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An Abstract

Title: Normal Birkhoff Forms in the Energy Space

Given small solutions of semi-linear Hamiltonian partial differential equations, we are
interested in their long time behavior in Hs with s small. In order to do so, we followed
the work done by [Bernier and Grébert, 2021] where they proved the almost global preser-
vation for very long times of the low super-actions of non-resonant systems. Furthermore,
we try to simplify the results done by setting a suitable formalism and by applying the
results for a specific equation, the Beam equation.

Key words : Normal Forms in low regularity, non-resonanct condition, energy preser-
vation, Beam equation
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Chapter 1

Introduction

For half a century, the theory of partial differential equations has mainly focused on

the study of the local or global existence of solutions, in well-chosen functional spaces.

Nevertheless, the advances of this theory made it possible to consider other types of

questions, in particular that of the qualitative behavior of solutions once their existence

has been established.

Given a non-resonant1 Hamiltonian partial differential equation and a small smooth

initial datum, what can be said about the solution in Hs? In their paper,

[Bambusi and Grébert, 2006] answered this question by proving that the super-actions

are almost preserved in Hs for s large enough, leading to the stability of the solution. i.e.

the solution remains small in Hs. Unfortunately, so far this theory of normal forms for

Hamiltonian partial differential equations has only been developed for solutions of high

regularity, the assumption that seems to be irrelevant.

Our goal here is to study the behavior of small solutions for such equations, in patric-

ular the Beam Equation, over very long time ∣t∣ ≤ ε−r (r is very large) imposing less

1The eigenvalues of the linearized vector field enjoy a diophantine condition, in particular rational
independency.
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regularity by only setting them in the energy space with s small. The work done is in-

spired by the paper [Bernier and Grébert, 2021], however in this report we will be working

with a simpler framework suitable for the Beam Equation defined on the 1-dimensional

torus as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ttψ + ∂xxxxψ +mψ + pψp−1 = 0

ψ(0, x) = ψ0

∂tψ(0, x) = −ψ1

(1.1)

where ψ = ψ(t, x) ∈ R with x ∈ T, the mass m > 0 is a parameter, (ψ0, ψ1) ∈ Hs+1(T;R) ×

Hs−1(T;R) having small size ε and p ≥ 3. Since we are working in low regularity, it would

make sense to consider s = 1.

Now I will state the main result we tend to reach at the end.

Theorem 1.1. For almost all m > 0 and all r > p ≥ 3, there exists βr > 0 and Cm,r > 0

such that, for all ψ0 ∈H2(T;R) and all ψ1 ∈ L2(T;R) with

ε ∶= ∣∣ψ0∣∣H2 + ∣∣ψ1∣∣L2 ≤ εm

where εm is defined later, the global solution of 1.1 satisfies

∣t∣ ≤ ε−r Ô⇒ ∀n ≥ 1, ∣En(ψ(t), ∂tψ(t)) − En(ψ(0), ∂tψ(0))∣ ≤ Cm,r⟨n⟩βrεp

where the low Harmonic energies En of the Beam equation are given by the formula

En(ψ(t), ∂tψ(t)) =
√
n4 +m∣∫

2π

0
ψ(x)einx dx∣

2

+ 1√
n4 +m

∣∫
2π

0
∂tψ(x)einx dx∣

2

.

Remark. • We deduce the almost global preservation of En for ⟨n⟩ ≤ N with N ≥ 1.

• This is a non-trivial result since r is arbitrarily large. It is trivial if r = p − 2.

• It is established as a dynamical corollary of the Birkhoff Normal Form Thoerem in
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low regularity.

• In the proof βr >> 1, however we conjecture that it shouldn’t be.

In order to prove Theorem 1.1, let us place ourselves in the needed framework and

highlight the outline of this report. In chapter 2, we state basic definitions and notations

we will be using throughout our work. Furthermore, we give a quick recall of several

important theorems.

Actually, the existence of resonance (rational dependency) allows an exchange of en-

ergy between modes. For instance, see [Grébert and Villegas-Blas, 2011]. In order to

obtain our needed result, we introduce in chapter 3 a new non-resonance condition char-

acterized by controlling the small divisors by the smallest index which is obviously stronger

than the classical condition that controls those by the third largest index. The good news

is that this new condition is easily satisfied by the Beam equation frequencies. After that,

we generalize the definition to give a more suitable version for the Birkhoff normal form

theorem.

In chapter 4, we set the Hamiltonian formalism defining a class of Hamiltonian func-

tions satisfying particular properties custom-made for the Beam equation. In addition

to the properties given by [Bernier and Grébert, 2021], we introduce the zero momentum

condition which helped simplify different results. It turns out that these Hamiltonians

are stable by Poisson bracket.

Chapter 5 states and proves the Birkhoff normal form theorem in low regularity. The

proof uses the normal form process to remove the inessential part of the Hamiltonian

that influences the dynamics of the low modes. This is possible due to the strong non-

resonance condition. More precisely, the proof is done by induction and uses several

techniques such as Taylor expansion and stability of Hamiltonians by Poisson bracket.

Moreover, we establish a corollary of the theorem allowing us to obtain the almost global
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preservation of the low super-actions over very long time ∣t∣ ≤ ε−r.

As an interesting application, we study the behavior of low harmonic energies of the

Beam equation which is known to be widely used (mainly in dimension 1) by scientists and

engineers due to its physical importance in modeling the oscillations of a uniform beam.

For instance, engineering of large structures like the Eiffel tower used the beam equation,

see [Win, ]. For this, we chose to apply our key result to this particular equation. We start

chapter 6 by writing the equation in an appropriate Hamiltonian form and relating the

terms to the class defined in chapter 4. Next, we highlight the fact that the frequencies

satisfy the strong non-resonance condition. Finally in order to reach our goal, we prove

the global well-posedness of the equation using Banach fixed point theorem, boundedness

of the energy norm and the Hamiltonian conservation.
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Chapter 2

Background Theory

2.1 Notations

We always consider the following set of notations:

• R(z), I(z) denote the real, imaginary part of z respectively.

• ∂z ∶= 1
2(∂R(z) + i∂I(z)) and ∂z ∶= 1

2(∂R(z) − i∂I(z)).

• w ∈ RZ denotes w ≡ (wn)n∈Z.

• For x ∈ Z, the Japanese bracket is denoted by ⟨x⟩ :=
√

1 + ∣x∣2.

• κw(σ,n) ∶=min{⟨nj⟩ such that j ∈ J1, pK and ∑
k

wnk=wnj

σk ≠ 0.}

• The 1-dimensional torus is denoted by T = R/2πZ.

• For x, y ∈ R, we denote x ≲p if there exists a constant c(p) depending on p such that

x ≤ c(p)y.

• Sr denotes the symmetric group of degree r.

5



• For k ∈ Z, we write ek(x) = eikx√
2π
.

• For s ∈ R, the discrete Sobolev space is written as

hs(Z) = {u ∈ C ∣ ∣∣u∣∣2hs ∶= ∑
k∈Z

⟨k⟩2s∣uk∣2 < ∞}.

• For p ≥ 1, the Lebesgue space is written as

lp(Z) = {u ∈ C ∣ ∣∣u∣∣2lp ∶= ∑
k∈Z

∣uk∣p < ∞}.

• We denote by u+1
k := uk and u−1

k := uk.

• for ` ∈ Zr, we denote ∣`∣1 = ∣`1∣ + ⋯ + ∣`r∣.

• We say that n ∈ Zr is injective if n = (n1,⋯, nr) with ni ≠ nj, ∀i ≠ j.

2.2 Definitions and basic tools

Definition 2.2.1. (natural scalar product) We equip l2(Z) with its natural real scalar

product

⟨u, v⟩l2 ∶= ∑
k∈Z
R(ukvk) = ∑

k∈Z
(R(uk)R(vk) + I(uk)I(vk)) ∈ R

which can be extended when u ∈ hs and v ∈ h−s.

Definition 2.2.2. (Gradient) Given a smooth function

H ∶ hs(Z) → R

u↦H(u),
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its gradient ∇H(u) is the element of h−s(Z) satisfying

∀v ∈ hs(Z), ⟨∇H(u), v⟩l2 = dH(u)(v)

with ∇H(u) = (2∂ukH(u))k∈Z.

Definition 2.2.3. (Hamiltonian system) We associate to H the Hamiltonian vector field

XH(u) = i∇H(u).

Then the Hamiltonian system reads

∂tu =XH(u).

Definition 2.2.4. (Poisson bracket) Let H,K ∶ hs(Z) → R, be two functions such that

∇H(u) ∈ hs(Z). Then the Poisson bracket of H and K is defined by:

{H,K}(u) ∶= ⟨i∇H(u),∇K(u)⟩l2 .

Lemma 2.2.1. We have

{H,K}(u) = 2i∑
k∈Z

∂ukH(u)∂ukK(u) − ∂ukH(u)∂ukK(u).

Proof. To see this, we write using the definition

{H,K}(u) = ⟨i∇H(u),∇K(u)⟩l2

= ⟨2i∂ukH(u),2∂ukK(u)⟩l2

= ∑
k∈Z
R[2i∂ukH(u)2∂ukK(u)]

= 4∑
k∈Z
R[i∂ukH(u)∂ukK(u)].
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By simple calculations, one can prove that

4R[i∂ukH(u)∂ukK(u)] = 2i[∂ukH(u)∂ukK(u) − ∂ukH(u)∂ukK(u)].

Definition 2.2.5. (adjoint of a linear map) Consider the linear operator T ∶ E → F

where E and F are Banach spaces. Then we define the adjoint operator as

T ∗ ∶ F ∗ → E∗

with E∗ and F ∗ being the dual spaces of E and F respectively.

Lemma 2.2.2. (bootstrap principle) Let I be a time interval, and for each t ∈ I suppose

we have 2 statements, a hypothesis H(t) and a conclusion C(t). Suppose we can verify

the following assertions:

(i) (Hypothesis implies Conclusion) If H(t) is true for some time t ∈ I, then C(t) is

true for that time t.

(ii) (Conclusion is stronger than Hypothesis) If C(t) is true for some t ∈ I, then H(t′)

is true for all t′ ∈ I in a neighborhood of t.

(iii) (conclusion is closed) If t1, t2,⋯ is a sequence of times in I which converges to

another time t ∈ I, and C(tn) is true for all tn, then C(t) is true.

(iv) (Base case) H(t) is true for at least one time t ∈ I.

Then C(t) is true for all t ∈ I.

Proof. A small proof is found in [Tao, 2006] Chapter 1.3.

Definition 2.2.6. (symplectic map) Let s ≥ 0, C an open set of hs(Z) and a C1 map

τ ∶ C → hs(Z). We say that τ is a symplectic map if it preserves the canonical symplectic
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form:

∀u ∈ C,∀v,w ∈ hs(Z), ⟨iv,w⟩l2 = ⟨idτ(u)(v), dτ(u)(w)⟩l2 .

Theorem 2.2.3. (Schwarz theorem) for a function f ∶ C → R defined on an open set

C ⊂ Rn, if p ∈ Rn is a point such that some neighborhood of p is contained in C and f has

continuous second partial derivatives at the point p, then for all i, j ∈ {1, 2, . . . , n}

∂2

∂i∂j
f(p) = ∂2

∂j∂i
f(p).

Theorem 2.2.4. (Gronwall’s inequality) Suppose that α(t) and β(t) are 2 continuous

function on an interval I with α(t) ≥ 0. If ∀t ∈ I we have

β(t) ≤ C + ∫
t

0
α(s)β(s)ds

where C is a constant, then

β(t) ≤ Ce∫ t0 α(s)ds.

Definition 2.2.7. (operator norm) For E real normed vector space, the vector space

L (E;E) of bounded linear maps from E to E is endowed with the operator norm:

∣∣T ∣∣ = sup{∣∣Tv∣∣
∣∣v∣∣ ∶ v ∈ E with v ≠ 0}.

Theorem 2.2.5. (Mean value inequality) Let E,F be two Banach spaces, U ⊂ E open

and f ∶ U → F continuous. Assume that f is differentiable at each point of the segment

[a, b] ⊂ U , then

∣f(b) − f(a)∣
∣b − a∣ ≤ sup

x∈[a,b]

∣df(x)∣.

Lemma 2.2.6. For a quadratic function q, consider the associated quadratic form q(u) =

b(u,u). If b is continuous, then we have

∣q(u) − q(v)∣ ≤ ∣∣u − v∣∣l2(∣∣u∣∣l2 + ∣∣v∣∣l2).
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Proof. We write the associated quadratic form Then we get,

∣q(u) − q(v)∣ = ∣b(u,u) − b(v, v)∣

= ∣b(u − v, u) − b(v − u, v)∣

≤ ∣b(u − v, u)∣ + ∣b(v − u, v)∣

≤ C ∣∣u − v∣∣l2 ∣∣u∣∣l2 +C ∣∣v − u∣∣l2 ∣∣v∣∣l2 since ∣b(u, v)∣ ≤ C ∣∣u∣∣l2 ∣∣v∣∣l2

= C ∣∣u − v∣∣l2(∣∣u∣∣l2 + ∣∣v∣∣l2).

Theorem 2.2.7. (Banach fixed point theorem) Let E be a Banach space and suppose that

f ∶ E → E satisfies that for all x, y ∈ E, there exists 0 ≤ C < 1 such that

∣∣f(x) − f(y)∣∣E ≤ C ∣∣x − y∣∣E.

Then f has a unique fixed point in E.
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Chapter 3

Strong Non-Resonance Condition

In this chapter, we introduce a new non-resonance condition satisfied by the frequencies

obtained from the quadratic Hamiltonian later denoted by Z2.

3.1 Particular Case

Definition 3.1.1. (strong non-resonance) The frequencies w ∈ RZ are strongly non-

resonant if for all r > 0 there exists γr > 0, αr > 0 such that for all r∗ ≤ r, all `1,⋯, `r∗ ∈ Z∗,

and all n ∈ Zr∗ injective with ∣`1∣ + ⋯ + ∣`r∗ ∣ ≤ r and ⟨n1⟩ ≤ ⋯ ≤ ⟨nr∗⟩, we have

∣`1wn1 +⋯ + `r∗wnr∗ ∣ ≥ γr⟨n1⟩−αr .

Proposition 3.1.1. Let r ≥ 1 and w ∈ RZ. Suppose that:

(i) there exists α, γ > 0 such that for all r∗ ≤ r, all ` ∈ (Z∗)r∗, and all n ∈ Zr∗ injective
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with ∣`∣1 ≤ r and ⟨n1⟩ ≤ ⋯ ≤ ⟨nr∗⟩, we have

∀k ∈ Z, ∣k + `1wn1 +⋯ + `r∗wnr∗ ∣ ≥ γ⟨nr∗⟩−α, (3.1)

(ii) the frequencies accumulate polynomially fast on Z.

i.e. there exists C > 0 and ν > 0 such that

∀n ∈ Z,∃k ∈ Z, ∣wn − k∣ ≤ C⟨n⟩ν .

Then w is strongly non-resonant.

Proof. Fix r and r∗ satisfying the given assumptions. We prove by induction on r♭ ≤ r∗

that there exists βr♭ > 0 (depending on α, ν, r) and ηr♭ > 0 (depending on α, ν, C, γ, r)

such that

∀k ∈ Z, ∣k + ∑
1≤j≤r♭

`jwnj ∣ ≥ ηr♭⟨n1⟩−βr♭ .

Initial Step: For r♭ = 1.

Using the first assumption with r∗ = 1, we get

∣k + `1wn1 ∣ ≥ γ⟨n1⟩−α.

Hence, we obtain the result for η1 = γ and β1 = α.

Induction Step: Assume that it is true for r♭ < r∗. Prove it for r♭ + 1.

Using the second assumption with n ∶= nr♭ +1 ,

∃k♭ ∈ Z, ∣wnr♭+1 − k♭∣ ≤ C⟨nr♭+1⟩−ν . (3.2)

Next, we have that

∣k + ∑
1≤j≤r♭+1

`jwnj ∣ ≥ ∣k + `r♭+1k♭ + ∑
1≤j≤r♭

`jwnj ∣ − ∣`r♭+1∣∣wnr♭+1 − k♭∣. (3.3)
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Indeed, using the triangular inequality we can write

∣k + `r♭+1k♭ + ∑
1≤j≤r♭

`jwnj ∣ − ∣`r♭+1∣∣wnr♭+1 − k♭∣

= ∣k + ∑
1≤j≤r♭

`jwnj + `r♭+1wnr♭+1 − `r♭+1wnr♭+1 + `r♭+1k♭∣ − ∣`r♭+1∣∣wnr♭+1 − k♭∣

= ∣k + ∑
1≤j≤r♭+1

`jwnj − `r♭+1wnr♭+1 + `r♭+1k♭∣ − ∣`r♭+1∣∣wnr♭+1 − k♭∣

≤ ∣k + ∑
1≤j≤r♭+1

`jwnj ∣ + ∣`r♭+1∣∣−wnr♭+1 + k♭∣ − ∣`r♭+1∣∣wnr♭+1 − k♭∣

= ∣k + ∑
1≤j≤r♭+1

`jwnj ∣.

