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An Abstract

Title: Normal Birkhoff Forms in the Energy Space

Given small solutions of semi-linear Hamiltonian partial differential equations, we are
interested in their long time behavior in H*® with s small. In order to do so, we followed
the work done by [Bernier and Grébert, 2021] where they proved the almost global preser-
vation for very long times of the low super-actions of non-resonant systems. Furthermore,
we try to simplify the results done by setting a suitable formalism and by applying the
results for a specific equation, the Beam equation.

Key words: Normal Forms in low regularity, non-resonanct condition, energy preser-
vation, Beam equation
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Chapter 1

Introduction

For half a century, the theory of partial differential equations has mainly focused on
the study of the local or global existence of solutions, in well-chosen functional spaces.
Nevertheless, the advances of this theory made it possible to consider other types of
questions, in particular that of the qualitative behavior of solutions once their existence

has been established.

Given a non-resonant! Hamiltonian partial differential equation and a small smooth
initial datum, what can be said about the solution in H*? In their paper,
[Bambusi and Grébert, 2006] answered this question by proving that the super-actions
are almost preserved in H* for s large enough, leading to the stability of the solution. i.e.
the solution remains small in H*. Unfortunately, so far this theory of normal forms for
Hamiltonian partial differential equations has only been developed for solutions of high

regularity, the assumption that seems to be irrelevant.

Our goal here is to study the behavior of small solutions for such equations, in patric-

ular the Beam Equation, over very long time [t| < e (r is very large) imposing less

IThe eigenvalues of the linearized vector field enjoy a diophantine condition, in particular rational
independency.



regularity by only setting them in the energy space with s small. The work done is in-
spired by the paper [Bernier and Grébert, 2021], however in this report we will be working
with a simpler framework suitable for the Beam Equation defined on the 1-dimensional

torus as follows:

8tt77/} + a:m:aca:w + m¢ + p¢p_1 = 0
¥(0,2) = o (1.1)
Oyp(0, ) =~y

where ¥ = ¢ (t,z) € R with x € T, the mass m > 0 is a parameter, (¢, 1) € H**1(T;R) x
Hs1(T;R) having small size € and p > 3. Since we are working in low regularity, it would

make sense to consider s = 1.

Now I will state the main result we tend to reach at the end.
Theorem 1.1. For almost all m >0 and all v > p > 3, there exists 5, >0 and Cy,, > 0

such that, for all ¥y e H?(T;R) and all ¢y € L?>(T;R) with

e :=[[vhollm> +[[¢nlle> < em

where €, is defined later, the global solution of 1.1 satisfies

tl<e™ = Vn2 1, & (1), 0 (1)) = E(¥(0),0(0))] < Crpn)*e?

where the low Harmonic energies &, of the Beam equation are given by the formula

2
+

OORO) :M‘ fo 7 () da ‘ [0 " oy () da

1
vnt+m
Remark. e We deduce the almost global preservation of &, for (n) < N with N > 1.

e This is a non-trivial result since r is arbitrarily large. It is trivial if r = p - 2.

e [t is established as a dynamical corollary of the Birkhoff Normal Form Thoerem in



low regularity.

e In the proof 5, >> 1, however we conjecture that it shouldn’t be.

In order to prove Theorem 1.1, let us place ourselves in the needed framework and
highlight the outline of this report. In chapter 2, we state basic definitions and notations
we will be using throughout our work. Furthermore, we give a quick recall of several

important theorems.

Actually, the existence of resonance (rational dependency) allows an exchange of en-
ergy between modes. For instance, see [Grébert and Villegas-Blas, 2011]. In order to
obtain our needed result, we introduce in chapter 3 a new non-resonance condition char-
acterized by controlling the small divisors by the smallest index which is obviously stronger
than the classical condition that controls those by the third largest index. The good news
is that this new condition is easily satisfied by the Beam equation frequencies. After that,
we generalize the definition to give a more suitable version for the Birkhoff normal form

theorem.

In chapter 4, we set the Hamiltonian formalism defining a class of Hamiltonian func-
tions satisfying particular properties custom-made for the Beam equation. In addition
to the properties given by [Bernier and Grébert, 2021], we introduce the zero momentum
condition which helped simplify different results. It turns out that these Hamiltonians

are stable by Poisson bracket.

Chapter 5 states and proves the Birkhoff normal form theorem in low regularity. The
proof uses the normal form process to remove the inessential part of the Hamiltonian
that influences the dynamics of the low modes. This is possible due to the strong non-
resonance condition. More precisely, the proof is done by induction and uses several
techniques such as Taylor expansion and stability of Hamiltonians by Poisson bracket.

Moreover, we establish a corollary of the theorem allowing us to obtain the almost global



preservation of the low super-actions over very long time |t| <.

As an interesting application, we study the behavior of low harmonic energies of the
Beam equation which is known to be widely used (mainly in dimension 1) by scientists and
engineers due to its physical importance in modeling the oscillations of a uniform beam.
For instance, engineering of large structures like the Eiffel tower used the beam equation,
see [Win, |. For this, we chose to apply our key result to this particular equation. We start
chapter 6 by writing the equation in an appropriate Hamiltonian form and relating the
terms to the class defined in chapter 4. Next, we highlight the fact that the frequencies
satisfy the strong non-resonance condition. Finally in order to reach our goal, we prove
the global well-posedness of the equation using Banach fixed point theorem, boundedness

of the energy norm and the Hamiltonian conservation.



Chapter 2

Background Theory

2.1 Notations

We always consider the following set of notations:

e R(z), Z(z) denote the real, imaginary part of z respectively.

o 0z := 5(Or(s) +101(:)) and 8, = 3 (Or(s) — 101(2))-

e w e RZ denotes w = (wy, )nez-

e For z € Z, the Japanese bracket is denoted by () := /1 +|z|*.

e Ky(o,n) :zmin{(nj) such that je [1,p] and Y op# O.}
k

Wiy, =Wn;

e The 1-dimensional torus is denoted by T = R / 97

e For z,y € R, we denote x S, if there exists a constant ¢(p) depending on p such that

z < c(p)y.

e .7, denotes the symmetric group of degree r.



ezkm

e For k € Z, we write eg(x) = I
e For s € R, the discrete Sobolev space is written as
W(Z)={ueC | |fullf = Y (k) usl < oo}.

keZ

e For p>1, the Lebesgue space is written as

P(Z)={ueC | |lullf:= )] lusl” < oo}.
keZ

e We denote by uj':= wy, and u;':= .

e for (€ Z", we denote |[€|; = |[(1] + -+ |(,].

e We say that n € Z" is injective if n = (nq,---,n,) with n; # n;, Vi # j.

2.2 Definitions and basic tools

Definition 2.2.1. (natural scalar product) We equip [2(Z) with its natural real scalar

product
(u,v)2 = Y R(ugog) = Y (R(ug)R(vg) + Z(ug)Z(vy)) € R

keZ keZ
which can be extended when w € h® and v € h=s.
Definition 2.2.2. (Gradient) Given a smooth function

H:h(Z) >R



its gradient VH (u) is the element of h=*(Z) satisfying

Yveh®(Z), (VH(u),v);z =dH(u)(v)

with VH(u) = (205:H (u) ) kez.

Definition 2.2.3. (Hamiltonian system) We associate to H the Hamiltonian vector field

Then the Hamiltonian system reads

Oyu = Xy (u).

Definition 2.2.4. (Poisson bracket) Let H, K : h*(Z) - R, be two functions such that
VH (u) € h*(Z). Then the Poisson bracket of H and K is defined by:

{H, K} (u) = (iVH (u), VK (u))p.

Lemma 2.2.1. We have

{H, K} (u) =23 ), O H (0) 0, K () = O, H (u) 0 K ().

keZ

Proof. To see this, we write using the definition

{H, K} (u) = (iVH(u), VK (u))e
= (200 H (u), 205K (u)) 2

= N R[ 2005 H (u)205: K (u)]

-4 kzz R[i0wH (w) 0 K (1)].



By simple calculations, one can prove that
AR 107 H (u) Oz K (u) ] = 2i[ O H (1) 0 K (1) = Ouy H (u) O K (w) ]. O

Definition 2.2.5. (adjoint of a linear map) Consider the linear operator T' : F — F

where F and F' are Banach spaces. Then we define the adjoint operator as
T : F* > FE~

with £* and F* being the dual spaces of E and F' respectively.

Lemma 2.2.2. (bootstrap principle) Let I be a time interval, and for each t € I suppose
we have 2 statements, a hypothesis H(t) and a conclusion C(t). Suppose we can verify

the following assertions:

(1) (Hypothesis implies Conclusion) If H(t) is true for some time t € I, then C(t) is

true for that time t.

(i1) (Conclusion is stronger than Hypothesis) If C(t) is true for some t € I, then H(t')

1s true for all t' € I in a neighborhood of t.

(i1i) (conclusion is closed) If ti,to,--- is a sequence of times in I which converges to

another time t € I, and C(t,) is true for all t,, then C(t) is true.

(iv) (Base case) H(t) is true for at least one time t € I.

Then C(t) is true for all tel.

Proof. A small proof is found in [Tao, 2006] Chapter 1.3. O

Definition 2.2.6. (symplectic map) Let s > 0, C an open set of h*(Z) and a C! map

7 : C - h%(Z). We say that 7 is a symplectic map if it preserves the canonical symplectic



form:

YueC,Yo,we h*(Z), (iv,w)z = (idr(u)(v),dr(u)(w)):.

Theorem 2.2.3. (Schwarz theorem) for a function f : C - R defined on an open set

CcR”, if pe R™ is a point such that some neighborhood of p is contained in C and f has

continuous second partial derivatives at the point p, then for all i,7 € {1,2, ..., n}
0? 0?

Theorem 2.2.4. (Gronwall’s inequality) Suppose that a(t) and B(t) are 2 continuous

function on an interval I with o(t) > 0. If Yt € I we have

B(t) < C+ fota(s)ﬁ(s) ds

where C' is a constant, then

B(t) < Celo o) ds,

Definition 2.2.7. (operator norm) For F real normed vector space, the vector space

Z(F; E) of bounded linear maps from E to F is endowed with the operator norm:

T
17| = SUP{W :ve B with v # O}.
v

Theorem 2.2.5. (Mean value inequality) Let E, F be two Banach spaces, U c E open
and f : U - F continuous. Assume that f is differentiable at each point of the segment
[a,b] c U, then

SO -1@] o

|b - CI,| B ze[a,b]
Lemma 2.2.6. For a quadratic function q, consider the associated quadratic form q(u) =

b(u,u). If b is continuous, then we have

la(u) = q(0)] < lfu = ol ([fullz + [oll:2)-



Proof. We write the associated quadratic form Then we get,

lq(u) = q(v)] = [b(u, u) = b(v,v)]
= |b(u—v,u) —b(v—u,v)|
< |b(u—v,u)|+ |b(v —u,v)|

< Cllu = v|gz]|ul|z + Cllv = ul|z||v]]2 since |[b(u,v)| < C||ullz]|v]]:2

= Cllu =l ([lull> +[[vll)- B

Theorem 2.2.7. (Banach fized point theorem) Let E be a Banach space and suppose that

f + E - FE satisfies that for all x,y € E, there exists 0 < C <1 such that

1/ (@) = F(Wlle < Cllz - ylle.

Then f has a unique fixed point in E.

