The research of self-duality equations on a Riemann surface

HU Zhilin
July 1, 2021

Contents

0 Preliminary 3
0.1 Lie group and Lie algebra 3
0.1.1 exponential mapping and Maurer-Cartan form 3
0.1.2 Fundamental vector field 3
0.1.3 Adjoint representation 4
0.1.4 Compact real form 4
0.2 Connections, curvatures and covariant derivative 4
0.2.1 Linear connections in associated vector bundles 4
0.2.2 Principal connections, curvatures and covariant derivative on principal bundle 5
0.2.3 Connections on a frame bundle 7
0.3 Characteristic classes and classifying spaces 9
0.3.1 Axiomatic descriptions of characteristic classes 9
0.3.2 Classifying spaces 10
0.4 Hodge star operator 12
1 Self-duality 14
1.1 self dual Yang-Mills equations 14

Introduction

We check some details of Hitchin's paper[1] in this article. In the first chapter of Hitchin's paper, firstly he defines that a principal connection over \mathbb{R}^{4} is said to satisfy the self-dual Yang-Mills equations if its curvature form is invariant under the Hodge star operator. Then he restrict the principal connection to \mathbb{R}^{2} and defines Higgs field. Thus the self-duality equation becomes coordinate invariant and conformally invariant. So this equation can be generalized to Riemann surface. Then he give two examples satisfying the self-duality equation.

In the second chapter of Hitchin's paper, he discuss two theorems: first is vanishing theorem which states some conditions that the solutions of self-duality equation should satisfy. And first condition is the notion of stability. Next theorem discuss the condition that make two solutions gauge-equivalent.

In the third chapter, he study this notion of stability from an algebro-geometric point. Later he use Chapter 4 to construct a moduli space for solutions of the self-duality equations and analyse its differential geometric structure.

In my note, I study and introduce some results for understanding this paper. In Preliminary, I recall some results of Lie group then introduce principal connection from two definitions and express locally principal connection form. Then I focus on covariant derivative and principal connections on the frame bundle associated to a vector bundle. In fact there is correspondence between linear connections on vector bundles and principal connections on the associated frame bundle. One can induce the other. Later I write some resluts about characteristic classes and classifying spaces, which is for second chapter of Hitchin's paper.

CHAPTER 0. Preliminary

1. Lie group and Lie algebra

0.1.1 exponential mapping and Maurer-Cartan form

Let G be a Lie group. We denote the left multiplication (resp. right multiplication) by L_{a} (resp. R_{a}). Then all left-invariant (or right-invariant) vector fields consist of its Lie algebra \mathfrak{g}. And $X \mapsto X_{e}$, where e is identity of G, is a linear isomorphism from \mathfrak{g} onto the tangent space $T_{e} G$, Hence \mathfrak{g} can be regarded as $T_{e} G$. We know that for any manifold M, a vector field X can generate a local one-parameter subgroup of local transformations of M and $A \in \mathfrak{g}$ can generate a global one-parameter subgroup a_{t} of $G . A \mapsto a_{1}$ is called the exponential mapping and denoted by $A \mapsto \exp A$. And we have $a_{t}=\exp t A$. In this article, we only use the matrix Lie groups, i.e. the closed subgroup of $\mathrm{GL}(\mathbb{R}, n)$ or $\mathrm{GL}(\mathbb{C}, n)[2]$, so let us introduce the exponential mapping of matrix. For a matrix A, we define

$$
\exp (A)=I+\frac{A}{1}+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots
$$

We can calculate Jordan form of A, then calculate $\exp (A)$.
A differential form ω on G is called left-invariant if $\left(L_{a}\right)^{*} \omega=\omega$ for any $a \in G$.
The canonical 1-form or left-invariant Maurer-Cartan form θ on G is the \mathfrak{g}-valued 1-form defined by $[3$, Ch.3, Maurer-Cartan Form]

$$
\theta_{g}(v)=\left(L_{g^{-1}}\right)_{*}(v)
$$

for $v \in T_{g} G, g \in G . \theta$ is left-invariant: for any $h \in G$,

$$
\left(L_{h}^{*} \theta\right)_{g}(v)=\theta_{h g}\left(L_{h *}(v)\right)=L_{(h g)^{-1} *} L_{h *}(v)=L_{g^{-1} *}(v)=\theta_{g}(v)
$$

Since in this article we only consider the matrix Lie groups, we introduce the Maurer-Cartan form of Lie groups[3, Ch.3, Example 1.7]: If $g: G \longrightarrow G L(n)$ is embedding map into the general linear group, then its Maurer-Cartan form is $g^{-1} d g$.

0.1.2 Fundamental vector field

If G acts on manifold M on the right, then for $A \in \mathfrak{g}$, the action of one-parameter subgroup $e^{t A}$ on M induces a vector field on M, i.e. $\left.p \mapsto \frac{d}{d t}\right|_{t=0} p e^{t A}$, which will be denoted by A^{*} and called the fundamental vector field corresponding to A.

Now if $\pi: P \longrightarrow M$ is a principal G-bundle, we call $V P:=\operatorname{ker} \pi$ consisting of $\operatorname{ker} d_{x} \pi$ for any $x \in P$ by vertical bundle of P. We have the following proposition[4, Prop.27.18]:

PROPOSITION 0.1.1. For any $p \in P, A \in \mathfrak{g}$, the mapping $A \mapsto A_{p}^{*}$ is an isomorphism of \mathfrak{g} onto the vertical tangent space $V_{p} P$

Proof. We know that $A_{p}^{*}=\left.\frac{d}{d t}\right|_{t=0} p e^{t A}$; then we have

$$
d_{p} \pi\left(A_{p}^{*}\right)=\left.\frac{d}{d t}\right|_{t=0} \pi\left(p e^{t A}\right)=0
$$

since $p a$ is in the same fiber as p for any $a \in G$, i.e. $p e^{t A}$ is constant. Hence $A_{p}^{*} \in V_{p} P$.
If $A_{p}^{*}=0$, i.e. $\left.\frac{d}{d t}\right|_{t=0} p e^{t A}=0$ or $p e^{t A}$ is constant around $t=0$ then A must be zero. Thus $A \mapsto A_{p}^{*}$ is injective.

Around p, there is a local trivialization onto $U \times G$ where U is a neighborhood of $\pi(p)$. If under this local trivialization p is $(\pi(p), g) \in U \times G$, then $d_{p} \pi$ maps $(a, b) \in T_{\pi(p)} M \oplus T_{g} G$ to $a \in T_{\pi(p)} M$, so ker $d_{p} \pi=T_{g} G$ i.e. $V_{p} P \cong T_{g} G$ and they have same dimension with $\mathfrak{g} \cong T_{e} G$. Thus $A \mapsto A_{p}^{*}$ is isomorphism.

0.1.3 Adjoint representation

For $g \in G$, the map Ψ_{g} defined by $h \mapsto g h g^{-1}$ is an inner automorphism of G and also a Lie group homomorphism. Then define ad_{g} to be the derivative of Ψ_{g} at the identity:

$$
\operatorname{ad}_{g}=d_{e} \Psi_{g}: T_{e} G \cong \mathfrak{g} \longrightarrow T_{e} G \cong \mathfrak{g}
$$

So $\operatorname{ad}_{g} \in \mathrm{GL}(\mathfrak{g})$. Now we get a representation:

$$
\begin{aligned}
\mathrm{ad}: G & \longrightarrow \mathrm{GL}(\mathfrak{g}) \\
g & \mapsto \operatorname{ad}_{g}
\end{aligned}
$$

which is called the adjoint representation of Lie group. For the case of matrix Lie groups, we have[2, Ch.3]

$$
\operatorname{ad}_{g}(X)=g X g^{-1}
$$

for $g \in G, X \in \mathfrak{g} . a d: G \longrightarrow \mathrm{GL}(\mathfrak{g})$ can induce a Lie algebra homomorphism, also denoted by ad, from $\mathfrak{g} \longrightarrow \mathfrak{g l}(\mathfrak{g})$, which is called the adjoint representation of Lie algebra. For the case of matrix Lie groups, we have [2, Ch.3]

$$
\operatorname{ad}_{X}(Y)=[X, Y]
$$

for $X, Y \in \mathfrak{g}$. Now we can get another useful proposition from [5, Ch.I, Prop.5.1]:
PROPOSITION 0.1.2. Let A^{*} be the fundamental vector field corresponding to $A \in \mathfrak{g}$. For each $a \in G$, $R_{a *}\left(A^{*}\right)$ is the fundamental vector field corresponding to $\operatorname{ad}_{a^{-1}}(A) \in \mathfrak{g}$.

0.1.4 Compact real form

We assume here that G is the compact real form of a complex of a complex Lie group:
DEFINITION 0.1.3. [2, p.170][6, p.348] A complex Lie algebra \mathfrak{g} is reductive if there exists a compact Lie group K such that $\mathfrak{g} \cong \mathfrak{k}_{\mathbb{C}}$ where \mathfrak{k} is the Lie algebra of K. A complex Lie algebra \mathfrak{g} is semisimple if it is reductive and the center of \mathfrak{g} is trivial.

If \mathfrak{g} is a semisimple Lie algebra, a real subalgebra \mathfrak{k} of \mathfrak{g} is a compact real form of \mathfrak{g} if \mathfrak{k} is isomorphic to the Lie algebra of some compact Lie group and every element Z of \mathfrak{g} can be expressed uniquely as $Z=X+i Y$ with $X, Y \in \mathfrak{k}$.

