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1 1 INTRODUCTION

1 Introduction
In this document we will study a finite volume scheme with nodal fluxes for the following diffusion
equation: 

∂tp(x, t) − ∇.(κ(x)u(x, t)) = f(x, t) ∀ x ∈ Ω, t ∈ [0, T ]
p(x, 0) = p0(x) ∀ x ∈ Ω
p(x, t) = h(x, t) ∀ x ∈ ΓD, t ∈ [0, T ]

⟨κ(x)u(x, t), nΓN
⟩ = g(x, t) ∀ x ∈ ΓN , t ∈ [0, T ]

(1)

where

• Ω ⊂ Rd, with d the space dimension;

• p : Ω × [0, T ] → R is a scalar unknown;

• u = ∇p : Ω × [0, T ] → Rd is a vectorial unknown;

• f : Ω × [0, T ] → R is the source function;

• p0 : Ω → R is a given function that is the initial condition of the problem;

• κ : Ω → Rd×d is the diffusion coefficient.
We are working in an anisotropic medium, which means the diffusion coefficient is a symmetric and
positive tensor that depends on space. Another property of κ is that it is bounded: there exists
M > 0 a constant such that |||κ|||Ω,∞ = max

x∈Ω
(|||κ(x)|||∞) < M , where |||A|||∞ = max

1≤i≤m

∑n
j=1 |aij |, for

A ∈ Rm×n.

• nΓN
is the normal to the boundary Γ = ∂Ω, directed torwards the outside of the domain;

• g : ΓN × [0, T ] → R. We will consider g = 0 for homogeneous Neumann boundary conditions;

• h : ΓD × [0, T ] → R. For homogeneous Dirichlet boundary conditions one has h = 0.

Proposition 1 (Uniqueness of the solution). Let Ω be a bounded domain of R2. For convenience, let us
consider Ω ∈ C∞ as in [4]. Let f ∈ L2([0, T ], L2(Ω)), p0 ∈ H1(Ω), κ ∈ L∞(Ω), g, h ∈ H1/2([0, T ], L2(Γ)),
then the system (1) has a unique weak solution p ∈ C0([0, T ]; H1(Ω)) ∩ C1([0, T ], L2(Ω)). The proof is
obtained with Lions’ Theorem from [4].

Proposition 2 (Conservation.). The system (1) with no source (f = 0) and periodical or Neumann
homogeneous boundary conditions is conservative, which means one has:

∂t

∫
Ω

p dx = 0 (2)

Proof can be found in Appendix B.1.

Proposition 3 (L2 stability). The system (1) with no source and homogeneous boundary conditions is
stable in L2 norm, which means:

∂t∥p∥L2 ≤ 0 (3)
Proof can be found in Appendix B.2.

The choice of a finite volume scheme was made to ensure that the scheme is natively locally conser-
vative which would not necessarily be the case with a finite element method. Moreover the scheme has
to be consistent on unstructured meshes in order to be coupled with Lagrangian hydrodynamics codes
which can produce very distorted meshes.

The origin of the problem comes from the hyperbolic heat equation (4), or P1 equation, which is an
approximation of a transport equation.
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∂tp + 1

ε
∇.u = 0

∂tu + 1
ε

∇p + σ

ε2 u = 0
(4)

This model can be approximated by the following diffusion equation when ε tends to 0, thanks to a
simple Hilbert’s expansion:

∂tp − ∇.
( 1

σ
∇p
)

= 0 (5)

In this work we will study a numerical scheme for the system (1). This scheme has been obtained in
Emmanuel Franck’s thesis [13] as the asymptotic limit of a scheme for the hyperbolic heat system.

It leads to the choice of nodal fluxes, this way the scheme remains consistent on unstructured meshes
in its diffusion limit: it is asymptotic preserving (AP). Indeed with classical face fluxes the diffusion limit
of the P1 scheme would have given a TPFA scheme [12] which is not consistent on distorted meshes. The
nodal scheme presents other advantages compared to other existing schemes with face fluxes: unlike Dia-
mond, Mimetic and MPFA [7, 16, 1] the nodal scheme does not need any auxiliary unknowns. Moreover
there are no dual diffusion problem to solve with the nodal scheme, as opposed to DDFV [14].

In E. Franck’s thesis and in [5] the limit diffusion scheme is built and studied in its semi-discrete ver-
sion, with periodical boundary conditions and a constant scalar diffusion coefficient which is insufficient
for applications. The objective of this document is to study more in depth the nodal diffusion scheme
by adding to it a time discretization, boundary conditions and a tensorial diffusion coefficient in order to
simulate an anisotropic domain.

The organization of this work is as follows: in Section 2 one can find the definitions, notations and
properties of the mesh that are needed in the rest of the document. In Section 3 we built the scheme with
Neumann, Dirichlet and mixed boundary conditions, added an Euler implicit time discretization to it
and gave the conditions on the mesh for the invertibility of βr. In Section 4 properties of the scheme are
given: uniqueness, exactness, stability, consistency and convergence, for every boundary conditions and
Euler implicit method. In Section 5 we extended the time discretization to a second-order in time Crank-
Nicolson method, and proved the properties of stability, consistency and convergence in that case. This
nodal scheme (in Euler implicit and Crank-Nicolson version) gave us some surprising results depending
on the mesh as one can see on the numerical results in Section 7. In order to fix the problems encountered
with the nodal scheme, in Section 6 we built a hybrid face-node scheme that is a correction of the purely
nodal scheme and does not require any auxiliary unknown either. Finally, all the numerical results are
given in Section 7 for linear, quadratic, trigonometric, non-stationary solutions and with a non-constant
coefficient diffusion on several meshes of quad and triangle and for the Euler implicit and Crank-Nicolson
versions of the nodal and hybrid scheme, with Neumann and Dirichlet boundary conditions.

2 Notations and properties
All over the document, some definitions, notations and general properties will be used that are listed and
proved in this section.

2.1 Definitions
Definition 1. Let us define the scalar product of two vectors u = (u1, . . . , ud) and v = (v1, . . . , vd) in
dimension d, noted ⟨u, v⟩ as the sum of the product of their coefficients:

⟨u, v⟩ =
d∑

i=1
uivi (6)
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Definition 2. Let us define the classical norm of a vector u associated to the classical scalar product of
Definition 1 as

∥u∥ =
√

⟨u, u⟩ =

√√√√ d∑
i=1

u2
i (7)

Definition 3. Let u = (u1, . . . , ud) be any vector in Rd.