Now, notice that

• ∣`r♭+1∣ ≤ ∣`∣1 ≤ r (given) Ô⇒ −∣`r♭+1∣ ≥ −r,

• using the induction hypothesis with k ∶= k + `r♭+1k♭, we get

∣k + `r♭+1k♭ + ∑
1≤j≤r♭

`jwnj ∣ ≥ ηr♭⟨n1⟩−βr♭ .

Back to 3.3, we get

∣k + ∑
1≤j≤r♭+1

`jwnj ∣ ≥ ηr♭⟨n1⟩−βr♭ − r∣wnr♭+1 − k♭∣

≥ ηr♭⟨n1⟩−βr♭ −Cr⟨nr♭+1⟩−ν by 3.2.

Finally, we distinguish between 2 cases:

• For 2Cr⟨nr♭+1⟩−ν ≤ ηr♭⟨n1⟩−βr♭ , the result is direct.

• Otherwise, we have

⟨nr♭+1⟩−ν ≥
1

2Cr
ηr♭⟨n1⟩−βr♭ Ô⇒ ⟨nr♭+1⟩ ≤ (2Cr⟨n1⟩βr♭)1/νη

−1/ν
r♭

13



Ô⇒ ⟨nr♭+1⟩ ≤ (2Crη−1
r♭ )

1/ν⟨n1⟩βr♭/ν . (3.4)

Also, applying first assumption with r∗ ∶= r♭ + 1, we get

∣k + ∑
1≤j≤r♭+1

`jwnj ∣ ≥ γ⟨nr♭+1⟩−α

≥ γ(2Crη−1
r♭ )

−α/ν⟨n1⟩−αβr♭/ν by 3.4

= γ ( ηr♭
2Cr

)
α/ν

⟨n1⟩−αβr♭/ν .

3.2 Suitable Generalization

The sequence of frequencies w may not be injective and yet strongly non-resonant.

Therefore, we extend Definition 3.1.1 and choose a suitable formalism for the Birkhoff

Normal Form Theorem.

Definition 3.2.1. (Genaralized Strong Non-Resonance) A family of frequencies w ∈ RZ

is strongly non-resonant up to any order, if for all r ≥ 1 there exists γr > 0 and βr > 0 such

that for all n ∈ Zr, σ ∈ {−1,+1}r, we have either

∣
r

∑
j=1

σjwnj ∣ ≥ γrκw(σ,n)−βr

or r is even and there exists ρ ∈ Sr such that for all j ∈ [1, r2], we have

σρ2j−1 = −σρ2j and wnρ2j−1 = wnρ2j .

Now, we show that this is indeed an extension.

Lemma 3.2.1. If w ∈ RZ is injective and strongly non-resonant according to Definition

3.1.1, then it is strongly non-resonant according to Definition 3.2.1.

14



Proof. Suppose that w is strongly non-resonant according to Definition 3.1.1, then we

arrange the small divisors:

σ1wn1 +⋯ + σrwnr = `1wm1 +⋯ + `r∗wnr∗

where r∗ ≤ r, κw(σ,n) = ⟨m1⟩ ≤ ⋯ ≤ ⟨mr∗⟩ and `j = ∑
k

wnk=wmj

σk ≠ 0. It is clear that

∣`1∣ + ⋯ + ∣`r∗ ∣ =

RRRRRRRRRRRRRRRR
∑
k

wnk=wm1

σk

RRRRRRRRRRRRRRRR

+ ⋯ +

RRRRRRRRRRRRRRRR
∑
k

wnk=wmr∗

σk

RRRRRRRRRRRRRRRR
≤ ∑

k
wnk=wm1

1 +⋯ + ∑
k

wnk=wmr∗

1

= 1 +⋯ + 1 since w is injective

= r∗

≤ r.

So, by assumption, there exists γr > 0 and βr > 0 such that

∣σ1wn1 +⋯ + σrwnr ∣ = ∣`1wm1 +⋯ + `r∗wnr∗ ∣ ≥ γr⟨m1⟩−βr = γrκw(σ,n)−βr .

Thus, w is strongly non-resonant according to Definition 3.2.1.
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Chapter 4

Class of Hamiltonian Functions

In this chapter, our goal is to establish main properties of the following Hamiltonian

class.

4.1 Properties of a Class of Hamiltonian Functions

Definition 4.1.1. We denote by H r the set of inhomogeneous Hamiltonians of degree

r ≥ 2, written as

H(u) = ∑
σ∈{−1,+1}r

n∈Zr

Hσ
nu

σ1
n1
⋯uσrnr ,

and satisfying:

(i) Hσ
n ∈ C

(ii) the zero momentum condition: σ1n1 +⋯ + σrnr = 0

(iii) the symmetry condition: ∀φ ∈ Sr,H
σ1,⋯,σr
n1,⋯,nr =H

σφ1 ,⋯,σφr
nφ1 ,⋯,nφr

(iv) the reality condition: H−σ
n =Hσ

n

16



(v) the bound : ∣Hσ
n ∣ ≲r ∏r

j=1 ∣∣H ∣∣⟨nj⟩−1 or ∣∣H ∣∣ < ∞ where the norm of H is given by:

∣∣H ∣∣ = sup
σ∈{−1,+1}r

n∈Zr

∣Hσ
n ∣

r

∏
j=1

⟨nj⟩.

Lemma 4.1.1. The polynomials of H r define naturally smooth real-valued functions on

hs(Z) for s ≥ 0. In other words, if H ∈ H r and u(1),⋯, u(r) ∈ hs(Z), then

∑
σ∈{−1,+1}r

n∈Zr
σ1n1+⋯+σrnr=0

∣Hσ
nu

(1),σ1
n1 ⋯u(r),σr

nr ∣ ≲r,s ∣∣H ∣∣
r

∏
j=1

∣∣u(j)∣∣hs .

Proof. Let H ∈ H r and u(1),⋯, u(r) ∈ hs(Z). Then

∑
σ∈{−1,+1}r

n∈Zr
σ1n1+⋯+σrnr=0

∣Hσ
nu

(1),σ1
n1 ⋯u(r),σr

nr ∣

≤ ∑
σ∈{−1,+1}r

n∈Zr
σ1n1+⋯+σrnr=0

∣u(1),σ1
n1 ∣⋯∣u(r),σr

nr ∣∣∣H ∣∣
r

∏
j=1

⟨nj⟩−1 by the bound (v)

= ∑
σ∈{−1,+1}r

n∈Zr
σ1n1+⋯+σrnr=0

∣∣H ∣∣
r

∏
j=1

∣u(j),σj
nj ∣⟨nj⟩−1.

Now, since ∣u∣ = ∣u∣ and for σ ∈ {−1,+1}r we have 2r terms, then

∑
σ∈{−1,+1}r

n∈Zr
σ1n1+⋯+σrnr=0

∣Hσ
nu

(1),σ1
n1 ⋯u(r),σr

nr ∣ ≤ 2r∣∣H ∣∣ ∑
n∈Zr

r

∏
j=1

∣u(j)
nj ∣⟨nj⟩−1

= 2r∣∣H ∣∣ ∑
n∈Zr

⟨n1⟩−1∣u(1)
n1 ∣⋯⟨nr⟩−1∣u(r)

nr ∣

= 2r∣∣H ∣∣ ( ∑
n1∈Z

⟨n1⟩−1∣u(1)
n1 ∣)⋯( ∑

nr∈Z
⟨nr⟩−1∣u(r)

nr ∣)

Call each nj, k to get

∑
σ∈{−1,+1}r

n∈Zr
σ1n1+⋯+σrnr=0

∣Hσ
nu

(1),σ1
n1 ⋯u(r),σr

nr ∣

17



≤ 2r∣∣H ∣∣ (∑
k∈Z

⟨k⟩−1∣u(1)
k ∣)⋯(∑

k∈Z
⟨k⟩−1∣u(r)

k ∣)

= 2r∣∣H ∣∣
r

∏
j=1

∑
k∈Z

⟨k⟩−1∣u(j)
k ∣ ⟨k⟩

s

⟨k⟩s

= 2r∣∣H ∣∣
r

∏
j=1

∑
k∈Z

⟨k⟩s∣u(j)
k ∣⟨k⟩−s−1

≤ 2r∣∣H ∣∣
r

∏
j=1

(∑
k∈Z

⟨k⟩2s∣u(j)
k ∣

2
)

1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣∣u(j)∣∣hs

(⟨k⟩−2(s+1))1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<∞ since s≥0

by Cauchy Schwartz

≲r,s ∣∣H ∣∣
r

∏
j=1

∣∣u(j)∣∣hs .

We still need to check that H is real-valued. For this we write

H(u) = ∑
σ∈{−1,+1}r

n∈Zr

Hσ
nu

σ1
n1⋯uσrnr

with

• Hσ
n =H−σ

n from the reality condition,

• If σj = 1, then u
σj
nj = unj = u−1

nj
= u−σnj (Similarly if σj = −1).

This implies that

H(u) = ∑
σ∈{−1,+1}r

n∈Zr

H−σ
n u−σ1n1

⋯u−σrnr

= ∑
σ∈{−1,+1}r

n∈Zr

Hσ
nu

σ1
n1
⋯uσrnr since σ ∈ {−1,+1}r

=H(u).

Corollary 4.1.1. We can permute derivatives with the sum defining H.

Proof. From Lemma 4.1.1, we deduce that the multilinear map defining H is well-defined

18



and smooth, so it’s derivatives are easily computed. Now, notice that H is a composition

of this multilinear map and a smooth map u ↦ (u,⋯, u). Hence, H is regular and its

derivatives are obtained by composition.

Lemma 4.1.2. Let r ≥ 3, s ≥ 0 and k ∈ Z. Then for all u ∈ hs(Z), we have

∑
k∈Z

⎛
⎝ ∑

n∈Zr−1
σ∈{−1,+1}r−1

σ1n1+⋯+σr−1nr−1=k

⟨k⟩s−1
r−1

∏
j=1

⟨nj⟩−1∣uσjnj ∣
⎞
⎠

2

≲r,s ∣∣u∣∣2(r−1)
hs . (4.1)

Proof. Without loss of generality, assume that ⟨n1⟩ ≤ ⋯ ≤ ⟨nr−1⟩.

• First, we get ⟨k⟩s ≤ (r − 1)s⟨nr−1⟩s.

Indeed, the zero momentum condition implies that ∣k∣ = ∣σ1n1 +⋯ + σr−1nr−1∣. Thus,

⟨k⟩ = ⟨σ1n1 +⋯ + σr−1nr−1⟩ ≤ ⟨n1⟩ + ⋯ + ⟨nr−1⟩ ≤ (r − 1)⟨nr−1⟩. So, since s ≥ 0, we get

the inequality.

• Similarly, we get that ⟨k⟩−1 ≤ (r − 1)⟨n1⟩−1.

Now, using the above estimates, we write

∑
k∈Z

⎛
⎝ ∑

n∈Zr−1
σ∈{−1,+1}r−1

σ1n1+⋯+σr−1nr−1=k

⟨k⟩s−1
r−1

∏
j=1

⟨nj⟩−1∣uσjnj ∣
⎞
⎠

2

≲r,s ∑
k∈Z

⎛
⎝ ∑

n∈Zr−1
σ∈{−1,+1}r−1

σ1n1+⋯+σr−1nr−1=k

⟨n1⟩−2∣uσ1n1
∣⟨n2⟩−1∣uσ2n2

∣⋯⟨nr−1⟩s−1∣uσr−1nr−1 ∣
⎞
⎠

2

= ∑
k∈Z

⎛
⎝ ∑

n∈Zr−1
σ∈{−1,+1}r−1

σ1n1+⋯+σr−1nr−1=k

⟨nr−1⟩s−1∣uσr−1nr−1 ∣⟨n1⟩−2∣uσ1n1
∣⋯⟨nr−2⟩−1∣uσr−2nr−2 ∣

⎞
⎠

2

= 22(r−1)∑
k∈Z

(⟨.⟩s−1∣u∣ ∗ ⟨.⟩−2∣u∣ ∗ ⟨.⟩−1∣u∣⋯⟨.⟩−1∣u∣(k))
2

.
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Next, we use Young’s Convolution inequality: l2 ∗ l1 ∗ l1 ∗⋯ ∗ l1 ↪ l∞, and we obtain

∑
k∈Z

⎛
⎝ ∑

n∈Zr−1
σ∈{−1,+1}r−1

σ1n1+⋯+σr−1nr−1=k

⟨k⟩s−1
r−1

∏
j=1

⟨nj⟩−1∣uσjnj ∣
⎞
⎠

2

≲r,s ∣∣⟨.⟩s−1u∣∣2l2 ∣∣⟨.⟩−2u∣∣2l1 ∣∣⟨.⟩−1u∣∣2l1⋯∣∣⟨.⟩−1u∣∣2l1 .

(4.2)

Notice that we have the following:

• ∣∣⟨.⟩s−1u∣∣l2 = ∣∣u∣∣hs−1 ≤ ∣∣u∣∣hs

• By Cauchy Schwartz, we have

∣∣⟨.⟩−1u∣∣l1 = ∑
l∈Z

∣⟨.⟩−1ul∣

= ∑
l∈Z

∣⟨.⟩−s−1⟨.⟩sul∣

≤ (∑
l∈Z

⟨.⟩−2(s+1))
1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<∞ since s≥0

(∑
k∈Z

⟨.⟩2s∣ul∣2)
1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣∣u∣∣hs

.

• A similar argument shows that ∣∣⟨.⟩−2u∣∣l1 ≲ ∣∣u∣∣hs .

Finally, putting these results back in equation 4.2, we get

∑
k∈Z

⎛
⎝ ∑

n∈Zr−1
σ∈{−1,+1}r−1

σ1n1+⋯+σr−1nr−1=k

⟨k⟩s−1
r−1

∏
j=1

⟨nj⟩−1∣uσjnj ∣
⎞
⎠

2

≲r,s ∣∣u∣∣2(r−1)
hs .

Proposition 4.1.1. Let r ≥ 3, s ≥ 0 and consider H ∈ H r. Then the gradient of H is a

smooth function from hs(Z) into hs(Z), and we have

∀u ∈ hs(Z), ∣∣∇H(u)∣∣hs ≲r,s ∣∣u∣∣r−1
hs ∣∣H ∣∣.

Proof. From Lemma 4.1.1, we get that H is a smooth function on hs. We are going to
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prove that its gradient is also smooth and belongs to hs. For this, consider u ∈ hs(Z).

Then by definition we have

∣∣∇H(u)∣∣2hs = ∑
k∈Z

⟨k⟩2s∣(∇H(u))k∣2

with

(∇H(u))k = 2∂ukH(u) by Definition 2.2.2

= 2∂uk
⎛
⎝ ∑
σ∈{−1,+1}r

n∈Zr

Hσ
nu

σ1
n1
⋯uσrnr

⎞
⎠

= 2 ∑
σ∈{−1,+1}r

n∈Zr

Hσ
n∂uk(uσ1n1

⋯uσrnr) by Corollary 4.1.1

Now, call one of the unj , uk and set the associated σj = −1. Then,

(∇H(u))k = 2 ∑
σ∈{−1,+1}r−1

n∈Zr−1

Hσ1,⋯,σr−1,−1
n1,⋯,nr−1,k u

σ1
n1
⋯uσr−1nr−1 + 2 ∑

σ∈{−1,+1}r−1
n∈Zr−1

Hσ1,⋯,−1,σr−1
n1,⋯,k,nr−1 u

σ1
n1
⋯uσr−1nr−1

+⋯ + 2 ∑
σ∈{−1,+1}r−1

n∈Zr−1

H−1,σ1,⋯,σr−1
k,n1,⋯,nr−1 u

σ1
n1
⋯uσr−1nr−1 .