10



Chapter 3

Strong Non-Resonance Condition

In this chapter, we introduce a new non-resonance condition satisfied by the frequencies

obtained from the quadratic Hamiltonian later denoted by Zs.

3.1 Particular Case

Definition 3.1.1. (strong non-resonance) The frequencies w € R% are strongly non-
resonant if for all r > 0 there exists v, > 0, c,. > 0 such that for all r, <r, all ¢1,---, (., € Z*,

and all n € Z™ injective with |1+ +1¢,,| <7 and (ny) < - < (n,,), we have

(o729

2 %"(n1>_

|€1wn1 +oeee+ gr*wnr*

Proposition 3.1.1. Let r > 1 and w € RZ. Suppose that:

(i) there exists o,y >0 such that for all r. <r, all £ € (Z*)™, and all n € Z™ injective

11



with [¢|, <7 and (ny) <--- < (n,,), we have

«

Z ’y<nr* )7 )

VkeZ, |k + Wy, + e+ Ly Wy,

(i1) the frequencies accumulate polynomially fast on Z.

i.e. there exists C' >0 and v > 0 such that

VneZ,3keZ, |w,-kl<C(n)".

Then w s strongly non-resonant.

(3.1)

Proof. Fix r and r, satisfying the given assumptions. We prove by induction on 7, < r,

that there exists (,, > 0 (depending on «, v, r) and n,, >0 (depending on «, v, C, v, r)

such that

Vk e Z, By

k+ Z ijnj 277”(”1)

1<j<ry

Initial Step: For r, = 1.

Using the first assumption with r, = 1, we get

|k’ + Klwm| > ")/<TL1)7Q.

Hence, we obtain the result for n; =+ and 5, = a.

Induction Step: Assume that it is true for r, < r,. Prove it for r, + 1.

Using the second assumption with n:=n,, ,
dk, € Z, W,y — kb| < C<n”+1>_y.
Next, we have that

k + Z éjwn]. >

1<j<ry+1

ISjSTb

12

k + 67‘[,+1k;|7 + Z g]wnj - |€Tb+1||wn'rb+l - k:b .

(3.2)



Indeed, using the triangular inequality we can write

k+€m+1kb + Z gjwnj

1<j<ry

- |€Tb+1||wnrb+l - kb|

= k + Z gjw’rbj + gm+1wn”+1 - €T|,+1wnrb+1 + grb+lkb
1<j<ry,

- |€7’b+1||wnrb+1 —ky

= |k + Z gjwn]- - gnﬂrlwn”“ + gTb‘Flkb
1<j<ry+1

k + Z fjwnj

1<g<ry+1

|l allwn,, .. = kil

IN

+ |£7’b+1”_wnrb+1 + k:b‘ - |€7"I7+1|‘wnrb+1 - kl"

=k + Z ijn]-

1<j<ry+1

Now, notice that

d |€7’b+1| < |€|1 <r (given) = _|£T|7+1| 2=,

e using the induction hypothesis with k= k + (,, .1 k;, we get

k+ bk + Y, Ciwn,| > ny, (ng) ™.

1<j<ry

Back to 3.3, we get

k+ Z ijnj

1<j<ry+1

> 1]y, ()7 = rfwn, 0~

2 777*»(”1)75”’ - CT(”T[,+1>7V by 3.2.

Finally, we distinguish between 2 cases:

e For 2Cr(n,, 1) <0y, (n1) =P, the result is direct.

e Otherwise, we have

1 1w
(1) > e ) = () < @Cr(m)™) e,

13



= (Ny,41) < (2Cr77;b1)1/”(n1)ﬁrb/”. (3.4)

Also, applying first assumption with r, :==r, + 1, we get

k+ Z ijnj 2 ")/(Tlrb+1>7a
1<g<ry+1
> (20T, ) (ny) Pl by 3.4
afv
_ T —afr, v ]
(5] e

3.2 Suitable Generalization

The sequence of frequencies w may not be injective and yet strongly non-resonant.
Therefore, we extend Definition 3.1.1 and choose a suitable formalism for the Birkhoff

Normal Form Theorem.

Definition 3.2.1. (Genaralized Strong Non-Resonance) A family of frequencies w € R
is strongly non-resonant up to any order, if for all » > 1 there exists v, > 0 and 3, > 0 such

that for all n e Z", 0 € {-1,+1}", we have either

> Yk (0, n)_ﬂ’"

.,
Z 0jWn,
j=1

or r is even and there exists p € .7, such that for all j € [1, ], we have

Opyj1 = —Op,; and Wn,,. | = Wn,, -

Now, we show that this is indeed an extension.

Lemma 3.2.1. If w € R? is injective and strongly non-resonant according to Definition

3.1.1, then it is strongly non-resonant according to Definition 3.2.1.

14



Proof. Suppose that w is strongly non-resonant according to Definition 3.1.1, then we

arrange the small divisors:
O Wy + oo+ OpWp, = LWy + -+ L W,

where 7, <7, Ky(o,n) =(my) < <(m,,)and {; = ¥ o4 #0. It is clear that
k

Wn,,, =Wm,

k J

[a] + -+ 1€,

Il
]
S)
Eal
+
H
N
)
ol

™
~
+

™

Wn ), =Wm, Wny, =Wmy.,
=1+-+1 since w is injective
=7,
<r

So, by assumption, there exists 7, >0 and 3, > 0 such that

2 7r(m1>_6r = 'V'r’fw(m n)_ﬁr~

o1 Wy, + -+ 0wy, | = |€1wm1 +oe L Wy,

Thus, w is strongly non-resonant according to Definition 3.2.1. [

15



Chapter 4

Class of Hamiltonian Functions

In this chapter, our goal is to establish main properties of the following Hamiltonian

class.

4.1 Properties of a Class of Hamiltonian Functions

Definition 4.1.1. We denote by 7" the set of inhomogeneous Hamiltonians of degree

r > 2, written as

H(u) = Z Hiult--ugr,

n “ny
oe{-1,+1}"
nezZ”

and satisfying:

(i) Hg eC

(ii) the zero momentum condition: oiny +---+o,n, =0
(iii) the symmetry condition: V¢ € .7, Hyliim = Hy ot oo
(iv) the reality condition: H;° = HZ

16



(v) the bound: |Hg| S, Tj=; ||H|[{n;)~" or ||H]| < co where the norm of H is given by:

|H[l = sup IH"IH n;)-
oe{-1,+1}"
nez”

Lemma 4.1.1. The polynomials of 7" define naturally smooth real-valued functions on

h*(Z) for s > 0. In other words, if H € 7 and u™ - u(") € h(Z), then

|Haugll) I1 -~ (r),or

nr
oe{-1,+1}"
neZ”
oin1++orne=0

Srs [IH]| HII

Proof. Let H € " and v - u(") € h3(Z). Then

py—

Ny
oe{-1 +1}T
nez”
o1ni+-+oprn,=0
T
< |u7(111) a0 H| [T(n;)! by the bound (v)
oe{-1 +1}T Jj=1
neZ”
oini+--+orn,=0
> WﬂHIu%“]
oe{-1,+1}"
nez”

o1n1+-+orne=0

Now, since |u| = |u| and for o € {-1,+1}" we have 2" terms, then

g | < 2| S TT o)t
oe{-1 +1}’“ nezZ” j=1
nez”
oini+-+orn,=0

= 2\ H|| Y () |-l

nezr
r 1 r

(3 o) ) (5 000

nleZ Ny EZ

Call each nj, k to get

(o1 (r),0r
’H"un1 Uy,
oe{-1,+1}"

neZ”
o1n1++0rne=0

17



s S ) - (5 1)

a{k)*
~ 2 |H|T] Z<k>*1!u§:>! e

7j=1 keZ
=2"||H|| H - (k)
7=1 keZ
- 2\'/? 1/2
<2"|[H|IT] (Z(k>2 ) ((k)_Q(“l)) / by Cauchy Schwartz
7=1 \keZ —_————

<oo since s>0
[l |ps

Srs 1H|| T It
j=1
We still need to check that H is real-valued. For this we write

_ o1 o
H(u)= > Hgugl-uj
oe{-1,+1}"
nezZ’”

with

° = H.° from the reality condition,

g
n

o If 0 = 1, then uy) = Wy, = up! = up? (Similarly if o = 1),

This implies that

m: Z H o —01 —ar
oe{-1,+1}"
nez”

= > HuZl-ulr since o € {~1,+1}"

oe{-1,+1}"
nez”

= H(u). O
Corollary 4.1.1. We can permute derivatives with the sum defining H.

Proof. From Lemma 4.1.1, we deduce that the multilinear map defining H is well-defined

18



and smooth, so it’s derivatives are easily computed. Now, notice that H is a composition

of this multilinear map and a smooth map w ~ (u,--,u). Hence, H is regular and its

derivatives are obtained by composition.

Lemma 4.1.2. Let r >3, s>0 and k € Z. Then for all u € h*(Z), we have

2(r—1)
hs -

2
s 1 -1
2 2 Hng Vel | s
keZ neZ""l
oe{-1,+1}"1
o1ni++op_1npr_1=k

Proof. Without loss of generality, assume that (n;) < < (n,_).

e First, we get (k)* < (r—1)%(n,_1)°.

]

Indeed, the zero momentum condition implies that |k| = |oynq + -+ + 0,_1n,_1|. Thus,

(kY = (o +-+0,_1n,_1) <{ny) + -+ (ny_1) < (r—=1)(n,_1). So, since s >0, we get

the inequality.

e Similarly, we get that (k)™! < (r—1){n¢)™!

Now, using the above estimates, we write

2
r—1
2z i)
€ = =
06{71612,;1}"0_1 ’
0’1711+~~~+0'T,1n7«,1:k

2
S Z( Y () Pudif(na) ] (mp ) 1\uz;_1|)
keZ neZr1t
oe{-1,+1}7"1
01n1+~~-+ar_1n,~_1=k

2
=z( S (s o) e \-<m_2>-1\uz:;\)

keZ nezr1
oe{-1,+1}"1
011’L1+~~~+0'T,17’Lr,1:k

= 2200 5 (0 ()2l () o) ul(R))

keZ

19



Next, we use Young’s Convolution inequality: [2 # [t % [1 % --- % [l & [~ and we obtain

Z( 2 <k)5‘1ﬁ(nj>‘1\uzﬂ) Sros (1Yl llC) 2l B NGl <11 )l

keZ neZ 1
oe{-1,+1}7"1
aln1+~~-+aT71nr,1:k
(4.2)
Notice that we have the following:
o [I{)*  ullez = fJullpsr < [fullns
e By Cauchy Schwartz, we have
1)l = 221
leZ
=2 [l
leZ
1/2 1/2
< (Z<‘>2(8+1)) (Z<'>2S|ul|2) '
leZ keZ
<oo since >0 [|ullps
e A similar argument shows that ||(.)2ul|;n < [|ullns-
Finally, putting these results back in equation 4.2, we get
r—1 2
_ _ o 2(r-1
z( > R ) I\un;\) Sra [l -
keZ (A J=1

oe{-1,+1}"1
01n1+---+crr_1nr_1:k

Proposition 4.1.1. Let r >3, s >0 and consider H € 7. Then the gradient of H is a
smooth function from h*(Z) into h*(Z), and we have

-1
s

Vue h‘S(Z)7 ||VH(U)||h9 Sr,s ||U TI;

Hi|.

Proof. From Lemma 4.1.1, we get that H is a smooth function on h*. We are going to

20



prove that its gradient is also smooth and belongs to h®. For this, consider u € h*(Z).

