk defined by G(t, x) = esss−→th(s, x)
is closed. If in addition we have

sup
x∈P

esst−→t|h(s, x)| <∞,
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Then (t, x) −→ co G(t, x) is also a closed multifunction.

Proof Consider (ti, xi) in P × Q such that (ti, xi) −→ (t, x) where t ∈ P
and x ∈ Q. Consider also ri ∈ esss−→tih(s, xi) for each i, t ∈ P, and x ∈ Q.
We must show that r ∈ esss−→th(s, x).

choose ε > 0 and define

Sεi := {s ∈ (ti − ε/2, ti + ε/2) ∩ P/|h(s, xi)− ri| < ε/2}.

By definition of essential values, this set has positive measure, since ri ∈
esss−→tih(s, xi)
for i sufficiently large |ti − t| < ε/2 and |h(s, xi − h(s, x)|+ |r− ri| < ε/2 for
all s ∈ P since h is continue in x, and ri goes for r. It follows that

Sεi ⊂ S

where
Sε = {s ∈ (t− ε, t+ ε) ∩ P/|h(s, x)− r| < ε}.

The set Sε then has positive measure. Since ε is arbitrary,r ∈ esss−→th(s, t).

it remains the second assertion wich is simple by a compactness argument.
Suppose that

sup
x∈P

esst−→t|h(s, x)| <∞,

, consider (t, x) −→ co G(t, x). By caratheodoty’s theorem, ξ ∈ coG(t, x)
can be writenn as the combination λiξi where ξ ∈ G(t, x), and

∑
λi = 1.

Consider (ti, xi, ri) ∈ P ×Q× co G(t, xi) −→ (t, x, r) since the convexe hull
of a compact is also compact we have (t, x, r) ∈ P × Q × co G(t, x) and so
(t, x) −→ co G(t, x) is closed.

3. A maximum principle for optimal multiprocesses .

To simplify we denote a point ((a1, b1, ...), (a2, b2, ...), ..., (ak, bk, ...)) by {ai, bi, ...}ki=1
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or, {ai, bi, ...}.

The following data are given:

positive integeres k, and ni, mi, i = 1, ..., k,
functions φi : R×Rni ×Rmi −→ Rni , i = 1, ..., k,
subsets U i of R×Rmi , i = 1, ..., k,
subsets X i of R×Rni , i = 1, ..., k,

A multiprocess is a point {τ i0, τ i1, xi(.), wi(.)} comprising left and right end-
points τ i0 and τ i1 of a closed interval [τ i0, τ

i
1] ofR, absolutely continous functions

xi(.) : [τ i0, τ
i
1] −→ Rni and mesurable functions wi(.) : [τ i0, τ

i
1] −→ Rmi such

that

xi(t) = φi(t, xi(t), wi(t)) a.e. t ∈ [τ i0, τ
i
1],

wi(t) ∈ U i
t , a.e. t ∈ [τ i0, τ

i
1],

xi(t) ∈ X i
t , for all t ∈ [τ i0, τ

i
1],

for i = 1, ..., k. Here U i
t is the set {u|(t, u) ∈ U i}, and X t

i := {x|(t, x) ∈ X i}.

To generate our neccesary conditions we assume that th data defined
satisfies the following hypotheses.

(H1) For each x ∈ Rni , φi(., x, .) is L × B mesurable

(H2) U i is a Borel mesurable set for i = 1, ..., k.

(H3) |φ(t, y, w)| ≤ K whenever (t, y, w) ∈ R×X i
t × U i

t .

(H4) |φi(t, y, w) − φi(t, y
′, w)| ≤ K|y − y′| whenever (t, y, w), (t, y′, w) ∈

R×X i
t × U i

t .
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Reachable set Let C be a given set in∏
i

{(τ i0, τ i1, ai0)|ai0 ∈ Rni , τ i0, τ
i
1 ∈ R, τ i0 ≤ τ i1}

and let ψ : Rni × ... × Rnk −→ Rd be a given Lipschitz continous function.
We define the reachable set (with respect to C and ψ), written Rψ,C , to be

Rψ,C := {ψ({yi(τ i1)})|{τ i0, τ i1, yi(.), wi(.)|} is a multiprocess such that {τ i0, τ i1, yi(τ i0) ∈ C}.

We say that a multiprocess {τ i0, τ i1, yi(.), wi(.)} is a boundary multiprocess
relative to ψ and C if

{τ i0, τ i1, yi(τ i0) ∈ C and ψ({yi(τ i1)}) ∈ ∂Rψ,C

(∂ denote the boundary).

Unmaximized Hamiltonian Define the unmaximized Hamiltonian to
be the function Hi such that

Hi(t, x, u, p) := p.φ(t, x, u), i = 1, ..., k.