Since Hσ
n satisfies the symmetry condition, we get Hσ1,⋯,σr−1,−1

n1,⋯,nr−1,k = ⋯ =H−1,σ1,⋯,σr−1
k,n1,⋯,nr−1 . So,

(∇H(u))k = 2r ∑
σ∈{−1,+1}r−1

n∈Zr−1

Hσ,−1
n,k u

σ1
n1
⋯uσr−1nr−1 . (4.3)

Plugging this expression in the norm, we obtain

∣∣∇H(u)∣∣2hs = ∑
k∈Z

⟨k⟩2s∣2r ∑
σ∈{−1,+1}r−1

n∈Zr−1

Hσ,−1
n,k u

σ1
n1
⋯uσr−1nr−1∣

2

≤ 4r2∑
k∈Z

⟨k⟩2s
⎛
⎝ ∑
σ∈{−1,+1}r−1

n∈Zr−1

∣Hσ,−1
n,k ∣∣uσ1n1

∣⋯∣uσr−1nr−1 ∣
⎞
⎠

2
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≲r ∑
k∈Z

⟨k⟩2s
⎛
⎝ ∑
σ∈{−1,+1}r−1

n∈Zr−1

∣∣H ∣∣⟨k⟩−1⟨n1⟩−1⋯⟨nr−1⟩−1∣uσ1n1
∣⋯∣uσr−1nr−1 ∣

⎞
⎠

2

by the bound (v)

≲r ∣∣H ∣∣2∑
k∈Z

⎛
⎝ ∑
σ∈{−1,+1}r−1

n∈Zr−1

⟨k⟩s−1⟨n1⟩−1⋯⟨nr−1⟩−1∣uσ1n1
∣⋯∣uσr−1nr−1 ∣

⎞
⎠

2

≲r,s ∣∣H ∣∣2(∣∣u∣∣r−1
hs )2 by 4.1.

Thus, this continuity estimate proves that ∇H(u) ∈ hs is smooth.

Proposition 4.1.2. Let r ≥ 3, s ≥ 0 and consider H ∈ H r. Then we have

∀u ∈ hs(Z), ∣∣d∇H(u)∣∣L (hs) ≲r,s ∣∣u∣∣r−2
hs ∣∣H ∣∣.

Proof. The proof is a direct consequence of Proposition 4.1.1 where we showed that the

multilinear map associated with ∇H(u) is continuous and thus regular.

As a corollary, we can extend the differential of ∇H to negative spaces which will be

needed in the proof of some time differentiability later in Chapter 5.

Corollary 4.1.2. Let r ≥ 3, s ≥ 0 and consider H ∈ H r. Then for all u ∈ hs(Z), d∇H(u)

admits a unique continuous extension from h−s into h−s. Furthermore, the map u ↦

d∇H(u) ∈ L (h−s(Z)) is smooth and bounded.

Proof. Details of this proof are found in [Bernier and Grébert, 2021] pages 25-26.

4.2 Relation With the Poisson Brackets

Now we prove that the class of Hamiltonians is stable by Poisson bracket.

Proposition 4.2.1. Let H ∈ H r and K ∈ H r′ with r, r′ ≥ 2. Then, there exists a Hamil-

tonian N ∈ H r+r′−2 such that {H,K}(u) = N(u) for all u ∈ hs(Z) with s ≥ 0.
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Proof. Let u ∈ hs. We write

H(u) = ∑
σ∈{−1,+1}r

n∈Zr

Hσ
nu

σ1
n1
⋯uσrnr and K(u) = ∑

σ′∈{−1,+1}r
′

n′∈Zr
′

Kσ′
n′u

σ′1
n′1
⋯uσ

′
r′
n′
r′
.

Then using Lemma 2.2.1, we have

{H,K}(u) = 2i∑
k∈Z

∂ukH(u)∂ukK(u) − ∂ukH(u)∂ukK(u),

with

∂ukH(u)∂ukK(u) = rr′ ∑
(σ,σ′)∈{−1,+1}r−1×{−1,+1}r

′−1

(n,n′)∈Zr−1×Zr
′−1

Hσ,−1
n,k u

σ1
n1
⋯uσr−1nr−1K

σ′,1
n′,ku

σ′1
n′1
⋯uσ

′
r′−1
n′
r′−1

which is obtained by using 4.3. In what follows, we set n′′ ∶= (n,n′), σ′′ ∶= (σ,σ′) and

r′′ ∶= r + r′ − 2. After re-indexing, we can see that

{H,K}(u)

= 2i∑
k∈Z

[rr′( ∑
σ′′∈{−1,+1}r

′′

n′′∈Zr
′′

Hσ,−1
n,k u

σ1
n1
⋯uσr−1nr−1K

σ′,1
n′,ku

σ′1
n′1
⋯uσ

′
r′−1
n′
r′−1

−Hσ,1
n,ku

σ1
n1
⋯uσr−1nr−1K

σ′,−1
n′,k u

σ′1
n′1
⋯uσ

′
r′−1
n′
r′−1

)]

= ∑
σ′′∈{−1,+1}r

′′

n′′∈Zr
′′

[2irr′∑
k∈Z

(Hσ,−1
n,k K

σ′,1
n′,k −H

σ,1
n,kK

σ′,−1
n′,k )uσ

′′
1

n′′1
⋯uσ

′′
r′′
n′′
r′′
] (4.4)

= ∑
σ′′∈{−1,+1}r

′′

n′′∈Zr
′′

Nσ′′
n′′ u

σ′′1
n′′1
⋯uσ

′′
r′′
n′′
r′′

= N(u)

Now we prove that N ∈ H r′′ . Notice that N satisfies the following:

(i) Nσ′′
n′′ ∈ C,

(ii) the zero momentum condition: Since H and K satisfy the zero momentum condition,
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then we have that n1σ1 + ⋯ + nr−1σr−1 = k and n′1σ
′
1 + ⋯ + n′r′−1σ

′
r′−1 = −k. Then

n1σ1 +⋯ + nr−1σr−1 = −n′1σ′1 −⋯ − n′r′−1σ
′
r′−1, and so n′′1σ

′′
1 +⋯ + n′′r′′σ′′r′′ = 0,

(iii) the symmetry condition which follows directly since it is satisfied by H and K,

(iv) the reality condition: Also, since it is satisfied by H and K, we get

N−σ′′
n′′

2rr′
= i

2rr′
∑
k∈Z

(H−σ,−1
n,k K−σ′,1

n′,k −H−σ,1
n,k K

−σ′,−1
n′,k )

= −i
2rr′
∑
k∈Z

(Hσ,1
n,kK

σ′,−1
n′,k −Hσ,−1

n,k K
σ′,1
n′,k)

= i

2rr′
∑
k∈Z

(Hσ,−1
n,k K

σ′,1
n′,k −H

σ,1
n,kK

σ′,−1
n′,k )

= N
−σ′′
n′′

2rr′
,

(v) the bound: Using the bounds of Hσ
n and Kσ′

n′ we get

∣N−σ′′
n′′ ∣ = ∣2rr′∑

k∈Z
(Hσ,−1

n,k K
σ′,1
n′,k −H

σ,1
n,kK

σ′,−1
n′,k )∣

≤ 2rr′∑
k∈Z

(∣Hσ,−1
n,k K

σ′,1
n′,k ∣ + ∣Hσ,1

n,kK
σ′,−1
n′,k ∣)

≲r′′ ∣∣H ∣∣∣∣K ∣∣ ∑
k∈Z

⟨n1⟩−1⋯⟨nr−1⟩−1⟨k⟩−1⟨n′1⟩−1⋯⟨n′r′−1⟩−1⟨k⟩−1

≲r′′ ∣∣H ∣∣∣∣K ∣∣ ∑
k∈Z

⟨k⟩−2

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
<∞ since 2>1

r′′

∏
j=1

⟨n′′j ⟩−1. (4.5)

Therefore N ∈ H r′′ . It remains to justify the interchange of summation in equation 4.4.

Using the latter bound, we can see that

∑
σ′′∈{−1,+1}r

′′

n′′∈Zr
′′

∑
k∈Z

∣Hσ,−1
n,k K

σ′,1
n′,k −H

σ,1
n,kK

σ′,−1
n′,k ∣∣uσ

′′
1

n′′1
⋯uσ

′′
r′′
n′′
r′′
∣ ≲r′′ ∣∣H ∣∣∣∣K ∣∣ ∑

σ′′∈{−1,+1}r
′′

n′′∈Zr
′′

r′′

∏
j=1

⟨n′′j ⟩−1∣uσ
′′
1

n′′1
⋯uσ

′′
r′′
n′′
r′′
∣.
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Next, using similar arguments as in Lemma 4.1.1, we get

∑
σ′′∈{−1,+1}r

′′

n′′∈Zr
′′

r′′

∏
j=1

⟨n′′j ⟩−1∣uσ
′′
j

n′′j
∣ ≲r,s ∣∣u∣∣r

′′
hs < ∞ since u ∈ hs.

Finally, applying Fubini’s theorem, we obtain

∑
σ′′∈{−1,+1}r

′′

n′′∈Zr
′′

[∑
k∈Z

(Hσ,−1
n,k K

σ′,1
n′,k −H

σ,1
n,kK

σ′,−1
n′,k )uσ

′′
1

n′′1
⋯uσ

′′
r′′
n′′
r′′
]

= ∑
k∈Z

[ ∑
σ′′∈{−1,+1}r

′′

n′′∈Zr
′′

(Hσ,−1
n,k K

σ′,1
n′,k −H

σ,1
n,kK

σ′,−1
n′,k )uσ

′′
1

n′′1
⋯uσ

′′
r′′
n′′
r′′
]

Lemma 4.2.1. Let r ≥ 3, s ≥ 0 and H ∈ H r. Consider the quadratic Hamiltonian

Z2 ∶ hs(Z) → R written in the form

Z2(u) = ∑
n∈Z

wn∣un∣2,

where wn ∈ R and (⟨n⟩−2swn)n∈Z is bounded. Then for all u ∈ hs(Z), we have

{H,Z2}(u) = 2i ∑
σ∈{−1,+1}r

n∈Zr

(σ1wn1 +⋯ + σrwnr)Hσ
nu

σ1
n1
⋯uσrnr .

Proof. To start, note that from Proposition 4.1.1 and Definition 2.2.2, we have that

∇H(u) ∈ hs(Z) and ∇Z2(u) ∈ h−s(Z) respectively. Thus, their poisson bracket is well-

defined. Then, notice that

∑
σ∈{−1,+1}r

n∈Zr

(σ1wn1 +⋯ + σrwnr)Hσ
nu

σ1
n1
⋯uσrnr

= ∑
σ∈{−1,+1}r

n∈Zr

σ1wn1H
σ
nu

σ1
n1
⋯uσrnr +⋯ + ∑

σ∈{−1,+1}r

n∈Zr

σrwnrH
σ
nu

σ1
n1
⋯uσrnr .
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Using the symmetry condition of H, we apply a permutation on the coefficients:

∑
σ∈{−1,+1}r

n∈Zr

σ1wn1H
σ
nu

σ1
n1
⋯uσrnr +⋯ + ∑

σ∈{−1,+1}r

n∈Zr

σrwnrH
σ
nu

σ1
n1
⋯uσrnr

= ∑
σ∈{−1,+1}r

n∈Zr

σ1wn1H
σ2,⋯,σr,σ1
n2,⋯,nr,n1

uσ1n1
⋯uσrnr +⋯ + ∑

σ∈{−1,+1}r

n∈Zr

σrwnrH
σ1,⋯,σr
n1,⋯,nru

σ1
n1
⋯uσrnr .

After re-indexing, the r sums coincide and we obtain

∑
σ∈{−1,+1}r

n∈Zr

(σ1wn1 +⋯ + σrwnr)Hσ
nu

σ1
n1
⋯uσrnr = r ∑

σ∈{−1,+1}r

n∈Zr

σrwnrH
σ
nu

σ1
n1
⋯uσrnr . (4.6)

Next, recall that

{H,Z2}(u) = 2i∑
k∈Z

∂ukH(u)∂ukZ2(u) − ∂ukH(u)∂ukZ2(u)

with ∂ukZ2(u) = wkuk and ∂ukH(u) = r ∑
σ∈{−1,+1}r−1

n∈Zr−1

Hσ,−1
n,k u

σ1
n1⋯uσr−1nr−1 . Putting the results

together, we get

{H,Z2}(u) = 2ir∑
k∈Z

[ ∑
σ∈{−1,+1}r−1

n∈Zr−1

(Hσ,−1
n,k u

σ1
n1
⋯uσr−1nr−1wkuk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σr=−1

−Hσ,1
n,ku

σ1
n1
⋯uσr−1nr−1wkuk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σr=1

)]

= −2ir∑
k∈Z

[ ∑
σ∈{−1,+1}r

n∈Zr−1

Hσ
n,ku

σ1
n1
⋯uσr−1nr−1σrwku

σr
k ]

= −2ir ∑
σ∈{−1,+1}r

n∈Zr−1

[∑
k∈Z

Hσ
n,ku

σ1
n1
⋯uσr−1nr−1σrwku

σr
k ] (4.7)

= −2ir ∑
σ∈{−1,+1}r

n∈Zr

Hσ
nu

σ1
n1
⋯uσrnrσrwnr nr ∶= k

= −2i ∑
σ∈{−1,+1}r

n∈Zr

(σ1wn1 +⋯ + σrwnr)Hσ
nu

σ1
n1
⋯uσrnr by 4.6.

We are left with justifying the interchange of sums in equation 4.7. Using the fact that
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⟨k⟩−2swk is bounded as well as the bound (v), we write

∑
k∈Z

∑
σ∈{−1,+1}r

n∈Zr−1

∣Hσ
n,ku

σ1
n1
⋯uσr−1nr−1wku

σr
k ∣

= ∑
k∈Z

∑
σ∈{−1,+1}r

n∈Zr−1

∣Hσ
n,k∣∣uσ1n1

∣⋯∣uσr−1nr−1 ∣∣wk∣∣u
σr
k ∣

≲r ∑
k∈Z

∑
σ∈{−1,+1}r

n∈Zr−1

∣∣H ∣∣⟨n1⟩−1⋯⟨nr−1⟩−1⟨k⟩2s−1∣uσ1n1
∣⋯∣uσr−1nr−1 ∣∣u

σr
k ∣ × ⟨k⟩s

⟨k⟩s

= ∣∣H ∣∣ ∑
k∈Z

⎛
⎜⎜
⎝
∑

σ∈{−1,+1}r

n∈Zr−1

⟨n1⟩−1∣uσ1n1
∣⋯⟨nr−1⟩−1∣uσr−1nr−1 ∣⟨k⟩s

⎞
⎟⎟
⎠
⟨k⟩s−1∣uσrk ∣

≤ ∣∣H ∣∣
⎛
⎜⎜
⎝
∑
k∈Z

⎛
⎜⎜
⎝
∑

σ∈{−1,+1}r

n∈Zr−1

⟨n1⟩−1∣uσ1n1
∣⋯⟨nr−1⟩−1∣uσr−1nr−1 ∣⟨k⟩s

⎞
⎟⎟
⎠

2
⎞
⎟⎟
⎠

1/2

(∑
k∈Z

⟨k⟩2s−2∣u2
k∣)

1/2

≲r,s ∣∣u∣∣r−1
hs (∑

k∈Z
⟨k⟩2s−2∣u2

k∣)
1/2

∣∣H ∣∣ by 4.1

≲r,s ∣∣u∣∣r−1
hs (∑

k∈Z
⟨k⟩2s∣uk∣2)

1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣∣u∣∣hs

∣∣H ∣∣

≲r,s ∣∣u∣∣rhs ∣∣H ∣∣ < ∞.

Finally, we conclude using Fubini.

27



Chapter 5

Birkhoff Normal Form Theorem

This chapter aims to prove the important theorems. We will state Birkhoff normal

form theorem in low regularity and provide a rigorous proof, followed by a corollary, the

key result of the work.

5.1 Birkhoff Normal Form Theorem

Proposition 5.1.1. Let s ≥ 0. r ≥ 3 and χ ∈ H r. Then there exists ε1 = (K ∣∣χ∣∣)−1/(r−2)

with K depending on (s, r), and there exists a smooth map

φχ ∶ [−1,1] ×Bhs(Z)(0, ε1) → hs(Z)

(t, u) ↦ φtχ(u),

such that it satisfies the following:

1. solves the equation −i∂tφχ = (∇χ) ○ φχ,
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2. ∀ t ∈ [−1,1], φtχ is close to the identity:

∀u ∈ Bhs(Z)(0, ε1), ∣∣φtχ(u) − u∣∣hs ≲r,s ∣∣u∣∣r−1
hs ∣∣χ∣∣,

3. ∀ t ∈ [−1,1], φtχ is intertible: ∣∣φtχ(u)∣∣hs < ε1 Ô⇒ φ−tχ ○ φtχ(u) = u,

4. ∀ t ∈ [−1,1], φtχ is symplectic,

5. its differential admits a unique continuous extension from h−s(Z) into h−s(Z).

Moreover, the map u ∈ Bhs(Z)(0, ε1) ↦ dφtχ(u) ∈ L (h−s(Z)) is continuous and we have

∀u ∈ Bhs(Z)(0, ε1),∀σ ∈ {−1,+1}, ∣∣dφtχ(u)∣∣L (hσs) ≤ 2.