Let G_{c} be a complex connected Lie group with Lie algebra \mathfrak{g}_{c}, G a real connected Lie subgroup of G_{c} with a real Lie algebra $\mathfrak{g} \subset \mathfrak{g}_{c}$. G is said to be a compact real form of G_{c} if \mathfrak{g} is a compact real form of \mathfrak{g}_{c}.
and $*$ is the corresponding anti-involution on the complex Lie algebra[2, p.171]: let $\mathfrak{g}:=\mathfrak{k}_{\mathbb{C}}$ be a reductive Lie algebra, then the operator $*$ on \mathfrak{g} is defined by the formula

$$
\left(X_{1}+i X_{2}\right)^{*}=-X_{1}+i X_{2}
$$

for $X_{1}, X_{2} \in \mathfrak{k}$.

2. Connections, curvatures and covariant derivative

0.2.1 Linear connections in associated vector bundles

This section cames from [7, Sec.1.5]. Let E be a complex vector bundle over M. Let E^{*} be the dual vector bundle of E. The dual pairing

$$
<,>: E_{x} \times E_{x}^{*} \longrightarrow \mathbb{C}
$$

induces a dual pairing

$$
<,>: \Omega^{0}\left(M, E^{*}\right) \times \Omega^{0}(M, E) \longrightarrow \Omega^{0}(M)
$$

Given a linear connection E on E, we can define the dual connection D^{*} on E^{*} by the following formula:

$$
d<\xi, \eta>=<D \xi, \eta>+<\xi, D \eta>
$$

for $\xi \in \Omega^{0}(M, E), \eta \in \Omega^{0}\left(M, E^{*}\right)$. Given a local frame $e=\left(e_{1}, \ldots, e_{r}\right)$ of E, let t be the dual local frame of E^{*}. We consider e as a row vector and t as a column vector. If ω denote the matrix of connection 1-forms of D relative to e, i.e. $D s=s \omega$, then we have

$$
D^{*} t=-\omega t
$$

If Θ is the curvature form of D relative to e so that

$$
D^{2} e=e \Theta
$$

then relative to t we have

$$
D^{* 2} t=-\Theta t
$$

We shall now consider two complex vector bundles E and F over the same base M. Let D_{E} and D_{F} be connections in E and F. Then we can naturally define a connection $D_{E} \oplus D_{F}$ in $E \oplus F$. We also naturally define $D_{E \otimes F}$ in $E \otimes F$ by

$$
D_{E \otimes F}=D_{E} \otimes I_{F}+I_{E} \otimes D_{F}
$$

where I_{E} and I_{F} denote the identity transformation of E and F. If we denote the curvatures of D_{E} and D_{F} by R_{E} and R_{F}, then $R_{E} \oplus R_{F}$ is the curvature of $D_{E} \oplus D_{F}$ and

$$
R_{E} \otimes I_{F}+I_{E} \otimes R_{F}
$$

is the curvature of $D_{E \otimes F}$. If $\omega_{E}, \omega_{F}, \Theta_{E}, \Theta_{F}$ are the connection and curvature forms, then the connection and curvature forms of $D_{E} \oplus D_{F}$ are given by

$$
\left(\begin{array}{cc}
\omega_{E} & 0 \\
0 & \omega_{F}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\Theta_{E} & 0 \\
0 & \Theta_{F}
\end{array}\right)
$$

Those of $D_{E \otimes F}$ are given by

$$
\omega_{E} \otimes I_{p}+I_{r} \otimes \omega_{F} \quad \text { and } \quad \Theta_{E} \otimes I_{p}+I_{r} \otimes \Theta_{F}
$$

where I_{p} and I_{r} denote the identity matrices of rank p and r.

0.2.2 Principal connections, curvatures and covariant derivative on principal bundle

This section is from [4, Part 3] and [5, Ch.II]. Let (P, π, M, G) be a G-principal bundle P over base M. We have two definitions of connections on P, one is by a kind of subbundle of $T P$ and another is by \mathfrak{g}-valued 1 -forms.

DEFINITION 0.2.1. A distribution on P is a smooth subbundle of TP. We call a distribution $H P$ by horizontal if $T P=V P \oplus H P$. We call a distribution Q by right-invariant if $Q_{p a}=\left(R_{a}\right)_{*} Q_{p}$ for any $p \in P, a \in G$ where Q_{p} is the fiber at p of Q and R_{a} is the transformation of P by right multiplication of a. A right-invariant horizontal distribution $H P$ is called a connection on P.

If ω is the bundle projection onto $V P$, then $H P=\operatorname{ker} \omega$ and of course ω can be regarded as a $V P$-valued 1-form on P. From 0.1.1 we know that Lie algebra \mathfrak{g} is isomorphic to the standard fiber of $V P$ via the morphism of Lie algebra $A \mapsto A^{*}$ for $A \in \mathfrak{g}$ where A^{*} is the fundamental vector field, hence ω also can be regarded as a \mathfrak{g}-valued 1 -form on P, called the connection form of $H P$. We have the following theorem[5, Ch.II, Sec.1]

THEOREM 0.2.2. The connection form ω satisfies the following conditions:
(a) $\omega_{p}\left(A_{p}^{*}\right)=A$ for any $A \in \mathfrak{g}$ and $p \in P$;
(b) $\left(R_{a}\right)^{*} \omega=\operatorname{ad}_{a^{-1}} \omega$, for every $a \in G$, where R_{a} is the transformation of P by a on the right and ad is the adjoint representation of \mathfrak{g}.

Conversely, given a \mathfrak{g}-valued 1 -form ω on P satisfying the two above conditions, there is a unique principal connection in P whose connection form is ω.

Proof. Let ω be the connection form. The condition (a) follows immediately from the definition of ω. Since every vector field of P can be decomposed as a sum of a horizontal vector field and a vertical vector field, it is sufficient to verify (b) in the following two special cases: (1) X is horizontal and (2) X is vertical.

If X is horizontal, so is $\left(R_{a}\right)_{*} X$ for any $a \in G$ since $H P$ is right-invariant. Then $\omega\left(\left(R_{a}\right)_{*} X\right)=0=$ $\operatorname{ad}_{a^{-1}} \omega(X)$.

If X is vertical, we can assume that X is a fundamental vector field A^{*} for $A \in \mathfrak{g}$. Then $\left(R_{a}\right)_{*} X$ is also fundamental vector field corresponding to $\operatorname{ad}_{a^{-1}} A$ by 0.1 .2 . Thus we have

$$
\left(R_{a}^{*} \omega\right)(X)=\omega\left(\left(R_{a}\right)_{*} X\right)=\omega\left(\left(\operatorname{ad}_{a^{-1}} A\right)^{*}\right)=\operatorname{ad}_{a^{-1}} A=\operatorname{ad}_{a^{-1}} \omega(X)
$$

Conversely, given a \mathfrak{g}-valued 1-form ω satisfying (a) and (b), we define $H P=\operatorname{ker} \omega$. Then we have

$$
\left(R_{a}\right)_{*} Q_{p}=\left\{\left(R_{a}\right)_{*} X: X \in T_{p} P, \omega_{p}(X)=0\right\}=\left\{X \in T_{p a} P: \omega_{p}\left(\left(R_{a}\right)_{*}^{-1} X\right)=0\right\}
$$

From condition (b) we have $\omega_{p}\left(\left(R_{a}\right)_{*}^{-1} X\right)=\left(R_{a}^{*} \omega\right)_{p a}(X)=\operatorname{ad}_{a^{-1}} \omega_{p a}(X)=0$ which is equivalent to $\omega_{p a}(X)=0$ hence $\left(R_{a}\right)_{*} Q_{p}=Q_{p a}$ i.e. $H P$ is right-invariant. Since for any $p \in P, \operatorname{Im} \omega_{p}=\mathfrak{g}=(V P)_{p}$ and $T_{p} P=\operatorname{ker} \omega_{p} \oplus \operatorname{Im} \omega_{p}=(H P)_{p} \oplus(V P)_{p}$, we know that $H P$ is horizontal. And obviously the connection form of $H P$ is ω.

We shall express a principal connection on P by a family of forms each defined in an open subset of the base manifold M. Let $\left\{U_{\alpha}\right\}$ be an open covering of M with a family of local trivialization $\psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \longrightarrow U_{\alpha} \times G$, then the corresponding family of transition functions are $\psi_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \longrightarrow G$. For each α, let $\sigma_{\alpha}: U_{\alpha} \longrightarrow P$ be the cross section on U_{α} defined by $\sigma_{\alpha}(x)=\psi_{\alpha}^{-1}(x, e), x \in U_{\alpha}$ where e is the identity of G. Let θ be the (left invariant) canonical 1-form on G.

For each non-empty $U_{\alpha} \cap U_{\beta}$, we define a \mathfrak{g}-valued 1-form $\theta_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$ by

$$
\theta_{\alpha \beta}=\psi_{\alpha \beta}^{*} \theta
$$

For each α we define a \mathfrak{g}-valued 1-form ω_{α} on U_{α} by

$$
\omega_{\alpha}=\sigma_{\alpha}^{*} \omega
$$

Then we have third manner of describing a principal connection on $P[5$, Ch.II, Sec.1]:
THEOREM 0.2.3. The forms $\theta_{\alpha \beta}$ and ω_{α} satisfy the following condition:

$$
\omega_{\beta}=\operatorname{ad}_{\psi_{\alpha \beta}^{-1}} \omega_{\alpha}+\theta_{\alpha \beta}
$$

Conversely, for every family of \mathfrak{g}-valued 1-forms $\left\{\omega_{\alpha}\right\}$ each defined on U_{α} and satisfying the above condition, there is a unique connection on P which gives such family of \mathfrak{g}-valued 1 -forms $\left\{\omega_{\alpha}\right\}$.