Then by definition we have

he = 2RIV H ()l

keZ

IV H (u)

with

(VH(w))k = 205:H (u) by Definition 2.2.2

— a T0 01, .7
=2 Uk Z Hnun1 U’n:
oe{-1,+1}"
nez”

=2 Y HZ0m(ul--ul") by Corollary 4.1.1

n
oe{-1,+1}"
neZ”

Now, call one of the w,,, u; and set the associated o; = —1. Then,

_ 01, ,0r-1,—1 O1,,.0,0r-1 Z o1, Loro1 O1,..9,0r-1
(VH(U))k =2 Z Hnl,---,nr_l,k Uy~ U,y +2 Hnl,---,k,nr_l Uy~ U,y

oe{-1,+1}7"1 oe{-1,+1}""1
nGZT71 neZ'r—l
-lL,01,00-1 O1,..0,0r-1
+ +2 Z Hk,n1,~-,n7»_1 unl unr—l’
oe{-1,+1}7"1

nezr1
. - . . o1 1,-1 __ pp-loneoe
Since HZ satisfies the symmetry condition, we get thm’nr_hk == Hk,n1,-~-,nr_1 . S0,

-1
(VH(u))p=2r > Hyugtugrt. (4.3)
oe{-1,+1}7"1
nezr1
Plugging this expression in the norm, we obtain
2
2 _ 2s o,-1 01,..0,0r-1
IVH )G = 2 (k)2 30 Hyudyu)
keZ oe{-1,+1}1
nez"1
2
2 2s o,—1 01‘.__| 0_1‘
<dr Z<k> Z |Hn,k Hunl un:—1
keZ oe{-1,+1}1
nez -1
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Sr Z(Ws( > ||H||(/<?)_1<nl)‘1"'(nr—1)‘1|UZi|'~\U§?;1|) by the bound (v)

keZ oe{-1,+1}"1
nezZ 1
2
< IHIP Y ( > (R ) ) g g )
keZ \ ge{-1,+1}71
nezZ 1
Srs H P (llullf=")? by 4.1.
Thus, this continuity estimate proves that VH (u) € h* is smooth. O]

Proposition 4.1.2. Let r >3, s >0 and consider H € 7". Then we have

Yueh*(Z), |ldVH(u)|lz@e) Ses llullh?

Proof. The proof is a direct consequence of Proposition 4.1.1 where we showed that the

multilinear map associated with VH (u) is continuous and thus regular. O

As a corollary, we can extend the differential of VH to negative spaces which will be

needed in the proof of some time differentiability later in Chapter 5.

Corollary 4.1.2. Let r >3, s >0 and consider H € 7. Then for all u € h*(Z), dV H(u)
admits a unique continuous extension from h™* into h™%. Furthermore, the map u ~

dVH(u) e Z(h2(Z)) is smooth and bounded.

Proof. Details of this proof are found in [Bernier and Grébert, 2021] pages 25-26. [

4.2 Relation With the Poisson Brackets

Now we prove that the class of Hamiltonians is stable by Poisson bracket.

Proposition 4.2.1. Let H € 2" and K € €7 with r,v" > 2. Then, there exists a Hamil-
tonian N € 772 such that {H, K }(u) = N(u) for all uwe€ h*(Z) with s> 0.
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Proof. Let u e h®. We write

n Ynq Ny
oe{-1,+1}" o'e{-1 +1}r'
nezZ” ’ !

n'eZ”

Hu)= >  HZuZ'-ud and K(u)= ) Kf{fuféui’;’

Then using Lemma 2.2.1, we have

{H, K} (u) = 2i ) O H (u) 0y, K (u) = 00 H (u) 0 K (u),

keZ

with

O R o1, 01, 001 1701 ‘73'__ -1
ukH(u)aukK(u) =rr Z Hn,k Uy, un:_lKn’,kun’l un’, 1
(0,0")e{-1,41}7 Ix {141} 1 "

(n,n')EZT’IXZT”1

which is obtained by using 4.3. In what follows, we set n’ := (n,n’), ¢ := (0,0') and

r' :=r+ 71’ —2. After re-indexing, we can see that

{H, K}(u)
’ ’ ’
-9 ! o-1, o1, g or1 fo 1, 01 T _ ol o oet frolm1, 01 T
- 27’2 [TT( Z Hn,k unl unrflKn’,kun’l un’T, ) Hn,kun1 unrflKn’,k un’l un'r, 1
keZ " " - -
o''e{-1,+1}"
4
n''eZ”
=Y e S (HST K - HOLKE T Y (4.4)
- n,k n'k n,k” n'k nf/ n;’,, :
"
oe{-1,+1}" keZ
"
n//EZT
ool o'
LY Ngedd
" T
oe{-1,+1}"
n"ezr”
= N(u)

Now we prove that N € 7" . Notice that N satisfies the following:

(i) N9, eC,

n

(ii) the zero momentum condition: Since H and K satisfy the zero momentum condition,
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_ I -/ ! ! _
then we have that n,oy + -+ +n,10,.1 = k and njo] +--+n/, o, = -k. Then

! ! ! ! n 174 144
N10+ o+ Nyo1Opy = —NYOY = =+ =Ny 0y, _y, and so nfoy + -+ ng,0., =0,

(iii) the symmetry condition which follows directly since it is satisfied by H and K,

(iv) the reality condition: Also, since it is satisfied by H and K, we get

Ngf’r” i -o,-1 y~—0',1 -0,1 p—0’,-1
! :2 /Z:([—[nk7 [(n’k7 —an’ [(n’k7 )
rr T ez ’ ’ ’ ’

-1 o1 -0’ -1 o,-17-0',1
- ! Z (Hn,kKn’,k - Hn,k Kn’,k)
keZ
i o,-17-0',1 o,1 10’ -1
- ! Z (Hn,k Kn’,k - Hn,kKn’,k )
keZ
!
N7
_*t'n

- 9
2rr!

(v) the bound: Using the bounds of HZ and K7, we get

/4
N7

n

_ I o,-11-0',1 o,1 -0’ -1
=|2rr Z (Hn,k Kn’,k - Hn,kKn’,k )
keZ

’ o,-1 -0’1 0,1 -0’ -1
< 2rr Z <|Hn,k Kn’,k| + |Hn,kKn’,k |)
keZ

S IIHIIIIKIIk%(nl)‘1~~(n7~_1)‘1(k:)‘l(ni>‘1-~'(n;,_1)‘1<k)‘1

T”

Sen [IHINEN Y (k)2 TT{ng) (4.5)
keZ 7=1
—_———
<oo since 2>1

Therefore N € 5. It remains to justify the interchange of summation in equation 4.4.

Using the latter bound, we can see that

,,,H
o,~-11-0',1 0,110’1 0'3’ U:fn m\—1 0'/1/ 0'://
Z Z ‘Hn,k Ky = H 3 Ky ’“n'l"" n’, See || H[[1T] Z H(”ﬁ Uy U |-
" " 45—
e 1 41} kel mef-1,4137" =1
o'e{-1, ”} o''ef ,+”}
n"EZT n"EZT
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Next, using similar arguments as in Lemma 4.1.1, we get

0';-’
u,’,
J

,,.,//
DO B Srs |Jullhe < 00 since u € h®,

o"ef{-1,+1)" =1
" 7‘”
n''eZ

Finally, applying Fubini’s theorem, we obtain

o,-1 -0 .1 ol -0’ -1\ of ol
Y [ X (H KD - HO L ke
"
o'le _17+1 r keZ
{II ’I‘”}
n'' ez
_ o,-1g1-0',1 ol 10’1 oy U,’,.’//
= [ 2. (Hn,kz Ko = Hy o K )“n';“'un" H
keZ " "
oe{-1,+1}"
n//EZT”

Lemma 4.2.1. Let r>3,s>0 and H € 77. Consider the quadratic Hamiltonian

Zy + h*(Z) - R written in the form

Zo(u) = ) walun [,

nez

where w, € R and ((n)=2%w, )nez is bounded. Then for all u e h*(Z), we have

{H,Zo}(u)=2i Y (01w, + -+ 0wy, ) HIUG -ul".
oe{-1,+1}"
nez”

Proof. To start, note that from Proposition 4.1.1 and Definition 2.2.2, we have that
VH(u) € h*(Z) and VZy(u) € h=3(Z) respectively. Thus, their poisson bracket is well-

defined. Then, notice that

g,,0 O
Z (01w, + -+ + opwy, ) Hugt---ug”
oe{-T 41}
nez”

- IO o0 e T0,0L 0"
= Z O Wey Hupt - ug” + -+ + Z oWy, Hyudt-up’.
oe{-1,+1}" oe{-1,+1}"
nezZ’” nez”
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Using the symmetry condition of H, we apply a permutation on the coefficients:

g,,0 o g,,0 oz
Z O Wy, HIupt-up” + oo + oWy, Hyugt--ug”
oe{-1,+1}" oe{-1,+1}"
neZ” nezZ”
- 02,707,010 01 0/ 0r 4 ... 01,07 01,
- Z 01Wn, Hn2,'“m:,n1 unl un: + + Z aTw"anly“wn:unl u
oe{-1,+1}" oe{-1,+1}"
nezZ” neZ”
After re-indexing, the r» sums coincide and we obtain
g, o Or _ g,oc g,
Z (Ulwnl toe O'Twnr)Hnuni"'un: =r Z UTwnanuni'”un:'
oe{-1,+1}" oe{-1,+1}"
neZ” nez”

Next, recall that

{H, Zo}(u) = 2i ) O H (u) O, Zo (1) = Ou, H (0) O Zo ()

keZ

. — ~1 .
with 0y, Zo(u) = wyug and 90, H(u) = r 3 H;;k upt-uprt
oe{-1,+1}1
neZ" 1
together, we get
. o,—1 _ —_ ol o Op—
{H,Zs}(u) =2ir ). [ H o uptugr -t wg g — HY st ud = wg g, )]
keZ = ge{-1,+1}71
TLEZT_l or=-1 or=1
o g o Opr— Or
- Y[ X Hjugeud o]
keZ = oe{-1,+1}"
nezZ !
_ . o o1 Or_1 o
= —2r [ Z Hnjkunfuun:_larwkuy]
oe{-1,+1}" " keZ
nezZ" !
=-2r Z Hyugs-up” 0wy,
oe{-1,+1}"
nezZ”
— y g,oc g
==2i Y (orwp, + -+ opwy, ) HIUZ g
oe{-1,+1}"

nez”

Or
Ny *

(4.6)

Putting the results

(4.7)
n. =k
by 4.6.

We are left with justifying the interchange of sums in equation 4.7. Using the fact that
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(k)=2wy, is bounded as well as the bound (v), we write

|HZ ugt--ugr
keZ oe{-1,+1}"
nez™ 1

=2 X Hld e

keZ oce{-1,+1}"

nrl

nez™1
k; s
Sr Z Z ||H||<n1)_1...(nr_1>—1<k>25—1|u21|...‘uz:j ‘UZT % Ekis
keZ oe{-1,+1}"

neZ !

SIHI [ ) )

keZ \ oe{-1,+1}"

neZr 1t
2 1/2
1/2
S| S ) gty g ok (z<k>28-2\uz)
keZ \Ue{—1,+1}"" keZ
neZr 1
1/2
<o z<k>25-2\uz\) \H] by 4.1
keZ,
1/2
oo Il z<k>28|uk|2) )

keZ

lfuullrs

Srs [lullps | HI| < oo.