Theorem 3.1. Let {T i0, T i1, xi(.), ui(.)} be a boundary multiprocess with
respect to C and ψ. Assume that

graph{xi(.)} ⊂ {X i}

for i = 1, ..., k and that (H1) − (H4) are satisfied. Then there exist a
vector v of unit length, numbers hi0, h

i
1 and absolutely continous functions

pi(.) : [T i0, T
i
1] −→ Rni for i = 1, ..., k, and a number c (whose magnitude is

governed by the constant K in the Hypotheses (H3) and (H4) together with
the Lipschitz rank of ψ restricted to some neighbourhood of {xi(T i1)}, with
the following properties:

−ṗi(t) ∈ ∂xHi(t, xi(t), ui(t), pi(t)) a.e. t ∈ [T i0, T
i
1],

Hi(t, xi(t), ui(t), pi(t)) = maxw∈U i
t
Hi(t, xi(t), w, pi(t)) a.e.t ∈ [T i0, T

i
1],
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hi0 ∈ co esst−→T i
0
[supw∈Ut

i
[Hi(t, xiT

i
0, w, pi(T

i
0))],

hi1 ∈ co esst−→T i
o
[supw∈Ut

i
Hi(t, xiT

i
1, w, pi(T

i
0))],

for i = 1, ..., k
{pi(T i1)} ∈ ∂ψ∗({xi(ti1})v

and
{−hi0, hi1, pi(T i0)} ∈ c ∂dC({T i0, T i1, xi(T i0)}).

Here ∂xHi denote the partial generalized gradient in the second variable and
∂ψ∗ is the transpose of the generalized jacobian of ψ.(theorem will be proved
after as a spetial case). Let’s define now some preparation theorems. Let

f :
∏
i

(R×Rni ×Rni) −→ R

be a given locally Lipschitz continous function and let

Λ ⊂
∏
i

{(τ i0, τ i1, ai0, ai1)|τ i0, τ i1 ∈ R, ai0, ai1 ∈ Rni , τ i0 ≤ τ i1}

be a given closed set.

We pose the optimal multiprocess problem:

(P)


Minimizef({τ i0, τ i1, yi(τ i0, yiτ i1)})
over multiprocesses {τ i0, τ i1, yi(.)}
satisfying

{τ i0, τ i1, yi(τ i0, yi(τ i1) ⊂ Λ

Theorem 3.2 Let {T i0, T i1, xi(.), ui(.)} be a solution to (P). Assume that

graph{xi(.)} ⊂ interior{X i}

for i = 1, ..., k and that hypotheses (H1)−(H4) are satisfied. Then there exist
a real number λ ≥ 0, real numbers hi0, h

i
1, and absolutely continous functions

pi(.) : [T i0, T
i
1] −→ Rni for i = 1, ..., k and a constant c( whose magnitude

is determined by the constant K of the hypotheses (H3) and (H4) together
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with the Lipschitz rank of f in the neighbourhood of {T i0, T i1, xi(T i0), xi(T
i
1)}

such that λ+
∑

i |pi(ti1)| = 1 and we have

(3.1) − ṗi(t) ∈ ∂xHi(t, xi(t), ui(t), pi(t)) a.e. t ∈ [T i0, T
i
1],

Hi(t, xi(t), ui(t), pi(t)) = maxw∈U i
t
Hi(t, xi(t), w, pi(t)) a.e.t ∈ [T i0, T

i
1],

(3.2) hi0 ∈ co esst−→T i
0
[supw∈Ut

i
Hi(t, xiT

i
0, w, pi(T

i
0))],

hi1 ∈ co esst−→T i
o
[supw∈Ut

i
Hi(t, xiT

i
1, w, pi(T

i
0))],

for i = 1, ..., k, and

(3.3) {−hi0, hi1, pi(T i0)} ∈ c ∂dΛ + λ∂f

where the generalized gradient ∂dΛ and ∂f are evaluated at {T i0, T i1, xi(T i0), xi(T
i
1)}

4.Coupled dynamic optimisation problems: a differential inclusion
formulation . It is well known that we may choose a variety of start-
ing points for derivation of conditions on solutions to dynamic optimisation
problems over a single time interval. Two notable instance are, first, taht the
dynamics are nodeled by a differential equation with control and , second,
taht involving a dofferential inclusion. We will show now a second prepa-
ration theorem in which the velocity verify a differential inclusion with the
control. The following data are given:

posistive integers k, and ni, i = 1, ..., k

a function g :
∏k

i=1(R×R×Rni ×Rni) −→ R,

multifunctions Fi : R×Rni  Rni , i = 1, ..., k,

sets Γi ⊂ R×Rni , i = 1, ..., k,

and a subset M of∏k
i=1{(τ i0, τ i1, ai0, ai1)|τ i0, τ i1 ∈ Rni and τ i0 ≤ τ i1}.
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Consider the following problem:

(Q)



Minimizeg({τ i0, τ i1, yi(τ i0), yiτ
i
1)})

over multiprocesses {τ i0, τ i1, yi(.)}
satisfying

ẏi ∈ Fi(t, yi(t)) a.e.t ∈ [τ i0, τ
i
1],

yi(t) ∈ Γit a.e.t ∈ [τ i0, τ
i
1],

{τ i0, τ i1, yi(τ i0), yi(τ
i
1) ⊂M

Hypotheses of the theorem .

(I1) g is locally lipcshtz continous

(I2) M is closed

(I3) For each i, Fi takes values closed convex sets, and given any point
x ∈ Rni and closed set D ⊂ Rni , the set {t|D ∩ Fi(t, x) 6= Ø} is Lebesgue
mesurable.
There exist a constant K such that we have the following:

(I4) |v| ≤ K whenever v ∈ Fi(t, x), (t, x) ∈ Γi, i = 1, ..., k.