Proof. ▷ Since χ ∈ H r, by Proposition 4.1.1, ∇χ is a smooth function on hs. So, Cauchy

Lipschitz theorem proves that −i∂tφχ = (∇χ) ○ φχ admits a unique smooth local solution

φtχ(u). Let Iu be the maximal interval on which φtχ(u) is well-defined. For t ∈ Iu,

−i∂tφtχ(u) = (∇χ) ○ φtχ(u) Ô⇒ ∫
t

0
∂τφ

τ
χ(u)dτ = i∫

t

0
(∇χ) ○ φτχ(u)dτ

Ô⇒ φtχ(u) − φ0
χ(u) = i∫

t

0
(∇χ) ○ φτχ(u)dτ

Ô⇒ φtχ(u) − u = i∫
t

0
(∇χ) ○ φτχ(u)dτ.

Consequently, if t ∈ [−1,1], we get

∣∣φtχ(u) − u∣∣hs = ∣∣ ∫
t

0
(∇χ) ○ φτχ(u)dτ ∣∣

hs

≤ ∫
t

0
∣∣(∇χ) ○ φτχ(u)∣∣hs dτ

≤ sup
τ∈(0,t)

∣∣(∇χ) ○ φτχ(u)∣∣hs ∫
t

0
dτ

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
≤1

≲r,s ∣∣χ∣∣ sup
τ∈(0,t)

∣∣φτχ(u)∣∣r−1
hs by Proposition 4.1.1.
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Now we aim at using a bootstrap argument. Let Ju ⊂ Iu such that for all t ∈ Ju ∩ [−1,1],

φtχ(u) is well-defined (φtχ(u) ∈ hs) with ∣∣φtχ(u)∣∣hs ≤ 3∣∣u∣∣hs . We need to prove that φtχ(u)

is well-defined on [−1,1]. For this, let t ∈ Ju ∩ [−1,1], then

∣∣φtχ(u) − u∣∣hs ≲r,s ∣∣χ∣∣(3∣∣u∣∣hs)r−1 ≤ Cs,r∣∣χ∣∣3r−1∣∣u∣∣r−1
hs

where Cs,r is the maximum of the 2 constants obtained from Proposition 4.1.1 and 4.1.2.

Thus, it would be sufficient to choose ε1 = (3r−1Cs,r∣∣χ∣∣)−1/r−2. Since ∣∣u∣∣hs ≤ ε1 it follows

that

∣∣φtχ(u) − u∣∣hs ≤ ε
−(r−2)
1 ∣∣u∣∣r−1

hs ≤ (∣∣u∣∣hs
ε1

)
r−2

∣∣u∣∣hs ≤ ∣∣u∣∣hs

Ô⇒ ∣∣φtχ(u)∣∣hs − ∣∣u∣∣hs ≤ ∣∣φtχ(u) − u∣∣hs ≤ ∣∣u∣∣hs

Ô⇒ ∣∣φtχ(u)∣∣hs ≤ 2∣∣u∣∣hs .

Hence, using Lemma 2.2.2, we get that φtχ(u) is well-defined for t ∈ [−1,1] with

∣∣φtχ(u)∣∣hs ≤ 2∣∣u∣∣hs ≤ 3∣∣u∣∣hs (5.1)

and close to the identity (properties 1. and 2. are satisfied).

▷ Moreover, φtχ is invertible. Indeed, suppose that ∣∣φtχ(u)∣∣hs < ε1. Then since −t ∈

[−1,1], we get that φ−tχ ○ φtχ(u) is a solution of −i∂tφχ = (∇χ) ○ φχ with initial condition

φ0
χ ○ φ0

χ(u) = u. Also, φ−t+tχ (u) = φ0
χ(u) is another solution with initial condition u. Thus,

by uniqueness of solutions we must have φ−tχ ○ φtχ(u) = u.

▷ Now, we check that φtχ is symplectic. Since φχ is a smooth solution of ∂tφχ =

i(∇χ) ○ φχ, then taking the differential of the 2 sides of the equation, we get

∂t(dφtχ(u)(v)) = d(∂tφtχ(u))(v) by Theorem 2.2.3

= id((∇χ) ○ φtχ(u))(v)
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= i(d(∇χ) ○ φtχ(u))dφtχ(u)(v) (5.2)

with dφ0
χ(u)(v) = v. Now for φtχ to be symplectic, we need to prove that for u ∈ Bhs(0, ε1)

and v,w ∈ hs we have ⟨iv,w⟩l2 = ⟨idφtχ(u)(v), dφtχ(u)(w)⟩l2 . For this define

W (t) = ⟨idφtχ(u)(v), dφtχ(u)(w)⟩l2

and notice that

W (0) = ⟨idφ0
χ(u)(v), dφ0

χ(u)(w)⟩l2 = ⟨iv,w⟩l2 .

Thus it would be sufficient to prove that d
dtW (t) = 0. Indeed,

d

dt
W (t) = ⟨i∂tdφtχ(u)(v), dφtχ(u)(w)⟩l2 + ⟨idφtχ(u)(v), ∂tdφtχ(u)(w)⟩l2

= ⟨−(d(∇χ) ○ φtχ(u))dφtχ(u)(v), dφtχ(u)(w)⟩l2

+ ⟨dφtχ(u)(v), (d(∇χ) ○ φtχ(u))dφtχ(u)(w)⟩l2 by 5.2.

Using the definition of the differential, it is easy to see that these 2 terms will vanish since

⟨dφtχ(u)(v), (d(∇χ) ○ φtχ(u))dφtχ(u)(w)⟩l2

= d[⟨dφtχ(u)(v),∇χ ○ φtχ(u)⟩l2]dφtχ(u)(w)

= d[dχ ○ φtχ(u)(dφtχ(u)(v))]dφtχ(u)(w) by definition

= d2χ ○ φtχ(u)(dφtχ(u)(v))(dφtχ(u)(w))

= d2χ ○ φtχ(u)(dφtχ(u)(w))(dφtχ(u)(v)) by Theorem 2.2.3

= d[⟨dφtχ(u)(w),∇χ ○ φtχ(u)⟩l2]dφtχ(u)(v)

= ⟨dφtχ(u)(w), (d(∇χ) ○ φtχ(u))dφtχ(u)(v)⟩l2

= ⟨(d(∇χ) ○ φtχ(u))dφtχ(u)(v), dφtχ(u)(w)⟩l2 .
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▷ Finally, we prove the estimates. From 5.2 we can write

dφtχ(u)(v) = v + i∫
t

0
(d(∇χ) ○ φτχ(u))dφτχ(u)(v)dτ.

As a result, we get

∣∣dφtχ(u)∣∣L (hs) ≤ 1 + ∫
t

0
∣∣d∇χ(φτχ(u))∣∣L (hs)∣∣dφτχ(u)∣∣L (hs) dτ

≤ 1 + ∫
t

0
Cr,s∣∣φτχ(u))∣∣r−2

hs ∣∣χ∣∣∣∣dφτχ(u)∣∣L (hs) dτ by Proposition 4.1.2

≤ 1 + ∫
t

0
Cr,s∣∣χ∣∣3r−2∣∣u∣∣r−2

hs ∣∣dφτχ(u)∣∣L (hs) dτ by 5.1.

By definition of ε1, we have

3r−2∣∣χ∣∣Cs,r∣∣u∣∣r−2
hs ≤ 3r−2∣∣χ∣∣Cs,rεr−2

1 = 3r−2∣∣χ∣∣Cs,r(3r−1∣∣χ∣∣Cs,r)−r+2/r−2 = 1

3
.

So,

∣∣dφtχ(u)∣∣L (hs) ≤ 1 + 1

3 ∫
t

0
∣∣dφτχ(u)∣∣L (hs) dτ.

By Gronwall’s Lemma, we conclude that

∣∣dφtχ(u)∣∣L (hs) ≤ e1/3 ≤ 2.

With Corollary 4.1.2 and similar arguments as in the proof of φtχ invertible, we can prove

that its differential admits a unique extension from h−s to h−s.

Remark. Keep in mind that ∣∣φtχ(u)∣∣hs ≤ 2∣∣u∣∣hs for u ∈ Bhs(0, ε1), because it has been

used several times in this chapter.

Lemma 5.1.1. If G is a smooth function, then

(i) d
dt(G ○ φtχ) = {χ,G} ○ φtχ

(ii) G ○ φtχ =
k

∑
j=0

Gj
j! + 1

k! ∫
1

0 (1 − t)kGk+1 ○ φtχ dt with Gj = adjχG.
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Proof. (i) We have that

d

dt
(G ○ φtχ) = ⟨i∇G(φtχ), i∂tφtχ⟩l2 = ⟨i∇G(φtχ),−i(∇χ) ○ φtχ⟩l2

= −{G,χ} ○ φtχ = {χ,G} ○ φtχ

(ii) We write the Taylor expansion between 0 and 1. Then,

G ○ φtχ =
k

∑
j=0

(G ○ φtχ)(j)(0)
j!

+ ∫
1

0

(G ○ φtχ)(k+1)

k!
(1 − t)k dt.

Using (i), we deduce that (G ○ φtχ)(j) = Gj ○ φtχ. So back to our expansion,

G ○ φtχ = G + {χ,G} +
k

∑
j=2

1

j!
{χ,Gj−1} +

1

k! ∫
1

0

Gk+1 ○ φtχ
k!

(1 − t)k dt.

Theorem 5.1.2. Let s ≥ 0 and r > p ≥ 3. Let Z2 ∶ hs(Z) → R be a quadratic Hamiltonian

of the form Z2(u) = 1
2 ∑
n∈Z

wn∣un∣2 where (⟨n⟩−2swn)n∈Z is bounded and the sequence of fre-

quencies w is strongly non-resonant up to any order. Let P ∶ hs(Z) ↦ R be a Hamiltonian

polynomial of the form P (u) = ∑
p≤j≤r−1

P (j)(u) with P (j) ∈ H j satisfying ∣∣P (j)∣∣ ≤ cj and

(cj)p≤j≤r−1 is a sequence of positive constants. Then, there exists positive constants C

depending on (r, s, γ, c) and b depending on (β, r) (β and γ are the constants obtained

from the strong non-resonance condition) such that ∀N ≥ 1, there exists ε0 ≥ 1
CNb and

there exists two smooth symplectic close to the identity maps τ (0) and τ (1)

∀σ ∈ {0,1}, ∣∣u∣∣hs < 2σε0 Ô⇒ ∣∣τ (σ)(u) − u∣∣hs ≤ (∣∣u∣∣hs
2σε0

)
p−2

∣∣u∣∣hs (5.3)

making the diagram commute

Bhs(Z)(0, ε0) Bhs(Z)(0,2ε0) hs(Z)τ(0)

idhs

τ(1)
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such that (Z2 + P ) ○ τ (1) admits on Bhs(Z)(0,2ε0) the decomposition

(Z2 + P ) ○ τ (1) = Z2 +Q +R

where Q is a Hamoltonian polynomial constructed in the proof and commuting with the

low super-actions given by Jn(u) = ∑
wk=wn

∣uk∣2

∀n ∈ Z, ⟨n⟩ ≤ N Ô⇒ {Jn,Q} = 0,

and the remainder term R is a smooth function on Bhs(Z)(0,2ε0) satisfying

∣∣∇R(u)∣∣hs ≤ CN b∣∣u∣∣r−1
hs .

Moreover, for σ ∈ {0,1} and u ∈ Bhs(Z)(0,2σε0), dτ (σ)(u) admits a unique continuous

extension from h−s(Z) to h−s(Z) depending continuously on u and satisfying

∣∣dτ (σ)(u)∣∣L (hs) ≤ 2r−p and ∣∣dτ (σ)(u)∣∣L (h−s) ≤ 2r−p. (5.4)

Proof. We will do the proof using induction on r∗ ∈ Jp, rK.

Initial Step: For r∗ = p.

We set C = b = 0 and τ (0) = τ (1) = idhs . Consequently, we get ε0 = +∞, τ (0) and τ (1) two

symplectic maps and the decomposition (Z2 +P ) ○ τ (1) = Z2 +Q with Q = P Hamiltonian

(by assumption) and R = 0.

Induction Step: Assume that it is true for r∗, and prove it for r∗ + 1.

In other words, assume that there exists non-negative constants b1, (b3,j)p≤j≤r depending

on (β, r∗) and b2 depending on (β, r∗, r), as well as C1, (C3,j)p≤j≤r depending on (r∗, s, γ)

and C2 depending on (r∗, s, γ, r) such that for all N ≥ 1, there exists ε0 ≥ 1
C1Nb1

and there

exists two smooth symplectic close to the identity maps τ (0) and τ (1) making the above
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diagram commute, such that (Z2 + P ) ○ τ (1) admits on Bhs(Z)(0,2ε0) the decomposition

(Z2 + P ) ○ τ (1) = Z2 +Q(p) +⋯ +Q(r−1) +R

where Q(j) ∈ H j satisfies ∣∣Q(j)∣∣ ≤ C3,jN b3,j and having the first polynomials commute

with the low super-actions

∣j∣ < r∗ and ⟨n⟩ ≤ N Ô⇒ {Jn,Q(j)} = 0,

and the remainder term R is a smooth function on Bhs(Z)(0,2ε0) satisfying

∣∣∇R(u)∣∣hs ≤ C2N
b2 ∣∣u∣∣r−1

hs .

Moreover, for σ ∈ {0,1} and u ∈ Bhs(Z)(0,2σε0), dτ (σ)(u) admits a unique continuous

extension from h−s(Z) to h−s(Z) depending continuously on u and satisfying

∣∣dτ (σ)(u)∣∣L (hs) ≤ 2r∗−p and ∣∣dτ (σ)(u)∣∣L (h−s) ≤ 2r∗−p.

Now, we prove this result for r∗ + 1 and we we distinguish between the terms associated

to r∗ and the ones associated to r∗ + 1 by a symbol #. First, we will state and prove two

lemmas.

Lemma 5.1.3. We can decompose

Q(r∗) = L +U

where L,U ∈ H r∗ and U commutes with the low super-actions.
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Proof. We write

Q(r∗) = ∑
σ∈{−1,+1}r∗

n∈Zr∗

Q
(r∗),σ
n uσ1n1

⋯uσr∗nr∗

= ∑
σ∈{−1,+1}r∗

n∈Zr∗

(Lσn +Uσ
n )uσ1n1

⋯uσr∗nr∗

= L +U

with Lσn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q
(r∗),σ
n if κw(n,σ) ≤ N,

0 otherwise

and Uσ
n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if κw(n,σ) ≤ N,

Q
(r∗),σ
n otherwise.

Obviously, L and U ∈ H r∗ . Now, we check that U commutes with Jm. For instance,

for ⟨m⟩ ≤ N and u ∈ hs, we apply Lemma 4.2.1 and we get

{Jm, U}(u) = { ∑
wn=wm

∣un∣2, ∑
σ∈{−1,+1}r∗

n∈Zr∗

Uσ
nu

σ1
n1
⋯uσr∗nr∗}

= {∑
n∈Z

1wn=wm ∣un∣2, ∑
σ∈{−1,+1}r∗

n∈Zr∗

Uσ
nu

σ1
n1
⋯uσr∗nr∗}

= 2i ∑
σ∈{−1,+1}r∗

n∈Zr∗

(σ11wn1=wm
+⋯ + σr∗1wnr∗ =wm)Uσ

nu
σ1
n1
⋯uσr∗nr∗

= 2i ∑
σ∈{−1,+1}r∗

n∈Zr∗

⎛
⎜⎜
⎝
∑

k=1,⋯,r∗
wnk=wm

σk

⎞
⎟⎟
⎠
Uσ
nu

σ1
n1
⋯uσr∗nr∗

Notice that

• If Uσ
n ≠ 0, then by definition of U , we know that κw(σ,n) > N. But ⟨m⟩ ≤ N <

κw(σ,n), so ⟨m⟩ < κw(σ,n) which is a defined minimum. Hence, we cannot have

∑
wnk=wm

σk ≠ 0. Thus ∑
wnk=wm

σk = 0.

• If ∑
wnk=wm

σk ≠ 0, then κw(σ,n) ≤ ⟨m⟩ ≤ N. Hence, Uσ
n = 0 again by definition of U.
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We deduce that either ∑
wnk=wm

σk = 0 or Uσ
n = 0. Therefore, {Jm, U}(u) = 0. ∎

Lemma 5.1.4. Recall L from the Lemma 5.1.3 and let χ ∈ H r∗ be the Hamiltonian

χσn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lσn
i(σ1wn1+⋯+σr∗wnr∗ )

if κw(σ,n) ≤ N,

0 otherwise.