Finally, we conclude using Fubini.
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Chapter 5

Birkhoff Normal Form Theorem

This chapter aims to prove the important theorems. We will state Birkhoff normal
form theorem in low regularity and provide a rigorous proof, followed by a corollary, the

key result of the work.

5.1 Birkhoff Normal Form Theorem

Proposition 5.1.1. Let s >0. r >3 and x € 7. Then there exists ¢ = (K]||x]||)~/2)

with K depending on (s,r), and there exists a smooth map

Oy : [-1,1] x Bps(2)(0,61) = h*(Z)

(t,u) = @ (u),

such that it satisfies the following:

1. solves the equation —i0ip, = (VX) 0 ¢y,
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2. ¥V te[-1,1], ¢, is close to the identity:

Vu € Bys(z)(0,61), 1163 (w) = ullne S Il I,

8.V te[-1,1], ¢, is intertible: ||¢* (u)

he < €1 = ¢ilo gl (u) =u,
4. ¥V te[-1,1], ¢ is symplectic,

5. its differential admits a unique continuous extension from h=*(Z) into h™5(7Z).

Moreover, the map u € Bys(z)(0,€1) = d¢',(u) € L(h~5(Z)) is continuous and we have

Yu e BhS(Z)(()?gl)? Vo e {—1, +1}, ||d¢;(u)”g(hm) <2.

Proof. > Since x € ", by Proposition 4.1.1, Vx is a smooth function on h*. So, Cauchy
Lipschitz theorem proves that —id,¢, = (Vx) o ¢, admits a unique smooth local solution

¢! (u). Let I, be the maximal interval on which ¢! (u) is well-defined. For t € I,,

—i0,6t () = (V) 0 ¢l (1) == f 0,7 (u) dr = i [ (V) 0 &7 (u) dr
— o) - =i [ (V)0 (wdr
— () -u=i [ (V)07 (u)dr

Consequently, if t € [-1,1], we get

hs = || _[ot(vX) ° ¢ (u) dTHhs
< [Otn(vx) o @7 (u)e d

t
S Y hs / dT
7€(0,t) 0
<1

193 (u) —u

Srs X SEJI;) ||¢,T< by Proposition 4.1.1.
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Now we aim at using a bootstrap argument. Let J, c I, such that for all ¢t € J, n[-1,1],

¢t (u) is well-defined (¢! (u) € h*) with [|¢? (u)

ps < 3||U

ns- We need to prove that ¢ (u)

is well-defined on [-1,1]. For this, let ¢ € J, n[-1,1], then

183 (1) = tllns Srs XU Blullna )™ < Cor 3™l

where Cj, is the maximum of the 2 constants obtained from Proposition 4.1.1 and 4.1.2.

Thus, it would be sufficient to choose &1 = (3" *C,,|[x|[)~*/"-2. Since ||u

ns < €1 it follows

that
-2
164) = <5l < (L) s <
= % (w)llns = [[ullns < (165 () = u[ns < [Jur]|ps
— 116, (o)l < 2l

Hence, using Lemma 2.2.2, we get that ¢! (u) is well-defined for ¢ € [-1,1] with

163 (@)llns < 2lfullns < 3Julls (5.1)

and close to the identity (properties 1. and 2. are satisfied).

> Moreover, ¢ is invertible. Indeed, suppose that ||¢! (u)|[ss < €1. Then since —t €

[-1,1], we get that ¢. o ¢! (u) is a solution of —id,¢, = (VXx) o ¢, with initial condition
@ o ) (u) = u. Also, ¢+ (u) = ¢)(u) is another solution with initial condition u. Thus,

by uniqueness of solutions we must have ¢ o ¢! (u) = u.

> Now, we check that ¢! is symplectic. Since ¢, is a smooth solution of 9;¢, =

i(Vx) o ¢y, then taking the differential of the 2 sides of the equation, we get

Dy (dgt,(u)(v)) = d(0p¢%, (u)) (v) by Theorem 2.2.3
=id((Vx) o ¢\ (u))(v)

30



= i(d(Vx) © ¢ (u))de! (u)(v) (5.2)

with d¢ (u)(v) = v. Now for ¢! to be symplectic, we need to prove that for u € Bs(0,¢1)
and v, w € h* we have (iv,w); = (id¢! (u)(v),dd! (u)(w));z. For this define

W(t) = (i), (u) (), df (u)(w))r2

and notice that

W(0) = (idey (u) (v), dpy (u)(w))ie = (iv, whe.

Thus it would be sufficient to prove that £W(¢) = 0. Indeed,

%W(t) = (i0dds (u) (v), df (u) (w) )2 + (id@l () (v), Opddl (u) (w) )2
= (=(d(Vx) © ¢ (u))de{ (u) (v), de) (u) (w))2
+(doy (u) (v), (d(Vx) © ¢ (u))dg! (u) (w))e2 by 5.2.

Using the definition of the differential, it is easy to see that these 2 terms will vanish since

(o (w) (), (d(Tx) © 6!, () de () (w))e
= d[{de (u)(v), Vx 0 &, (u)) |d, () (w)

= d[dx o ¢;(u)(d¢;(u)(v))]d¢;(u)(w) by definition
= d®x o ¢l (u) (dg' (u)(v)) (dS () (w))
= d®x o ¢ (u)(d¢!,(u)(w))(d¢! (u)(v)) by Theorem 2.2.3

= d[{de (u)(w), Vx o 6 (u) ) |46, () (v)
= {d () (w), (d(VX) o 6L () ) (w) (v))
= ((d(Vx) © 6% (u))dot (w) (v), Ao, (u) (w))e.

31



> Finally, we prove the estimates. From 5.2 we can write

46, w)(0) = v+ [ (A(TX) 0 6 ()6 () (v) dr

As a result, we get

t
ldt ()l ey <1+ [ 19X @)z
t
<1+ [ Crull o)l lldg; (w)lzeydr by Proposition 4.1.2

t
1o [ Crliz il
0

A (w)llzney dr

r—2
hs

do7 (w2 sy dT by 5.1.

By definition of ¢, we have

r— r— r— r— r— r— -r+2/r- 1
3 2||X||CS,T||U h52 <3 2||X||Cs7r51 °=3 2||X||Csm(3 1||X||CS,T) e 3

So,

1 t
a6t (Wllrey <1+ 5 [ ldo (Wl e dr.

By Gronwall’s Lemma, we conclude that

1deS (W)l 2(ns) < ell3 <9,

With Corollary 4.1.2 and similar arguments as in the proof of ¢! invertible, we can prove

that its differential admits a unique extension from h=% to h=s. n

Remark. Keep in mind that ||¢¢ (u)

hs < 2||’LL

ps for u € Bps(0,e1), because it has been

used several times in this chapter.

Lemma 5.1.1. If G is a smooth function, then

(i) (G od})={x,G}oe
k .
(i) Godl,= & St b [y (1= 1)*Gha 0 ¢ dt with G = ad)G.
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Proof. (i) We have that

%(G o ') = (iVG(,),i0,¢ )12 = (iVG(), =i(Vx) o ¢ )
=—{G,x} ol = {x,G} o,

(ii) We write the Taylor expansion between 0 and 1. Then,

o ot @) o (k+1)
Gogb;:i(G AINO) (Gt

=T 0 k!

(1-t)*dt.
Using (i), we deduce that (G o ¢t )W) = G o ¢t. So back to our expansion,

Gri 0
Godl=G+{x.G}+ Z LGy e [(EE RGO

Theorem 5.1.2. Let s >0 and r >p > 3. Let Zy: h*(Z) - R be a quadratic Hamiltonian

of the form Zy(u) =1 ¥ Wplun|® where ((n) 25w, )nez, is bounded and the sequence of fre-

quencies w is strongly non-resonant up to any order. Let P:h*(Z) —» R be a Hamiltonian

polynomial of the form P(u) = Y P (u) with PO € 77 satisfying |[PY| < ¢; and
p<y<r—1

(¢j)p<jer—1 15 @ sequence of positive constants. Then, there exists positive constants C

depending on (r,s,7v,¢) and b depending on (5,7) (B and 7 are the constants obtained
from the strong non-resonance condition) such that VN > 1, there exists g > ﬁ and
there exists two smooth symplectic close to the identity maps 7O and (V)

p
< (IIUHhs)
2050

—2
Vo e{0,1}, |[ul|ps < 27¢g = ||T(”)(u) -

(5.3)

making the diagram commute

7(0) (1)
Bhszy(0,60) —— Bhs(2)(0,2280) — h*(Z)

\/

idys
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such that (Zy + P) o7 admits on Bjsz)(0,2¢0) the decomposition

(Zy+P)otW =72, +Q+R

where () s a Hamoltonian polynomial constructed in the proof and commuting with the
low super-actions given by Jy(u) = Y |ug)’

Wp=Wn

VneZ,(n)< N = {J,,Q} =0,

and the remainder term R is a smooth function on Bysz)(0,2¢0) satisfying

IVR(u)llns < CN|[ull}3"

Moreover, for o € {0,1} and u € Bjsz)(0,27¢¢), dr(?)(u) admits a unique continuous

extension from h=*(Z) to h=3(Z) depending continuously on u and satisfying

[dr D (u)ll ey <277 and ||dr ) (u)|| 2y < 2777, (5.4)

Proof. We will do the proof using induction on r, € [p,r].

Initial Step: For r, = p.

We set C'=b=0 and 70 = 7D = id,.. Consequently, we get gy = +oo0, 7(® and 7)) two
symplectic maps and the decomposition (Zy + P) o 7(1) = Zy + Q with @ = P Hamiltonian
(by assumption) and R = 0.

Induction Step: Assume that it is true for r,, and prove it for r, + 1.

In other words, assume that there exists non-negative constants by, (b3 ;)p<j<r depending
on (,7.) and by depending on (5,7.,7), as well as Cy, (Cs ;) p<j<r depending on (r.,s,)

and Cy depending on (74, s,7,r) such that for all N > 1, there exists g > and there

_1
C1Nb1

exists two smooth symplectic close to the identity maps 7(%) and 7(}) making the above
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diagram commute, such that (Zy + P) o 7(1) admits on Bys(z)(0,2g9) the decomposition

(Zy+P)orM =Z,+ QW 4+ ...+ QUD + R

where QU) € 77 satisfies ||QU)|| < C5,;N%. and having the first polynomials commute

with the low super-actions

j| <7 and (n) <N = {J,,QY} =0,

and the remainder term R is a smooth function on Bys(z)(0,2¢) satisfying

[V R2(u)

ns < CngQHU“z;l

Moreover, for o € {0,1} and u € Bysz)(0,27¢0), dr()(u) admits a unique continuous

extension from h=%(Z) to h=%(Z) depending continuously on u and satisfying

||dT(J)(U)||'g(h3) <2™7P  and ||d7'(")(u)||‘g(h-s) < QmP,

Now, we prove this result for r, + 1 and we we distinguish between the terms associated
to r, and the ones associated to r, + 1 by a symbol #. First, we will state and prove two

lemmas.

Lemma 5.1.3. We can decompose

QU =L+U

where L,U € 7€ and U commutes with the low super-actions.
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Proof. We write

Tv) _ (re)o, o o
Q( *) — Z Qn * unll.un:’:
oe{-1,+1}"*
nez"*

= Y LU

oe{-1,+1}"*
neZ"™
=L+U
(o) ¢ Kw(n,o) <N, 0 if Ky(n,0) <N,
with L9 = and U7 =

%m),cr

0 otherwise otherwise.