(I5) dist{Fi(t, x), Fi(t, y)} ≤ K|x− y|, whenever (t, x), (t, y) ∈ Γi, i = 1, ..., k

(dist here is the hosdorff distance).

We define the Hamiltionian functions Hi : Γi ×Rni −→ R to be

Hi(t, x, p) := sup
e∈Fi(t,x)

p.e, i = 1, ..., k.

Theorem 4.1. Let {T i0, T i1, xi(.)} solve the problem (Q). Assume that

graph{xi(.)} ⊂ interior{Γi}

for i = 1, ..., k, and that hypotheses (I1)− (I5) are satisfied. Then there ex-
ist a real number λ ≥ 0, real numbers hi0, h

i
1, absolutely continous functions
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pi(.) : [T i0, T
i
1] −→ Rni , i = 1, ..., k, and a constant c( whose magnitude is

determined by the constant K of the hypotheses (I4) and (I5) together with
the Lipschitz rank of g in the neighbourhood of {T i0, T i1, xi(T i0), xi(T

i
1)}) such

that λ+
∑

i |pi(ti1)| = 1 and we have

(−ṗi(t), ẋi(t)) ∈ ∂x,pHi(t, xi(t), pi(t)) a.e. t ∈ [T i0, T
i
1],

hi0 ∈ co esst−→T i
0
[supw∈Ut

i
Hi(t, xi(T

i
0), pi(T

i
0))],

hi1 ∈ co esst−→T i
o
[supw∈Ut

i
Hi(t, xi(T

i
1), pi(T

i
0))],

for i = 1, ..., k, and

{−hi0, hi1, pi(T i0), (pi(T
i
0)} ∈ c ∂dM + λ∂g

where the generalized gradient ∂dC and ∂g are evaluated at {T i0, T i1, xi(T i0), xi(T
i
1)}

Proof of Theorem 4.1 .

The theorem will be prooved first in a special case then as usual we will
remove theese temporarly hypotheses. The proof of this theoremm will lead
to all the others mentioned before in this part. So we imposed now the fol-
lowing hypotheses:

(IU) {T i0, T i1, xi(.)} is the unique solution to (Q)

(IL) g is linear function of the form g({τ i0, τ i1, yi0, yi1}) =
∑k

i=1 gi.y
i
1 in wich

gi is a given vector in Rni , i = 1, ..., k. We introduce a family of problems
Q({ρi0, ρi1, σi0, σi1}) generated by perturbation to the constraint set M. choose
ε > 0 such that

graph{xi(.)}+ 2εB ⊂ Γi, i = 1, ..., k,

and define the closed set Γ̃i, i = 1, ..., k to be

Γ̃i := graph{xi(.)}+ εB̄.
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for each vector {ρi0, ρi1, σi0, σi1} ∈
∏

i(R×R×Rni×Rni) problemQ({ρi0, ρi1, σi0, σi1})
is taken to be the following:

Minimizeg({τ i0, τ i1, yi(τ i0), yi(τ
i
1)})

over multiprocesses {τ i0, τ i1, yi(.)}
satisfying

ẏi ∈ Fi(t, yi(t)) a.e.t ∈ [τ i0, τ
i
1],

ẏi(t) = 0 a.e.t ∈ Ii/[τ i0, τ i1],

graph{yi(.)} ⊂ Γ̃ifori = 1, ..., k and

(5.1) {τ i0, τ i1, yi(τ i0, yi(τ i1) ⊂M + {ρi0, ρi1, yi(τ i0), yi(τ
i
1)}.

where Ii is take here to be the fixed time interval

Ii = [T i0 − ε, T i1 − ε],

i = 1, ...k.. The problem Q({0, 0, 0, 0}) will be called a refinement of initial
problem (Q). Clearly the point {T i0, T i1, xi(.)} remain solution toQ({0, 0, 0, 0}).

We donoted but V the value fuction associated to the perturbation pf the
problem (Q) (the infimum cost of the cost function).

Lemma 5.1. (i) Let {ρ̄i0, ρ̄i1, σ̄i0, σ̄i1} a sequence converging to {ρi0, ρi1, σi0, σi1}
and let {τ̄ i0, τ̄ i1, ȳi(.)} be a solution to Q({ρ̄i0, ρ̄i1, σ̄i0, σ̄i1}). Then we have τ̄ i0 −→
τ i0, τ̄

i
1 −→ τ i1 for each i, and ȳi(.) −→ yi(.) uniformaly where {τ i0, τ i1, yi(.)} is

an admissible trajectory for Q({ρi0, ρi1, σi0, σi1}) (by theorem of compactness
of trajectories, the limiting trajectory yi still verify the differential inclusion).