Proof. If $U_{\alpha} \cap U_{\beta}$ is non-empty, $\psi_{\alpha} \circ \psi_{\beta}^{-1}(x, e)=\left(x, \psi_{\alpha \beta}(x)\right)$ for all $x \in U_{\alpha} \cap U_{\beta}$ then $\psi_{\beta}^{-1}(x, e)=$ $\psi_{\alpha}^{-1}\left(x, \psi_{\alpha \beta}(x)\right)=\psi_{\alpha}^{-1}(x, e) \psi_{\alpha \beta}(x)$ since ψ_{α} is G-homeomorphism and then $\sigma_{\beta}(x)=\sigma_{\alpha}(x) \psi_{\alpha \beta}(x)$. For every vector $X \in T_{x} M$, the vector $\sigma_{\beta *}(X) \in T_{u} P$ where $u=\sigma_{\beta}(x)$, is the image of $\left(\sigma_{\alpha *}(X), \psi_{\alpha \beta *}(X)\right) \in$ $T_{u^{\prime}} P \oplus T_{a} G$ where $u^{\prime}=\sigma_{\alpha}(x)$ and $a=\psi_{\alpha \beta}(x)$, under the differential of the mapping $P \times G \longrightarrow P$. By Leibniz's formula [5, Ch.I, Prop.1.4] we have

$$
\sigma_{\beta *}(X)=\left(R_{a}\right)_{*}\left(\sigma_{\alpha *}(X)\right)+u_{*}^{\prime}\left(\psi_{\alpha \beta *}(X)\right)
$$

where u_{*}^{\prime} is the differential of the mapping $g \mapsto u^{\prime} g$ from G into P. Taking the values of ω_{u} on both sides of the equality, we obtain

$$
\begin{equation*}
\omega_{u}\left(\sigma_{\beta *}(X)\right)=\omega_{u}\left(\left(R_{a}\right)_{*} \sigma_{\alpha *}(X)\right)+\omega_{u}\left(u_{*}^{\prime} \psi_{\alpha \beta *}(X)\right) \tag{0.2.1}
\end{equation*}
$$

We have

$$
\omega_{u}\left(\sigma_{\beta *}(X)\right)=\left(\sigma_{\beta}^{*} \omega\right)_{x}(X)=\left(\omega_{\beta}\right)_{x}(X)
$$

and

$$
\omega_{u}\left(\left(R_{a}\right)_{*} \sigma_{\alpha *}(X)\right)=\left(R_{a}^{*} \omega\right)_{u^{\prime}}\left(\sigma_{\alpha *}(X)\right)=\operatorname{ad}_{a^{-1}} \omega_{u^{\prime}}\left(\sigma_{\alpha *}(X)\right)=\operatorname{ad}_{a^{-1}}\left(\omega_{\alpha}\right)_{x}(X)
$$

by condition (b) of Theorem 0.2.2. Let $A \in \mathfrak{g}$ be the vector field such that $A_{a}=\psi_{\alpha \beta *}(X)=\left.\frac{d}{d t}\right|_{t=0} a e^{t A}$;then from the definition of Maurer-Cartan form we know that $\theta_{a}\left(\psi_{\alpha \beta *}(X)\right)=L_{a^{-1} *} A_{a}=A_{e}$ or \bar{A}. From the definition of u_{*}^{\prime} we have

$$
u_{*}^{\prime}\left(\psi_{\alpha \beta *}(X)\right)=\left.\frac{d}{d t}\right|_{t=0} u^{\prime} a e^{t A}=\left.\frac{d}{d t}\right|_{t=0} \sigma_{\alpha}(x) \psi_{\alpha \beta}(x) e^{t A}
$$

that is the value of the fundamental vector field A^{*} at $u=\sigma_{\alpha}(x) \psi_{\alpha \beta}(x)$. From the condition (a) of Theorem 0.2.2 we have

$$
\omega_{u}\left(u_{*}^{\prime} \psi_{\alpha \beta *}(X)\right)=\omega_{u}\left(A_{u}^{*}\right)=A=\theta_{a}\left(\psi_{\alpha \beta *}(X)\right)=\left(\psi_{\alpha \beta}^{*} \theta\right)_{x}(X)=\left(\theta_{\alpha \beta}\right)_{x}(X)
$$

Finally we have for any $x \in M, X \in T_{x} M$

$$
\left(\omega_{\beta}\right)_{x}(X)=\operatorname{ad}_{a^{-1}}\left(\omega_{\alpha}\right)_{x}(X)+\left(\theta_{\alpha \beta}\right)_{x}(X)
$$

For the converse case, we can define ω on $\pi^{-1}\left(U_{\alpha}\right)$ by the pullback

$$
\pi^{-1}\left(U_{\alpha}\right) \xrightarrow{\psi_{\alpha}} U_{\alpha} \times G \xrightarrow{\text { proj. }} U_{\alpha}
$$

Then we can verify that such ω is well-defined \mathfrak{g}-valued 1-form on P and satisfies the two conditions of Theorem 0.2.2 and gives $\left\{\omega_{\alpha}\right\}$ on U_{α}.

Later we call the family of $\left\{\omega_{\alpha}\right\}$ by the connection form in local expression.
REMARK 0.2.4. For matrix Lie group, $\theta_{\alpha \beta}=\psi_{\alpha \beta}^{-1} d \psi_{\alpha \beta}$ from Section 0.1. Then the formula (0.2.3) is

$$
\omega_{\beta}=\psi_{\alpha \beta}^{-1} \omega_{\alpha} \psi_{\alpha \beta}+\psi_{\alpha \beta}^{-1} d \psi_{\alpha \beta}
$$

Now consider Lie bracket of Lie algebra-valued forms. Let $\alpha=\sum_{i} \alpha^{i} e_{i}, \beta=\sum_{j} \beta^{j} e_{j}$, where α_{i}, β_{j} are ordinary differential forms, e_{i} are elements of Lie algebra \mathfrak{g}. Then we define

$$
[\alpha, \beta]=\sum_{i, j} \alpha^{i} \wedge \beta^{j}\left[e_{i}, e_{j}\right]
$$

Then we can define the curvature:
DEFINITION 0.2.5. The curvature of the connection given by 1 -form ω is the \mathfrak{g}-valued 2-form

$$
\Xi=d \omega+\frac{1}{2}[\omega, \omega]
$$

For matrix Lie group, the above formula can[4, Prop.21.7] be writen as $\Xi=d \omega+\omega \wedge \omega$.
Now we introduce covariant derivative in local expression from[4, Th.31.19] Before that, we introduce the associated bundle. Let $\pi: P \longrightarrow M$ be a principal G-bundle and F a manifold on which G acts on the left. Then we can replace the fiber G of P by F, the transition functions are same. On the product manifold $P \times F$, let G act on the right as follows: an element $a \in G$ maps $(u, \xi) \in P \times F$ into $\left(u a, a^{-1} \xi\right) \in P \times F$. The quotient space of $P \times F$ by this group action is denoted by $E=P \times{ }_{G} F$. Since $\pi(u a)=\pi(u)$ for any $u \in P, a \in G$, the mapping which maps (u, ξ) into $\pi(u)$ induces a mapping π_{E} of E into M. Every point $x \in M$ has a neighborhood U such that $\pi^{-1}(U)$ is isomorphic to $U \times G$. Identifying $\pi^{-1}(U)$ with $U \times G$, we see that the action of G on $\pi^{-1}(U) \times F \subset P \times F$ on the right is given by

$$
(x, a, \xi) b \mapsto\left(x, a b, b^{-1} \xi\right) \quad \text { for } \quad(x, a, \xi) \in U \times G \times F \quad \text { and } \quad b \in G
$$

We use $[x, a, \xi]$ to represent the conjugacy class, then $\tau([x, a, \xi]):=(x, a \xi)$ is well-defined mapping of $\pi_{E}^{-1}(U)$ into $U \times F$. It is bijection whose inverse mapping is $\tau^{-1}(x, \xi):=[x, e, \xi]$ where e is identity of G. Then from these bijections can given E a differentiable structure such that $\pi_{E}^{-1}(U)$ is diffeomorphic to $U \times F$. So E is a G-bundle over M with standard fiber F, which is called the associated bundle. For two open subsets U, V of M, if $\psi_{U V}: U \cap V \longrightarrow G$ is transition function, then for $\tau_{U}^{-1}(x, \xi)=[x, e, \xi]$, where $(x, e) \in U \times G$ corresponds to $\left(x, \psi_{U V}(x)\right) \in V \times G$, we have $\tau_{V} \circ \tau_{U}^{-1}(x, \xi)=\left(x, \psi_{U V}(x) \xi\right)$, so the transition functions of E are same as of P. And then we also can use the transition functions of P and F to construct the associated bundle E by setting the transition functions of E as the left action of $\psi_{U V}(x)[3$, Ch.1, Sec.3, Construction of Bundles].

THEOREM 0.2.6. Let $\pi: P \longrightarrow M$ be a principal G-bundle with the famiily of local expressions of connection $\left\{\omega_{\alpha}\right\}$ on $\left\{U_{\alpha}\right\}, \rho: G \longrightarrow \mathrm{GL}(V)$ be a finite-dimensional complex representation of G, and $E=P \times_{\rho} V$ the associated vector bundle. If $\varphi \in \Omega^{k}(M, E)$ whose expression on U_{α} under local frame $\left(e_{1}, \ldots, e_{r}\right)$ is $\sum \varphi^{i} e_{i}$, then its covariant derivative is given by

$$
D \varphi=d \varphi+\rho\left(\omega_{\alpha}\right) \varphi
$$

where $d \varphi=\sum\left(d \varphi^{i}\right) e_{i}, \rho\left(\omega_{\alpha}\right)$ acts on the value of ϕ.
Of course, if ρ is the adjoint representation of G, then $D \varphi=d \varphi+[\omega, \varphi]$. If X is a vector field on M, we call $(D \varphi)(X)$ by the covariant derivative in the direction of X.