Then, χ has the bound

∣∣χ∣∣ ≤ γ−1
r∗ C3,r∗N

βr∗+b3,r∗

and satisfies the Homological Equation given by

{χ,Z2} +L = 0. (5.5)

Proof. First, note that for κw(n,σ) ≤ N we have due to the strong non-resonance condition

∣σ1wn1 +⋯ + σr∗wnr∗ ∣ ≥ γr∗κw(σ,n)−βr∗ ≥ γr∗N−βr∗ ≠ 0.

So, χ is well-defined and satisfies

∣∣χ∣∣ = sup
σ∈{−1,+1}r∗

n∈Zr∗

∣χσn∣
r∗
∏
j=1

⟨nj⟩

= sup
σ∈{−1,+1}r∗

n∈Zr∗

∣ Lσn
i(σ1wn1 +⋯ + σr∗wnr∗)

∣
r∗
∏
j=1

⟨nj⟩

≤ sup
σ∈{−1,+1}r∗

n∈Zr∗

∣Lσn∣
γr∗N

−βr∗

r∗
∏
j=1

⟨nj⟩

= γ−1
r∗N

βr∗ ∣∣L∣∣

≤ γ−1
r∗N

βr∗ ∣∣Q(r∗)∣∣

≤ γ−1
r∗N

βr∗C3,r∗N
b3,r∗ by induction hypothesis

= γ−1
r∗ C3,r∗N

βr∗+b3,r∗ .
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Next, to prove that it satisfies 5.5, we consider two cases.

• Case 1: κw(σ,n) > N . It is obvious to see that

{χ,Z2} +L = {0, Z2} +L = 0.

• Case 2: κw(σ,n) ≤ N . Using Lemma 4.3 we obtain

{χ,Z2} +L

= { ∑
σ∈{−1,+1}r∗

n∈Zr∗

Lσn
i(σ1wn1 +⋯ + σr∗wnr∗)

uσ1n1
⋯uσr∗nr∗ , Z2} + ∑

σ∈{−1,+1}r∗
n∈Zr∗

Lσnu
σ1
n1
⋯uσr∗nr∗

= −2i

2
∑

σ∈{−1,+1}r∗
n∈Zr∗

(σ1wn1 +⋯ + σr∗wnr∗)Lσn
i(σ1wn1 +⋯ + σr∗wnr∗)

uσ1n1
⋯uσr∗nr∗ + ∑

σ∈{−1,+1}r∗
n∈Zr∗

Lσnu
σ1
n1
⋯uσr∗nr∗

= − ∑
σ∈{−1,+1}r∗

n∈Zr∗

Lσnu
σ1
n1
⋯uσr∗nr∗ + ∑

σ∈{−1,+1}r∗
n∈Zr∗

Lσnu
σ1
n1
⋯uσr∗nr∗

= 0. ∎

After that, will deal with the existence of the new variables. By Proposition 5.1.1, we

get ε1 = (K ∣∣χ∣∣)−1/(r∗−2) and a smooth map

φχ ∶ [−1,1] ×Bhs(Z)(0, ε1) → hs(Z)

(t, u) ↦ φtχ(u),

such that it satisfies the following:

1. solves the equation −i∂tφχ = (∇χ) ○ φχ,

2. ∀ t ∈ [−1,1], φtχ is close to the identity: ∀u ∈ Bhs(Z)(0, ε1),

∣∣φtχ(u) − u∣∣hs ≲r,s ∣∣u∣∣r∗−1
hs ∣∣χ∣∣ ≤K ∣∣u∣∣r∗−1

hs ∣∣χ∣∣ = 1

εr∗−2
1

∣∣u∣∣r∗−2
hs ∣∣u∣∣hs
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= (∣∣u∣∣hs
ε1

)
r∗−2

∣∣u∣∣hs (5.6)

3. ∀ t ∈ [−1,1], φtχ is intertible: ∣∣φtχ(u)∣∣hs < ε1 Ô⇒ φ−tχ ○ φtχ(u) = u,

4. ∀ t ∈ [−1,1], φtχ is symplectic,

5. its differential admits a unique continuous extension from h−s(Z) into h−s(Z).

Moreover, the map u ∈ Bhs(Z)(0, ε1) ↦ dφtχ(u) ∈ L (h−s(Z)) is continuous and we have

∀u ∈ Bhs(Z)(0, ε1),∀σ ∈ {−1,+1}, ∣∣dφtχ(u)∣∣L (hσs) ≤ 2. (5.7)

Notice that

ε1 = (K ∣∣χ∣∣)−1/(r∗−2) ≥ (Kγ−1
r∗ C3,r∗N

βr∗+b3,r∗)−1/(r∗−2) ≥ 6

C#
1 N

b#1
∶= 6ε#

0 (5.8)

where C#
1 = 6 max(C1, (Kγ−1

r∗ C3,r∗)1/r∗−2,1) and b#
1 = max(b1,

βr∗+b3,r∗
r∗−2 ). After that, define

τ
(1)
# ∶= τ (1) ○ φ1

χ on Bhs(0,2ε#
0 ) and τ

(0)
# ∶= φ−1

χ ○ τ (0) on Bhs(0, ε#
0 ).

It is easy to see that the 2 maps are smooth being the composition of 2 smooth maps

and that τ
(1)
# ○ τ (0)

# = τ (1) ○φ1
χ ○φ−1

χ ○ τ (0) = τ (1) ○ τ (0) = idhs by induction hypothesis, which

indicates that the diagram commutes. We are going to prove next that τ
(1)
# is indeed

close to the identity, symplectic and has a continuous extension (Similar properties and

computations apply to τ
(0)
# ).

• Close to the identity: Let u ∈ Bhs(0,2ε#
0 ). We need to prove that

∣∣τ (1)
# u − u∣∣hs ≤ (∣∣u∣∣hs

2ε#
0

)
p−2

∣∣u∣∣hs .
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We have the following:

∣∣τ (1)
# u − u∣∣hs = ∣∣τ (1) ○ φ1

χ(u) − u∣∣hs

= ∣∣τ (1) ○ φ1
χ(u) − φ1

χ(u) + φ1
χ(u) − u∣∣hs

≤ ∣∣τ (1) ○ φ1
χ(u) − φ1

χ(u)∣∣hs + ∣∣φ1
χ(u) − u∣∣hs

For the first term, ∣∣φ1
χ(u)∣∣hs ≤ 2∣∣u∣∣hs ≤ 2(2ε#

0 ) < 2(6ε#
0 ) ≤ 2ε0 by definition of ε#

0 .

Thus, applying 5.3, we get

∣∣τ (1) ○ φ1
χ(u) − φ1

χ(u)∣∣hs ≤ (
∣∣φ1

χ(u)∣∣hs
2ε0

)
p−2

∣∣φ1
χ(u)∣∣hs ≤ (2∣∣u∣∣hs

2ε0

)
p−2

2∣∣u∣∣hs

≤ 2(∣∣u∣∣hs
6ε#

0

)
p−2

∣∣u∣∣hs ≤
2

3
(∣∣u∣∣hs

2ε#
0

)
p−2

∣∣u∣∣hs . (5.9)

For the second term, ∣∣u∣∣hs ≤ 2ε#
0 < 6ε#

0 ≤ ε1 by 5.8. Thus, applying 5.6, we get

∣∣φ1
χ(u) − u∣∣hs ≤ (∣∣u∣∣hs

ε1

)
r∗−2

∣∣u∣∣hs ≤ (∣∣u∣∣hs
6ε#

0

)
r∗−2

∣∣u∣∣hs

= 1

3r∗−2
(∣∣u∣∣hs

2ε#
0

)
r∗−2

∣∣u∣∣hs ≤
1

3
(∣∣u∣∣hs

2ε#
0

)
r∗−2

∣∣u∣∣hs . (5.10)

Therefore, using 5.9 and 5.10, we get

∣∣τ (1)
# u − u∣∣hs ≤

2

3
(∣∣u∣∣hs

2ε#
0

)
p−2

∣∣u∣∣hs +
1

3
( ∣∣u∣∣hs

2ε#
0²

≤1

)
r∗−2

∣∣u∣∣hs

≤ 2

3
(∣∣u∣∣hs

2ε#
0

)
p−2

∣∣u∣∣hs +
1

3
(∣∣u∣∣hs

2ε#
0

)
p−2

∣∣u∣∣hs r∗ − 2 > p − 2

= (∣∣u∣∣hs
2ε#

0

)
p−2

∣∣u∣∣hs .

• Symplectic: Let u ∈ Bhs(0,2ε#
0 ) and v,w ∈ hs(Z). Then,

⟨idτ (1)
# (u)(v), dτ (1)

# (u)(w)⟩l2
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= ⟨id(τ (1) ○ φ1
χ)(u)(v), d(τ (1) ○ φ1

χ)(u)(w)⟩l2

= ⟨i((dτ (1)) ○ φ1
χ)dφ1

χ(u)(v), ((dτ (1)) ○ φ1
χ)dφ1

χ(u)(w)⟩l2

= ⟨idφ1
χ(u)(v), dφ1

χ(u)(w)⟩l2 since τ (1) is symplectic

= ⟨iv,w⟩l2 since φ1
χ is symplectic.

• Continuous extension: The existence of the continuous extension of dφtχ and dτ (1)

ensures the existence of such extension for dτ
(1)
# . We are left with proving that

∣∣dτ (1)
# (u)∣∣L (hσs) ≤ 2r∗+1−p.

For u ∈ Bhs(0,2ε#
0 ), we have ∣∣u∣∣hs ≤ 2ε#

0 ≤ ε1 and

∣∣dτ (1)
# (u)∣∣L (hσs) = ∣∣d(τ (1) ○ φ1

χ)(u)∣∣L (hσs)

= ∣∣((dτ (1)) ○ φ1
χ)(u))dφ1

χ(u)∣∣L (hσs)

≤ ∣∣(dτ (1)) ○ φ1
χ(u)∣∣L (hσs)∣∣dφ1

χ(u)∣∣L (hσs)

≤ 2∣∣(dτ (1)) ○ φ1
χ(u)∣∣L (hσs) by 5.7

≤ 21+r∗−p. by induction hypothesis

Our goal now is to decompose (Z2 + P ) ○ τ (1)
# . Let u ∈ Bs(0,2ε#

0 ). By definition, we have

(Z2 + P ) ○ τ (1)
# = (Z2 + P ) ○ τ (1) ○ φ1

χ

= (Z2 +Q(p) +⋯ +Q(r−1) +R) ○ φ1
χ by induction hypothesis

= Z2 ○ φ1
χ +

r−1

∑
j=p

Q(j) ○ φ1
χ +R ○ φ1

χ.

Applying Lemma 5.1.1 with t = 1, we get

(Z2 + P ) ○ τ (1)
#
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= Z2 + {χ,Z2} +
mr∗+1

∑
k=2

1

k!
{χ,Z2k−1} + ∫

1

0

1

(mr∗ + 1)!Z2mr∗+2 ○ φ
t
χ(1 − t)mr∗+1 dt

+
r−1

∑
j=p

[Q(j) +
mj

∑
k=1

1

k!
{χ,Q(j)

k−1} + ∫
1

0

1

mj!
Q

(j)
mj+1 ○ φtχ(1 − t)mj dt] +R ○ φ1

χ

= Z2 + {χ,Z2} +
mr∗
∑
k=1

1

(k + 1)!adk+1
χ Z2 + ∫

1

0

(1 − t)mr∗+1

(mr∗ + 1)! admr∗+2
χ Z2 ○ φtχ dt

+
r−1

∑
j=p

[Q(j) +
mj

∑
k=1

1

k!
adkχQ

(j) + ∫
1

0

(1 − t)mj
mj!

admj+1
χ Q(j) ○ φtχ dt] +R ○ φ1

χ

where mj is the smallest integer such that j +mj(r∗ − 2) < r. From equation 5.5 we have

{χ,Z2} +L = 0, then

adk+1
χ Z2 = {χ,{χ,⋯,{χ,Z2}⋯}}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k+1 times

= {χ,{χ,⋯,−L⋯}} = −{χ,{χ,⋯,{χ,L}⋯}}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

= −adkχL.

Similarly, we get

admr∗+2
χ Z2 = −admr∗+1

χ L.

So, we write

(Z2 + P ) ○ τ (1)
#

= Z2 + {χ,Z2} −
mr∗
∑
k=1

1

(k + 1)!adkχL − ∫
1

0

(1 − t)mr∗+1

(mr∗ + 1)! admr∗+1
χ L ○ φtχ dt

+
r−1

∑
j=p

[Q(j) +
mj

∑
k=1

1

k!
adkχQ

(j) + ∫
1

0

(1 − t)mj
mj!

admj+1
χ Q(j) ○ φtχ dt] +R ○ φ1

χ

= Z2 +
r∗−1

∑
j=p

Q(j) +Q(r∗) + {χ,Z2} +
r−1

∑
j=r∗+1

Q(j) +
r−1

∑
j=p

mj

∑
k=1

1

k!
adkχQ

(j) −
mr∗
∑
k=1

1

(k + 1)!adkχL

+R ○ φ1
χ − ∫

1

0

(1 − t)mr∗+1

(mr∗ + 1)! admr∗+1
χ L ○ φtχ dt +

r−1

∑
j=p
∫

1

0

(1 − t)mj
mj!

admj+1
χ Q(j) ○ φtχ dt.

Using the induction hypothesis and Proposition 4.2.1, it is easy to see that

• Q(j) is of order j,

• {χ,Z2} is of order r∗,
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• adkχQ
(j) is of order j + k(r∗ − 2) > r∗,

• adkχL is of order r∗ + k(r∗ − 2) > r∗.

As a result, re-ordering the sums, it would make sense to set:

Q
(j)
# =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(j) for j < r∗,

Q(r∗) + {χ,Z2} for j = r∗,

Q(j) + ∑
j∗,k

j∗+k(r∗−2)=j

1
k!adkχQ

(j∗) − ∑
k

r∗+k(r∗−2)=j

1
(k+1)!adkχL for r∗ < j < r

and

R# = R ○ φ1
χ − ∫

1

0
((1 − t)mr∗+1

(mr∗ + 1)! admr∗+1
χ L ○ φtχ −

r−1

∑
j=p

(1 − t)mj
mj!

admj+1
χ Q(j) ○ φtχ) dt.

Note that for j < r∗, Q(j)
# commutes with the low super-actions by induction hypothesis,

and Q
(r∗)
# = Q(r∗)+{χ,Z2} = Q(r∗)−L = U also commutes with Jn by Lemma 5.1.3. Hence,

∣j∣ < r∗ + 1 and ⟨n⟩ ≤ N Ô⇒ {Jn,Q(j)
# } = 0.

Moreover, by construction we have Q
(j)
# ∈ H j for p ≤ j < r satisfying the following needed

bounds: For j ≤ r∗, we easily have by induction hypothesis

∣∣Q(j)
# ∣∣ ≤ ∣∣Q(j) ≤ C3,jN

b3,j .

For j > r∗, we notice that

∣∣adkχQ
(j∗)∣∣ ≲r∗,j∗,j ∣∣χ∣∣k∣∣Q(j∗)∣∣ by 4.5

≤Kr∗,j∗,j(γ−1
r∗ C3,r∗N

βr∗+b3,r∗)k(C3,j∗N
b3,j∗) (5.11)

≤Kr∗,j∗,jγ
−1
r∗ (C3,r∗)kC3,j∗N

k(βr∗+b3,r∗)+b3,j∗ .
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Since adkχQ
(r∗) and adkχL enjoy the same estimate, then we deduce that

∣∣Q(j)
# ∣∣ ≤ 2 ∑

j∗,k
j∗+k(r∗−2)=j

1

k!
∣∣adkχQ

(j∗)∣∣

≤ C#
3,jN

b#3,j

where C#
3,j = 2 ∑

j∗,k
j∗+k(r∗−2)=j

1
k!Kr∗,j∗,jγ

−1
r∗ (C3,r∗)kC3,j∗ and b#

3,j = max
j∗+k(r∗−2)=j

(k(βr∗+b3,r∗)+b3,j∗).

Finally, we are left with proving the estimate of the remainder R#. For this fix u ∈

Bhs(0,2ε#
0 ) and we start by checking that ∇(R ○ φ1

χ)(u) ∈ hs. By composition, we have

∇(R ○ φ1
χ)(u) = (dφ1

χ(u))∗(∇R) ○ φ1
χ(u).