(ii) if in part (i){ρi0, ρi1, σi0, σi1} = {0, 0, 0, 0} and also V ({{ρ̄i0, ρ̄i1, σ̄i0, σ̄i1} −→
V ({0, 0, 0, 0} then {τ i0, τ i1, yi(.)} = {T i0, T i1, xi(.)}. In fact if {τ i0, τ i1, yi(.)} solve
the problem Q({{ρ̄i0, ρ̄i1, σ̄i0, σ̄i1}) we know that this trajectory as a subse-
quence if necessary converge uniformaly to an admissible trajectory, and
since V ({{ρ̄i0, ρ̄i1, σ̄i0, σ̄i1} −→ V ({0, 0, 0, 0}, with the help of hypothese (IU),
we conclude that this limit is nothing then {T i0, T i1, xi(.)}

(iii) The epigraph of V is closed, which is equivaleny to say that v is lower
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semicontinous fucntion. In fact suppose that a vector ai −→ a and yi is solu-
tion to the problem Q(ai) we know that yi goes for an admissible trajectory
for V (a) and by minimum properties we have that lim inf g(yi) ≥ g(a) and
then V is lower semi continous

Lemma 5.2 Let [{hi0,−h − 1i,−si0, si1} − λ] be a proximal normal to epi
V at the point [{ρi0, ρi1, σi0, σi1}, V ({ρi0, ρi1, σi0, σi1}) + δ]. (with δ ≥ 0). Let
{τ i0, τ i1, zi(.)} solveQ({ρi0, ρi1, σi0, σi1}) and supppose that graph {zi(.) : [τ i0, τ

i
1] −→

Rni} is interior to Γ̃i for i = 1, ..., k. Let {αi0, αi1, γi0, γi1} be the point in M
sych that {τ i0, τ i1, zi(τ i0), zi(τ

i
1)} = {αi0, αi1, γi0, γi1} + {ρi0, ρi1, σi0, σi1}. Then for

i = 1, ..., k there exist an absolutely continous function pi(.) : Ii −→ Rni such
that

(5.3) (−ṗi(t), żi(t)) ∈
{
∂Hi(t, zi(t), pi(t)) a.e. t ∈ [τ i0, τ

i
1],

{0, 0} a.e. Ii/[τ
i
0, τ

i
1],

(5.4) pi(τ
i
0) = si0,

(5.5) pi(τ
i
1) = si1 − λgi,

(5.6) hi0 ∈ co esst−→τ i0Hi(t, zi(τ
i
0, pi(τ

i
0)),

(5.7) hi1 ∈ co esst−→τ i1Hi(t, zi(τ
i
1, pi(τ

i
1)).

Furtheremore,

(5.8) {hi0,−hi1,−si0, si1} ∈ |{hi0,−hi1,−si0, si1}|∂dM({αi0, αi1, γi0, γi1}).

Proof. Let {ti0, ti1, yi(.)} be an arbitrary admissible trajectory. Let {ᾱi0, ᾱi1, γ̄i0, γ̄i1}
be any point in M and δ̄ any nonnegative number. we have that [{ti0−ᾱi0, ti1−
ᾱi1, yi(t

i
0)− γ̄i0, yi(ti1)− γ̄i1},

∑
i gi.yi(t

i
1) + δ̄] ∈ epi V . we shall use this point

in a proximal inequality, but let’s first define that.
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Proximal normal vector We say that a vector ζ is proximal normal
to a closed set S ⊂ Rq at s ∈ S if there exist m ≥ 0 such that

−ζ.s′ +m|s′ − s| ≥ −ζ.s ∀s′ ∈ S

So [{ti0 − ᾱi0, ti1 − ᾱi1, yi(ti0)− γ̄i0, yi(ti1)− γ̄i1},
∑

i gi.yi(t
i
1) + δ̄] ∈ epi V will be

used in this proximal inequality at the point

{ρi0, ρi1, σi0, σi1},
∑
i

gi.zi(τ
i
1) + δ

By hypothese the last point can be written as

[{τ i0 − αi0, τ i1 − αi1, zi(τ i0)− γi0, zi(τ i1)− γi1},
∑
i

gi.zi(τ
i
1) + δ]

Taking ζ as in the hypothese and putting all these points in our prozimal
inequality we have

(5.9)
∑

i[−hi0(ti0−ᾱi0−τ i0+αi0)+−hi1(ti1−ᾱi1−τ i1+αi1)+si0.(yi(t
i
0)−γ̄i0−zi(τ i0+

γi0)−si1.(yi(ti1)−γ̄i1−zi(τ i1+γi1)+λ(λ(
∑

i gi.yi(t
i
1+δ̄−

∑
i gi.zi(τ

i
1−δ)]+m∆ ≥ 0

With ∆ = |
∑

i gi.yi(t
i
1 + δ̄−

∑
i gi.zi(τ

i
1− δ|2 +

∑
i(|ti0− ᾱi0− τ i0 +αi0|2 + |ti1−

ᾱi1 − τ̄ i1 + αi1|2) +
∑

i(|yi(ti0 − γ̄i0 − zi(τ i0 + γi0|2 + |yi(ti1 − γ̄i1 − zi(τ i1 + γi1|2).