0.2.3 Connections on a frame bundle

Now we need to consider an important example of principal bundles and principal connections: frame bundle associated to a vector bundle and principal connection determined by a linear connection on this vector bundle. We recall that for a vector bundle $E \longrightarrow M$, a frame on $x \in M$ is an ordered basis e_{x} of E_{x}, equivalent to a linear isomorphism $p: \mathbb{R}^{r} \longrightarrow E_{x}$. Let F_{x} be the set of all frames on $x ; g \in \mathrm{GL}(\mathbb{R}, r)$ rightly acts F_{x} by $p \mapsto p \circ g$, which is obviously free and transitive. Then we have

$$
\operatorname{Fr}(E):=\bigsqcup_{x \in M} F_{x}
$$

and a natural projection $\pi: \operatorname{Fr}(E) \longrightarrow M$. If (U, φ) is a local trivialization of E, then $\varphi_{x}: E_{x} \longrightarrow R^{r}$ is linear isomorphism, so we have a bijection $\psi: \pi^{-1}(U) \longrightarrow U \times \mathrm{GL}(\mathbb{R}, r)$ given by

$$
\psi_{(}(x, p)=\left(x, \varphi_{x} \circ p\right)
$$

Thus every $\pi^{-1}(U)$ and then $\operatorname{Fr}(E)$ are given a topology such that $\operatorname{Fr}(E)$ is a principal GL (\mathbb{R}, r)-bundle. Clearly, the transition functions of $\operatorname{Fr}(E)$ are same as E. And then each vector bundle corresponds bijectively to the associated frame bundle, so we can regard vector bundle as the associated frame bundle.

If E is given a Riemann metric, we also focus on the orthonormal frame bundles, i.e. the set of all orthonormal frames(ordered orthonormal basis) or equivalently all distance-preserved linear isomorphism $p: \mathbb{R}^{r} \longrightarrow E_{x}$. In this case, for (U, φ) the isomorphism $\varphi_{x}: E_{x} \longrightarrow \mathbb{R}^{r}$ is supposed as a distance-preserved map, then the transition functions go into the orthogonal group $O(r)$, in other words, $O(r)$ is a reduction of $\operatorname{GL}(\mathbb{R}, r)$. Moreover, if E is oriented vector bundle, then the transition functions go into the special orthogonal group $S O(r)$, in other words $S O(r)$ is a reduction of $O(r)$ and then $\mathrm{GL}(\mathbb{R}, r)$.

Note that for the complex vector bundles E, if E is given an hermitian metric, then $O(r)$ wil become $U(r)$, which is a reduction of $\mathrm{GL}(\mathbb{C}, r)$. And complex vector bundles are oriented for the underlying real vector bundle, so $U(r)$ also is reducible to $S U(r)$.

Of course, for the representation $i: \mathrm{GL}(\mathbb{C}, r) \longrightarrow \mathrm{GL}(\mathbb{C}, r)$, the associated bundle $\operatorname{Fr}(E) \times{ }_{i} \mathbb{C}^{r}=E$ if E is complex vector bundle. For the case of real vector bundle, it is similar.

Recall that for a linear connection ∇ on E, if a local frame $e: U \longrightarrow \operatorname{Fr}(E)$ where U is an open subset of M, is given, then ∇ can be expressed as a matrix of 1 -forms ω_{U}, which is also an element in $\mathfrak{g l}(\mathbb{R}, r)$ or $\mathfrak{g l}(\mathbb{C}, r)$, i.e. ω_{U} can be viewed as a Lie algebra-valued 1-form over U. And these ω_{U} satisfy the following condition[7, Sec.1.1]:

$$
\omega_{U}=g_{V U}^{-1} \omega_{V} g_{V U}+g_{V U}^{-1} d g_{V U} \quad \text { on } \quad U \cap V
$$

where $\{U\}$ is an open cover of M with a local frame $e: U \longrightarrow \operatorname{Fr}(E)$. Via Theorem 0.2.3 and Remark 0.2.4, these Lie algebra-valued 1-forms define a unique principal connection on the frame bundle $\operatorname{Fr}(E)$. And from Theorem 0.2 .6 , this principal connection induces a same covariant derivative on the vector bundle E with ∇. Another description of principal connection induced by a linear connection is following method:

Let $\eta: E \longrightarrow M$ be a vector bundle, $\nabla: \Omega(M, E) \longrightarrow \Omega(M, E)$ be a linear connection on E. for a section $s \in \Omega^{0}(M, E), \nabla s$ is called covariant derivative of s corresponding to ∇. For $X \in T_{p} M$, the eval of ∇s at X, which is an element of E_{x}, denoted by $\nabla_{X} s$, is called the covariant derivative of s in the direction X. And if X is a section of M, then $\nabla_{X} s$ is also section.

DEFINITION 0.2.7. A section $s \in \Omega(M, E)$ is parallel along a curve $c:[a, b] \longrightarrow M$ if $\nabla_{c^{\prime}(t)} s=0$ for $a \leq t \leq b$.

Given a local frame $\left(e_{1}, \ldots, e_{r}\right)$ on U, section $s=\sum s^{i} e_{i}$ and let connection form of ∇ be $\omega=\left(\omega_{i}^{j}\right)$ then s is parallel along c if and only if $\left(s_{1}, \ldots s_{r}\right)$ satisfies the following ODE:

$$
\frac{d s^{i}}{d t}+\sum_{j} \omega_{j}^{i}\left(c^{\prime}(t)\right) s^{j}=0
$$

If s_{0} is an element of $E_{c(a)}$, by the existence and uniqueness of ODE, there is a unique curve $s:[a, b] \longrightarrow E$ such that $s(a)=s_{0}$ and $s(t) \in E_{c(t)}$ and s is parallel along a curve c (here we can only consider a section along c). Then $s(b) \in E_{c(b)}$ is called the parallel transport of s_{0} along c. The map $s_{0} \mapsto s(b)$ of $E_{c(a)}$ into $E_{c(b)}$ is called parallel translation from $E_{c(a)}$ to $E_{c(b)}$. We have the following theorem[4, Theorem 29.2]:
THEOREM 0.2.8. Let $\eta: E \longrightarrow M$ be a vector bundle with a connection ∇ and let $c:[a, b] \longrightarrow M$ be a smooth curve in M. There is a unique parallel translation $\varphi_{a, b}$ from $E_{c(a)}$ to $E_{c(b)}$ along c. This parallel translation is a linear isomorphism.

A parallel frame along c is a collection $\left(e_{1}(t), \ldots, e_{r}(t)\right), t \in[a, b]$ of parallel sections such that for each t, the elements $e_{1}(t), \ldots, e_{r}(t)$ form a basis of $E_{c(t)}$.

Let $\pi: \operatorname{Fr}(E) \longrightarrow M$ be the frame bundle associated to E. A curve $\tilde{c}(t)$ in $\operatorname{Fr}(E)$ is called a lift of c if $c(t)=\pi(\tilde{c}(t))$. It is called horizontal lift if in addition $\tilde{c}(t)$ is a parallel frame along c.

By Theorem 0.2.8, if a collection of parallel sections $\left(s_{1}\left(t, \ldots, s_{r}(t)\right)\right.$ forms a basis at one time t, then it forms a basis at every time $t \in[a, b]$. For every smooth curve $c:[a, b] \longrightarrow M$ and ordered basis $\left(s_{1,0}, \ldots, s_{r, 0}\right)$ for $E_{c(a)}$, there is a unique parallel frame along c whose value at a is $\left(s_{1,0}, \ldots, s_{r, 0}\right)$. In terms of the frame bundle $\operatorname{Fr}(E)$, this shows the existence and uniqueness of a horizontal lift with a specified initial point in $\operatorname{Fr}(E)$.

Now we define a principal connection on the frame bundle from a linear connection. For $x \in M$ and $e_{x} \in \operatorname{Fr}(E)_{x}$, a tangent vector $v \in T_{e_{x}}(\operatorname{Fr}(E))$ is said to be horiozntal if there is a curve c through x such that $v=\tilde{c}^{\prime}(0)$ where \tilde{c} is the unique horizontal lift of c to $\operatorname{Fr}(E)$ starting at e_{x}. we have the following proposition[4, Prop.29.6]:

PROPOSITION 0.2.9. Let $\pi: E \longrightarrow M$ be a smooth vector bundle with a connection over a manifold M of dimension n. For $x \in M$ and e_{x} an ordered basis for the fiber E_{x}, the subset $H_{e_{x}}$ of horizontal vectors in $T_{e_{x}}(\operatorname{Fr}(E))$ is a vector space of dimension n, and $\pi_{*}: H_{e_{x}} \longrightarrow T_{x} M$ is a linear isomorphism.