Then
⟨u, u⊥⟩ = 0 and u ∧ u⊥ = ∥u∥2 (8)

In particular, if d = 2, we chose
u⊥ = (−u2, u1) (9)

Then
⟨u, u⊥⟩ = −u1u2 + u2u1 = 0 and u ∧ u⊥ = u2

1 + u2
2 = ∥u∥2

Definition 4. Let us introduce A ∈ Rd×d, and u, v ∈ Rd such that A = u ⊗ v. Then

Ai,j = uivj , ∀ i, j = 1, . . . , d (10)

Definition 5. Let us introduce A ∈ Rd×d. Then its transpose matrix At is defined by

At
i,j = Aj,i ∀ i, j = 1, . . . d (11)

Definition 6. Let us introduce A ∈ Rd×d. Then its symmetric part As is defined by

As = A + At

2 (12)

Definition 7. Let us introduce A ∈ R2×2. The determinant of the matrix A is given by

det(A) =
∣∣∣∣a b
c d

∣∣∣∣ = ad − bc (13)

Definition 8. Let us introduce A ∈ Rd×d. The trace of the matrix A is given by

tr(A) =
d∑

i=1
Ai,i (14)

2.2 Construction of the mesh
2.2.1 Notations

Let us define:

• Ωj a cell of the mesh;

• xj the center of a cell Ωj ;
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xr• xr+1•

xr−1 •

• xl •

xj
•xk •

ΩjΩk

Ωl

ℓjk

njk ℓjl

njl

Cjr

Figure 1: Unstructured mesh on Ω

• xr a vertex of the mesh;

• C the set of cells of the mesh;

• V the set of vertices of the mesh;

• ℓjk = |∂Ωjk|, the length of Ωj ∩ Ωk;

• njk the normal exterior to Ωj .

Remark 1. We can add one or two indices to the previous sets in order to restrain them:

• Cr is the set of cells having xr for common vertex;

• Cj is the set of cells that share a common face or node with Ωj ;

• Lj is the set of cells at the edge of Ωj ;

• Vj is the set of vertices of the cell Ωj ;

• Cjr = Lj ∩ Cr;

• Vjk = Vj ∩ Vk;

• Vi
j = Vj\Γ is the set of vertices of Ωj inside the domain (not on the boundary);

• Vb
j = Vj ∩ Γ is the set of vertices of Ωj on the boundary of the domain, except for the corners;

• Vc
j is the set of “corner nodes”, that is the set of nodes on the boundary belonging to a unique cell

as one can see in Figure 2;

• Vi,b
j = Vb

j ∪ Vi
j .

Definition 9. We call corner a node belonging to a single cell (ie. |Cr| = 1) so that two edges sharing
this node belong to the boundary. One can see an example in Figure 2.

Definition 10. We call angle a node belonging to a several cells (ie. |Cr| > 1) so that two of the edges
sharing this node belong to the boundary. One can see an example in Figure 3.
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Γ1

Γ2

xr−1 •

xr
•

xr+1
•

xr+2
•

xj
•

Ωj

Figure 2: Construction of a corner xr ∈ Vc
j

Γ

xr−1 •

xr•

xr+1•

xj1
•

xj2•

Ωj1

Ωj2

l1
l2

nl1

nl2

Figure 3: Construction of an angle xr

Remark 2 (Notation for the sums). For the whole document, for any q:

•
∑

j∈C qj is the sum of qj over all the cells of the mesh;

•
∑

r∈V qr is the sum of qr over all the vertices of the mesh;

•
∑

r∈Vj
qjr is the sum of qjr over all the vertices of the cell Ωj ;

•
∑

j∈Cr
qjr is the sum of qjr over all the cells that have xr for common vertex.

• Note that for all qjr: ∑
j∈C

∑
r∈Vj

qjr =
∑
r∈V

∑
j∈Cr

qjr (15)

Definition 11 (Control volumes Vr and Vjr). The control volume is defined by the closed loop: . . . , xj− 1
2
, xj , xj+ 1

2
, . . . .

Where xj+ 1
2

are the center of the edges around xr. We can see the control volume Vr in Figure 4.

One can divide Vr into smaller areas delimited by the points xr, xj+ 1
2
, xj, xj− 1

2
. These areas are

named Vjr and they verify:
⋃

j∈Cr

Vjr = Vr. They are represented in Figure 4

2.2.2 Properties of the mesh

Proposition 4. One has
|Ωj |Îd =

∑
r∈Vj

xr ⊗ Cjr (16)

where
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Vr

xr
•

•

•

•

xr−1
•

•

xr+1
•

•

•

□ xj+1
□

xj
□

xj−1
□

•

xj+ 1
2

•

xj− 1
2

•

•

Vjr

Vj+1,r

Figure 4: Control volume Vr on a mesh of quads

• |Ωj | is the volume of the cell Ωj;

• Îd is the identity matrix;

• Cjr = 1
2(ℓjlnjl + ℓjknjk).

Proof. By definition of the volume and thanks to Green’s theorem, one has the following identity:

|Ωj |Îd =
∫

Ωj

∇x dx =
∫

∂Ωj

x ⊗ nj dσ

where nj is the normal to the boundary of Ωj , directed towards the outside of the cell.

Let us divide the integration on each side of ∂Ωj , called ∂Ωjk∫
∂Ωj

x ⊗ nj dσ =
∑

k∈Lj

∫
∂Ωjk

x ⊗ nj dσ

where Lj represents the cell at the edge of Ωj .

Knowing that ∂Ωjk is a straight line, one has∫
∂Ωjk

x ⊗ nj dσ = xjk ⊗ njkℓjk

where

• xjk is the middle of the face ∂Ωjk;

• njk is its exterior normal;

• ℓjk = |∂Ωjk| is its length.

Then ∑
k∈Lj

xjk ⊗ njk =
∑

k∈Lj

1
2
∑

r∈Vjk

xr ⊗ njkℓjk =
∑
r∈Vj

xr ⊗ 1
2
∑

k∈Cjr

njkℓjk
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with Vjk the vertices of ∂Ωjk and Cjr the cells adjacent to Ωj for which xr is a vertice.

Let us introduce Cjr, that is represented in Figure 1, such that

Cjr = 1
2
∑

k∈Cjr

njkℓjk = 1
2
(
njlℓjl + njkℓjk

)
(17)

where Ωl and Ωk are adjacent to Ωj , having xr as a common vertice.

Therefore we retrieve the identity (16) and it ends the proof.