Remember that {ti0, ti1, yi(.)} is taken arbitrary we replace it by {τ i0, τ i1, zi(.)}
in our proximal inequality to obtain∑

i(−hi0(αi0 − ᾱi0) + hi1(αi1 − ᾱi1) + si0(γi0 − γ̄i0) − si1(γi1 − γ̄i1)) + λ(δ − δ̄) +
m(
∑

i(|αi0−ᾱi0|2 +|αi1−ᾱi1|2 +|γi0− γ̄i0|2 +|γi1− γ̄i1|2 +|δ− δ̄|2) ≥ 0, for all δ̄ ≥ 0
and {ᾱi0, ᾱi1, γ̄i0, γ̄i1} ∈ M . setting δ̄ = δ and deviding by |{hi0,−hi1,−si0, si1}|
we conclude that

{hi0,−hi1,−si0, si1}
|{hi0,−hi1,−si0, si1}|

∈ NL
M({αi0, αi1, γi0, γi1})

Since at any point we haveNL
M∩B = ∂dM we conclude that

{hi0,−hi1,−si0, si1}
|{hi0,−hi1,−si0, si1}|

∈

∂dM({αi0, αi1, γi0, γi1}) and so we obtain (5.8). We need now to proof (5.3) to
(5.5) by taking another spetial case and it’s all about the proximal inequality
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noted.

Set now {ᾱj0, ᾱ
j
1, γ̄

j
0, γ̄

j
1} = {ᾱi0, ᾱi1, γ̄i0, γ̄i1}, ti0 = τ i0 and ti1 = τ i1 for all j,

1 ≤ j ≤ k and set δ = δ̄. Select i, 1 ≤ i ≤ k, and set yj(.) = zj(.) for
all j 6= i. Since zi solves the problem Q({ρi0, ρi1, σi0, σi1}) we see that zi solves
the following minimization problem

λgi.y(τ i1)+si0.y(τ i0)−si1.y(τ i1)+m[|gi.y(τ i1)−gi.zi(τ i1)|2+|y(τ i0)−zi(τ i0)|2+y(τ i1−
zi(τ

i
1)|2] If τ i0 6= τ i1 Now since F is Lipschitz and takes a closed ,covexe value

and g is locally Lipschitz continous, furthermore zi solves the minimization
problem problem above, we deduce the presence of five tuples [p, γ, a, ζ, b]
with a = 0 and b = 1 such that

(−ṗi(t), żi(t)) ∈
{
∂Hi(t, zi(t), pi(t)) a.e. t ∈ [τ i0, τ

i
1],

{0, 0} a.e. Ii/[τ
i
0, τ

i
1],

ζ ∈ ∂g(yi(τ
i
1) = ∇g(yi(τ

i
1) = λgi − si1 and since pi(τ

i
1) = −1.ζ we conclude

that pi(τ
i
1) = si1 − λgi

pi(τ
i
0 = ∇g(zi(τ

i
0) = si0

so (5.3)(5.4)(5.5) are verified. Suppose now that τ i0 = τ i1(:= τ i). Since zi
solves minimization problem λgi.y(τ i1) + si0.y(τ i0) − si1.y(τ i1) + m[|gi.y(τ i1) −
gi.zi(τ

i
1)|2 + |y(τ i0)− zi(τ i0)|2 +y(τ i1− zi(τ i1)|2] we conclude that λgi+ si0− si1 =

0. Setting pi(τ
i) := si0) we deduce the existence of a functions such that

pi(τ
i) = si0 and pi(τ

i = si1 − λgi which verifies (5.4)(5.4)(in this case (5.3) is
trivial).

It remains (5.6) and (5.7). Since zi is assumed in the interior of Γ̃i , we
may choose ti1 ∈ Ii such that ti1 > τ i1. We proceed to extend zi|[τ i0,τ i1] to [τ i0, t

i
1]

defining a new trajectory yi(.). By Aumann’s selection theorem we conclude
the existence of an absolute continous function ξ̄ : [τ i1, t

i
1] −→ Rni such that

ξ̄(τ i1 = zi(τ
i
1) and

˙̄ξ(t) ∈ Fi(t, zi(t, zi(τ i1)) ∩ Ei(t) a.e.

With
Ei(t) = {e|pi(τ i1).e = max[pi(τ

i
1).e′|e′ ∈ Fi(t, zi(τ i1)]}.
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The hypotheses on the velocity set implies the existence of an absolute func-
tion ξ(.) : [τ i1, t

i
1] −→ Rni such that ξ̇(t) ∈ Fi(t, ξ(t)) a.e.t ∈ [τ i1, t

i
1].

ξ(ti1) = zi9τ
i
1),

1

ti1 − τ i1

∫ ti1
τ i1
|ξ̇(s)− ˙̄ξ(s)| ds ≤ K2exp{K(ti1 − τ i1)}(ti1 − τ i1)

With ti1 ↓ τ i1. We return now as always to (5.9) in which the following
special case will be taken. Set δ̄ = δ and {ᾱj0, ᾱ

j
1, γ̄

j
0, γ̄

j
1} = {αj0, α

j
0, γ

j
0, γ

j
1} for

all j, 1 < j ≤ k. For j 6= i take (ti0, t
i
1, yj(.)) = (τ j0 , τ

j
1 , zj(.)). Tke also ti0 = τ i0

and define yi(.) : [τ i0, t
i
1] −→ Rni to be

yi(t) =

{
zi(t) for t ∈ [τ i0, τ

i
1]

ξ(t) for t ∈ [τ i1, t
i
1]

Write ε′ = ti1−τ i1 we obtain hi1ε
′−si1(yi(t

i
1)−zi(τ i1)+λgi(yi(t

i
1−zi(τ i1)+m∆ ≥ 0

and sinceyi(t
i
1) − zi(τ i1) = ξ(ti1) − zi(τ i1) =

∫ ti1+ε′

τ i1
ξ̇(s) ds and deviding across

by ε′ we obtain

hi1 − (si1 − λgi)((ε′)−1

∫ τ i1+ε′

τ i1

ξ̇(s) ds) + ε′−1m∆ ≥ 0.