We know that dφ1
χ(u) admits a continuous extension from h−s to h−s with ∣∣dφ1

χ(u)∣∣L (h−s) ≤

2, then (dφ1
χ(u))∗ ∶ hs → hs with ∣∣(dφ1

χ(u))∗∣∣L (hs) = ∣∣dφ1
χ(u)∣∣L (h−s) ≤ 2. Moreover, (∇R)○

φ1
χ(u) ∈ hs by induction hypothesis, so (dφ1

χ(u))∗(∇R) ○ φ1
χ(u) ∈ hs and we get

∣∣∇(R ○ φ1
χ)(u)∣∣hs = ∣∣(dφ1

χ(u))∗(∇R) ○ φ1
χ(u)∣∣hs

≤ ∣∣(dφ1
χ(u))∗∣∣L (hs)∣∣(∇R) ○ φ1

χ(u)∣∣hs

≤ 2∣∣(∇R) ○ φ1
χ(u)∣∣hs

≤ 2C2N
b2 ∣∣φ1

χ(u)∣∣r−1
hs since ∣∣φ1

χ(u)∣∣hs ≤ 2ε0

≤ 22r−1C2N
b2 ∣∣u∣∣r−1

hs since ∣∣φ1
χ(u)∣∣hs ≤ 2∣∣u∣∣hs

= 2rC2N
b2 ∣∣u∣∣r−1

hs .

Now for the terms of R# inside the integral. Using same arguments as above, we have for

p ≤ j ≤ r − 1 and t ∈ [0,1]

∣∣∇(admj+1
χ Q(j) ○ φtχ)(u)∣∣hs ≤ 2∣∣∇(admj+1

χ Q(j)) ○ φtχ(u)∣∣hs
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where admj+1
χ Q(j) is a smooth function belonging to H rj where rj ∶= j + (mj + 1)(r∗ − 2).

Thus, applying Proposition 4.1.1, we get

∣∣∇(admj+1
χ Q(j)) ○ φtχ(u)∣∣hs

≤Mrj ∣∣φtχ(u)∣∣
rj−1

hs ∣∣admj+1
χ Q(j)∣∣

≤MrjKr∗,j,rj(γ−1
r∗ C3,r∗N

βr∗+b3,r∗)mj+1(C3,jN
b3,j)∣∣φtχ(u)∣∣

rj−1

hs by 5.11

=MrjKr∗,j,rjγ
−mj−1
r∗ (C3,r∗)mj+1C3,jN

(βr∗+b3,r∗)(mj+1)+b3,j ∣∣φtχ(u)∣∣
rj−1

hs

where Mrj depends on (rj, s). Consequently, we can write

∣∣∇(admj+1
χ Q(j) ○ φtχ)(u)∣∣hs

≤ 2MrjKr∗,j,rjγ
−mj−1
r∗ (C3,r∗)mj+1C3,jN

(βr∗+b3,r∗)(mj+1)+b3,j ∣∣φtχ(u)∣∣
rj−1

hs

≤ 2MrjKr∗,j,rjγ
−mj−1
r∗ (C3,r∗)mj+1C3,jN

(βr∗+b3,r∗)(mj+1)+b3,j2rj−1∣∣u∣∣rj−1

hs

= 2rjMrjKr∗,j,rjγ
−mj−1
r∗ (C3,r∗)mj+1C3,jN

(βr∗+b3,r∗)(mj+1)+b3,j ∣∣u∣∣rj−1

hs
∣∣u∣∣r−1

hs

∣∣u∣∣r−1
hs

= 2rjMrjKr∗,j,rjγ
−mj−1
r∗ (C3,r∗)mj+1C3,jN

(βr∗+b3,r∗)(mj+1)+b3,j ∣∣u∣∣rj−rhs ∣∣u∣∣r−1
hs .

Recall that ∣∣u∣∣hs ≤ 2ε#
0 = 2

C#
1 N

b1
#

≤ 2

N
b1
#

≤ 2 Ô⇒ ∣∣u∣∣rj−rhs ≤ 2rj−r. Therefore, we get

∣∣∇(admj+1
χ Q(j) ○ φtχ)(u)∣∣hs

≤ 2rjMrjKr∗,j,rjγ
−mj−1
r∗ (C3,r∗)mj+1C3,jN

(βr∗+b3,r∗)(mj+1)+b3,j2rj−r∣∣u∣∣r−1
hs

= 22rj−rMrjKr∗,j,rjγ
−mj−1
r∗ (C3,r∗)mj+1C3,j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Aj

N (βr∗+b3,r∗)(mj+1)+b3,j ∣∣u∣∣r−1
hs . (5.12)

Similarly, since L ∈ H r∗ , we get

∣∣∇(admr∗+1
χ L ○ φtχ)(u)∣∣hs

≤ 22r′−rMr′Kr∗,r′γ
−mr∗−1
r∗ (C3,r∗)mr∗+1C3,r∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Ar′

N (βr∗+b3,r∗)(mr∗+1)+b3,r∗ ∣∣u∣∣r−1
hs (5.13)
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with r′ ∶= r∗ + (mr∗ + 1)(r∗ − 2). Next, using 5.12, 5.13 and the fact that the 2 functions

are smooth, we are able to interchange the gradient and the integral by applying Leibniz

integral rule. Hence, putting the results back together, we establish

∣∣∇R#(u)∣∣hs

= ∣∣∇(R ○ φ1
χ)(u) + ∇∫

1

0
((1 − t)mr∗+1

(mr∗ + 1)! (admr∗+1
χ L ○ φtχ)(u)

−
r−1

∑
j=p

(1 − t)mj
mj!

(admj+1
χ Q(j) ○ φtχ)(u))dt∣∣

= ∣∣∇(R ○ φ1
χ)(u) + ∫

1

0
((1 − t)mr∗+1

(mr∗ + 1)! ∇(admr∗+1
χ L ○ φtχ)(u)

−
r−1

∑
j=p

(1 − t)mj
mj!

∇(admj+1
χ Q(j) ○ φtχ)(u))dt∣∣

≤ ∣∣∇(R ○ φ1
χ)(u)∣∣hs + ∫

1

0
(∣∣ 1

(mr∗ + 1)!∇(admr∗+1
χ L ○ φtχ)(u)∣∣

hs

+ ∣∣
r−1

∑
j=p

1

mj!
∇(admj+1

χ Q(j) ○ φtχ)(u)∣∣
hs
)dt

≤ 2rC2N
b2 ∣∣u∣∣r−1

hs + ∫
1

0
( 1

(mr∗ + 1)!Ar
′N (βr∗+b3,r∗)(mr∗+1)+b3,r∗ ∣∣u∣∣r−1

hs

+
r−1

∑
j=p

1

mj!
AjN

(βr∗+b3,r∗)(mj+1)+b3,j ∣∣u∣∣r−1
hs )dt

Noticing that the bounds of ∣∣∇(admr∗+1
χ Q(r∗) ○ φtχ)(u)∣∣hs and ∣∣∇(admr∗+1

χ L ○ φtχ)(u)∣∣hs

coincide (rj = r′ when j = r∗), we can see that

1

(mr∗ + 1)!Ar
′N (βr∗+b3,r∗)(mr∗+1)+b3,r∗ ≤

r−1

∑
j=p

1

mj!
AjN

(βr∗+b3,r∗)(mj+1)+b3,j .

Finally, we get

∣∣∇R#(u)∣∣hs ≤ 2rC2N
b2 ∣∣u∣∣r−1

hs + 2
r−1

∑
j=p

1

mj!
AjN

(βr∗+b3,r∗)(mj+1)+b3,j ∣∣u∣∣r−1
hs

≤ C#
2 N

b#2 ∣∣u∣∣r−1
hs

where we set C#
2 ∶= 2rC2 + 2

r−1

∑
j=p

1
mj !
Aj and b#

2 ∶= max
p≤j≤r−1

(b2, (βr∗ + b3,r∗)(mj + 1) + b3,j).
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5.2 Dynamical Corollary

Lemma 5.2.1. Consider u ∈ C0
b (R;hs) ∩ C1(R;h−s), v(t) ∶= τ (0)(u(t)) and L(0)(u) the

continuous extension of dτ (0)(u) to L (h−s). Then v is time differentiable in h−s with

∂tv(t) = L(0)(u(t))(∂tu(t)).

Proof. Notice that u ∈ C1(R;h−s) and τ (0) is not defined a priori on h−s. For this, we

extend dτ (0)(u) ∶ hs → hs to L(0)(u) ∶ h−s → h−s using Theorem 5.1.2. Now, we start by

proving time differentiability of v. Fix t ∈ R, and consider h ∈ (−1,1) ∖ 0. Then we write

v(t + h) − v(t)
h

= τ
(0)(u(t + h)) − τ (0)(u(t))

h
= ∫

1

0
L(0)(uν,t,h)dν (u(t + h) − u(t)

h
)

with uν,t,h = νu(t + h) + (1 − ν)u(t). So,

∣∣v(t + h) − v(t)
h

−L(0)(u(t))(∂tu(t))∣∣
h−s

= ∣∣ ∫
1

0
L(0)(uν,t,h)dν (u(t + h) − u(t)

h
) −L(0)(u(t))(∂tu(t))∣∣

h−s
.

Next, add and subtract ∫
1

0 L
(0)(uν,t,h)dν(∂tu(t)), to get

∣∣v(t + h) − v(t)
h

−L(0)(u(t))(∂tu(t))∣∣
h−s

≤ ∣∣ ∫
1

0
L(0)(uν,t,h)dν (u(t + h) − u(t)

h
− ∂tu(t)) ∣∣

h−s

+ ∣∣ (∫
1

0
L(0)(uν,t,h) −L(0)(u(t))dν)∂tu(t)∣∣

h−s

≤ ∣∣u(t + h) − u(t)
h

− ∂tu(t)∣∣
h−s
∫

1

0
∣∣L(0)(uν,t,h)∣∣L (h−s) dν

+ ∣∣∂tu(t)∣∣h−s ∫
1

0
∣∣L(0)(uν,t,h) −L(0)(u(t))∣∣L (h−s) dν

≤ 2r−p∣∣u(t + h) − u(t)
h

− ∂tu(t)∣∣
h−s

by 5.4

+ ∣∣∂tu(t)∣∣h−s ∫
1

0
∣∣L(0)(uν,t,h) −L(0)(u(t))∣∣L (h−s) dν.
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• For the first term, since u ∈ C1(R;h−s), then lim
h→0

u(t+h)−u(t)
h = ∂tu(t) in h−s. Hence

∣∣u(t + h) − u(t)
h

− ∂tu(t)∣∣
h−s
ÐÐ→
h→0

0.

• Now for the second term. We have that u ∈ C0
b (R;hs), so

uν,t,h = νu(t + h) + (1 − ν)u(t) ÐÐ→
h→0

νu(t) + u(t) − νu(t) = u(t).

Thus, since L(0) is continuous, we have

L(0)(uν,t,h) ÐÐ→
h→0

L(0)(u(t)) in L (h−s).

Finally, by the dominated convergence theorem, we conclude that

∫
1

0
∣∣L(0)(uν,t,h) −L(0)(u(t))∣∣L (h−s) dν ÐÐ→

h→0
0.

Consequently, v is time derivable with ∂tv(t) = L(0)(u(t))(∂tu(t)) as needed.

Lemma 5.2.2. Given u ∈ Bhs(0, ε0), we have that

L(0)i = i((dτ (1)) ○ τ (0))∗

where ((dτ (1)) ○ τ (0)(u))∗ ∈ L (h−s) denotes the adjoint of (dτ (1)) ○ τ (0)(u).

Proof. First, I would like to mention that since dτ (1) ○ τ (0)(u) ∶ hs → hs is a linear

operator, then by Definition 2.2.5 its adjoint is defined as (dτ (1) ○ τ (0)(u))∗ ∶ h−s → h−s

with h−s being the dual space of hs. Now, let y, v,w ∈ hs. Because τ (1) is symplectic (recall

Definition 2.2.6), we have

⟨(dτ (1)(y))∗i(dτ (1))(y)(v),w⟩ = ⟨i(dτ (1))(y)(v), dτ (1)(y)(w)⟩ = ⟨iv,w⟩
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Ô⇒ (dτ (1)(y))∗i(dτ (1))(y) = i (5.14)

which is true for all y, in particular for y = τ (0). Now since the diagram in Theorem 5.1.2

commutes, we have τ (1) ○ τ (0) = idhs and consequently we obtain

d(τ (1) ○ τ (0)) = d(idhs) = idhs Ô⇒ ((dτ (1)) ○ τ (0))dτ (0) = idhs . (5.15)

Finally, multiply by dτ (0) both sides of equation 5.14 to get

i(dτ (0)) = (dτ (1) ○ τ (0))∗i((dτ (1)) ○ τ (0))dτ (0)

= (dτ (1) ○ τ (0))∗i(idhs) by 5.15

= (dτ (1) ○ τ (0))∗i.

Using the fact that dτ (0) ∈ L (hs) ⊂ L (hs;h−s) and that hs is dense in h−s, we extend the

last equation from L (hs;h−s) to L (h−s;h−s) and we write

L(0)i = (dτ (1) ○ τ (0))∗i.

Lemma 5.2.3. Let u ∈ C1(R;h−s) and assume that the frequencies wk are coercive (i.e.

∣wk∣ → ∞ as ∣k∣ → ∞). Then Jn is a smooth function on h−s.

Proof. Fix n. Since the frequencies are coercive, then by definition

∀M ≥ 0, ∃N such that ∀∣k∣ ≥ N, ∣wk∣ >M.

In particular, for M ∶= ∣wn∣ + 1. Consequently, we can only have a finite number of k′s

satisfying wk = wn. Moreover, ∣uk∣2 is smooth on h−s, so Jn(u) = ∑
k

wk=wn

∣uk∣2 is a finite sum

of smooth functions on h−s. Thus it is itself a smooth function on h−s.

Theorem 5.2.4. (Key Result) Let s ≥ 0 and r > p ≥ 3. With the same assumptions and
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notations as in Theorem 5.1.2, along with an arbitrary constant ε1 > 0, if u ∈ C0
b (R;hs) ∩

C1(R;h−s) is a global solution of

i∂tu(t) = ∇Z2(u(t)) + ∇P (u(t)) (5.16)

where u satisfies: ∀t ∈ R, ∣∣u(t)∣∣hs ≤ ε1 and the frequencies are coercive, then

∣t∣ < ε−(r−p)1 Ô⇒ ∣Jn(u(t)) − Jn(u(0))∣ ≤M⟨n⟩♭εp1

with the constants M and ♭ depending on (r, s, γ) and (β, r) respectively.

Proof. First notice that if ε1 ≥ 1
C⟨n⟩♭ with C defined in Theorem 5.1.2, then

∣Jn(u(t)) − Jn(u(0))∣ = ∣ ∑
wk=wn

∣uk(t)∣2 − ∑
wk=wn

∣uk(0)∣2∣

≤ ∑
wk=wn

∣uk(t)∣2 + ∑
wk=wn

∣uk(0)∣2

≤ ∑
k∈Z

∣uk(t)∣2 +∑
k∈Z

∣uk(0)∣2

= ∣∣u(t)∣∣2l2 + ∣∣u(0)∣∣2l2

≤ ∣∣u(t)∣∣2hs + ∣∣u(0)∣∣2hs

≤ 2ε2
1.

Also, we have 2(C⟨n⟩b)p−2εp1 = 2(C⟨n⟩b)p−2εp−2
1 ε2

1 ≥ 2ε2
1(C⟨n⟩b)p−2 ( 1

C⟨n⟩b
)
p−2

= 2ε2
1.

Hence we get

∣Jn(u(t)) − Jn(u(0))∣ ≤ 2(C⟨n⟩b)p−2εp1,

and we obtain the estimate for ♭ ∶= b(p−2) and M ∶= 2Cp−2. For this, we focus on the case

where ε1 < 1
C⟨n⟩b

and we set N = ⟨n⟩. By Theorem 5.1.2, we have

∀t ∈ R, ∣∣u(t)∣∣hs ≤ ε1 <
1

C⟨n⟩b =
1

CN b
≤ ε0.
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So, looking at 5.3, it would make sense to consider v(t) = τ (0)(u(t)). Now, since u is a

global solution of 5.16, then setting H = Z2 + P we get

∂tv(t) = L(0)(u(t))(∂tu(t)) by Lemma 5.2.1

= L(0)(u(t))(−i∇H(u(t)))

= −L(0)(u(t))(i∇H(u(t)))

= −i((dτ (1)) ○ τ (0)u(t))∗(∇H(u(t))) by Lemma 5.2.2

= −i(dτ (1)(v(t)))∗(∇H(u(t))).

Remark that τ (1) ○ τ (0)(u(t)) = u(t) Ô⇒ τ (1)(v(t)) = u(t). So replacing u(t) and using

composition we get

∂tv(t) = −i(dτ (1)(v(t)))∗((∇H) ○ τ (1)v(t))

= −i∇(H ○ τ (1))(v(t)).