Remark 3. Let us consider the trace of the equation (16)

tr(|Ωj |Îd) = tr(
∑
r∈Vj

xr ⊗ Cjr)

Knowing that the trace function is linear and considering the property Proposition 35, one has in
dimension 2:

2|Ωj | =
∑
r∈Vj

⟨xr, Cjr⟩

Which leads to
|Ωj | = 1

2
∑
r∈Vj

⟨xr, Cjr⟩

Proposition 5. The vector Cjr ∈ Rd can also be defined as the gradient of the volume of the cell Ωj

with respect to the vertex xr

Cjr = ∇xr
|Ωj | = 1

2(xr−1 − xr+1)⊥ (18)

Proof. This proof is based on the definition of Cjr in [9].
In dimension 2, the oriented area of the triangle defined by the points (O, xr, xr+1), where O = (0, 0)
is the origin of the mesh is: 1

2

(
xryr+1 − xr+1yr

)
. The sum of these oriented areas on r ∈ Vj gives the

surface |Ωj |
|Ωj | =

∑
r∈Vj

1
2

(
xryr+1 − xr+1yr

)
Let us now derivate this formula according to xr

∇xr |Ωj | = ∇xr

∑
r∈Vj

1
2

(
xryr+1 − xr+1yr

)
= 1

2

(
yr+1 − yr−1

−xr+1 + xr−1

)
= 1

2

(
−(yr−1 − yr+1)
(xr−1 − xr+1)

)
= 1

2(xr−1 − xr+1)⊥

Let us get back to the definition of Cjr given in (17):

Cjr = 1
2
(
ℓjlnjl + ℓjknjk

)
As we can see on Figure 1, ∂Ωjl = [xr, xr+1] and ∂Ωjk = [xr−1, xr] and

ℓjl = ∥xr+1 − xr∥2 and njl = (xr − xr+1)⊥

∥xr+1 − xr∥2

ℓjk = ∥xr−1 − xr∥2 and njk = (xr−1 − xr)⊥

∥xr−1 − xr∥2
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Thus
Cjr = 1

2

(
(xr − xr+1)⊥ + (xr−1 − xr)⊥

)
= 1

2
(
xr−1 − xr+1

)⊥

Finally we obtain Cjr = ∇xr
|Ωj | and this ends the proof.

Proposition 6. The mesh satisfies∑
j∈Cr

Cjr = 0, ∀r ∈ Vi and
∑
r∈Vj

Cjr = 0 (19)

Proof. Let us begin by proving the second equation of (19).

We showed earlier that |Ωj | = 1
2
∑
r∈Vj

⟨xr, Cjr⟩. In the case where all the xr, coincide (ie ∃ x such that

x = xr, ∀r ∈ Vj), then |Ωj | = 0. Therefore

0 = 1
2
∑
r∈Vj

⟨xr, Cjr⟩ = 1
2 ⟨x,

∑
r∈Vj

Cjr⟩

This formula is true for any x, hence
∑
r∈Vj

Cjr = 0.

For the first equality of (19), let us get back to the definition of Cjr:

Cjr = 1
2(ℓjlnjl + ℓjknjk)

where l and k are the indices of the neighbor cells of Ωj .

Summing this equation over j ∈ Cr will create a loop and each term will cancel out with its neighbor:
ℓjlnjl + ℓljnlj = 0 for all j, l ∈ Cr.

Thus, as all the terms of the sum cancel out each other, one has
∑
j∈Cr

Cjr = 0.

Remark 4 (Assumptions on the mesh). We assume the caracteristic length of the mesh is

h = max
j

(diam[Ωj ]) (20)

By assumption, there exists a constant C such that

∥Cjr∥2 ≤ Ch (21)

We make the assumption that the mesh is regular in the sens that there are two constants C1 and C2
such that

C1h2 ≤ |Ωj | ≤ C2h2, ∀j uniformly with respect to h. (22)

and that
C1h2 ≤ |Vr| ≤ C2h2, ∀r uniformly with respect to h. (23)

Remark 5 (Notations). In this document, C, C1 and C2 are undefined positive constants.
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3 Construction of the nodal scheme
3.1 Space discretization
Let us consider the problem (1), which we integrate over the cells Ωj .

∂t

∫
Ωj

p dx −
∫

∂Ωj

⟨κu, n⟩ dσ =
∫

Ωj

f dx

Let us introduce pj = 1
|Ωj |

∫
Ωj

p dx and fj = 1
|Ωj |

∫
Ωj

f dx. The equation becomes:

|Ωj |∂tpj −
∫

∂Ωj

⟨κu, n⟩ dσ = |Ωj |fj

In nodal formulation, we approach the integral over the boundary of Ωj by the sum over its vertices
xr: ∫

∂Ωj

⟨κu, n⟩ dσ ≈
∑
r∈Vj

⟨κru(xr), Cjr⟩

Knowing that V = Vi ∪ Vb ∪ Vc, and since κr = κ(xr) is symmetric, the problem becomes:

|Ωj |∂tpj −
( ∑

r∈Vi
j

⟨u(xr), κrCjr⟩ +
∑

r∈Vb
j

⟨u(xr), κrCjr⟩ +
∑

r∈Vc
j

⟨u(xr), κrCjr⟩
)

= |Ωj |fj (24)

In the case of a periodic domain, there are no boundary conditions to the problem (ie. Vb,c = ∅). We
will study the boundaries and the corners of the domain for different boundary conditions later in this
section.

In order to approach u(xr), we consider Taylor’s expansion of p(xj):

p(xj) = p(xr) + ⟨u(xr), xj − xr⟩ + O(h2)

Which means ∑
j∈Cr

p(xj)Cjr =
∑
j∈Cr

p(xr)Cjr −
∑
j∈Cr

⟨u(xr), xr − xj⟩Cjr + O(h2)

⇔
∑
j∈Cr

(p(xr) − p(xj))Cjr =
∑
j∈Cr

Cjr ⊗ (xr − xj)u(xr) + O(h2)

⇔
∑
j∈Cr

(p(xr) − p(xj))Cjr = βru(xr) + O(h2) (25)

with βr =
∑
j∈Cr

βjr =
∑
j∈Cr

Cjr ⊗ (xr − xj).