Obviously, L and U € s"+. Now, we check that U commutes with .J,,. For instance,

for (m) < N and u € h®, we apply Lemma 4.2.1 and we get

{(Jn UYw) ={ Y |uf, Y Ugug-ul}

n=Wm O'E{—1,+].}r*
nez"*
_ 2 o,,01 Or
= {Z ﬂwn:wm|un| ) Z U unl'“unri}
nez oe{-1,+1}"*
nez"

. g
=2i ), (o1 Luy, w0 Ly, )UTUT

n “ni
oe{-1,+1}"*
nez"™*
. Ory
= Z Z ok | Uy upt - tn,:
oe{-1,+1}7* | k=1~
’N,GZT* wnk:wm

Notice that

o If U7 # 0, then by definition of U, we know that r,(o,n) > N. But (m) < N <
Kw(o,n), so (m) < k,(o,n) which is a defined minimum. Hence, we cannot have

> o0p#0. Thus Y o0,=0.

Wnp =Wm Wny, =Wm

o If ¥ o0,#0,then r,(o,n) < (m) < N. Hence, U7 =0 again by definition of U.

Wny, =Wm
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We deduce that either Y. o0y, =0 or UZ = 0. Therefore, {J,,,U}(u) = 0. |

Wny =Wm

Lemma 5.1.4. Recall L from the Lemma 5.1.3 and let x € ™ be the Hamiltonian

Ly if kw(o,n) <N,

i(01Wny ++0r, Wy, )

g

Xn =
0 otherwise.

Then, x has the bound

x| < 7;*1037“]\/5”%3“

and satisfies the Homological Equation given by

{x,Z2}+L=0. (5.5)

Proof. First, note that for r,,(n,0) < N we have due to the strong non-resonance condition

O1Wp, + -+ Or, Wn,., 2 /Yr*’iw(o-a n)_ﬁ” 2 ’VT*N_BT* # 0.

So, x is well-defined and satisfies

%
IxIl= sup  xal T T{ny)
oe{=1,+1}" =1
nezZ"*
LO’ %
= sup - - (n;)
oe{-1,+1}7* Z(Ulwnl toeee O-T*wnr*) j=1
nez"*
L7
< sup @ ——— n;
ge{-1,+1}"* ’YT*N_BT* E< J>
nez"*
=7 NP IL]]
< NP
< NP Gy NP3 by induction hypothesis
= 7;*103,7“* N/BT* +b3, 1, .
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Next, to prove that it satisfies 5.5, we consider two cases.

e Case 1: Ky(o,n) > N. It is obvious to see that

{x,Z2}+L={0,Z}+ L =0.

e Case 2: Ky(0o,n) < N. Using Lemma 4.3 we obtain

{X7 ZQ} +L
_ Lg o1 Ory Z LG’ o1 Ory
— - U’nl.“unr*7 2 + Z nunl...unr*
oe{-1,+1}"* Z(Ulwnl tot Op, Wy, ) oe{-1,+1}"*
nez"* neZr*
y e o
3 _% (O1wp, ++ + Or,Wn,, )L Tl 4 Louot el
2 ( ot ) o mm
oe{-1,+1}+ NO1Wn, Or, Wn,., oe{-1,+1}"*
nez™* neZr*
_ 0,,01,, .., 0,01, .09
- Z Lnum Un,, + Z Lnunl Un,,
oe{-1,+1}"* oe{-1,+1}"*
nez"* nez"*
=0. u

After that, will deal with the existence of the new variables. By Proposition 5.1.1, we

get g1 = (K||x|])"/(+=2) and a smooth map

qu : [—1, 1] X Bhs(Z)(Oagl) - hS(Z)

(t,u) = ¢ (u),

such that it satisfies the following:

1. solves the equation —i0;¢, = (Vx) © ¢y,

2. Vte[-1,1], ¢ is close to the identity: Yu € Bys(zy(0,¢1),

re—1

we Xl =

w7l

1
5 llu

w I < K lu -
€1

hS

hs

hs ST,S ||’LL

193 (u) —u
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2

(Mullns )T
= Ju
€1

3. Vte[-1,1], ¢ is intertible: ||¢? (u)

hs (5.6)

he <€1 = ¢ o Pl (u) =u,
4. ¥ te[-1,1], ¢! is symplectic,

5. its differential admits a unique continuous extension from h=*(Z) into h=5(Z).

Moreover, the map u € Bys(zy(0,€1) = d@t (u) € £ (h*(Z)) is continuous and we have

VUEBhs(Z)(O,El),VUE {—1,+1}, ||d¢§<(u)||$(hfrs) S2 (57)
Notice that
T + T 6
(K”XH) 1/(r«—2) > (K’}/,,:Cg r*NﬁT* bs, m) 1/(r«-2) > O#Nb# = 68# (5_8)

where Cf = 6max(C,, (K7;1Cs,,)Y/r+=2,1) and b¥ = max(b,, BT*”'S =37 ) After that, define
7';51) = ogbl on Bys(0,2¢7) and 7'(0) = ¢ o7 on By (0,¢f).

It is easy to see that the 2 maps are smooth being the composition of 2 smooth maps

and that Ti:) o Ti’?) =7Woplogilor® = 7MW or(® =idys by induction hypothesis, which

1

indicates that the diagram commutes. We are going to prove next that 7’ is indeed

close to the identity, symplectic and has a continuous extension (Similar properties and

computations apply to 7'( ))

e Close to the identity: Let u € Bys(0,2e7). We need to prove that

-2
1 o '
I =l s( 2o ) s
0
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We have the following:

17 =l = (|70 0 @1 () = s
= Ir ™ o ¢l (u) - ¢L(w) + ¢ (u) - ullps
<|lTM 0 gL (u) = oL (w)|lns + |6k () = e

For the first term, ||¢}(w)||ns < 2|Jullns < 2(2¢7) < 2(6¥) < 2¢¢ by definition of .

Thus, applying 5.3, we get

7 0 ¢} (u) - ¢} (u

(B 2

<2 Il p2||u < 2 (Il P2”u
6e # h -3 2¢ #

s < 255/7é < 653’E <¢e7 by 5.8. Thus, applying 5.6, we get
re—2 ||u T%—2
hs hs
for (o)l < (1) e < (L)

A lulln |
hs hs
= —_— s < —
31”*—2 ( 25# ) ||u hs = 3 ( 2 # ) ||u

Therefore, using 5.9 and 5.10, we get
-2 =2
“U hs P 1 “U hs
< s+ —
e <5 (B ) w55 )

e re—2>p-2

e (5.9)

For the second term, |ju

o (5.10)

IS -

e Symplectic: Let u € Bys(0,2¢f) and v, w € h*(Z). Then,
(idriD (u) (v), driP (u) (w))e
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= (id(t™ 0 g3 ) (u) (v), d(T 0 6} ) (u) (w))ee
= (i((dr™) o o1 )dey (u) (v), ((d7V) 0 6})d) (u) (w))ee
= (idepy (u) (v), doy (u) (w) )2 since 7 is symplectic

= (v, w)pe since ¢} is symplectic.

e Continuous extension: The existence of the continuous extension of d¢! and dr®

ensures the existence of such extension for dT;gél). We are left with proving that
1 ol
7D ()| oy < 2741,

For u € By,s(0,2¢7), we have |Jul[ps < 2e < &; and

a8 () |z aesy = d(TD 0 61) (W)l ghosy
= [[((dr D) 0 L) (w))dL ()] 2 (hoey
<[[(drD) 0 ¢L(u) ||z pes)|[dbL ()] 2 (reey

<2|(dr ™) 0 ¢ (u)|| z(nes) by 5.7

< lmep, by induction hypothesis

Our goal now is to decompose (Z + P) o 7';1). Let u € By(0,2¢]). By definition, we have

(Zy+ P)or) = (Zy+ P)orWog!

= (Zy+Q® + + QU V4 R)o gb)l( by induction hypothesis

r—1
:Z20¢§<+ ZQ(j) o¢i+Ro¢)1<,
Jj=p
Applying Lemma 5.1.1 with ¢t = 1, we get

(Zy+ P)o 7'72:)
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My, +1

1 1 1 N
:ZQ+{X7ZQ}+ Z E{X’ZQIC_I}+/ szmmﬁogbi((l_t)m” 1dt

k=2

+TZ_: [Q(J) 4 Z {X Q(J)} / Q,(qij)ﬂoqzﬁt(l £yms dt] +Ro¢§<

My 1 _ t)m7-*+1
7 dk?+IZ (—
Ze+ {22} Z(k AN 22T o Tm, 1 1)

=1 Y . L(1=¢)my :
+ ) [Q(J) + > —@di@m + / 4%;”1“@(3) o ¢, dt] +Ro ¢}
= i k! 0 m;!

adl™*?Zy 0 ¢l dt

where m; is the smallest integer such that j +m;(r. —2) <. From equation 5.5 we have

{x,Zy} + L =0, then

dIHlZZ {X7 {Xa {X> Z2}}} = {Xa {Xv ) _L}} == {X7 {X?"'? {Xa L}}} = _adiL'

k+1 times k times

Similarly, we get

ad;lr* +2Z2 = —ad;%* L.

So, we write

(Zy+ P)oTy!)

My 1 (1 _ t)mT*H

k Moy 1
=Zy+{x,Zy} - Z N 1)‘ ady L - ; (mT 1)1 ady™ "' Lo ¢! dt

Z[Q<ﬂ>+z ade<J>+f a-nm ©ad™QW o gt dt] + Ro ¢}

J=p

r—1m;
—Z2+ZQ(J)+Q(”)+{X,ZQ}+ Z Q(J)Jrzz-adk (3)—2 L ad®L
J=r«+1 J=p k= 1 =1 (k: 1)' X
1—¢t)mr N 1—t (R, )
+Rog - | ((m‘r )_1> ady Lo g d“Zf o o AR e g

Using the induction hypothesis and Proposition 4.2.1, it is easy to see that

e QU) is of order j,

e {x,Zy} is of order r,,
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o adch(j) is of order j + k(r, —=2) >r,,

o adch is of order 7, + k(1. —2) > 7r,4.

As a result, re-ordering the sums, it would make sense to set:

QW for j <r,,
Q;z) = 1QU) + {x, 2o} for j =r,,
QU) + Zk %adii@(j*) - % (,Hl),adkL forr.<j<r
etk 2)=j rotk(re—2)=j

and

- Po _ (1 t)mr* My, +1 t (1_t) mi+1 () o At
R#‘R@‘f((mml)d boon Z e ¢)

Note that for j < r,, Q(] ) commutes with the low super-actions by induction hypothesis,

and Qi;* = QU +{x, Zy} = QU+~ L = U also commutes with .J,, by Lemma 5.1.3. Hence,
jl<r.+1 and (n) <N = {J,,Q{}=0.