From the result of the standard linear algebra, we know that $T_{e_{x}} \operatorname{Fr}(E)=\operatorname{ker} \pi_{*} \oplus \operatorname{Im} \pi_{*} \cong V_{e_{x}} \operatorname{Fr}(E) \oplus H_{e_{x}}$. And these vector subspaces $H_{e_{x}}$ form a distribution on the frame bundle[4, Th.29.9]:

THEOREM 0.2.10. A connection ∇ on a smooth vector bundle $E \longrightarrow M$ defines a distribution on the frame bundle $\pi: P=\operatorname{Fr}(E) \longrightarrow M$ such that at any $p \in P$,
(i) $T_{p} P=V_{p} \oplus H_{p}$;
(ii) $\left(R_{g}\right)_{*} H_{p}=H_{p g}$ for any $g \in G=\mathrm{GL}(\mathbb{R}, r)$, where $R_{g}: P \longrightarrow P$ is the right action of G on P.
i.e. a linear connection on E defines a principal connection on the frame bundle $\operatorname{Fr}(E)$.

Recall that a connection ∇ on a vector bundle E can be represented on a local frame (U, e_{1}, \ldots, e_{r}) by a connection 1-forms matrix ω_{e}. Such a frame $e=\left(e_{1}, \ldots, e_{r}\right)$ is in fact a section $e: U \longrightarrow \operatorname{Fr}(E)$ of the frame bundle. Now we have the following theorem[4, Th.29.10]:

THEOREM 0.2.11. Let ∇ be a connection on a vector bundle $E \longrightarrow M$ and let ω be the principal connection on the frame bundle $\operatorname{Fr}(E)$ determined by ∇ (Theorem 0.2.10). If $e=\left(e_{1}, \ldots, e_{r}\right)$ is a frame for E over an open set U of M, viewed as a section $e: U \longrightarrow \operatorname{Fr}(E)$, and ω_{e} is the connection matrix of ∇ relative to the frame e, then $\omega_{e}=e^{*} \omega$.

3. Characteristic classes and classifying spaces

0.3.1 Axiomatic descriptions of characteristic classes

Let E be a real vector bundle of rank r on base space $B ; H^{i}(B ; G)$ be the i-th singular cohomology group of B with coefficients in G. The Stiefel-Whitney classes of E consist of a sequence of $w_{i}(E) \in H^{i}(B ; \mathbb{Z} / 2 \mathbb{Z})$ which satisfies the following 4 axioms[8, Sec. 4 and Sec.8]:

AXIOM 1. RANK. $w_{0}(E)=1 \in H^{0}(B ; \mathbb{Z} / 2 \mathbb{Z})$ and $w_{i}(E)=0$ for $i>r$.
AXIOM 2. NATURALITY. If $f: B^{\prime} \longrightarrow B$ is a map and $f^{*} E$ is the pullback bundle then $w_{i}\left(f^{*} E\right)=$ $f^{*} w_{i}(E)$.

AXIOM 3. WHITNEY PRODUCT FORMULA. If E^{\prime} is another vector bundle over B then

$$
w_{k}\left(E \oplus E^{\prime}\right)=\sum_{i=0}^{k} w_{i}(E) \smile w_{k-i}\left(E^{\prime}\right)
$$

where \smile means cup product.
AXIOM 4. NORMALIZATION. For the tautological line bundle $\mathscr{O}(-1)$ over $\mathbb{R P}^{1}$, the first StiefelWhitney class $w_{1}(\mathscr{O}(-1)) \in H^{1}\left(\mathbb{R P}^{1} ; \mathbb{Z} / 2 \mathbb{Z}\right)=\mathbb{Z} / 2 \mathbb{Z}$ is non-zero.

Let E be a complex vector bundle of rank r over a base space B. The Chern classes of E consist of a sequence of $c_{i}(E) \in H^{2 i}(B ; \mathbb{Z})$ which satisfies the following axioms[9, Ch.16, Sec.3]:

AXIOM 1. RANK. $c_{0}(E)=1 \in H^{0}(B ; \mathbb{Z})$ and $c_{i}(E)=0$ for $i>r$.
AXIOM 2. NATURALITY. If $f: B^{\prime} \longrightarrow B$ is a map then $c_{i}\left(f^{*} E\right)=f^{*} c_{i}(E)$.
AXIOM 3. PRODUCT FORMULA. If E^{\prime} is another complex vector bundle over B then

$$
c_{k}\left(E \oplus E^{\prime}\right)=\sum_{i=0}^{k} c_{i}(E) \smile c_{k-i}\left(E^{\prime}\right)
$$

AXIOM 4. NORMALIZATION. For the tautological line bundle $\mathscr{O}(-1)$ over $\mathbb{C P}^{1}=S^{2}$, the first Chern class $c_{1}(\mathscr{O}(-1))$ is the generator of $H^{2}\left(S^{2} ; \mathbb{Z}\right)=\mathbb{Z}$

Their existences and uniqueness lie in Chapter 16, Section 6 of [9].

0.3.2 Classifying spaces

Grassmann Manioflds or Grassmannians and tautological vector bundles
Grassmann Manifold is a generalization of projective space. A real Grassmann manifold $G(n, k)$ is defined as the space of all k-dimensional subspaces of \mathbb{R}^{n}. Now we define a chart in $G(n, k)$ in the following way $[10$, Ch.1, Sec.5]: Choose a base $\left(v_{1}, \ldots, v_{k}\right)$ of $P \in G(n, k)$, then P can be represented by the $k \times n$ matrix:

$$
\left(\begin{array}{ccc}
v_{11} & \cdots & v_{1 n} \\
\vdots & & \vdots \\
v_{k 1} & \cdots & v_{k n}
\end{array}\right)
$$

of rank k. Clearly any tow such matrices A, A^{\prime} represent the same element of $G(n, k)$ if and only if $A=g A^{\prime}$ for some $g \in \operatorname{GL}(\mathbb{R}, k)$. For every multi-index $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$, let $V_{I^{\circ}} \subset \mathbb{R}^{n}$ be the $(n-k)$ dimensional subspace spanned by the standard basis vectors $\left\{e_{j}: j \notin I\right\}$ and let

$$
U_{I}=\left\{P \in G(n, k): P \cap V_{I^{\circ}}=\{0\}\right\}
$$

that is the set of $P \in G(n, k)$ such that the minor consisting of i_{1}, \ldots, i_{k}-th columns of one, and hence for any, matrix representation for P is non-singular. By elementary matrix transformations, any $P \in U_{I}$ can be represented uniquely by a matrix of the form:

$$
\left(\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & * & \cdots & * \\
0 & 1 & & \vdots & * & & \\
\vdots & & \ddots & 0 & \vdots & \ddots & \vdots \\
0 & & \cdots & 1 & * & \cdots & *
\end{array}\right)
$$

The right $k \times(n-k)$ minor can be regarded as a coordinate in $\mathbb{R}^{k(n-k)}$. Now we get a bijection:

$$
\varphi_{I}: U_{I} \longrightarrow \mathbb{R}^{k(n-k)}
$$

Note that $\varphi_{I}\left(U_{I} \cap U_{I^{\prime}}\right)$ is open in $\mathbb{R}^{k(n-k)}$ for all I, I^{\prime} and $\varphi_{I} \circ \varphi_{I^{\prime}}^{-1}$ is smooth so $G(n, k)$ is smooth manifold. Clearly this local coordinate is a generalization of homogeneous coordinates of $\mathbb{R} \mathbb{P}^{n}$.

For complex case, the definition is similar, in this case, $G(n, k)$ is a complex manifold, denoted by $G_{\mathbb{C}}(n, k)$. And we denote by $G_{+}(n, k)$ the set of all oriented k-dimensional subspaces of \mathbb{R}^{n}. Finally, the infinite-dimensional version of Grassmannians is provided by the Grassmann space $G(\infty, k)$, which is the union of the chain $G(k+1, k) \subset G(k+2, k) \subset G(k+3, k) \subset \cdots$. There are also spaces $G_{\mathbb{C}}(\infty, k), G_{+}(\infty, k)$.

Like tautological line bundle over $\mathbb{R P}^{n}$ or $\mathbb{C P}^{n}$, we also have tautological vector bundle $\Omega_{n, k}$ over the Grassmannians $G(n, k), G_{+}(n, k), G_{\mathbb{C}}(n, k)$: The total space is the set

$$
\{(P, v): P \in G(n, k), v \in P\}
$$

The projection is $(P, v) \mapsto P$. The tautological vector bundle Ω_{n} over the infinite Grassmannians $G(\infty, n)$ is similar.

The classification theorem for vector bundles

This theorem comes from [11, Ch.2, Lec.19.4.A]
THEOREM 0.3.1. Let X be a manifold. Then
(i) For every n-dimensional vector bundle $E \longrightarrow X$, there exists a continuous map $f: X \longrightarrow G(\infty, n)$ such that $f^{*} \Omega_{n}=E$.
(ii) This map f is unique up to a homotopy; i.e. if $f_{1}^{*} \Omega_{n} \cong f_{2}^{*} \Omega_{n}$, then $f_{1} \sim f_{2}$.
(iii) Conversely if $f_{1} \sim f_{2}$ then $f_{1}^{*} \Omega_{n} \cong f_{2}^{*} \Omega_{n}$.

COROLLARY 0.3.2. The correspondence $f \mapsto f^{*} \Omega_{n}$ establishes a bijection between the set of homotopy classes of maps $X \longrightarrow G(\infty, n)$ and equivalence classes of n-dimensional vector bundles over X.

Or by the language of category theory, $\Omega_{n} \longrightarrow G(\infty, n)$ is terminal object. $\Omega_{n} \longrightarrow G(\infty, n)$ is called universal vector bundle. From the naturality of characteristic classes, we only need to know the characteristic classes of the universal vector bundles. But now we need more general constructions.

Classifying spaces of topological groups and homotopy classification of principal bundles

This section comes from [12]. We need some results about principal bundles.
PROPOSITION 0.3.3. Let P and P^{\prime} be principal G-bundles over B. If $\phi: P \longrightarrow P^{\prime}$ is a principal bundle morphism lying over id : B $\longrightarrow B$, then ϕ is an isomorphism.