Using Proposition 6 on r ∈ Vi, one has
∑
j∈Cr

Cjr = 0. This way, we obtain:

βru(xr) ≈ −
∑
j∈Cr

p(xj)Cjr ∀ r ∈ Vi

Then the semi-discrete diffusion scheme, in nodal formulation on a periodic domain writes:
|Ωj |∂tpj −

∑
r∈Vi

j

⟨ur, κrCjr⟩ = |Ωj |fj

βrur = −
∑
j∈Cr

pjCjr ∀ r ∈ Vi
(26)
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Remark 6. For the nodal flux solver to be well posed, we need the matrix βr to be invertible, which will
bring some conditions on the mesh. These conditions are given in Section 3.4.

Remark 7. The scheme (26) finds its origin in the nodal scheme for the P1 equation (4) built by E. Franck
in his thesis [13]. This scheme has the advantage of being consistent on unstructured meshes. It is given
in ((27)-(28)). 

|Ωj |∂tpj + 1
ε

∑
r

⟨ur, Cjr⟩ = 0

|Ωj |∂tuj + 1
ε

∑
r

pjrCjr = −|Ωj | σ

ε2 uj

(27)

with the fluxes
pjr = pj + ⟨uj − ur, njr⟩ − σ

ε
⟨ur, xr − xj⟩(∑

j

Cjr ⊗ njr + σ

ε

∑
j

Cjr ⊗ (xr − xj)
)

ur =
∑

j

pjCjr +
∑

j

Cjr ⊗ njruj
(28)

The Hilbert expansion of the P1 scheme ((27)-(28)) gives the limit diffusion scheme (26).

The P1 scheme was built to be asymptotic preserving, which means the solution of its diffusion
limit (26) converges towards the solution of the diffusion equation (1) with periodic boundary conditions,
even on unstructured meshes.

3.2 Boundary conditions
Let us now study the same problem with Neumann or Dirichlet boundary conditions, which leads to
adding respectively (29) or (30) to (1):

κ(x)u(x, t).nΓ = g(x, t) ∀ x ∈ Γ, t ∈ [0, T ] (29)
p(x, t) = h(x, t) ∀ x ∈ Γ, t ∈ [0, T ] (30)

3.2.1 Neumann boundary conditions

Let us get back to (24):

|Ωj |∂tpj −
( ∑

r∈Vi
j

⟨u(xr), κrCjr⟩ +
∑

r∈Vb
j

⟨u(xr), κrCjr⟩ +
∑

r∈Vc
j

⟨u(xr), κrCjr⟩
)

= |Ωj |fj

On the boundary (r ∈ Vb
j ), one can decompose ⟨κru(xr), Cjr⟩ in the direction of nr, the normal to

the boundary of the domain at the point xr, and tr = n⊥
r :∑

r∈Vb
j

⟨κru(xr), Cjr⟩ =
∑

r∈Vb
j

(
⟨κru(xr), Cjr.nr nr⟩ + ⟨κru(xr), Cjr.tr tr⟩

)
=
∑

r∈Vb
j

(
⟨Cjr, nr⟩ ⟨κru(xr), nr⟩ + ⟨κru(xr), (tr ⊗ tr)Cjr⟩

)
Thanks to Neumann boundary condition (29) we obtain, ∀ r ∈ Vb

j∑
r∈Vb

j

⟨κru(xr), Cjr⟩ =
∑

r∈Vb
j

(
⟨Cjr, nr⟩gr + ⟨κru(xr), (tr ⊗ tr)Cjr⟩

)
=
∑

r∈Vb
j

(
⟨Cjr, nr⟩gr + ⟨κru(xr), (Îd − nr ⊗ nr)Cjr⟩

) (31)

where gr = g(xr).
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Remark 8. The normal vector nr is used on the nodes of the boundary. Therefore, at the “angles” defined
in Definition 10, (ie. if the three adjacent nodes of this boundary are not aligned), the definition of nr is
not obvious.

Let us define, on the node xr ∈ Γ

nr =

∑
j∈Cr

Cjr∥∥∥ ∑
j∈Cr

Cjr

∥∥∥ =

∑
j∈Cr

1
2(ℓjhnjh + ℓjknjk)

∥∥∥ ∑
j∈Cr

1
2(ℓjhnjh + ℓjknjk)

∥∥∥ = nl1ℓl1 + nl2ℓl2

∥nl1ℓl1 + nl2ℓl2∥
(32)

because inside the domain the sum on the adjacent cells is null (ie.
∑

j1,j2 /∈Γ

nj1j2ℓj1j2 = 0). One can see it

on Figure 5.

Γ
xr−1•

xr
•

xr+1
•

xj1
•

xj2•

Ωj1 Ωj2

nl1

nl2

nj1j2

nj2j1

ℓl2

ℓl1

ℓj1j2

nr

Figure 5: Construction of nr on a node

For the corners defined above (r ∈ Vc
j ), one has βr = Cjr ⊗ (xr − xj) which is non invertible due to

Proposition 36. Therefore we have to manipulate the formula as follows so that we don’t have to invert
the matrix βr.

By definition, at a corner xr ∈ Vc
j

Cjr = ℓl1

2 nl1 + ℓl2

2 nl2

Then, thanks to Neumann boundary condition (29) one has∑
r∈Vc

j

⟨κru(xr), Cjr⟩ =
∑

r∈Vc
j

ℓl1

2 ⟨κru(xr), nl1⟩ +
∑

r∈Vc
j

ℓl2

2 ⟨κru(xr), nl2⟩

=
∑

r∈Vc
j

1
2(ℓl1gr1 + ℓl2gr2) (33)

where gr1 , gr2 are the boundary conditions at the point xr, respectively in the direction nl1 and nl2 , and
ℓl1 and ℓl2 are the lengths of Ωj ’s faces, respectively on the boundaries Γ1 and Γ2.

Remark 9. In the code, gr1,2 the boundary conditions at the nodes of the boundary are approximated
by their value at the faces of the boundary gl1,2 = ⟨κl1,2u(xl1,2), nl1,2⟩, which are given by the boundary
conditions.
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One can replace (31) and (33) into (24) and obtain the first equation of the semi-discrete scheme for
Neumann Boundary conditions

|Ωj |∂tpj −
( ∑

r∈Vi
j

⟨κrur, Cjr⟩ +
∑

r∈Vb
j

⟨κrur, (Îd − nr ⊗ nr)Cjr⟩
)

= |Ωj |fj

+
∑

r∈Vb
j

⟨Cjr, nr⟩gr +
∑

r∈Vc
j

1
2(ℓl1gl1 + ℓl2gl2)

We have already built an equation for ur, ∀ r ∈ Vi in (26) thus we have to determine ur, ∀ r ∈ Vb.