Since pi(τ
i
1) = si1 − λgi and by (5.10), we have

−hi1 + (ε′)−1
∫ τ i1+ε′

τ i1
Hi(t, zi(τ

i
1, pi(τ

i
1) dt ≤ (ε′)−1(pi(τ

i
1).
∫ τ i1+ε′

τ i1
|ξ̇(s)− ¯̇

ξ(s)| ds

Since the velocity set verify a lipschitz inequality we have that |yi(ti1 −
zi(τ

i
1)| ≤ K|ti1 − τ i1|, and so ∆/ε′ −→ 0 as ε′ ↓ 0. So in the limite and

by (5.11) we obtain that lim supε′↓0(ε′)−1
∫ τ i1+ε′

τ i1
[Hi(t, zi(τ

i
1), pi(τ

i
1)−hi1] dt ≤ 0

which is equivalent to say that

(5.12) hi1 ∈ esst−→τ i1Hi(t, zi(τ
i
1), pi(τ

i
1)) + [0,+∞),

Similar reasoning but now by choosing ti1 < τ i1, gives

lim infε′↓0(ε′)−1
∫ τ i1
τ i1−ε′

[Hi(t, zi(τ
i
1), pi(τ

i
1)− hi1] dt ≥ 0

which imply that

(5.13) hi1 ∈ esst−→τ i1Hi(t, zi(τ
i
1), pi(τ

i
1)) + (−∞, 0].
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(5.12)(5.13) imply that

hi1 ∈ co esst−→τ i1Hi(t, zi(τ
i
1), pi(τ

i
1))

Same argument applied to the left endtime τ i0 gives

hi0 ∈ co esst−→τ i0Hi(t, zi(τ
i
0), pi(τ

i
0)).

Suppose now that τ i0 = τ i1 = τ i and returning to (5.9), Setting δ̄ = δ and
{ᾱj0, ᾱ

j
1, γ̄

j
0, γ̄

j
1} = {αj0, α

j
0, γ

j
0, γ

j
1} for j 6= i and yj(.) ≡ zi(τ

i
1),Passing to the

limite we have 0 ≤ −hi0(ε′) + hi1(ε′) ≤ 0, and then hi0 = hi1

Let’s go back now to the proximal normal vector [{hi0, hi1,−si0, si1},−λ] at
epi V at the point {ρi0, ρi1, σi0, σi1}, V (ρi0, ρ

i
1, σ

i
0, σ

i
1}) + δ] to proof the last

differential inclusion of theorem 4.1, arranging {ρi0, ρi1, σi0, σi1} −→ 0 and
V (ρi0, ρ

i
1, σ

i
0, σ

i
1}) + δ −→ V ({0, 0, 0, 0}). Let {τ i0, taui1, zi(.)} be a solution

to the perturabte problem Q({ρi0, ρi1, σi0, σi1}. We can arrange a subsequence
such that τ i0 −→ T i0, τ

i
1 −→ T i1 and zi(.) −→ xi(.) uniformaly. From (5.8) we

have

{hi0,−hi1,−si0, si1} ∈ |{hi0,−hi1,−si0, si1}|∂dM({αi0, αi1, γi0, γi1}).

Since pi(τ
i
0) = si0 and pi(τ

i
1) = si1 − λgi we have :

{hi0,−hi1,−pi(τ ii ), pi(τ i1)+λgi} ∈ |{hi0,−hi1,−pi(τ ii ), pi(τ i1)+λgi}|∂dM({αi0, αi1, γi0, γi1})

and so

{hi0,−hi1,−pi(τ ii ), pi(τ i1)} ∈ |{hi0,−hi1,−pi(τ ii ), pi(τ i1)+λgi}|∂dM({αi0, αi1, γi0, γi1})−{0, 0, 0, λgi}

By Lemma (5.2), {αi0, αi1, γi0, γi1} = {τ i0 − ρi0, τ i1 − ρi1, zi(τ i0)− σi0, zi(τ i1)− σi1}.
Then:

{−hi0, hi1, pi(τ ii ),−pi(τ i1)} ∈ |{hi0,−hi1,−pi(τ ii ), pi(τ i1)+λgi}|∂dM({τ i0−ρi0, τ i1−
ρi1, zi(τ

i
0)− σi0, zi(τ i1)− σi1}) + λ∂g({τ i0 − ρi0, τ i1 − ρi1, zi(τ i0)− σi0, zi(τ i1)− σi1})

(The limiting subdifferential of the cost function here is nothing then the
gradient). Now the final step is to pass threw limits in (5.3), (5.14) with
the aid of the theorem of compactness of trajectories and so (5.6)(5.7), then
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we have all our assertions of theorem 4.1 but with the temporary hypothe-
ses(IU)(IL). As usual the removal of the additional hypotheses will be by
taking cases lettting us to go back the hypotheses (IU)(IL). Suppose now
that (IL) is not verified, consider an additiona trajectorie zi(.) verifying the
differential inclusion :

ẏi ∈ Fi(t, yi) a.e.on [τ i0, τ
i
1] for i = 1, ..., k

and
ż ∈ {0} on [σ0, σ1].