Furthermore, using the decomposition of H ○ τ (1), we have

i∂tv(t) = ∇(Z2 +Q +R)(v(t))

= ∇Z2(v(t)) + ∇Q(v(t)) + ∇R(v(t)). (5.17)

Next, we aim at estimating ∂tJn(v(t)) in order to apply the Mean Value Inequality. We

already proved that Jn is a smooth function on h−s (Lemma 5.2.3), this implies that its

gradient is an element of h−(−s) = hs. Furthermore, since ∂tv ∈ h−s their scalar product is

defined.

∂tJn(v(t)) =
d

dt
(Jn ○ v(t))

= ⟨∇Jn(v(t)), ∂tv(t)⟩l2

= ⟨i∇Jn(v(t)), i∂tv(t)⟩l2
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= ⟨i∇Jn(v(t)),∇(Z2 +Q +R)(v(t))⟩l2 by (5.17)

= {Jn, Z2 +Q +R}(v(t))

= ({Jn, Z2} + {Jn,Q} + {Jn,R}) (v(t)).

From Theorem 5.1.2, we have that {Jn,Q} = 0. Moreover, we have

{Jn, Z2}(v(t)) = 4 ∑
wk=wn

R[i∂vkJn(v(t))∂vkZ2(v(t))] by definition

= 2 ∑
wk=wn

R[ivkwkvk]

= 2 ∑
wk=wn

wkR[i∣vk∣2]

= 0.

Therefore we obtain

∣∂tJn(v(t))∣ = ∣{Jn,R}(v(t))∣

= ∣⟨i∇Jn(v(t)),∇R(v(t))⟩l2 ∣

≤ ∣∣∇Jn(v(t))∣∣l2 ∣∣∇R(v(t))∣∣l2 by Cauchy Schwartz

≤ ∣∣∇Jn(v(t))∣∣hs ∣∣∇R(v(t))∣∣hs . (5.18)

Recalling that ∣∣u(t)∣∣hs ≤ ε1 and using the fact that

∣∣v(t)∣∣hs = ∣∣τ (0)(u(t)) − u(t) + u(t)∣∣hs

≤ ∣∣u(t)∣∣hs + ∣∣τ (0)(u(t)) − u(t)∣∣hs

≤ ∣∣u(t)∣∣hs + (∣∣u(t)∣∣hs
ε0

)
p−2

∣∣u(t)∣∣hs by 5.3

≤ 2∣∣u(t)∣∣hs since ∣∣u(t)∣∣hs < ε0

≤ 2ε1,
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we can see that

• ∣∣∇Jn(v(t))∣∣2hs = ∑
k∈Z

⟨k⟩2s∣(∇Jn(v(t)))k∣2 = ∑
k∈Z

⟨k⟩2s∣2∂vkJn(v(t))∣
2 = 4 ∑

wk=wn
⟨k⟩2s∣vk∣2

≤ 4 ∑
k∈Z

⟨k⟩2s∣vk∣2 = 4∣∣v(t)∣∣2hs ≤ 16ε2
1.

• ∣∣∇R(v(t))∣∣hs ≤ CN b∣∣v(t)∣∣r−1
hs ≤ CN b(2ε1)r−1 = 2r−1C⟨n⟩bεr−1

1 .

Putting the estimates back in equation 5.18, we obtain

∣∂tJn(v(t))∣ ≤ 2r−14C⟨n⟩bεr1

= 2r+1C⟨n⟩bεr1

=M#⟨n⟩bεr1

where M# ∶= 2r+1C. Now, we apply Theorem 2.2.5 on [0, t], and we deduce that

∣t∣ < ε−(r−p)1 Ô⇒ ∣Jn(v(t)) − Jn(v(0))∣
∣t − 0∣ ≤ ∣∂tJn(v(t))∣

Ô⇒ ∣Jn(v(t)) − Jn(v(0))∣ ≤ ∣t∣∣∂tJn(v(t))∣ ≤ ε−(r−p)1 M#⟨n⟩bεr1 =M#⟨n⟩bεp1.

In order to conclude, we need to get this result for u(t). So, since for all t we have

∣∣u(t) − v(t)∣∣hs ≤ (∣∣u(t)∣∣hs
ε0

)
p−2

∣∣u(t)∣∣hs by 5.3

= ∣∣u(t)∣∣p−1
hs´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤εp−11

1

εp−2
0±

≤Cp−2⟨n⟩b(p−2)

≤ Cp−2⟨n⟩b(p−2)εp−1
1 , (5.19)

and since Jn is quadratic

∣Jn(v(t)) − Jn(u(t)))∣ ≤ (∣∣v(t)∣∣l2 + ∣∣u(t)∣∣l2)∣∣u(t) − v(t)∣∣l2 by Lemma 2.2.6

≤ (∣∣v(t)∣∣hs + ∣∣u(t)∣∣hs)∣∣u(t) − v(t)∣∣hs
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≤ (2ε1 + ε1)Cp−2⟨n⟩b(p−2)εp−1
1 by 5.19

= 3Cp−2⟨n⟩b(p−2)εp1,

we finally deduce that

∣Jn(u(t)) − Jn(u(0))∣ = ∣Jn(u(t)) − Jn(u(0)) − Jn(v(t)) + Jn(v(t)) − Jn(v(0)) + Jn(v(0))∣

≤ ∣Jn(v(t)) − Jn(v(0))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤M#⟨n⟩bεp1

+ ∣Jn(v(t)) − Jn(u(t))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤3Cp−2⟨n⟩b(p−2)εp1

+ ∣Jn(v(0)) − Jn(u(0))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤3Cp−2⟨n⟩b(p−2)εp1

≤M⟨n⟩♭εp1

where we obtained the needed result for M ∶=M# + 6Cp−2 and ♭ ∶= b(p − 2).
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Chapter 6

Applications to the Beam Equation

In this chapter we are interested in applying the above results to the beam equation

defined on the 1-dimensional torus in the introduction. Recall

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ttψ + ∂xxxxψ +mψ + pψp−1 = 0

ψ(0, x) = ψ0

∂tψ(0, x) = −ψ1

(6.1)

where ψ = ψ(t, x) ∈ R with x ∈ T, the mass m > 0 is a parameter, (ψ0, ψ1) ∈ Hs+1(T;R) ×

Hs−1(T;R) having small size ε and p ≥ 3.

6.1 Hamiltonian Formalism

We start by identifying the Hamiltonian structure of the beam equation.

First, it is easy to check that for s ∈ R the following map is an isometry:

F ∶ Hs(T) → hs(Z)
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u↦ (û(k))k∈Z.

Thus Hs(T) ≡ hs(Z), and we write u(x) = ∑
k∈Z

uk(t)ek(x) where uk denotes the Fourier

coefficients of u. Now, we let

Ω = (∂4
x +m)1/2

be a Fourier multiplier defined on hs(Z) by linearity as

Ωu = ∑
k∈Z

ukΩek,

Ωeikx = wkeikx with wk ∶=
√
k4 +m.

Then the beam equation reads

∂ttψ +Ω2ψ + pψp−1 = 0. (6.2)

Moreover, we introduce a variable −v = ∂tψ and we rewrite equation 6.2 as:

−v = ∂tψ and ∂tv = Ω2ψ + pψp−1.

As a result, it is easy to see that equation 6.2 can be written in the Hamiltonian form

∂t

⎛
⎜⎜
⎝

ψ

v

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠
∇H(ψ, v)

with H(ψ, v) = ∫
T

1

2
v2 + 1

2
(Ω2ψ)ψ + ψp dx. (6.3)

Remark. As mentioned before, we will only apply the results to s = 1 which is possible

since we are always in low regularity.
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Proposition 6.1.1. We pose a complex variable

u(t, x) = 1√
2
[Ω1/2ψ + iΩ−1/2v]. (6.4)

Then (ψ,∂tψ) ∈ C0
b (R;H2 × L2) is a solution of equation 6.1 if and only if u ∈ C0

b (R;h1)

solves the equation

∂tu = iΩu +
ip√

2
Ω−1/2 (Ω−1/2 (u + u√

2
))

p−1

. (6.5)

Proof. Assume first that 6.1 is satisfied (similar calculations for the other direction).

Notice that

Ω−1/2 (u + u√
2

) = Ω−1/2 (2

2
Ω1/2ψ) = ψ.

So replacing u by its formula, we have

iΩu + ip√
2

Ω−1/2 (Ω−1/2 (u + u√
2

))
p−1

= iΩ[ 1√
2
(Ω1/2ψ + iΩ−1/2v) ] + i√

2
Ω−1/2 pψp−1

²
−∂ttψ−Ω2ψ

= i√
2

Ω3/2ψ + Ω1/2

√
2
∂tψ −

i√
2

Ω−1/2∂ttψ −
i√
2

Ω3/2ψ

= 1√
2
[Ω1/2∂tψ − iΩ−1/2∂ttψ]

= 1√
2
[Ω1/2∂tψ + iΩ−1/2∂tv]

= ∂tu.

Proposition 6.1.2. For p ≥ 3 the equation 6.5 can be written in the

Hamiltonian form

∂tuk = i
∂H(u)
∂uk

with

H(u) = Z2 +Hp
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where

Z2(u) ∶= ∑
k∈Z

wk∣uk∣2 and Hp(u) ∶= ∫
T
(Ω−1/2 (u + u√

2
))

p

dx.

Proof. Passing to Fourier with u(x) = ∑
k∈Z

uk(t)ek(x), we have that the beam equation is

equivalent to

∂tuk = i
∂H(u)
∂uk

,

with

H(u) = ∫
T
uΩudx + ∫

T
(Ω−1/2 (u + u√

2
))

p

dx.

To see this, we apply a change of variable to equation 6.3 to get

H(u) = ∫
T

1

2
(Ω1/2 (u − u

i
√

2
))

2

+ 1

2
(Ω3/2 (u + u√

2
))(Ω−1/2 (u + u√

2
)) + (Ω−1/2 (u + u√

2
))

p

dx.

Then, expanding and using the fact that Ω is self-adjoint, we get the equation in terms

on u and u. Now, we write

∫
T
uΩudx = ∫

T
(∑
k∈Z

uke−k)(Ω∑
k∈Z

ukek)dx

= ∫
T
(∑
k∈Z

uke−k)(∑
k∈Z

ukΩek)dx by linearity of Ω

= ∑
k∈Z

ukwk ∫
T
∑
k∈Z

uke−kek dx since Ωek = wkek

= ∑
k∈Z

ukwk∑
k∈Z

uk ∫
T
e−kek dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= ∑
k∈Z

wk∣uk∣2.

After this, define

Hp ∶ u→ ∫
T
(Ω−1/2 (u + u√

2
))

p

dx,

Hence, we get the needed result.
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Our goal now is to identify Hp with a formal Hamiltonian:

Proposition 6.1.3. Let Hp be defined as in Proposition 6.1.2. Then Hp ∈ H p.

Proof. We have

Hp(u) = ∫
T
(Ω−1/2 (u + u√

2
))

p

dx

= ∫
T

⎛
⎜
⎝

Ω−1/2
⎛
⎜
⎝

∑
k∈Z

ukek + ∑
k∈Z

uke−k
√

2

⎞
⎟
⎠

⎞
⎟
⎠

p

dx

= ∫
T

⎛
⎜⎜
⎝

∑
k∈Z

ukw
−1/2
k ek + ∑

k∈Z
ukw

−1/2
k e−k

√
2

⎞
⎟⎟
⎠

p

dx

= 1

2p/2 ∫T
⎛
⎝∑k∈Z

ukek + uke−k
w

1/2
k

⎞
⎠

p

dx

= 1

2p/2 ∫T

⎛
⎜⎜
⎝
∑
k∈Z

σ∈{−1,+1}

uσke
σ
k

w
1/2
k

⎞
⎟⎟
⎠

p

dx

= 1

2p/2 ∫T

⎛
⎜⎜
⎝
∑
k1∈Z

σ1∈{−1,+1}

uσ1k1e
σ1
k1

w
1/2
k1

⎞
⎟⎟
⎠
⋯

⎛
⎜⎜⎜
⎝
∑
kp∈Z

σp∈{−1,+1}

u
σp
kp
e
σp
kp

w
1/2
kp

⎞
⎟⎟⎟
⎠
dx

= 1

2p/2
∑

k1,⋯,kp∈Z
σ1,⋯,σp∈{−1,+1}

1

w
1/2
k1
⋯w1/2

kp

uσ1k1⋯u
σp
kp ∫T e

σ1
k1
⋯eσpkp dx

where

∫
T
eσ1k1⋯e

σp
kp
dx =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if σ1k1 +⋯ + σpkp = 0,

0 otherwise.

Consequently we get that

Hp(u) =
1

2p/2
∑

k1,⋯,kp∈Z
σ1,⋯,σp∈{−1,+1}
σ1k1+⋯+σpkp=0

1

w
1/2
k1
⋯w1/2

kp

uσ1k1⋯u
σp
kp

(6.6)

= 1

2p/2
∑
k∈Zp

σ∈{−1,+1}p

σ1k1+⋯+σpkp=0

(Hp)σkuσ1k1⋯u
σp
kp
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with (Hp)σk = 1
2p/2w

−1/2
k1

⋯w−1/2
kp

, satisfying the bound:

∣(Hp)σk ∣ =
1

2p/2
∣w−1/2

k1
⋯w−1/2

kp
∣

= 1

2p/2
(k4

1 +m)−1/4⋯(k4
p +m)−1/4.

Furthermore, using direct calculation, we prove that

(k2
j +m)1/2

(k4
j +m)1/4

= O(1) and
(k2

j +m)−1/2

(k2
j + 1)−1/2

= O(1)

. Hence, we conclude that there exists a constant Cm such that

∣(Hp)σk ∣ ≤ Cm
2p/2

2p/2
(k2

1 + 1)−1/2⋯(k2
p + 1)−1/2

= Cm
p

∏
j=1

⟨kj⟩−1

and ∣∣Hp∣∣ ≲m 1.

6.2 Strong Non-Resonance Condition

At this point, we will check that the frequencies of the defined beam equation satisfy

the needed non-resonance condition.

Lemma 6.2.1. For k ∈ Z and m ≥ 0, the frequencies wk =
√
m + k4 are strongly non-

resonant.

Proof. Consider the frequencies w′
n =

√
m + n2 of the Klein–Gordan equation. In his

paper, [Bambusi, 2003] proves that these frequencies satisfy the assumption 3.1. Hence,

the result remains true for subsequences (nk)k∈Z. In particular, for nk ∶= k2, we get that

w′
nk

=
√
m + k4 = wk satisfy the assumption. It remains to prove that the frequencies
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accumulate polynomially fast on Z. We have

∣wk − k2∣ =
RRRRRRRRRRRRR

√
m + k4 − k2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

RRRRRRRRRRRRR
= (

√
m + k4−k2)×

√
m + k4 + k2

√
m + k4 + k2

= m√
m + k4 + k2

≤ m√
k4 + k2

= m

2k2
.

Thus, applying Proposition 3.1.1, we obtain the desired result.

6.3 Gobal Well-posedness

Our main goal in this section is to prove the global well-posedness of solutions to

∂tuk = i∂H(u)
∂uk

with initial data u(0, x) = u0. For this favor, we introduce

ηk(t) = e−iwktuk(t).

Lemma 6.3.1. We have that

u ∈ C0
b (R;h1) is a solution of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tuk = i∂H(u)
∂uk

u(0, x) = u0

⇐⇒ η ∈ C0
b (R;h1) is a solution of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η̇ =X(t, η)

η(0) = η0

with X(t, η) is to be determined.

Proof. Since ηk(t) = e−iwktuk(t) and u is a solution of ∂tuk = i∂H(u)
∂uk

, then

η̇k(t) = −iwke−iwktuk(t) + e−iwkt∂tuk(t)

= −iwke−iwktuk(t) + e−iwkti
∂H(u)
∂uk

= −iwke−iwktuk(t) + ie−iwkt∂uk[∑
n∈Z

wn∣un∣2 +Hp] by Proposition 6.2.2

= −iwke−iwktuk(t) + ie−iwkt∂uk (∑
n∈Z

wn∣un∣2)
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+ ie−iwkt∂uk
⎛
⎝

1

2p/2
∑

n1,⋯,np∈Z
σ1,⋯,σp∈{−1,+1}
σ1n1+⋯+σpnp=0

1

w
1/2
n1 ⋯w1/2

np

uσ1n1
⋯uσpnp

⎞
⎠

by 6.6

= −iwke−iwktuk(t) + iwke−iwktuk(t)

+ i

2p/2
e−iwkt ∑

n1,⋯,np∈Z
σ1,⋯,σp∈{−1,+1}
σ1n1+⋯+σpnp=0

1

w
1/2
n1 ⋯w1/2

np

∂uk(uσ1n1
⋯uσpnp)

= ip

2p/2
e−iwkt ∑

n∈Zp−1
σ∈{−1,+1}p−1

σ1n1+⋯+σp−1np−1=k

1

w
1/2
n1 ⋯w1/2

np−1w
1/2
k

uσ1n1
⋯uσp−1np−1 .