Repeating the process of the previous section, we consider Taylor’s expansion of p(xj) (25), but this
time Proposition 6 does not stand, therefore we are left with a third equation for the scheme:

βrur =
∑
j∈Cr

(pr − pj)Cjr ∀r ∈ Vb (34)

where we have to determine pr, a discrete approximation of p(xr) for r ∈ Vb.

To do so, let us introduce vr = κrnr

∥κrnr∥
and wr = v⊥

r .

We can consider the scalar product of (34) against vr, for all r ∈ Vb:

⟨u(xr), vr⟩ ≈ ⟨β−1
r

∑
j∈Cr

(p(xr) − p(xj))Cjr, vr⟩ (35)

Let us now consider Neumann boundary condition (29)

⟨u(xr), vr⟩ = gr

∥κrnr∥
(36)

Combining (35) and (36) and isolating pr, one gets

⟨β−1
r

∑
j∈Cr

(p(xr) − p(xj))Cjr, vr⟩ ≈ gr

∥κrnr∥

⇔ p(xr)
∑
j∈Cr

θjr ≈
∑
j∈Cr

θjrp(xj) + gr

∥κrnr∥

where θjr = ⟨β−1
r Cjr, vr⟩. Let us assume that

∑
j∈Cr

θjr ̸= 0:

⇔ p(xr) ≈
( ∑

j∈Cr

θjr

)−1( ∑
j∈Cr

θjrp(xj) + gr

∥κrnr∥

)
Thus we obtain the discrete approximation for pr:

pr =
( ∑

j∈Cr

θjr

)−1( ∑
j∈Cr

θjrpj + gr

∥κrnr∥

)
= θ−1

r

( ∑
j∈Cr

θjrpj + gr

∥κrnr∥

)
(37)

with θr =
∑
j∈Cr

θjr.

Then the semi-discrete scheme for Neumann boundary conditions writes:

|Ωj |∂tpj −
( ∑

r∈Vi
j

⟨κrur, Cjr⟩ +
∑

r∈Vb
j

⟨κrur, (Îd − nr ⊗ nr)Cjr⟩
)

= Bj

βrur = −
∑
j∈Cr

pjCjr ∀r ∈ Vi

βrur =
∑
j∈Cr

(pr − pj)Cjr ∀r ∈ Vb

(38)
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where

• Bj = |Ωj |fj +
∑

r∈Vb
j

⟨Cjr, nr⟩gr +
∑

r∈Vc
j

1
2(ℓl1gl1 + ℓl2gl2);

• pr = θ−1
r

( ∑
j∈Cr

θjrpj + gr

∥κrnr∥

)
;

• θjr = ⟨β−1
r Cjr, vr⟩.

3.2.2 Dirichlet boundary conditions

Let us get back to (24), with Dirichlet boundary conditions (30), which gives us immediately the first
equation of the scheme:

∂tpj − 1
|Ωj |

( ∑
r∈Vi

j

⟨u(xr), κrCjr⟩ +
∑

r∈Vb
j

⟨u(xr), κrCjr⟩ +
∑

r∈Vc
j

⟨u(xr), κrCjr⟩
)

= fj (39)

Let us now determine ur for all r ∈ Vb. To do so we will consider Taylor’s expansion of p (25) and
replace p(xr) with Dirichlet boundary condition (30)

βru(xr) ≈
∑
j∈Cr

(hr − p(xj))Cjr ∀r ∈ Vb

It gives us the third equation of the semi-discrete scheme for Dirichlet boundary conditions

βrur =
∑
j∈Cr

(hr − pj)Cjr ∀r ∈ Vb

Let us now consider r ∈ Vc (ie. xr is on a corner with a unique cell), as stated in Proposition 36, in
that case βr is non invertible. We will try to approximate βr with an invertible matrix. To do so, let us
divide the corner cell into two as one can see on Figure 6. In that case βr rewrites

βc
r = Cj1r ⊗ (xr − xj1) + Cj2r ⊗ (xr − xj2)

with Cj1r = 1
2
(
xr−1 − xr+2

)⊥, Cj2r = 1
2
(
xr+2 − xr+1

)⊥ and xj1 , xj2 respectively the barycenters of the
newly divided cells Ωj1 and Ωj2 .

Therefore the problem is well-posed (ie. βc
r is invertible) if Cj1r and Cj2r are non collinear, which

means xr−1, xr+1 and xr+2 are not aligned. One can see the forbidden configuration in Figure 7.

Thus we obtain the fourth equation of the scheme

βc
rur =

∑
j∈Cr

(hr − pj)Cjr ∀r ∈ Vc

Finally it gives us the following semi-discrete scheme for Dirichlet boundary conditions:

|Ωj |∂tpj −
∑
r∈Vj

⟨κrur, Cjr⟩ = |Ωj |fj

βrur = −
∑
j∈Cr

pjCjr if r ∈ Vi
j

βrur =
∑
j∈Cr

(hr − pj)Cjr if r ∈ Vb
j

βc
rur =

∑
j∈Cr

(hr − pj)Cjr if r ∈ Vc
j

(40)
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Γ

xr+1
•

xr
•

xr+2
•

xr−1
•

xj•

xj1•

xj2
•

Ωj1

Ωj2

Cj1r

Cj2r

Figure 6: Construction of βc
r on a corner of Ω with a single cell

Γ

xr+1
•

xr
•

xr+2
•

xr−1
•

xj•

xj1•

xj2
•

Cj1r

Cj2r

Figure 7: Example of forbidden mesh at the corner

3.2.3 Mixed boundary conditions

Let us now consider the case where some of the boundaries have a Neumann boundary condition and
some other have a Dirichlet one. In practice the boundary conditions are implemented on every face of
the boundary, but we are working on the boundary vertices. Each one of them is linked to two faces,
therefore it can have several boundary conditions, descripted below and visible on Figure 8:

• Say r1 is linked to two Neumann faces, let us call it Neumann, then r ∈ VN ;

• Say r2 is linked to two Dirichlet faces, it is considered Dirichlet and r ∈ VD;

• Say r3 is linked to one Neumann face and one Dirichlet face, then the Dirichlet boundary condition
prevails and the node is considered Dirichlet: r ∈ VD.
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Then the semi -discrete scheme is a mix of the two previous ones:

|Ωj |∂tpj −
( ∑

r∈Vi
j

⟨κrur, Cjr⟩ +
∑

r∈VN,b
j

⟨κrur, (Îd − nr ⊗ nr)Cjr⟩
)