With the constraint

({τ i0, τ i1, yi(τ i0), yi(τ
i
1)}, σ0, σ1, z(σ0), z(σ1)) ∈ M̃.

Such that
M̃ := {a, 0, 1, z0, z1)|a ∈M, z0 ≥ ge(a.0, 1, z1}

and
ge(a, (σ0, σ1, z0, z1)) = z1.

The new optimisation problem with the modified cost g̃ defined as g̃(a, (σ0, σ1, z0, z1)) =
z1 verifie hypotheses of theorem 4.1 with (IU). (endtimes taken here for a tra-
jectory y is is t=0, t=1). we see that({T i0, T i1, xi(.)}, 0, 1, y(.) ≡ g({T i0, T i1, xi(.)}))
is a solution to the new problem with the additional trajectory here as the
cost value of xi. In addition our modified problem satisfy (IL) and so applying
Theorem 4.1 with the additiona hypothese leads to the existence of λ ≥ 0,
numbers α, β, q, a fucntion pi(.) verifying the conditions of theorem (4.1).
The difficultie here is to proof that {−hi0, hi1, pi(τ ii ),−pi(τ i1)} ∈ c∂dM + λ∂g
Applying hypotheses of the theorem we have only

(5.15){−hi0, hi1, pi(T i0), pi(T
i
1), α, β,−q, q) ∈ cdM̃ + λ[0, (0, ..., 0, 1)].

at the point ({T i0, T i1, xi(.)}, (0, 1, g({T i0, T i1, xi(.)})).

Lemma 5.3 .

Let S ⊂ Rk be a closed set and take s̄ ∈ S. Suppose there is a constant
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δ > 0 and a fucntion l : s̄ + δB −→ R such that l is lipschitz continous of
rank at most K1 on s̄+ δB. Then for all R ≥ (1 +K2

1)1/2 we have

∂depi(l+ξs)(s̄, l(s̄) ⊂ {(ζ,−ε)|ζ ∈ ε∂l(s̄) +R∂ds(s̄), ε ≥ 0}.

Now it’s easy to see that applying this Lemma and the fact that

∂dM×{0,}×{1}×{R} ⊂ ∂dM ×B ×B × {0}

That
{−hi0, hi1, pi(T i0,−pi(T i1)} ∈ λ∂g + c(1 + K̄2)1/2∂dM .

∗ Removual of (IU) is by a similar way considering the additional trajectory
as

zi = (yi − xi(t))2 a.e.t ∈ [τ i0, τ
i
1],

verdying the differential inclusion

ẏi ∈ Fi(t, yi) a.e.t ∈ [τ i0, τ
i
1].

with the cost

g̃(τ i0, τ
i
1, (z

i
0, y

i
0), (zi1, y

i
1)}) = g({(τ i0, τ i1, yi0, yi1}) +

∑
i(|zi(τ i1)|2 + |τ i0 − T i0|2 +

|τ i1 − T i1|2)

and the constraint set

M̃ = {{τ i0, τ i1, (zi0, yi0), (zi1, y
i
1)}) = g({(τ i0, τ i1, yi0, yi1}|{τ i0, τ i1, yi0, yi1} ∈ M and

zi0 = 0 for i = 1, ..., k}.(The solution here is {T i0, T i1, (zi(.) ≡ 0, xi(.))})

Proof of theorem 3.1. Choose ε > 0 such that

graph{xi(.)}+ 2εB ⊂ X i, i = 1, ..., k,

and define the set

X̃ i = graph{xi(.)}+ εB̄, i = 1, ..., k.

and let the perturbation interval

Ii := [T i0 − ε, T i1 + ε], i = 1, , , k.
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We define W as the set of extended process. An extended process is symply
a process with an additional trajectory wi(.) satisfiying:

{τ i0, τ i1, yi(.), wi(.)} with [τ i0, τ
i
1] ⊂ Ii and graph{yi(.)} ⊂ X̃i Define now the

metric ∆ : W ×W −→ R as

∆({τ i0, τ i1, yi(.), wi(.)}, {τ̄ i0, τ̄ i1, ȳi(.), w̄i(.)}) :=
∑

i[|τ i0− τ̄ i0|+ |τ i1− τ̄ i1|, |yi(τ i0)−
ȳi(τ

i
0)|+ L −meas{t ∈ [τ i0 ∨ τ̄ i1, τ i1

∧
τ̄ i1]|wi(t) 6= w̄i(t)}]

∗ This remind us for considering a perturbation problem in which the so-
lution xi will be a solution of order εn for the perturbated cost and then
apply Euklend’s theorem to pass threw limits.

Lemma 6.1 .