Moreover, by construction we have Q;Z) e A7 for p < j <r satisfying the following needed

bounds: For j <r,, we easily have by induction hypothesis
QP < 1QV < Ch N,
For 7 > r,, we notice that

lladt QU 5. . 5 IIXIIFIQU-)

< m,J*,J(”YrICST*NﬁTﬁbST*) (C J*Nbgj*) (5-11)

by 4.5

! k k T b TR b %
<KT*:]*7371" (CST*) 037]*N (Bry +b3,r, ) +bs,; )
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Since adch(“) and adf(L enjoy the same estimate, then we deduce that

. 1 .
Q<2 32 glladiQ)
Jerk(ra-2)=j

#
<C¥ N

where CJ, =2 ¥ LK. 5 770 (Csp)oCsy, and bY = max  (k(B,, +bsy,)+bsj,)-
gk Jutk(re-2)=j
Jutk(re=2)=j

Finally, we are left with proving the estimate of the remainder Ry. For this fix u €

Bys (0, 25#) and we start by checking that V(R o ¢})(u) € h*. By composition, we have

V(R o ¢y)(u) = (dy (u))*(VR) © ¢y (u).

We know that d¢) (u) admits a continuous extension from h~% to h=* with ||d¢} (u)|] -5y <
2, then (A6 ()" s h* — h* with [(dL(u))" L1 = 0% ()l r-ry < 2. Moreover, (TR)o
¢X(u) € h* by induction hypothesis, so (d¢}(u))*(VR) o ¢} (u) € h* and we get

IV (R o ¢y) (W)l = [[(dey (u))*(VR) o ¢y (w)]|ns
< [|(déy (W) *|lzne) IV R) 0 by ()]s
<2|(VR) o gy ()]s
<20, N || (u)[5:" since || (u)|[ne < 22
< 227 1Oy N2 |||t since [|¢y (w)]|ns < 2||ullps

= 27Oy NP2 |15

Now for the terms of Ry inside the integral. Using same arguments as above, we have for

p<j<r—1andte[0,1]

1V (ady " QW) 0 ¢ ) (u)

ne < 2]V (ady " QW) 0 6 (u)

hs
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where ad""' QW) is a smooth function belonging to /"5 where r; = j + (m; + 1)(r. - 2).

Thus, applying Proposition 4.1.1, we get

1V (ad? " QD) o ¢ (u)
< M, |18t (w2 lad?o ' QW)

<My Ky, (07 Ca NP0 Y1t (O s NP3 ) |68 (u)

hs

i by 5.11

-m;—1 . . . i—1
= My Kyl (Cl, )79 O g N Oretbsr Jomat)3bas |8 ()12

where M, depends on (r;,s). Consequently, we can write

1V (ady " QW) 0 ¢ ) (u)

< QMijm,j,rj’Y;:nj_l(Czs,m)ijC&jN(ﬁ”+b3‘7'*)(mj+1)+b3’j||¢§<(u)

hS

rj—l
hs

ri=1

—m.—1 . . o L
S 2M7’j KT*,j,ijYT’ZnJ (03,1"* )mj+1037jN(BT* +b3,r*)(m1+1)+b5,] 2TJ 1Hu hs

r—1
hs
r—1
hs

—ma— 1|
= 9T M’I‘j Kr*,j,r]-'meJ 1(0377‘* )mj+1037jN(67'* +b3,r, ) (my+1)+b3,; ||u||;;]s 1 H

r—1

= 29 My Koy, i e (Clg e, ) Cly N Bretbsr Ymsee) b J577 g1

2
# Arb
CENG

Tj—

Recall that [|ulns < 2¢7 = " <21, Therefore, we get

IN

<2 = |ju

2
b1
N#

1V (ady” " QW 0 ¢ ) ()1

< TMy Ky e (G, )57l N Bre#b,n ) (om0 1
= 2 My Kl (Cl )T Gy g Nretbr)Omss Dby it (5.12)
=Aj
Similarly, since L € 57, we get
IV (ady" " Lo ¢ ) (u)]lns
<P MK ™ (Gl ) Gl g, N et D0 D sy 11 (5.13)

=A
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with 7 == r, + (m,, + 1)(r. — 2). Next, using 5.12, 5.13 and the fact that the 2 functions
are smooth, we are able to interchange the gradient and the integral by applying Leibniz

integral rule. Hence, putting the results back together, we establish

|V Ry ()]s

= HV(RO¢>1<)(U) +V/O‘1(((1n;t—)+7m1*)+!l(ad;nm+lljo¢;)(u)
r—1 (1 t)

i myl

:||V(Ro¢i)(u)+f (%V(adm”“hﬁbt)(u)

V(ad( QW 0 ¢) (U)) |

! 1 My, +1 t
h5+‘/0\ (HmV(&dx LO¢X)
-1
UL mitl () o 4t
+ j;m—j!v(adx QW e g )(w)|| |t

S (ady QW o )(u)) |

r— 1(1 t)m

i myl

<[[V(Ro¢y)(u)

< 2" Cy N2

ullpst

Ly fl ;A , N (Bra+b3,70) (Mo +1)+b3,7
o \(m,, +1)I""

+ Z —A N Bretbsra ) (my+D)wbag ||y | |72 1) dt

J=p ]

Noticing that the bounds of ||v(ady™* "' Q) o ¢t )(u)||ps and ||V (ady™**'L o ¢ )(u)||ss

coincide (r; =’ when j =r,), we can see that

b A NGt ones )t Z R (U
(my, +1)! i=» !
Finally, we get
r—1 1
1V R () | < 27" Co N[5 + 2 Z _'AjN(ﬁr*+b3,r*)(mj+1)+b3,j||u||2;1

g=p ""%3*

<CFNY

where we set C = 27C, + 2 Z A and b = max (by, (B, + b3, )(m; +1) +bs;). O
p<j<r-1 ’ J J
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5.2 Dynamical Corollary

Lemma 5.2.1. Consider u € CP(R;h*) n CY(R; h=*), v(t) := 7O (u(t)) and LO(u) the

continuous extension of dr(O(u) to L (h=*). Then v is time differentiable in h™* with
o (t) = LO(u(t)) (Qyu(t)).

Proof. Notice that u € C'(R;h~*) and 7(9 is not defined a priori on k5. For this, we
extend d7O(u) : h* - h* to LOO(u) : h=* - h~* using Theorem 5.1.2. Now, we start by

proving time differentiability of v. Fix ¢ € R, and consider h € (=1,1) ~ 0. Then we write

ot +h) —o(t)  TO@E+h)) —TOW®) [ w(t +h) = u(t)
h - h - fo Y d”( h )

with w, ;. = vu(t+h) + (1 - v)u(t). So,

” M - 1O () @),

|| [ 2O ) (“(t - “(t)) - LOw() @u(0)]|

Next, add and subtract [y L(O) (u,,; ) dv(du(t)), to get

|| WLZL—W) - 1O () @u()|

D i~ 8]

u(t+h) —u(t 1
< ( ])l (1) _8'*“(75)";175 ./0 ||L(0)(Uu,t,h)||,s,ﬂ(h—s)dl/

1
o [ IO ) = LO@E |2y do

< 2r—p||u(t + h})L —u(t) 3t“(t)‘|h_s by 5.4

h—s

+ [[0u(®)]

1
+\|3tU(t)Hh-5f0 1L () = L (u(t))|| 2 (o) .
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e For the first term, since u € C'(R; h~%), then }LH% M = Jyu(t) in h~s. Hence

Hu(t +h) —u(t)
h

- 8tu(t)”h75 — 0.
e Now for the second term. We have that u e C?(RR; h*), so
Uprn =vu(t+h)+(1-v)u(t) — vu(t) + u(t) —vu(t) = u(t).
Thus, since L is continuous, we have
LO(uy1) — LO(u(t)) 0 L)
Finally, by the dominated convergence theorem, we conclude that

1
L9 n) = LO@E |y dv 0.

Consequently, v is time derivable with d,v(t) = L (u(t))(0u(t)) as needed. O

Lemma 5.2.2. Given u € Bys(0,2¢), we have that
LO =4((drM) o 7(0)*

where ((dTM) o 70 (u))* € £ (h~5) denotes the adjoint of (dr™M) o 70 (u).

Proof. First, T would like to mention that since dr(") o 7O (y) : h® - h® is a linear
operator, then by Definition 2.2.5 its adjoint is defined as (d7() o 7O (u))* : =5 - h~s
with h~* being the dual space of h*. Now, let y, v, w € h*. Because 7(!) is symplectic (recall

Definition 2.2.6), we have

(@D () i(drD) (9) (v), w) = (i(dr D) (y) (v), drD () (w)) = {iv, w)
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= (dr(y))"i(drV)(y) = i (5.14)

which is true for all y, in particular for y = 7(°). Now since the diagram in Theorem 5.1.2

commutes, we have 7(1) o 7(9) = id,s and consequently we obtain
d(7D o 7MY = d(idps) = idps == ((d7D) 0 7)dr® = id,,.. (5.15)
Finally, multiply by d7(®) both sides of equation 5.14 to get

i(dr®) = (drW o 7O) i ((drM) 0 7)) r(©)
= (dr ™ o 7O)*i(idys) by 5.15

= (dr® o 7(0)*4,

Using the fact that d7(® € Z(h®) c £ (h*;h~*) and that h* is dense in h~5, we extend the

last equation from Z(h*;h=%) to £ (h=%;h=*) and we write
LO = (dr®™ o 7(0)*, O

Lemma 5.2.3. Let u € C1(R;h™%) and assume that the frequencies wy are coercive (i.e.

|wi| > o0 as |k| > o). Then J,, is a smooth function on h=s.

Proof. Fix n. Since the frequencies are coercive, then by definition
VM >0, AN such that V|k| > N, |wy| > M.

In particular, for M := |w,|+ 1. Consequently, we can only have a finite number of k’s

satisfying wy = w,. Moreover, |ug|” is smooth on h=5, so J,(u) = ¥ |ug|* is a finite sum
K

Wp=Wn

of smooth functions on A=%. Thus it is itself a smooth function on h=5. O]
Theorem 5.2.4. (Key Result) Let s >0 and r > p > 3. With the same assumptions and
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notations as in Theorem 5.1.2, along with an arbitrary constant £1 >0, if u € CP(R; h*) N

CY(R; h=*) is a global solution of

i0pu(t) = VZy(u(t)) + VP(u(t)) (5.16)

where u satisfies: Vt € R, ||u(t)

ns < €1 and the frequencies are coercive, then
[t <" = [Ja(u(®)) = Ju(u(0))] < M(n)'e]
with the constants M and b depending on (r,s,7) and (5,r) respectively.

Proof. First notice that if e; > - with C' defined in Theorem 5.1.2, then

C()

[ Ja(u(®)) = Jo(u(O)] = | 2 Jux®F = 3 [ue(O)f

WE=Wn, WE=Wn,

< S u@P+ Y u(0)

Wg=Wn, W =Wn,

< Y lun(OF + Y [ui(0)

keZ keZ
= ()l + lu(0)I[7

<Jlu(®)lzs + w05

< 2t

-2
Also, we have 2(C(n)?)P-2e? = 2(C(n)b)P-20"%2 > 2¢2 (C’(n)b)p*Q( L b)p = 2¢2.
Hence we get

[ (u(t)) = Ju(u(0))] < 2(C(n)* )72,

and we obtain the estimate for b := b(p—2) and M := 2CP=2. For this, we focus on the case

where ¢, < < Tt and we set N = (n). By Theorem 5.1.2, we have

1

1
s<&1<—=—+=—=—=¢<
RS Oy T OND ST

vteR, |ju(t)

20



So, looking at 5.3, it would make sense to consider v(t) = 7(9(u(t)). Now, since u is a

global solution of 5.16, then setting H = Z5 + P we get

O (t) = LO (u(t)) (Omu(t)) by Lemma 5.2.1
= LO(u(t)) (=i H (u(1)))
= =L (u(t)) ((VH (u(1)))
= —i((dr D) o 7Oy () (VH (u(t))) by Lemma 5.2.2

= —i(dr D (v(t)))* (VH (u(t))).