Proof. To see that ϕ is injective, suppose $\phi(p)=\phi(q)$ for $p, q \in P$. Since ϕ lies over the identity of B, it follows that p, q must lie in the same fiber $\pi(p)=\pi(q) \in P$. Then there is a unique $g \in G$ such that $p \cdot g=q$ and $\phi(p \cdot g)=\phi(p) \cdot g=\phi(q)$. Since G-action is free, we have $g=e$ and $p=q$.

To see that ϕ is surjective, let $p^{\prime} \in P^{\prime}$ and $b=\pi^{\prime}\left(p^{\prime}\right) \in B$. Choose any $p \in \pi^{-1}(b) \subset P$. Then $\pi^{\prime} \circ \phi(p)=i d_{B} \circ \pi(p)$ i.e. $\phi(p)$ and p^{\prime} lie in the same fiber, therefore $p^{\prime}=\phi(p) \cdot g=\phi(p \cdot g)$ for some $g \in G$.

To see that ϕ^{-1} is continuous, it suffices to consider locally. Thus suppose $\pi^{-1}(U) \cong U \times G$ and $\pi^{\prime-1}(U) \cong U \times G$. Then ϕ locally express as

$$
\phi:(b, g) \mapsto\left(b, \phi^{\prime}(b, g)\right)=\left(b, \phi^{\prime}(b, e) g\right)
$$

for some $\phi^{\prime}: U \times G \longrightarrow G$ satisfying $\phi^{\prime}(b, g h)=\phi^{\prime}(b, g) h$. Thus ϕ^{-1} has local form

$$
\phi^{-1}:(b, g) \mapsto\left(b, \phi^{\prime}(b, e)^{-1} g\right)
$$

which is clearly continuous.
PROPOSITION 0.3.4. Let $\pi: P \longrightarrow B$ and $\pi^{\prime}: Q \longrightarrow B^{\prime}$ be two principal G-bundles respectively. There is a bijective correspondence between morphisms of bundles $\phi:(\pi, P, B) \longrightarrow\left(\pi^{\prime}, Q, B^{\prime}\right)$ and global sections of the associated bundle $P \times_{G} Q$. Here we regard Q as a left G-space with the action $g \cdot q:=q \cdot g^{-1}$.

PROPOSITION 0.3.5. If $\pi: P \longrightarrow B^{\prime}$ is a principal G-bundle and if $f_{0} \sim f_{1}: B \longrightarrow B^{\prime}$ are homotopic maps, then the pullback bundles $f_{0}^{*}(P)$ and $f_{1}^{*}(P)$ over B are isomorphic.

DEFINITION 0.3.6. A principal G-bundle $\pi: E G \longrightarrow B G$ is said to be universal if the total space $E G$ is contractible.

A topological space is said to be weakly contractible if all of its homotopy groups are trivial. For CWcomplex, since we have Whitehead's Theorem[11, Ch.1, Sec.11.5]:

THEOREM 0.3.7. Let X and Y be $C W$-complexes, and let $f: X \longrightarrow Y$ be a continuous map. If

$$
f_{*}: \pi_{n}\left(X, x_{0}\right) \longrightarrow \pi_{n}\left(Y, f\left(x_{0}\right)\right)
$$

is an isomorphism for all n and x_{0}, then f is a homotopy equivalence.
then if X is weakly contractible and Y is one-point space, then f_{*} is clearly is isomorphism and then f is homotopy equivalence. Hence CW-complex is contractible if and only if it is weakly contractible.

We denote the homotopy classes of continuous maps between two topological spaces X, Y by $[X, Y]$, i.e. $\operatorname{Hom}_{\mathbf{h T o p}}(X, Y)$. For any space $B, \mathcal{G}(B)$ denote the set of isomorphism classes of principal G-bundles over B. Then if $f: A \longrightarrow B$ is continuous map, $\mathcal{G}(B) \ni P \mapsto f^{*}(P) \in \mathcal{G}(A)$ is a function from $\mathcal{G}(B)$ to $\mathcal{G}(A)$. From Proposition 0.3.5, we can say that \mathcal{G} is a contravariant functor from hTop to the set of isomorphism classes of principal G-bundles. The following theorem says that \mathcal{G} is representable functor.

THEOREM 0.3.8. Let $\pi: E G \longrightarrow B G$ be a universal G-bundle. Then for any $C W$-complex B, the functors $[-, B G]$ and \mathcal{G} are naturally isomorphic by $[f] \mapsto\left[f^{*} E G\right]$.
LEMMA 0.3.9. If (B, A) is a $C W$-pair and F is a space such that $\pi_{k}(F)=0$ for each k such that $B \backslash A$ has cells of dimension $k+1$, then every map $f: A \longrightarrow F$ extends to a map $\tilde{f}: B \longrightarrow F$ such that $\left.\tilde{f}\right|_{A}=f$.

COROLLARY 0.3.10. Let (B, A) be a $C W$-pair and (π, E, B) a fiber bundle with fiber F. If $\pi_{k}(F)=0$ for each k such that $B \backslash A$ has cells of dimension $k+1$, then every sections $s: A \longrightarrow E$ can be extended a global section $\tilde{s}: B \longrightarrow E$. In particular, taking $A=\emptyset$, it follows that (π, E, B) admits global sections if F is k-connected where $k=\operatorname{dim} B$.

Proof of Theorem 0.3.8. Let $\pi^{\prime}: Q \longrightarrow B$ be a principal G-bundle; then associated bundle $Q \times{ }_{G} E G$ has a global section since $E G$ is contractible then k-connected for any k and by Corollary 0.3.10, which corresponds by Proposition 0.3 .4 to a morphism of bundle $\left(\pi^{\prime}, Q, B\right) \longrightarrow(\pi, E G, B G)$ lying over some map $f: B \longrightarrow B G$ of the base spaces. From the universal property of pullback of fiber bundle[12, Proposition 1.4], there is a morphism $Q \longrightarrow f^{*}(E G)$ over the identity map of B. Then by Proposition $0.3 .3, Q \cong f^{*}(E G)$. Thus $[f] \longrightarrow\left[f^{*} E G\right]$ is surjective.

To see injectivity, suppose that $f_{0}, f_{1}: B \longrightarrow B G$ are two maps such that the pullbacks of $E G$ are isomorphic: $\phi: f_{0}^{*}(E G) \cong f_{1}^{*}(E G)$. We claim that $f_{1} \sim f_{2}$. Indeed, consider the principal G-bundle

$$
\pi^{\prime}: P:=f_{0}^{*}(E G) \times I \longrightarrow B \times I
$$

where $I=[0,1]$. Since $\left.P\right|_{B \times 0} \cong f_{0}^{*}(E G)$ and $\left.P\right|_{B \times 1} \cong f_{1}^{*}(E G)$, we have the G-bundle morphism:

Then by Proposition 0.3.4, this morphism corresponds to a section $s_{0}: B \times 0 \longrightarrow P \times_{G} E G$. Similarly, we have the G-bundle morphism

which corresponds to a section $s_{1}: B \times 1 \longrightarrow P \times_{G} E G$. Now we have the section $s_{0} \cup s_{1}: B \times 0 \cup$ $B \times 1 \longrightarrow P \times_{G} E G$. Since $E G$ is contractible, from Corollary 0.3.10 $s_{1} \cup s_{2}$ extends to a global section $s: B \times I \longrightarrow P \times_{G} E G$, which therefore corresponds to a bundle morphism $\left(\pi^{\prime}, P, B \times I\right) \longrightarrow(\pi, E G, B G)$ and the map $B \times I \longrightarrow B G$ is a homotopy between f_{0} and f_{1}.

Now we will see that B is a functor.
THEOREM 0.3.11. Given a topological group G, there exists a universal principal G-bundle $(\pi, E G, B G)$.
Sketch of proof. For each, let $E G^{n}$ be the n-fold join $G * G * \cdots * G$. Then it is possible to show that $E G^{n}$ is $(n-1)$-connected and it has free action by G given by right multiplication in each factor of G. Thus the colimit

$$
E G:=\lim _{n \rightarrow \infty} E G^{n}
$$

is a weakly contractible G-space, and $B G:=E G / G$ is a classifying space.
PROPOSITION 0.3.12. For each topological group homomorphism $\phi: G \longrightarrow H$, there is a natural homotopy class $B \phi \in[B G, B H]$ such that $B(\phi \circ \psi)=B \phi \circ B \psi$ and $B\left(i d_{G}\right)=i d_{B G}$, i.e. B is a functor from the category of topological groups to hTop. Moreover, B preserves products in the sense that $B(G \times H)=$ $B G \times B H$.