= Bj

βrur = −
∑
j∈Cr

pjCjr if r ∈ Vi
j

βrur =
∑
j∈Cr

(pr − pj)Cjr if r ∈ VN,b

βrur =
∑
j∈Cr

(hr − pj)Cjr if r ∈ VD,b
j

βc
rur =

∑
j∈Cr

(hr − pj)Cjr if r ∈ VD,c
j

(41)

where

• Bj = |Ωj |fj +
∑

r∈VN,b
j

⟨Cjr, nr⟩gr +
∑

r∈VN,c
j

1
2(ℓl1gl1 + ℓl2gl2);

• pr = θ−1
r

( ∑
j∈Cr

θjrpj + gr

∥κrnr∥

)
for all r ∈ VN,b;

• θjr = ⟨β−1
r Cjr, vr⟩ for all j ∈ C, r ∈ VN,b.

xj
•

xj−1
•

xj+1
•

xr1
•

xr2 •
xr3

• Dirichlet BC

Neumann BC

Figure 8: Representation of the nodes boundary conditions

3.3 Time discretization
In order to discretize the scheme in time, let us use the backward Euler method (or implicit Euler method).
We chose the implicit scheme because it will give us unconditional stability in Section 4. Let us introduce
the time step ∆t > 0, such that tn = n∆t ≤ T , with T the final time.

The scheme writes, for periodic boundary conditions
|Ωj |

pn+1
j − pn

j

∆t
−
∑
r∈Vj

⟨un+1
r , κrCjr⟩ = |Ωj |fn+1

j

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr

(42)
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For Neumann boundary conditions

|Ωj |
pn+1

j − pn
j

∆t
−
( ∑

r∈Vi
j

⟨κrun+1
r , Cjr⟩ +

∑
r∈Vb

j

⟨κrun+1
r , (Îd − nr ⊗ nr)Cjr⟩

)
= Bn+1

j

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr ∀r ∈ Vi

βrun+1
r =

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr ∀r ∈ Vb

(43)

where

• Bn+1
j = |Ωj |fn+1

j +
∑

r∈Vb
j

⟨Cjr, nr⟩gr +
∑

r∈Vc
j

1
2(ℓl1gl1 + ℓl2gl2);

• pn+1
r = θ−1

r

( ∑
j∈Cr

θjrpn+1
j + gr

∥κrnr∥

)
;

• θjr = ⟨β−1
r Cjr, vr⟩.

For Dirichlet boundary conditions

|Ωj |
pn+1

j − pn
j

∆t
−
∑
r∈Vj

⟨κrun+1
r , Cjr⟩ = |Ωj |fn+1

j

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr if r ∈ Vi

j

βrun+1
r =

∑
j∈Cr

(hr − pn+1
j )Cjr if r ∈ Vb

j

βc
run+1

r =
∑
j∈Cr

(hr − pn+1
j )Cjr if r ∈ Vc

j

(44)

And for mixed boundary conditions

|Ωj |
pn+1

j − pn
j

∆t
−
( ∑

r∈Vi
j

⟨κrun+1
r , Cjr⟩ +

∑
r∈VN,b

j

⟨κrun+1
r , (Îd − nr ⊗ nr)Cjr⟩ +

∑
r∈VD,b

j

⟨κrun+1
r , Cjr⟩

+
∑

r∈VD,c
j

⟨κrun+1
r , Cjr⟩

)
= Bn+1

j

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr if r ∈ Vi

j

βrun+1
r =

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr if r ∈ VN,b

βrun+1
r =

∑
j∈Cr

(hr − pn+1
j )Cjr if r ∈ VD,b

j

βc
run+1

r =
∑
j∈Cr

(hr − pn+1
j )Cjr if r ∈ VD,c

j

(45)
where

• Bn+1
j = |Ωj |fn+1

j +
∑

r∈VN,b
j

⟨Cjr, nr⟩gr +
∑

r∈VN,c
j

1
2(ℓl1gl1 + ℓl2gl2);

• pn+1
r = θ−1

r

( ∑
j∈Cr

θjrpn+1
j + gr

∥κrnr∥

)
for all r ∈ VN,b;
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• θjr = ⟨β−1
r Cjr, vr⟩ for all j ∈ C, r ∈ VN,b.

3.4 Invertibility of βr

In this section, we will study the conditions on the mesh such that βr is positive, that is

⟨x, βrx⟩ > 0 ∀x ∈ R, x ̸= 0.

Proposition 7 (Decomposition of βr). The matrix βr satisfies

βr = |Vr|Îd + P (46)

where

• P =
∑
j∈Cr

1
2

(
v⊥

j+ 1
2

⊗ vj+ 1
2

− w⊥
j− 1

2
⊗ wj− 1

2

)
• wj− 1

2
= xj − xj− 1

2

• vj+ 1
2

= xj+ 1
2

− xj

• Îd is the identity matrix.

One has the formula
tr(βr) = 2|Vr| (47)

with Vr the control volume given in Figure 4.

Proof. Using the same principle as previously for the volume |Ωj |, one can write

|Vr|Îd =
∫

Vr

∇x dx =
∫

∂Vr

x ⊗ n dσ

with n the exterior normal to the control volume Vr.

We can decompose the integral on each cell of the control volume:∫
∂Vr

x ⊗ n dσ =
∑
j∈Cr

∫
∂Vjr

x ⊗ n dσ

where Vjr is defined in Definition 11. As a reminder it is the area delimited by the points xr, xj+ 1
2
, xj , xj− 1

2
.

One can see it in Figure 4.