Remark that 7() o 70 (u(t)) = u(t) = 7MW (v(t)) = u(t). So replacing u(t) and using

composition we get

Ou(t) = =i(dr M (v(1)))* ((VH) o 7u(t))

- iV (H o 7D)(u(2)).
Furthermore, using the decomposition of H o 7(1), we have

i0p(t) =V(Z2 +Q + R)(v(t))

= VZ:(u(t)) + VQ(u(t)) + VR(v(t)). (5.17)

Next, we aim at estimating 0;.J,(v(t)) in order to apply the Mean Value Inequality. We
already proved that .J, is a smooth function on A~ (Lemma 5.2.3), this implies that its
gradient is an element of h=(=%) = hs. Furthermore, since d,v € h™* their scalar product is

defined.

0T (0(1)) = (o ()
= (VJn(v(t)), 0rv(t))

= (iVJ,(v(t)),10(t) )
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= (iVJn(v(t)), V(Za + Q + R)(v(t)))r by (5.17)
={Jn, Zo+Q + R}(v(t))

= ({Jn; Zo} + {0, Q} + {0, RY) (0(2)).
From Theorem 5.1.2, we have that {.J,,,Q} = 0. Moreover, we have

{Jns Zo}(0(t)) =4 Y RiOsJn(v(t)) 05z Zo(v(t))] by definition

WE=Wn

=2 Y Rlivwgvg)

Wp=Wn

=2 Z ka[Z|’Uk|2]

Wp=Wn

=0.
Therefore we obtain

10 S (v(t))] = {Jn, R} (0(2))]
=[(ivJn(v(t)), VR(v(?)))e]
< ||V (v(ED2l|[VR(v ()| by Cauchy Schwartz

< (19T (o)) e[V R0 (1)) -

Recalling that ||u(t)||ss < €1 and using the fact that

[o@)llas = 17 (u(®)) = u(t) + u()ns

< fu()l[ns + 17 (u(®)) = w(t)lln

w(t)||ps \°
<l + (L) ey by 5.3
< 2||u(?)||n: since ||u(t)][ns < €0
< 251,
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we can see that

o [[VJu(v(?))

WE=Wn

<4 T (B2 fonf? = Allo(D)]2. < 1622,
keZ

o [[VR(v(t))llne < CN[u(t)

PP < CON(2e )t = 2010 (n)ber L.

Putting the estimates back in equation 5.18, we obtain

0, T, (v(t))| < 277140 (n)be]
=271 C(n) et

= M#(n)’e}
where M# := 2"*1C. Now, we apply Theorem 2.2.5 on [0,¢], and we deduce that

AT EPACOND
<207 — R < 0 (o(1)

2= S RHTI@OD = 3 (kP20 ((O) =4 S (k1 fuuf

= [ (0(t)) = Ju(0(0))] < [t]10: T (0(2))] < 7P M# (n)’et = M#(n)’eh.

In order to conclude, we need to get this result for u(t). So, since for all ¢ we have

)l \7 2
o)~ e < () ey by 5.3
0
_ 1
=@’ =
—_—— €o
<€p71 —
ot <CP~2(n)b(p-2)
< CP2(p)br-2) bt (5.19)
and since J,, is quadratic
[ Ju(0(t)) = Ju(u(@)))] < ([[o()lz + lu()lli)lult) = v (@) by Lemma 2.2.6

< ([lo(?)

ne =+ [lu(?)

he)

u(t) —v(t)

hs
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< (261 +,)CP 2 (n)P2D by 5.19

= 3CP~2(n)bP-2P,

we finally deduce that

[ Jn(u(t)) = Jn(u(0))] = [Jn(u()) = Jn(u(0)) = Jn(v(t)) + Jn(v(t)) = Ju(v(0)) + Ju(v(0))]

< |Jn(0()) = Jn(0(0))[ +[Jn(0()) = Jn(u(@))] +[Jn(v(0)) = Ju(u(0))]

<M#(n)bel <3CP2(n)b(p-2)el <3CP2(n)b(p-2el
< M(n)bel
where we obtained the needed result for M := M# + 6CP~2 and ) := b(p — 2). O
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Chapter 6

Applications to the Beam Equation

In this chapter we are interested in applying the above results to the beam equation

defined on the 1-dimensional torus in the introduction. Recall

8ttw + axxx:cw + m’QD + p¢p71 = 0
¢(0>5U) = 2/}0 (61)
thp(oax) = _wl

where ¥ = ¢ (t,z) € R with x € T, the mass m > 0 is a parameter, (¢, 1) € H**1(T;R) x

Hs1(T;R) having small size € and p > 3.

6.1 Hamiltonian Formalism

We start by identifying the Hamiltonian structure of the beam equation.

First, it is easy to check that for s € R the following map is an isometry:

F . HY(T) > h*(Z)
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u > (@(k))kez-

Thus H*(T) = h*(Z), and we write u(x) = 3 up(t)er(x) where uy denotes the Fourier
keZ
coefficients of u. Now, we let

Q=(0r+m)'/?

be a Fourier multiplier defined on h*(Z) by linearity as
Qu = Z ugSley,
keZ

Qe = we*™ with wy == VEk* +m.

Then the beam equation reads
Out) + % + pypP~1 = 0. (6.2)
Moreover, we introduce a variable —v = 0,20 and we rewrite equation 6.2 as:
—v=04 and 0w =Y+ pyYPL.

As a result, it is easy to see that equation 6.2 can be written in the Hamiltonian form

0 1
at = VH(%“)

with  H(1,v) f Sp2 4= (sz Yo + P da. (6.3)

Remark. As mentioned before, we will only apply the results to s = 1 which is possible

since we are always in low regularity.
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Proposition 6.1.1. We pose a complex variable
u(t,z) = L[Q”Qw - iQ’Wv], (6.4)
V2

Then (¢, 0:) € CY(R; H? x L2) is a solution of equation 6.1 if and only if u € CP(R;hl)

solves the equation

. _ p—-1
_ P ~-172 [ o-1/2 u+u))
Oyu = 1Qu + Q Q —_— . 6.5
NG ( (ﬂ (65)

Proof. Assume first that 6.1 is satisfied (similar calculations for the other direction).

Notice that

Q12 (%) =12 @Ql/%) = 1.

So replacing u by its formula, we have

. _ p-1
: W ~-1/2 [ o-1/2 U+U)) o
iQu+ ——=0 Q — =i}

1
= — Q3%+
NG (G

~

1 i
— (Y2 + i) [+ =72 pyr!
V2 (i U)] V2 Lw

-0t p—Q2

Lk b2, - g2y
V2t ove T e

|2 20— i 20, |

| —

1
2

[Qlﬂatz/; b m-l/?atv]

el

Il
5
£
L]

Proposition 6.1.2. For p > 3 the equation 6.5 can be written in the

Hamiltonian form

atU,k = ZaHiu)
auk
with
H(u)=Z,+H,
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where

Zy(w)i= Y wihal’ and  Hy(w)= [ (9-1/2(%))p dr.

keZ

Proof. Passing to Fourier with u(z) = Y u(t)er(z), we have that the beam equation is
keZ

equivalent to

O0H(u)

Owug =1
oup

H(U)ZAEQud:E+A(Q‘1/2 (%))p dx.

To see this, we apply a change of variable to equation 6.3 to get

O R [ R e

Then, expanding and using the fact that €2 is self-adjoint, we get the equation in terms

with

on u and u. Now, we write

fTﬂQudas:fT(Zu_ke_k)(QZukek)dx

keZ keZ

= /(Z Tpe—r) () wpQey) du by linearity of
T kez keZ

= Z UR WY, f Zu_ke_kek dx since ey = wyep
keZ T kez

= Z UpW Zu_kae—kek dx

keZ keZ
—_———
=1

= Zwk|uk|2.

keZ

After this, define

oo ()

Hence, we get the needed result. O]
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Our goal now is to identify H, with a formal Hamiltonian:

Proposition 6.1.3. Let H, be defined as in Proposition 6.1.2. Then H, € J€P.

Proof. We have

—\\P
Hy(u) = fT Q12 (%)) dx
Y uker + Y ke \\"

- O-1/2 keZ keZ de
./T V2
/2, \P

-1/2 -1
> UpW, / e+ 2 Upw, ey

_ f keZ keZ dr
T V2

p
B 1 UL€Er + Ure_},
- w'[T Z 1/2 ) dx

keZ wy,

1 ugey
= /2 fT Z 1/2 dx

oe{-1,+1}
g1 01 Op Op
= L/ uklekl kp “kp d
2 1/2 1/2
2RI i wy! e w,
ore{-1,+1} ope{-1,+1} P
1 1
— o1 Ip o1 Ip
"~ op/2 172 12 Yk “kp/Tekl ey, dx
kiekpel W Wy

o1,,0pe{-1,+1}

where

1 if oyky + -+ 0,k, =0,
€7t dx =
ki Ck,

0 otherwise.

Consequently we get that

1 1 o 0
— 1 2
Hy(u) op/2 Z 172 172 kU,
k17...7]€p€Z wkl wk
o1, 0pe{—1,+1} P
ork1++opkp=0

1
Ly g
P/EEk k
2012 keZZP b
oe{-1,+1}P
o1k1++opkp=0
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with (H,)7 = #wgp---w;ﬂ, satisfying the bound:

- Ly Zip a2
()] = e, i
1 4 -1/4 4 -1/4

Zw(kl +TTL) (kp+m) .

Furthermore, using direct calculation, we prove that

(K2 +m)/2

CEDE

(K2 +m)1/2

. Hence, we conclude that there exists a constant C), such that
o >2 -1/2 2 ~1/2
|(Hp)il < Congpp (k1 + 1) (K, + 1)
p
= Cm H(k’j>_1
j=1

and [|Hy|| $m 1. O

6.2 Strong Non-Resonance Condition

At this point, we will check that the frequencies of the defined beam equation satisfy

the needed non-resonance condition.

Lemma 6.2.1. For k € Z and m > 0, the frequencies wy = vVm+ k* are strongly non-

resonant.

Proof. Consider the frequencies w), = Vm +n? of the Klein-Gordan equation. In his
paper, [Bambusi, 2003] proves that these frequencies satisfy the assumption 3.1. Hence,
the result remains true for subsequences (ny)rez. In particular, for ny := k?, we get that
w! = m+k* = wy, satisfy the assumption. It remains to prove that the frequencies

Nk
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accumulate polynomially fast on Z. We have

m

J/ 1,12
_( ,—m+k‘4—k2)x m+ki+k _ m < m -
Vm+kt+ k2 Vm+kte k2 VR k2 2k

lwy, - k2| = ‘m_ K
>0

Thus, applying Proposition 3.1.1, we obtain the desired result. ]

6.3 Gobal Well-posedness

Our main goal in this section is to prove the global well-posedness of solutions to

8H (u)

duy

Oy =1 with initial data u(0,z) = ug. For this favor, we introduce

nk(t) = e rtuy(t).

Lemma 6.3.1. We have that

Oyuy, = i%5) i=X(t,n)
ue CP(R;h') is a solution of < neCY(R;h') is a solution of
u(0, ) =up n(0) =m0

with X (t,n) is to be determined.