Proof. The associated bundle $E G \times_{G, \phi} H$ is a principal H-bundle over $B G$ hence there is a map $B \phi \in$ [BG,BH] such that $E G \times_{G, \phi} H \cong(B \phi)^{*} E G$. Functoriality follows from the evident isomorphism

$$
\left(E G \times_{G, \phi} H\right) \times_{H, \psi} K \cong E G \times_{G, \psi \circ \phi} K
$$

and that $B\left(i d_{G}\right)=i d_{B G}$ follows from the fact $E G \times_{G} G \cong E G$.
For the product result, we can see that $E G \times E H$ is contractible space with a $G \times H$ free right action so

$$
B(G \times H)=(E G \times E H) /(G \times H)=B G \times B H
$$

4. Hodge star operator

Let V be a real fintie-dimensional vector space of dimension d with an inner product $<,>$. For each degree p, the vector vector space $\wedge^{p} V$ has an inner product induced from V :

$$
\left\langle u_{1} \wedge \cdots \wedge u_{p}, v_{1} \wedge \cdots \wedge v_{p}\right\rangle=\operatorname{det}\left(\left\langle u_{j}, v_{k}\right\rangle\right)_{j k}
$$

If $\left(e_{1}, \ldots, e_{d}\right)$ is an orthonormal basis for V, then clearly $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}: 1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq d\right\}$ is an orthonormal basis for $\wedge^{p} V$. We now define the Hodge $*$-operator. The Hodge star operator si a mapping

$$
*: \bigwedge^{p} V \longrightarrow \bigwedge^{d-p} V
$$

defined by setting

$$
*\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}\right)= \pm e_{j_{1}} \wedge \cdots \wedge e_{j_{d-p}}
$$

where $\left\{j_{1}, \ldots, j_{d-p}\right\}$ is the complement of $\left\{i_{1}, \ldots, i_{p}\right\}$ in $\{1, \ldots, d\}$, and we assign the plus sign if $\left\{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{d-p}\right\}$ is an even permutation of $\{1, \ldots, d\}$, and the minus sigh otherwise. Hence we have

$$
e_{i_{1}} \wedge \cdots \wedge e_{i_{p}} \wedge *\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}\right)=e_{1} \wedge \cdots \wedge e_{d}=\text { volume }
$$

Extending * by linearity, we can prove[13, Ch.V, Sec.1] for $\alpha, \beta \in \wedge^{p} V$
$\alpha \wedge * \beta=\langle\alpha, \beta\rangle$ vol

CHAPTER 1. Self-duality

1. self dual Yang-Mills equations

Let A be a connection on a principal G-bundle P over \mathbb{R}^{4}, and $F(A)$ its curvature.
A connection is said to satisfy the self-dual Yang-Mills equations, or self-duality equations for short, if $F(A)$ is invariant under the Hodge star operator. In terms of a local trivialization of P over \mathbb{R}^{4}, and the basis coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right), F(A)$ may be written as a Lie algebra-valued 2-form:
$F(A)=\sum_{i<j} F_{i j} d x_{i} \wedge d x_{j}=F_{12} d x_{1} \wedge d x_{2}+F_{13} d x_{1} \wedge d x_{3}+F_{14} d x_{1} \wedge d x_{4}+F_{23} d x_{2} \wedge d x_{3}+F_{24} d x_{2} \wedge d x_{4}+F_{34} d x_{3} \wedge d x_{4}$
Then

$$
* F(A)=F_{12} d x_{3} \wedge d x_{4}-F_{13} d x_{2} \wedge d x_{4}+F_{14} d x_{2} \wedge d x_{3}+F_{23} d x_{1} \wedge d x_{4}-F_{24} d x_{1} \wedge d x_{3}+F_{34} d x_{1} \wedge d x_{3}
$$

Hence the self-duality equations means that

$$
\begin{cases}F_{12} & =F_{34} \tag{1.1.1}\\ F_{13} & =-F_{24} \\ F_{14} & =F_{23}\end{cases}
$$

With respect to this trivialization, the connection is described by a Lie algebra-valued 1-form

$$
A=A_{1} d x_{1}+A_{2} d x_{2}+A_{3} d x_{3}+A_{4} d x_{4}
$$

where A_{i} is a matrix-valued function of \mathbb{R}^{4} with respect to a local frame of $\operatorname{ad}(P)$. Via Section 0.2 .2 we introduce the covariant derivative on $\operatorname{ad}(P)$ in the direction of $\frac{\partial}{\partial x_{i}}$:

$$
\nabla_{i}=\frac{\partial}{\partial x_{i}}+A_{i}
$$

and since A is matrix valued-form, the curvature is then expressed as

$$
F(A)=d A+A \wedge A
$$

Then we have:

$$
\begin{aligned}
d A & =\sum_{i}\left(\sum_{j} \frac{\partial A_{i}}{\partial x_{j}} d x_{j}\right) \wedge d x_{i} \\
& =\sum_{1 \leq i, j \leq 4} \frac{\partial A_{i}}{\partial x_{j}} d x_{j} \wedge d x_{i} \\
& =\sum_{1 \leq i<j \leq 4}\left(\frac{\partial A_{i}}{\partial x_{j}}-\frac{\partial A_{j}}{\partial x_{i}}\right) d x_{i} \wedge d x_{j}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
A \wedge A & =\sum_{i, j} A_{i} A_{j} d x_{i} \wedge d x_{j} \\
& =\sum_{1 \leq i<j \leq 4}\left(A_{i} A_{j}-A_{j} A_{i}\right) d x_{i} \wedge d x_{j}
\end{aligned}
$$

And we can see that $\frac{\partial}{\partial x_{i}}$ and A_{i} are both linear operator on the space of sections. If $\left(e_{1}, \ldots, e_{r}\right)$ is a local frame, $s=\sum_{i} s^{i} e_{i}$, then $\frac{\partial s}{\partial x_{j}}=\sum_{i} \frac{\partial s_{i}}{\partial x_{j}} e_{i}$ and for column vector ${ }^{t}\left(s^{1}, \ldots, s^{r}\right), A_{j} s=\left(e_{1}, \ldots, e_{r}\right) A_{j}{ }^{t}\left(s^{1}, \ldots, s^{r}\right)$.

Since by Lebniz's rule,

$$
\frac{\partial}{\partial x_{i}}\left(A_{j} \xi\right)=\frac{\partial A_{j}}{\partial x_{i}} \xi+A_{j} \frac{\partial \xi}{\partial x_{i}}
$$

Hence

$$
\frac{\partial}{\partial x_{i}} A_{j}=\frac{\partial A_{j}}{\partial x_{i}}+A_{j} \frac{\partial}{\partial x_{i}}
$$

Then

$$
\left[\frac{\partial}{\partial x_{i}}, A_{j}\right]=\frac{\partial}{\partial x_{i}} A_{j}-A_{j} \frac{\partial}{\partial x_{i}}=\frac{\partial A_{j}}{\partial x_{i}}
$$

Clearly $\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]=0$. Therefore

$$
\left[\nabla_{i}, \nabla_{j}\right]=\left[\frac{\partial}{\partial x_{i}}+A_{i}, \frac{\partial}{\partial x_{j}}+A_{j}\right]=\left(\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x_{j}}+A_{i} A_{j}-A_{j} A_{i}\right)=F_{i j}
$$

we now assume that the Lie algebra-valued functions A_{i} are independent of x_{3}, x_{4}. Then we can restrict P to submanifold \mathbb{R}^{2}. Thus A_{1} and A_{2} define a connection

$$
A=A_{1} d x_{1}+A_{2} d x_{2}
$$

over \mathbb{R}^{2}, and A_{3} and A_{4} which we relabel as ϕ_{1} and ϕ_{2} are auxiliary fields over \mathbb{R}^{2}, called Higgs fields which are Lie algebra-valued.

Now we consider the restriction of P on \mathbb{R}^{2}, clearly the sections of this restriction are independent of x_{3}, x_{4}, so the actions of $\frac{\partial}{\partial x_{3}}$ and $\frac{\partial}{\partial x_{3}}$ are zero, we can see that $\nabla_{3}=A_{3}, \nabla_{4}=A_{4}$. The self-duality equations (1.1.1) may now be written as

$$
\left\{\begin{array}{l}
F_{12}=\left[\nabla_{1}, \nabla_{2}\right]=\left[\phi_{1}, \phi_{2}\right]=F_{34} \\
F_{13}=\left[\nabla_{1}, \phi_{1}\right]=\left[\phi_{2}, \nabla_{2}\right]=-F_{24} \\
F_{14}=\left[\nabla_{1}, \phi_{2}\right]=\left[\nabla_{2}, \phi_{1}\right]=F_{23}
\end{array}\right.
$$

Introducing the complex Higgs field $\phi=\phi_{1}-i \phi_{2}$ we can write the above equations as

$$
\left\{\begin{array}{l}
F_{12}=\frac{1}{2} i\left[\phi, \phi^{*}\right] \tag{1.1.2}\\
{\left[\nabla_{1}+i \nabla_{2}, \phi\right]=0}
\end{array}\right.
$$

Now we consider the induced connection on the principal bundle P over \mathbb{R}^{2}, and its corresponding curvature form etc:

$$
F \in \Omega^{2}\left(\mathbb{R}^{2}, \operatorname{ad}(P)\right) \quad \text { and } \quad \phi \in \Omega^{0}\left(\mathbb{R}^{2}, \operatorname{ad}(P) \otimes \mathbb{C}\right)
$$

The first equation of (1.1.2) is coordinate dependent. But if we write $z=x_{1}+i x_{2}$ and introduce

$$
\begin{aligned}
\Phi & =\frac{1}{2} \phi d z \in \Omega^{1,0}\left(\mathbb{R}^{2}, \operatorname{ad}(P) \otimes \mathbb{C}\right) \\
\Phi^{*} & =\frac{1}{2} \phi^{*} d \bar{z} \in \Omega^{0,1}\left(\mathbb{R}^{2}, \operatorname{ad}(P) \otimes \mathbb{C}\right)
\end{aligned}
$$

Then the first equation of (1.1.2) becomes

$$
F=-\left[\Phi, \Phi^{*}\right]
$$

In fact since P is over $\mathbb{R}^{2}, F=F_{12} d x_{1} \wedge d x_{2}$, then from $d z=d x_{1}+i d x_{2}$ and (1.1.2), we have

$$
-\left[\Phi, \Phi^{*}\right]=-\frac{1}{4}[\phi, \phi *] d z \wedge d \bar{z}=\frac{1}{2} i\left[\phi, \phi^{*}\right] d x_{1} \wedge d x_{2}=F
$$