Knowing that the identity is linear and the boundaries of Vjr are straight lines, one can write∫
∂Vjr

x ⊗ n dσ = 1
2
(
xj+ 1

2
+ xj

)
⊗
(
xj − xj+ 1

2

)⊥ + 1
2
(
xj− 1

2
+ xj

)
⊗
(
xj− 1

2
− xj

)⊥

Which leads to

|Vr|Îd =
∑
j∈Cr

1
2
(
xj+ 1

2
+ xj

)
⊗
(
xj − xj+ 1

2

)⊥ + 1
2
(
xj− 1

2
+ xj

)
⊗
(
xj− 1

2
− xj

)⊥ (48)

Since j ∈ Cr forms a loop, one has
∑
j∈Cr

(
xj− 1

2
− xj+ 1

2

)
= 0, therefore

∑
j∈Cr

(
xj− 1

2
− xj+ 1

2

)⊥ ⊗ xr =
∑
j∈Cr

(
xj − xj+ 1

2

)⊥ ⊗ xr +
(
xj− 1

2
− xj

)⊥ ⊗ xr = 0
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We can deduct this expression from the equation (3.4) and we obtain

|Vr|Îd =
∑
j∈Cr

(1
2
(
xj+ 1

2
+ xj

)
− xr

)
⊗
(
xj − xj+ 1

2

)⊥ +
(1

2
(
xj− 1

2
+ xj

)
− xr

)
⊗
(
xj− 1

2
− xj

)⊥

=
∑
j∈Cr

(1
2
(
xj+ 1

2
− xj

)
+ xj − xr

)
⊗
(
xj − xj+ 1

2

)⊥ +
(1

2
(
xj− 1

2
− xj

)
+ xj − xr

)
⊗
(
xj− 1

2
− xj

)⊥

=
∑
j∈Cr

(
(xj − xr) ⊗

(
(xj − xj+ 1

2
)⊥ + (xj− 1

2
− xj)⊥))+

∑
j∈Cr

(1
2(xj+ 1

2
− xj) ⊗ (xj − xj+ 1

2
)⊥

+1
2(xj− 1

2
− xj) ⊗ (xj− 1

2
− xj)⊥

)
(49)

Let us get back to the definition of Cjr:

Cjr = 1
2
(
xr−1 − xr+1

)⊥ = (xj+ 1
2

− xj− 1
2
)⊥

We can replace it into (49) and we obtain

|Vr|Îd =
∑
j∈Cr

(xr − xj) ⊗ Cjr +
∑
j∈Cr

(1
2(xj+ 1

2
− xj) ⊗ (xj − xj+ 1

2
)⊥ + 1

2(xj− 1
2

− xj) ⊗ (xj− 1
2

− xj)⊥
)

=
∑
j∈Cr

(xr − xj) ⊗ Cjr +
∑
j∈Cr

1
2

(
− vj+ 1

2
⊗ v⊥

j+ 1
2

+ wj− 1
2

⊗ w⊥
j− 1

2

)
We know thanks to Proposition 33 that x ⊗ y = (y ⊗ x)t.

Thus

|Vr|Îd = (|Vr|Îd)t =
∑
j∈Cr

Cjr ⊗ (xr − xj) −
∑
j∈Cr

1
2

(
v⊥

j+ 1
2

⊗ vj+ 1
2

− w⊥
j− 1

2
⊗ wj− 1

2

)
= βr − P

with P, vj+ 1
2

and wj− 1
2

defined earlier.

That way, we obtain the equality (46).

Thanks to know that, for all vector v, tr(v⊥ ⊗ v) = ⟨v⊥, v⟩ = 0. Which means

tr(βr) = tr(|Vr|Îd) + tr(P ) = d|Vr|

with d = 2 because we are in a two-dimensional space.
Therefore we obtain (47) and it ends the proof.

Remark 10. We would like to study βr’s invertibility with its determinant. One has:

det(βr) = det(|Vr|Îd + P )

Unfortunately there is no formula that can help us determine the determinant of a sum, therefore we
will study βr’s positivity in order to obtain its invertibility. This property will be useful as a hypothesis
for the stability of the scheme when κ = Id.

Because of the circular numbering around the control volume Vr, one can write∑
j∈Cr

(
xj − xj− 1

2

)⊥ ⊗
(
xj−1 − xj− 1

2

)
=
∑
j∈Cr

(
xj+1 − xj+ 1

2

)⊥ ⊗
(
xj+1 − xj+ 1

2

)
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Therefore
P = 1

2
∑
j∈Cr

(
v⊥

j+ 1
2

⊗ vj+ 1
2

− w⊥
j+ 1

2
⊗ wj+ 1

2

)
= P̃

Let us write

βr =
∑
j∈Cr

(
|Vjr|Îd + Pj

)
(50)

=
∑
j∈Cr

(
|Ṽjr|Îd + P̃j

)
(51)

where

• Ṽjr is defined by (xr, xj , xj+ 1
2
, xj+1):

• Vjr is defined by (xr, xj− 1
2
, xj , xj+ 1

2
):

• Pj = 1
2
(
v⊥

j+ 1
2

⊗ vj+ 1
2

− w⊥
j− 1

2
⊗ wj− 1

2

)
;

• P̃j = 1
2
(
v⊥

j+ 1
2

⊗ vj+ 1
2

− w⊥
j+ 1

2
⊗ wj+ 1

2

)
;

Proposition 8 (βr’s positivity). βr is positive under one of the following conditions:
For all j ∈ C,

|Vjr| >
∥∥∥xj+ 1

2
− xj− 1

2

∥∥∥
2

∥∥∥xj − 1
2
(
xj+ 1

2
+ xj− 1

2

)∥∥∥
2

(52)

Or
|Ṽjr| >

∥∥∥xj+1 − xj

∥∥∥
2

∥∥∥xj+ 1
2

− 1
2
(
xj+1 + xj

)∥∥∥
2

(53)

with ∥x∥2 =
√

x2 + y2, for all x = (x, y).

Proof. Based on (50), one can write

⟨x, βrx⟩ =
∑
j∈Cr

(
|Vjr|∥x∥2 + ⟨x, P s

j x⟩
)

≥
∑
j∈Cr

(
|Vjr| − ρ(P s

j )
)

∥x∥2

with

• P s
j the symmetric part of the matrix Pj : P s

j = 1
2(Pj + P t

j );

• ρ(A) the spectral radius of the matrix A. Let us introduce λ1, . . . , λn the eigenvalues of A, then its
spectral radius is ρ(A) = max

i∈1,...,n
|λi|;

• ∥.∥ the norm corresponding to the euclidian scalar product ⟨., .⟩.

This formula remains true if we consider (51) instead of (50).

Proving that βr is positive is equivalent to showing that for all j ∈ Cr, |Vjr| − ρ(P s
j ) > 0.

Let us now introduce C = v⊥⊗v−w⊥⊗w, with v = (ã, b̃), v⊥ = (−b̃, ã) and w = (a, b), w⊥ = (−b, a).

Then

Cs = C + Ct

2 =

 ab − ãb̃
ã2 − a2 − b̃2 + b2

2
ã2 − a2 − b̃2 + b2

2 ãb̃ − ab


We note x = (a − ã), y = (b − b̃), α = 1

2(b + b̃) and β = 1
2(a + ã).



20 4 PROPERTIES OF THE SCHEME

Knowing that for all v, tr(v⊥ ⊗ v) = 0, we have tr(Cs) = tr(C) + tr(Ct)
2 = 0.