(W,∆) is a complete metric space. Let {τ i0, τ i1, yi(.), wi(.)} the general term
in a sequence of points in (W,∆) converging to {τ̄ i0, τ̄ i1, ȳi(.), w̄i(.)} then
lim supt∈Ii |yi(t), ȳi(t)| = 0, for i = 1, ..., k.

Let n > 0, ζ ∈ ξ({xi(T i1}) + n−2B such that ζ 6= Rξ,C and define F :
(W,∆) −→ R to be

F ({T i0, T i1, xi(.), ui(.)}) := |ζ − ξ({yi(τ i1)}).

By lemma 6.1, F is continous and we have

F ({T i0, T i1, xi(.), ui(.)}) < inf
e∈w

F (e) + n−2.

We see that {T i0, T i1, xi(.)} is an n−2 minimizer for the modified optimisation
problem f+n−1∆ so by Eukland’s theorem there exist ē = {T̄ i0, T̄ i1, x̄i(.), ūi(.)}
in W such that

(6.1) ∆(e, ē) ≤ n−1

(6.2) F (ē) ≤ F (e′) + n−1∆(e′, ē) for all e′ ∈ W .
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Lemma 6.2 . Let {τ i0, τ i1, yi(.), wi(.)} eb a multiprocess such that

{τ i0, τ i1, yi(.)} ∈ C
and

supt∈Ii}|yi(t)− x̄i(t)| ≤
ε

2
for i = 1, ..., k. Then:

|ζ − ξ({yi(τ i1)})| + n−1
∑

i([τ
i
0, T̄

i
0) ∨ 0] + [(T̄ i1 − τ i1) ∨ 0] + (y(τ i0 − x̄(τ i0)| +∫ τ i1

τ i0
Hi(t, wi(t)) dt) ≥ |ζ − ξ({x̄(T i1)})|.

Here

Hi(t, w) =

{
1 if t /∈ [T i0, T

i
1] or w 6= ūi(t),

0 otherwise

To derive our condition for the minimum we need to apply the prooved
theorem 4.1. So consider the state trajectory, Yi = (zi, yi) with the velocity
set defined by

Fi(t, Yi) := {[Hi(t, w), φ(t, y, w)]|w ∈ U i
t}.

With the endpoints constaints

Λ := {{τ i0, τ i1, (zi0, yi0), (zi1, y
i
1)}|{τ i0, τ i1, yi0 ∈ C, zi0 = 0, i = 1, ..., k}

and the cost function

g({τ i0, τ i1, Y i
0 , Y

i
1}) := |ζ − ξ({yi1})| + n−1

∑
i(z

i
1 + (τ i0 − T̄ i0) ∨ 0 + (T̄ i1 − τ i1) ∨

0 + |yi0 − x̄(T̄ i0)|)

in which Y i
0 = (zi0, z

i
0) and Y i

1 = (zi1, z
i
1).

Conside the trajectory (T̄ i0, T̄
i
1,
∫ t

0
H(s, ū(s)) ds, x̄(.))) and calculate it cost

g((T̄ i0, T̄
i
1,
∫ t

0
H(s, ū(s)) ds, x̄(.))) = |ζ − ξ({x̄i1)|. By lemma 6.2 it is a mini-

mizer to the problem

(P(n))



Minimize g({τ i0, τ i1, Yi(τ i0), Yi(τ
i
1))

over

(6.3) Ẏi(t) ∈ Fi(t, Yi(t)) a.e.t ∈ [τ i0, τ
i
1],

graph Yi(t) ⊂ R× (graph{x̄(.)}+ (ε/2)B), i = 1, ..., k, )

(6.4) {τ i0, τ i1, Yi(τ i0), Yi(τ
i
1)} ∈ Λ,
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Recall ā is a solution to a problem (P) with a differential inclusion.
Considering the modified problem co(P) in which the differential inclusion
into the velocity set is replaced by the covex hull of this set, we know that ā
remains solution to co(P).

Now considering the Problem co(P(n)) we see that our problem verifie hy-
potheses of theorem 4.1. and by the Lemma {T i0, T i1, z̄i(.), x̄i(.)} is a solution
to co(P(n)). By theorem 4.1 we conclude the existence of {pi(.) : Ii −→ Rni},
v of unit lengh such that

(6.6) pi(T̄
i
1) ∈ ∂ξ∗({X̄i(t)}).v

(6.7) −ṗi(t) ∈ ∂xH(t, x̄i(t), ui(t), pi(t))

(6.8) Hi(t, x̄i(t), ui(t), pi(t)) ≥ maxw∈U i
t
{Hi(t, x̄i(t), w, pi(t))} − n−1,

(6.9) {−hi0, hi1, oi(T̄ i0)} ∈ K̄∂dC({T̄ i0, T̄ i1, x̄i(T̄ i0) + n−1K̄B

(6.10) hi0 ∈ coesst−→T i
1
hi(t, x̄i(T̄

i
0), pi(T̄

i
1)) + n−1K̄B,

(6.11) hi1 ∈ coesst−→T i
1
hi(t, x̄i(T̄

i
1), pi(T̄

i
1)) + n−1K̄B

With
hi(t, x, p) := max

w∈U i
t

Hi(t, x, w, p).

Now passing threw limits we have all assumptions of the theorem.
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