We can write

$$
A=A_{1} d x_{1}+A_{2} d x_{2}=\frac{1}{2}\left(A_{1}-i A_{2}\right) d z+\frac{1}{2}\left(A_{1}+i A_{2}\right) d \bar{z}=A^{\prime} d z+A^{\prime \prime} d \bar{z}
$$

Then we have

$$
\begin{aligned}
{\left[\nabla_{1}+i \nabla_{2}, \phi\right] } & =\left[\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}+A_{1}+i A_{2}, \phi\right] \\
& =2\left[\frac{\partial}{\partial \bar{z}}+A^{\prime \prime}, \phi\right]
\end{aligned}
$$

This formula is zero if and only if

$$
0=\left[\frac{\partial}{\partial \bar{z}}+A^{\prime \prime}, \frac{1}{2} \phi\right] d \bar{z} \wedge d z=d^{\prime \prime} \Phi+\left[A^{\prime \prime} d \bar{z}, \Phi\right]=d_{A}^{\prime \prime} \Phi
$$

by Theorem 0.2.6. where $d_{A}^{\prime \prime}$ is $(0,1)$-type connection. Then the equations (1.1.2) become

$$
\left\{\begin{array}{l}
F=-\left[\Phi, \Phi^{*}\right] \tag{1.1.3}\\
d_{A}^{\prime \prime} \Phi=0
\end{array}\right.
$$

This system of equations also can be writen on a compact Riemann surface M. We consider a connection A on a principal G-bundle P over M where G is compact, and a complex Higgs field $\Phi \in \Omega^{1,0}(M, \operatorname{ad}(P) \otimes \mathbb{C})$. The pair (A, Φ) will be said to satisfy the self-duality equations if it satisfies the system of equations (1.1.3).

Here are two examples:
EXAMPLE 1.1.1. Let $\Phi=0$ and A be flat connection, then it is easy to see that (A, Φ) satisfies the self-duality.

EXAMPLE 1.1.2. Let M be given a Riemannian metric $g=h^{2} d z d \bar{z}, h>0$ compatible with the conformal structure, K be the canonical line bundle, which is $T^{* *} M$ for M. The structure group of the associated frame bundle $\operatorname{Fr}(K)$ is $\mathrm{GL}(\mathbb{C}, 1)$, then since M is given a conformal metric, which gives an hermitian metric on the holomorphic tangent bundle $T^{\prime} M$ and then K. So K is a principal $U(1)$-bundle from Section 0.2.3. Since M is Khler manifold, the Chern connection coincides with the Levi-Civita connection of the associated Riemannian metric. Thus we consider the Chern connection ∇ on $T^{* *} M$.

Let $K^{1 / 2}$ be a holomorphic line bundle over M such that

$$
K^{1 / 2} \otimes K^{1 / 2} \cong K
$$

And $K^{1 / 2}$ is given a connection $\nabla^{1 / 2}$ such that the tensor product of $\nabla^{1 / 2}$

$$
\nabla^{1 / 2} \otimes I+I \otimes \nabla^{1 / 2}
$$

where I is identity of $\Omega\left(M, K^{1 / 2}\right)$, is the Chern connection of K. For the dual vector bundle $K^{1 / 2 *}$ of $K^{1 / 2}$, there is also a dual connection, denoted by $\nabla^{1 / 2 *}$. We consider the rank-2 vector bundle $V=K^{1 / 2} \oplus K^{1 / 2 *}$ with the linear connection $\nabla_{V}=\nabla^{1 / 2} \oplus \nabla^{1 / 2 *}$. Note that V is given an hermitian metric so the associated frame bundle is a principal $S U(2)$-bundle, denoted by P. Let A be the $S U(2)$-connection defined by the linear connection ∇_{V} via Section 0.2.3.

Since $P=\operatorname{Fr}(V)$, its structure group is $\mathrm{GL}(\mathbb{C}, 2) \cong \mathrm{GL}\left(V_{x}\right)$, so the fiber of $\operatorname{ad}(P)$ is $\mathfrak{g l}(\mathbb{C}, 2) \cong \mathfrak{g l}\left(V_{x}\right)=$ $\operatorname{End}\left(V_{x}\right)$, so $\operatorname{ad}(P) \cong \operatorname{End}(V)$. We define

$$
\Phi=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) h d z \in \Omega^{1,0}(\operatorname{ad}(P))
$$

We claim that $d_{A}^{\prime \prime} \Phi=0$. From [10, Ch.0, Sec.5] we know that the connection form of Chern connection of the tangent bundle K^{*} is

$$
\omega=\frac{1}{h} \frac{\partial h}{\partial z} d z-\frac{1}{h} \frac{\partial h}{\partial \bar{z}} d \bar{z}
$$

$K^{*}, K^{1 / 2 *}$ are line bundles, for a local frame e of K^{*} and a local frame $e^{1 / 2}$ of $K^{1 / 2 *}$, we identify $e^{1 / 2} \otimes e^{1 / 2}$ and e since $K^{1 / 2 *} \otimes K^{1 / 2 *} \cong K^{*}$. Then we have

$$
\begin{aligned}
\omega e & =\left(\omega_{1 / 2} \otimes I+I \otimes \omega_{1 / 2}\right)\left(e^{1 / 2} \otimes e^{1 / 2}\right) \\
& =\left(\omega_{1 / 2} e^{1 / 2}\right) \otimes e^{1 / 2}+e^{1 / 2} \otimes\left(\omega_{1 / 2} e^{1 / 2}\right) \\
& =2 \omega_{1 / 2} e^{1 / 2} \otimes e^{1 / 2}
\end{aligned}
$$

where $\omega_{1 / 2}$ is connection form of $K^{1 / 2 *}$, note that they are complex-valued forms. So $\omega_{1 / 2}=\frac{1}{2} \omega$. Then we obtain the connection form of $K^{1 / 2}$ is $-\frac{1}{2} \omega$. Finally we obtain the connection form of $V=K^{1 / 2} \oplus K^{1 / 2 *}$:

$$
\omega_{V}=\left(\begin{array}{cc}
-\frac{1}{2} \omega & 0 \\
0 & \frac{1}{2} \omega
\end{array}\right)
$$

which also can be regarded as the connection form of A which is a connection induced from the connection on V. The part of $(0,1)$-type of ω_{V} is

$$
\omega_{V}^{\prime \prime}=-\frac{1}{2 h} \frac{\partial h}{\partial \bar{z}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) d \bar{z}
$$

Then we can see that

$$
\begin{aligned}
d_{A}^{\prime \prime} \Phi & =\frac{\partial h}{\partial \bar{z}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) d \bar{z} \wedge d z+\left[\omega_{V}^{\prime \prime}, \Phi\right] \\
& =\frac{\partial h}{\partial \bar{z}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) d \bar{z} \wedge d z+h \times\left(-\frac{1}{2 h} \frac{\partial h}{\partial d \bar{z}}\right)\left[\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)\right] d \bar{z} \wedge d z \\
& =0
\end{aligned}
$$

Similar, if F_{0} is the curvature form of the holomorphic tangent bundle K^{*}, then the curvature forms of $K^{1 / 2 *}$ and V is respectively $\frac{1}{2} F_{0}$ and

$$
\left(\begin{array}{cc}
-\frac{1}{2} F_{0} & 0 \\
0 & \frac{1}{2} F_{0}
\end{array}\right)
$$

On the other hand, we have

$$
-\left[\Phi, \Phi^{*}\right]=-\left[\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) h d z,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) h d \bar{z}\right]=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) h^{2} d z \wedge d \bar{z}
$$

Thus the equations becomes

$$
F_{0}=-2 h^{2} d z \wedge d \bar{z}
$$

Bibliography

[1] Nigel J Hitchin. The self-duality equations on a riemann surface. Proceedings of the London Mathematical Society, 3(1):59-126, 1987.
[2] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Graduate Texts in Mathematics. Springer International Publishing, 2015.
[3] R.W. Sharpe and S.S. Chern. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. Graduate Texts in Mathematics. Springer New York, 2000.
[4] L.W. Tu. Differential Geometry: Connections, Curvature, and Characteristic Classes. Graduate Texts in Mathematics. Springer International Publishing, 2017.
[5] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry. Number 1 in Foundations of Differential Geometry. Interscience Publishers, 1963.
[6] V.S. Varadarajan. Lie Groups, Lie Algebras, and Their Representations. Graduate Texts in Mathematics. Springer New York, 2013.
[7] S. Kobayashi. Differential Geometry of Complex Vector Bundles. Princeton Legacy Library. Princeton University Press, 2014.
[8] J.W. Milnor, J.D. Stasheff, J. Stasheff, and Princeton University. Characteristic Classes. Annals of mathematics studies. Princeton University Press, 1974.
[9] D. Husemoller and D. Husemöller. Fibre Bundles. Graduate Texts in Mathematics. Springer, 1994.
[10] P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley Classics Library. Wiley, 2014.
[11] A. Fomenko and D. Fuchs. Homotopical Topology. Graduate Texts in Mathematics. Springer International Publishing, 2016.
[12] CHRIS KOTTKE. Bundles, classifying spaces and characteristic classes. https://ckottke.ncf.edu/ docs/bundles.pdf, 2012.
[13] O. Garcia-Prada and R.O. Wells. Differential Analysis on Complex Manifolds. Graduate Texts in Mathematics. Springer New York, 2007.