Finally, replace ηk(t)eiwkt = uk(t) in order to obtain

η̇(t) = ip

2p/2
e−iwkt

w
1/2
k

∑
n∈Zr−1

σ∈{−1,+1}r−1
σ1n1+⋯+σp−1np−1=k

1

w
1/2
n1 ⋯w1/2

np−1

(ηn1e
iwn1 t)σ1⋯(ηnp−1eiwnp−1 t)σp−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X(t,η)

.

Proposition 6.3.1. For t ∈ R, X(t, .) ∶ h1 → h1 is locally Lipschitz with respect to η.

Proof. Let R > 0 and assume that η, η′ ∈ Bh1(0,R). We have to prove that for all t, there

exists CR > 0 such that ∣∣X(t, η) −X(t, η′)∣∣h1 ≤ CR∣∣η − η′∣∣h1 . For this, we write

∣∣X(t, η) −X(t, η′)∣∣2h1

= ∑
k∈Z

⟨k⟩2

RRRRRRRRRRR

e−iwkt

w
1/2
k

p

2p/2
∑

n∈Zp−1
σ∈{−1,+1}p−1

σ1n1+⋯+σp−1np−1=k

1

w
1/2
n1 ⋯w1/2

np−1

(ηn1e
iwn1 t)σ1⋯(ηnp−1eiwnp−1 t)σr−1

− e
−iwkt

w
1/2
k

p

2p/2
∑

n∈Zp−1
σ∈{−1,+1}p−1

σ1n1+⋯+σp−1np−1=k

1

w
1/2
n1 ⋯w1/2

np−1

(η′n1
eiwn1 t)σ1⋯(η′np−1e

iwnp−1 t)σp−1
RRRRRRRRRRR

2

≤ ∑
k∈Z

⟨k⟩2

RRRRRRRRRRR

p

2p/2
∑

n∈Zp−1
σ∈{−1,+1}p−1

σ1n1+⋯+σp−1np−1=k

(ησ1n1
⋯ησp−1np−1 − η′σ1n1

⋯η′σp−1np−1)e−iwkte
i(wn1σ1+⋯wnp−1σp−1)t

RRRRRRRRRRR

2
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≤ p
2

2p
∑
k∈Z

⟨k⟩2

RRRRRRRRRRR
∑

n∈Zp−1
σ∈{−1,+1}p−1

σ1n1+⋯+σp−1np−1=k

(ησ1n1
⋯ησp−1np−1 − η′σ1n1

⋯η′σp−1np−1)
RRRRRRRRRRR

2

Using the fact that ∑
j1+j2=k

a(j1)b(j2) = ∑
j3∈Z

a(j3)b(k − j3) = a ∗ b(k), we write

∣∣X(t, η) −X(t, η′)∣∣2h1 ≤
p2

2p
∣∣ η ∗⋯ ∗ η
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p−1 terms

− η′ ∗⋯ ∗ η′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p−1 terms

∣∣2h1

= p
2

2p
∣∣(η − η′) ∗ η ∗⋯ ∗ η + η′ ∗ (η − η′) ∗ η ∗⋯ ∗ η +⋯ + η′ ∗ η′ ∗⋯ ∗ (η − η′)∣∣h1

≤ p
2

2p
∣∣η − η′∣∣h1 (∣∣η∣∣p−2

h1
+ ∣∣η′∣∣h1 ∣∣η∣∣p−3

h1
+⋯ + ∣∣η′∣∣p−3

h1
∣∣η∣∣h1 + ∣∣η′∣∣p−2

h1
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣∣η∣∣h1 ,∣∣η

′∣∣h1≤R

≤ CR∣∣η − η′∣∣h1 . (6.7)

Hence, X is locally Lipschitz and continuous with respect to the second variable.

Proposition 6.3.2. Fix T > 0 small enough depending only on ∣∣η0∣∣h1. Then there exists

a unique local solution

u ∈ C0
b ([0, T ];h1) ∩C1([0, T ];h−1) to the equation

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tuk = i∂H(u)
∂uk

u(0, x) = u0.

Proof. Using Lemma 6.3.1, it is sufficient to prove that η̇ =X(t, η) admits a local solution

on C0
b ([0, T ];h1). It is not difficult to see that η must satisfy

η(t) = η0 + ∫
t

0
X(s, η(s))ds ∀t ∈ [0, T ]. (6.8)

In other words, we define

BT ∶= {Φ ∈ C0
b ([0, T ];h1) ∶ ∣∣Φ∣∣C0(h1) ≤K} ⊂ C0

b ([0, T ];h1)
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with K a constant to be determined, and we seek a Φ being the fixed point of the mapping

Γ ∶ BT → BT

Φ(t) ↦ Γ(Φ)(t) = η0 + ∫
t

0
X(s,Φ(s))ds.

In order to apply the Banach Fixed Point Theorem, we will prove that Γ(Φ)(t) is a

contraction on BT . First, let’s check that Γ is well-defined. Given Φ(t) ∈ BT , we have

∣∣X(t,Φ(t))∣∣h1 ≤ ∣∣X(t,Φ(t)) −X(t,0)∣∣h1 + ∣∣X(t,0)∣∣h1

≤ CK ∣∣Φ(t)∣∣h1 + ∣∣X(t,0)∣∣h1 by 6.7

≤ CK ∣∣Φ(t)∣∣C0(h1) + ∣∣X(t,0)∣∣h1

≤ CKK + ∣∣X(t,0)∣∣h1

= CKK by definition of X(t, η).

Thus, we can write

∣∣Γ(Φ)(t)∣∣C0(h1) ≤ ∣∣η0∣∣h1 + sup
t∈[0,T ]

∣∣ ∫
t

0
X(s,Φ(s))ds∣∣

h1

≤ ∣∣η0∣∣h1 + sup
t∈[0,T ]

∫
t

0
∣∣X(s,Φ(s))∣∣

h1
ds

≤ ∣∣η0∣∣h1 + sup
t∈[0,T ]

∫
t

0
CKK ds

= ∣∣η0∣∣h1 + sup
t∈[0,T ]

CKKt

≤ ∣∣η0∣∣h1 +CKKT

≤K

where we chose K = 2∣∣η0∣∣h1 and T ≤ 1
2CK

. So, Γ(Φ) ∈ BT . Now we prove the contraction

estimate. Let Φ,Φ′ ∈ BT , then

∣∣Γ(Φ)(t) − Γ(Φ′)(t)∣∣C0(h1) = sup
t∈[0,T ]

∣∣Γ(Φ)(t) − Γ(Φ′)(t)∣∣h1
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= sup
t∈[0,T ]

∣∣ ∫
t

0
X(s,Φ(s))ds − ∫

t

0
X(s,Φ′(s))ds∣∣

h1

≤ sup
t∈[0,T ]

∫
t

0
∣∣X(s,Φ(s)) −X(s,Φ′(s))∣∣h1 ds

≤ sup
t∈[0,T ]

∫
t

0
CK ∣∣Φ(s) −Φ′(s)∣∣h1 ds by 6.7

≤ TCK sup
s∈[0,T ]

∣∣Φ(s) −Φ′(s)∣∣h1

= TCK ∣∣Φ(s) −Φ′(s)∣∣C0(h1)

≤ 1

2
∣∣Φ(s) −Φ′(s)∣∣C0(h1).

where 1
2 < 1 leading to a contraction. Next, since BT is a closed subset of a Banach space

then it is Banach. Applying Theorem 2.2.7, Γ(Φ) admits a unique fixed point Φ ∈ BT

and consequently in C0
b ([0, T ];h1). Hence, due to uniqueness, we get η ∈ C0

b ([0, T ];h1)

satisfying

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η̇ =X(t, η)

η(0) = η0

. To conclude, it is easy to check that η ∈ C1([0, T ];h−1) using

6.8. Indeed, using the fundamental theorem of calculus, we get that η is differentiable

with a continuous derivative.

In what follows, we give two results needed to conclude the global existence. We start

with the ellipticity condition.

Lemma 6.3.2. For m > 0, there exists εm > 0 and Λm > 1 such that for ψ ∈ H2(T) and

v ∈ L2(T) satisfying ∣∣ψ∣∣H2 ≤ 1 and ∣∣ψ∣∣H2 + ∣∣v∣∣L2 ≤ εm, we have

Λ−1
m (∣∣ψ∣∣H2 + ∣∣v∣∣L2)2 ≤H(ψ, v) ≤ Λm(∣∣ψ∣∣H2 + ∣∣v∣∣L2)2.

Proof. Using Sobolev inequality, there exists a universal constant C such that ∣∣ψ∣∣L∞ ≤

C ∣∣ψ∣∣H2 . So, we get

∫
T
∣ψ∣p dx ≤ 2π∣∣ψ∣∣pL∞ ≤ 2πCp∣∣ψ∣∣p

H2 ≤ 2πCp∣∣ψ∣∣2H2 ≤ 2πCp(∣∣ψ∣∣2H2 + ∣∣v∣∣2L2)
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≤ 2πCp(∣∣ψ∣∣H2 + ∣∣v∣∣L2)2.

Consequently, by 6.3 we can see that

H(ψ, v) = ∫
T

1

2
v2 + 1

2
(Ω2ψ)ψ + ψp dx

= ∫
T

1

2
v2 + 1

2
(∂xxxxψ)ψ +

m

2
ψ2 + ψp dx

= ∫
T

1

2
v2 + 1

2
(∂xxψ)2 + m

2
ψ2 dx + ∫

T
ψp dx

≤ ∫
T

1

2
v2 +max(1

2
,
m

2
)((∂xxψ)2 + ψ2)dx + ∫

T
ψp dx

≤ max(1

2
,
m

2
)(∣∣v∣∣L2 + ∣∣ψ∣∣H2)2 + 2πCp(∣∣ψ∣∣H2 + ∣∣v∣∣L2)2

= (max(1

2
,
m

2
) + 2πCp) (∣∣ψ∣∣H2 + ∣∣v∣∣L2)2.

On the other hand, we similiarly have

H(ψ, v) = ∫
T

1

2
v2 + 1

2
(∂xxψ)2 + m

2
ψ2 dx + ∫

T
ψp dx

≥ ∫
T

1

2
v2 +min(1

2
,
m

2
)((∂xxψ)2 + ψ2)dx + ∫

T
ψp dx

≥ min(1

2
,
m

2
)(∣∣v∣∣L2 + ∣∣ψ∣∣H2)2 − 2πCp(∣∣ψ∣∣H2 + ∣∣v∣∣L2)2

= (min(1

2
,
m

2
) − 2πCp) (∣∣ψ∣∣H2 + ∣∣v∣∣L2)2.

Thus, it would be sufficient to choose a Λm > 1 satisfying the needed result.

Now, we prove the energy preservation.

Proposition 6.3.3. We have that

H(ψ, v) =H(ψ0, ψ1) ∀t ∈ R.
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Proof. Using the formal definition of Poisson brackets, we can see that

d

dt
H(ψ, v) = ⟨∇H(ψ, v), ∂t

⎛
⎜⎜
⎝

ψ

v

⎞
⎟⎟
⎠
⟩ = ⟨∇H(ψ, v),XH(ψ, v)⟩ = {H,H} = 0,

where ⟨., .⟩ denotes the canonical scalar product. Then, we conclude that

H(ψ(t, x), v(t, x)) =H(ψ(0, x),−∂tψ(0, x)) =H(ψ0, ψ1).

Remark. We have done here formal calculations, however this is not trivial to justify. For

more details, see [Cazenave and Haraux, 1998] chapter 6.

Theorem 6.3.3. Let m > 0 and εm be given by Lemma 6.3.2 and assume that ∣∣ψ0∣∣H2 +

∣∣ψ1∣∣L2 ≤ εm. Then there exists a unique global solution to the Beam Equation 6.1 given by

(ψ,∂tψ) ∈ C0
b (R;H2 ×L2) ∩C1(R;L2 ×H−2).

Proof. By Proposition 6.3.2, we were able to prove local existence on some time interval

[0, T ] such that T depends on ∣∣η0∣∣h1 = ∣∣u0∣∣h1 . Repeating the same arguments using

initial data u(T,x), we obtain existence on the interval [T,T + α1] where α1 depends

on ∣∣u(T,x)∣∣h1 . Thus, iterating this process, we can extend the existence interval to

[0, T +
∞

∑
i=1
αi]. Notice that if ∣∣u∣∣h1 approaches ∞, then αi will approach 0. However, the

good news is that the Hamiltonian conservation ensures the boundedness of ∣∣u∣∣h1 . For

instance,

(∣∣ψ∣∣H2 + ∣∣v∣∣L2)2 ≤ ΛmH(ψ, v) by Lemma 6.3.2

= ΛmH(ψ0, ψ1) by Proposition 6.3.3

≤ Λ2
m(∣∣ψ0∣∣H2 + ∣∣ψ1∣∣L2)2 by Lemma 6.3.2

≤ Λ2
mε

2
m. (6.9)
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As a result, for all t ∈ R we have

∣∣u∣∣2h1 = ∑
k∈Z

⟨k⟩2∣uk∣2

= ∑
k∈Z

⟨k⟩2

RRRRRRRRRRR

1√
2
w

1/2
k ψk +

i
√

2w
1/2
k

vk

RRRRRRRRRRR

2

by 6.4

≤ ∑
k∈Z

⟨k⟩2

2

⎛
⎝

2∣w1/2
k ψk∣

2
+ 2

RRRRRRRRRRR

1

w
1/2
k

vk

RRRRRRRRRRR

2⎞
⎠

= ∑
k∈Z

⟨k⟩2 (
√
k4 +m∣ψk∣2 +

1√
k4 +m

∣vk∣2) .

It is easy to see that (1+k2)
√
k4+m

(1+k2)2 = O(1) and 1+k2√
k4+m

= O(1) as ∣k∣ goes to infinity. So, there

exists a constant Cm > 0 such that

∣∣u∣∣2h1 ≤ ∑
k∈Z

((1 + k2)
√
k4 +m∣ψk∣2 +

1 + k2

√
k4 +m

∣vk∣2)

≤ Cm∑
k∈Z

(⟨k⟩4∣ψk∣2 + ∣vk∣2)

= Cm(∣∣ψ∣∣2H2 + ∣∣v∣∣2L2)

≤ Cm(∣∣ψ∣∣H2 + ∣∣v∣∣L2)2

≤ CmΛ2
mε

2
m by 6.9.

Therefore, ∣∣u∣∣2
h1

is bounded. Adding the term infinitely many times, we conclude that
∞

∑
i=1
αi = ∞ and consequently global existance.

To conclude: Having proved all the assumptions, apply Theorem 5.2.4 for

Jn(u) = ∣un∣2 + ∣u2
−n∣

to obtain the almost global preservation of the low Harmonic energies of the Beam equa-
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tion given by

En(ψ, v) = ∣ 1√
2
w

1/2
n ψn +

i
√

2w
1/2
n

vn∣
2

+ ∣ 1√
2
w

1/2
n ψ−n +

i
√

2w
1/2
n

v−n∣
2

= 1

2
(wn∣ψn∣2 +

1

wn
∣vn∣2 − iψnv−n + iψ−nvn) +

1

2
(wn∣ψ−n∣2 +

1

wn
∣v−n∣2 − iψ−nvn + iψnv−n)

= 1

2

√
n4 +m∣ψn∣2 +

1

2
√
n4 +m

∣vn∣2 +
1

2

√
n4 +m∣ψ−n∣2 +

1

2
√
n4 +m

∣v−n∣2

= 1

2

√
n4 +m

⎛
⎝
∣ 1√

2
∫

2π

0
ψ(x)e−inx dx∣

2

+ ∣ 1√
2
∫

2π

0
ψ(x)einx dx∣

2⎞
⎠

+ 1

2
√
n4 +m

⎛
⎝
∣ 1√

2
∫

2π

0
v(x)e−inx dx∣

2

+ ∣ 1√
2
∫

2π

0
v(x)einx dx∣

2⎞
⎠

= 1

2

√
n4 +m(∣∫

2π

0
ψ(x)einx dx∣

2

) + 1

2
√
n4 +m

(∣∫
2π

0
v(x)einx dx∣

2

) .

69



Bibliography

[Win, ] https://healthresearchfunding.org/euler-bernoulli-beam-theory-explained/.

[Bambusi, 2003] Bambusi, D. (2003). Birkhoff normal form for some nonlinear pdes.

Communications in mathematical physics, 234(2):253–285.
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