8H (u)

Proof. Since 1 (t) = e~ uy, (1) and u is a solution of dyuy, = 1=57—, then
1k (1) = —iwpe™F g (1) + ek Oy (1)
. o OH
= —jwge "y (t) + e‘““’“ti—ﬁu)
Ouk
= —iwge "l (t) + ie‘iwktﬁu_k[ Z wn|un|2 + Hp] by Proposition 6.2.2
nez

= —iwge "ty (t) + ie " Oy, ( > wn|un|2)
nez
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, 1 1
- —twgt G 0 1...,,0P
+ 1€ ouy, o) Z a1z U Uny by 6.6
2
Ny, ,Np€l Wpy - np
o1, ,0pe{—1,+1}
o1ni+-+opnp=0

= —jwpe” Wkl (t) + dwpe” Ykt uy (t)

1 : 1
_ 7 —twygt S o1,,.,,°P
+2p/26 1/2 1/2 uk(unl unp)
nl:"':npez ny " Wn,
o1, ,0pe{-1,+1}
o1ni+-+opnp=0
— Zp —twt 1 ual...uJIFl
9p/2 1/2 1/2  1/2 "mi TMp-lv
nezZpPt ny T Wny, 1 Wi

oe{-1,+1}P1
o1n1+-+op_1np-1=k

Finally, replace 1 (t)e"s = ux(t) in order to obtain

Zp e—i’wkt 1

U(t) B ﬁ w1/2 ;—1 ﬂ(nmeiwnlt)al"'(nnp—leiwnpflt)ap_l : O
cefoiayt

01n1+-~~+0p_1np_1=k

X (tm)

Proposition 6.3.1. ForteR, X(¢,.) : h! = h' is locally Lipschitz with respect to 1.

Proof. Let R >0 and assume that 7,1’ € B,1(0, R). We have to prove that for all ¢, there

exists Cr > 0 such that || X (¢,n) = X(¢,7")||s1 < Cgl|ln = n'||n. For this, we write

X (t,n) - X&)%

2 e_iwkt p 1 ; t LW t
- = - 1Wnq Jg1,.. my,_1 Or—1
S —man XN g (e ) )
€ p— e
k nez n1 Np-1
oe{-1,+1}P1 !
01n1+-~-+ap,1np,1=k:
2
e_iwkt p 1 / ] t ! W t
R - W g1,.. Ny Op-1
1/2 9p/2 D 7212 (17, €1 5) (1, €71 0)
wk nezp~1 Wny Np-1
oe{-1,+1}P"1
U1n1+-~~+0'p71np71=k
2
2l P o1 Op-1 101 10p-1\ —iwgt i(Wn, o1+ wWn__,0p-1)t
S Z<k> 2[)/2 Z (nnl.”/r’npfl _77 nl'"n np_l)e € ! p-17P
keZ nezp-1
oe{-1,+1}P1

o1+ +0p_1np-1=k
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2
p 2 o1 Op-1 101 10p-1
o K D R R S e
keZ nezp-1
oe{-1,+1}p1
ogini +~~~+ap,1np,1:k

Using the fact that Y. a(j1)b(j2) = ¥ a(j3)b(k - js) = a = b(k), we write
ja€Z

Ji+je=k Jja€

2
X (£m) = X ()2 < g o s =/ 5|2,
op
————— e

p—1 terms p—1 terms
2
p
= el (=) s (=) gy ek (g =)

P? _ _ . .
< glln A TR | P e e PR | i e

[Illy, 111l <R
<Cgrlln=n'lln- (6.7)
Hence, X is locally Lipschitz and continuous with respect to the second variable. O

Proposition 6.3.2. Fiz T >0 small enough depending only on ||no||n1. Then there exists

a unique local solution

Oy = 1211
uwe C([0,T];hY) nCH([0,T); A7) to the equation
u(0, ) = up.

Proof. Using Lemma 6.3.1, it is sufficient to prove that 7 = X (¢,7) admits a local solution

on CP([0,T];h'). It is not difficult to see that n must satisfy

n(t) =no + '/OtX(s,n(s)) ds Vt e [0,T]. (6.8)

In other words, we define

Br:={® e C)([0,T];h") : |®llcoqm) < K}« C([0,T]: 1Y)
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with K a constant to be determined, and we seek a ® being the fixed point of the mapping

FZBT—>BT

B(t) > T(D)(F) = 1o + fotX(s, B(s)) ds.

In order to apply the Banach Fixed Point Theorem, we will prove that I'(®)(t) is a

contraction on Br. First, let’s check that I' is well-defined. Given ®(t) € Br, we have

X, 2(E)) | < [[X(E, () = X (£, 0) [ + [IX (£, 0)]|n»
< Crl|@@@)nr + [[X (2, 0)] ]2 by 6.7
< Ckl|®(®)lcocnry + [ X (2, 0)]|m
<COrK +||X(t,0)]|m

=CkgK by definition of X (¢,7).

Thus, we can write

t
IN@)lleogy <lhmolls + sup || [~ X (s, 0(5))ds]|
te[0,T] 0 h
t
< |Inollnr + sup f ||X(s,q)(s))H ds
te[0,7] <0 h

t
< Inolln + sup CkK ds
te[0,7] <0

= |[no||nr + sup Cx Kt
te[0,T']

< HT]()th + CKKT

<K

where we chose K = 2||no||» and T' < ﬁ So, I'(®) € By. Now we prove the contraction

estimate. Let ®,®’ € By, then

[T(®) () =T () ()l = S, (@) () = T(D") ()l
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= sup]H/O X(s,@(s))ds—‘/o X(s,9'(s))ds

te[0,T

hl

< sup ; t |1 X (s,@(s)) - X(s,D'(8))]|n ds

te[0,T]

t
< sup ; Ckl|®(s) = ®'(s)]|n ds by 6.7

te[0,T]

<TCk sup ||®(s) - D'(s)|[m
s€[0,T]

= TCk||®(s) = @'(s)lcon)

]' !
< 5“‘1’(5) - ®'(s)||conry-

where % < 1 leading to a contraction. Next, since Br is a closed subset of a Banach space
then it is Banach. Applying Theorem 2.2.7, T'(®) admits a unique fixed point ® € Br
and consequently in CP([0,T];h'). Hence, due to uniqueness, we get n € CP([0,T]; k')

0= X(tmn)
satisfying . To conclude, it is easy to check that e C*([0,T];h7!) using

n(0) =m0
6.8. Indeed, using the fundamental theorem of calculus, we get that n is differentiable

with a continuous derivative. O

In what follows, we give two results needed to conclude the global existence. We start

with the ellipticity condition.

Lemma 6.3.2. For m >0, there exists £,, >0 and A,, > 1 such that for ¢» € H?>(T) and

ve L3(T) satisfying ||Y||gz <1 and ||[{|| g2 +||v||L2 < €m, we have
AL (Ml + Nlollz2)* < H(,0) < A (I llz + [vllz2)*.

Proof. Using Sobolev inequality, there exists a universal constant C' such that ||[{)||p- <

Cl[¥||gz2. So, we get
fT [ do < 2|7 < 27 CPlI[G < 27 CPl3) [ < 20CP (]2 + [0]l72)
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<2mCP (|l + [[ol|2)*.

Consequently, by 6.3 we can see that

()= [ 507+ 5(O%)0 4y dr
= [ 507 5 Oraeat)o + B w0 do
f—v + = (&crw)2 dex+fT1ppdx
SfT%QF+max(§,5)((8mzp)2+z/12)dx+fTwpdx
1
< max(5, 5 ) (ollee + 11oll2)? + 270G (e + [[o]2)?

1
- (maux(5. ) + 277 (el + ol

On the other hand, we similiarly have

H(w,v)=A%v%%(%w)%%w%“ﬁwd:p
2fT%UQ+min(%,%)((8$$¢)2+@/)2)dx+/q;1/zpd:v
1
> min(y, %)(HUHB + [[llr2)? = 20 CP (|l + [[v]]2)?

1
- (min(. ) - 20C7) (0l + ol12)*

Thus, it would be sufficient to choose a A,, > 1 satisfying the needed result.

Now, we prove the energy preservation.

Proposition 6.3.3. We have that

H(y,v) = H(1o,11) VteR.
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Proof. Using the formal definition of Poisson brackets, we can see that

d

_H(wav) = (vH(wav)aat ¢

dt ):(VH(%U%XH(%U)):{H’H}=O,

where (.,.) denotes the canonical scalar product. Then, we conclude that

H(p(t, x),0(t, x)) = H(p(0,2), -03p(0,2)) = H (tho, 1h1)- H

Remark. We have done here formal calculations, however this is not trivial to justify. For

more details, see [Cazenave and Haraux, 1998] chapter 6.

Theorem 6.3.3. Let m >0 and &, be given by Lemma 6.53.2 and assume that |[tbo|| g2 +

[t1||L2 < €m. Then there exists a unique global solution to the Beam Equation 6.1 given by
(v,000) € CHR; H* x L*) n CY(R; L? x H?).

Proof. By Proposition 6.3.2, we were able to prove local existence on some time interval

[0,7"] such that T depends on |[no||n: = ||uol|ln:. Repeating the same arguments using

initial data u(T,z), we obtain existence on the interval [T,T + a;] where «; depends

on |[u(T,x)||p:. Thus, iterating this process, we can extend the existence interval to

[0,T + iai]. Notice that if ||ul|,1 approaches oo, then «; will approach 0. However, the
iz

good news is that the Hamiltonian conservation ensures the boundedness of ||u||;:. For

instance,
([0l 2 + V][ 22)? < A H (¥, 0) by Lemma 6.3.2
= A H (vo, 1) by Proposition 6.3.3
< A?n(”?/JOHH? + ||¢1||L2)2 by Lemma 6.3.2
<AnEm (6.9)
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As a result, for all £ € R we have

luallfa = > (k) unf”

keZ
2
1/2
lé g \/§w1/2

It is easy to see that % O(1) and th_ = O(1) as |k| goes to infinity. So, there

exists a constant C,, > 0 such that

||u||h1sz(<1+k2>wc4 i+ R W)

keZ

< Ch > (R owl” + okl

keZ
= Con([[W 1172 +1Iv]172)
< O[]z +[v]]22)?

< Cpu\2e2, by 6.9.

Therefore, |lul|?, is bounded. Adding the term infinitely many times, we conclude that

> «; = oo and consequently global existance. O
i=1

To conclude: Having proved all the assumptions, apply Theorem 5.2.4 for

Ju(u) = |ua|* + [u?,|

to obtain the almost global preservation of the low Harmonic energies of the Beam equa-
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tion given by

1
5 (@D, U) ‘_w}zﬂ n ‘—wiﬂw-n t ——%5V-n
1/2 \/§w,11/2
1 2 . ) 1 2 1 2 . .
=— (wn|wn| + —|vn| — iUy + zw_nvn) + = (wn|w_n| + —|v_n|” = v, + vy,
2 Wy, 2 wn

vt + W}nl T |Un| + “Vnt+ W n| T

|U—n|

\/7
n*+m E'/()%g/}(x)e_mxdm

@
E/U 7T@/}(:10)6147"”“”%&70 )

%fozﬂv(x)eim dx 2)

2 )
v(z)e™ dx

—

1
=— +

+

1 f27r .
+—|— v(x)e "™ dx
2/nt+m \|[V2 Jo (2)

2m )
n*+m f P(x)e™ dx
0

)

)l
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