One can see that ab − ãb̃ = xα + yβ and ã2 − a2 − b̃2 + b2

2 = −βx + αy.

Then
det(Cs) = −(ab − ãb̃)2 −

( ã2 − a2 − b̃2 + b2

2

)2
= −(xα + yβ)2 − (βx − αy)2

= −(y2 + x2)2(α2 + β2)2 = −
∥∥∥w − v

∥∥∥2

2

∥∥∥1
2(w + v)

∥∥∥2

2

with
∥∥.
∥∥2

2 = ⟨., .⟩.

Since Cs is a two-dimensional matrix, Proposition 32 says that its characteristic polynomial writes

λ2 − tr(Cs)λ + det(Cs) = 0

with λ its eigenvalues.

Hence

ρ(Cs) = λmax = tr(Cs) +
√

tr(Cs)2 − 4 det(Cs)
2 =

√
− det(Cs) =

∥∥∥v − w
∥∥∥

2

∥∥∥1
2(v + w)

∥∥∥
2

Replacing C with Pj , the positivity condition for βr rewrites

|Vjr| > ρ(P s
j ) =

∥∥∥vj+ 1
2

− wj− 1
2

∥∥∥
2

∥∥∥1
2(vj+ 1

2
+ wj− 1

2
)
∥∥∥

2

With wj− 1
2

= xj − xj− 1
2

and vj+ 1
2

= xj+ 1
2

− xj the previous inequation becomes

|Vjr| >
∥∥∥xj − 1

2(xj+ 1
2

+ xj− 1
2
)
∥∥∥

2

∥∥∥xj+ 1
2

− xj− 1
2

∥∥∥
2

Doing the same for (51) leads to

|V̂jr| >
∥∥∥xj+ 1

2
− 1

2(xj+ + xj+1)
∥∥∥

2

∥∥∥xj+1 − xj

∥∥∥
2

Therefore we obtain (52) and (53), the conditions on the mesh so that βr is positive thus invertible.

Remark 11. When considering non periodic boundary conditions, the problem is ill-posed if there is only
one cell in the angles of the mesh (as we can see on Figure 9), then the matrix βr = Cjr ⊗ (xr − xj) is
a rank one matrix, therefore is is non invertible. It will be necessary to study specifically the corners of
the mesh, for Neumann, Dirichlet and mixed boundary conditions.

4 Properties of the scheme
4.1 Uniqueness of the solution
In order to prove the uniqueness of the discrete solution, we want for the matrix of the problem to be
invertible.

Proposition 9. Let us consider the discrete diffusion scheme (44) with homogeneous Dirichlet boundary
conditions.

Let us make the assumption that κrβr is positive:

∀ x ∈ Ω, ⟨x, κrβrx⟩ > 0 ∀r ∈ V (54)

Under the condition that ur = 0 ∀ r ∈ V ⇔ pj = 0 ∀ j ∈ C, the diffusion matrix M is invertible
and the discrete diffusion problem admits a unique solution.
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xr−1
•

xr
•

•

xr+1
•

xj
•

Ωj

Cjr

Figure 9: Construction of Cjr on a corner of Ω

Proof. Let us consider P T MP = 0.

In the first place, one has

(MP )j =
∑
k∈C

Mjkpk =
∑
r∈Vj

⟨κrur, Cjr⟩

Then

PMP =
∑
j∈C

pj

∑
k∈C

Mjkpk =
∑
j∈C

pj

∑
r∈Vj

⟨κrur, Cjr⟩

=
∑
r∈V

⟨κrur,
∑
j∈Cr

pjCjr⟩ = −
∑
r∈V

⟨κrur, βrur⟩

Thanks to the assumption (54), we know that κrβr is positive, hence ⟨κrβrur, ur⟩ ≥ 0 ∀ r ∈ V.
Therefore P T MP = 0 ⇔ ur = 0 ∀ r ∈ V.

Knowing that the matrix M is invertible under the condition that P T MP = 0 if and only if P = 0
(ie. pj = 0 ∀j ∈ C), one can deduce that ur = 0 ∀ r ∈ V ⇔ pj = 0 ∀ j ∈ C implies that M is
invertible. And that ends the proof.

Let us now study the conditions such that

ur = 0 ∀ r ∈ V ⇔


∑
j∈Cr

pjCjr = 0 ∀ r ∈ Vi

∑
j∈Cr

(hr − pj)Cjr = 0 ∀ r ∈ Vb,c

Since we consider homogeneous Dirichlet boundary conditions, hr = 0 for all r ∈ Vb,c, then we are
left with

∑
j∈Cr

pjCjr = 0 ∀ r ∈ Vb,c.

• In dimension 1, let us number the vertices from xr0 to xrN
and the cells from Ωj1 to ΩjN

.
We know that ur = 0 for r ∈ {r0, . . . , rN } and we want to determine pj , j ∈ {j1, . . . , jN }.
Since in dimension 1, Cjr = ±1, one has urk

= pjk+1 − pjk
= 0, for all k ∈ {1, . . . , N − 1} and

ur0 = pj1 = 0, urN
= pjN

= 0. A simple induction gives pj = 0 for all j ∈ {1, . . . , N}.
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• In dimension 2, let us consider the structured mesh presented in Figure 10. One can see that the
point xr1 is linked to two cells, therefore the system

∑
j∈Cr1

pjCjr1 = 0 has two equations for two

unknowns, thus it has a unique solution which is (pj1 , pj2) = (0, 0). Then we can do the same thing
with the vertice xr2 , linked to four cells with two of them for which pj is known. Once again we can
deduce (pj3 , pj4) = (0, 0). This method can be extended to the whole domain, in every direction.
This result is also true for non Cartesian structured meshes.

xr1 •
xr2

•

• • •

•

•• •
xj1•

xj2
•

xj3•

xj4•

Figure 10: Structured mesh

• This method can not be extended to most of the unstructured meshed, especially with triangles.
Indeed for a vertice xr if the number of neighbor cells for which pj is unknown is greater than 2,
then it is impossible to assert that pj = 0 ∀ j ∈ C.

4.2 Exactness of the scheme for linear solutions
In this section, we will study the exactness of the scheme with Neumann and Dirichlet boundary con-
ditions for different types of solutions. We do not study it for periodic boundary conditions because we
haven’t implemented it but it can be easily extended to this case.

4.2.1 Neumann boundary condition

Proposition 10. Let us consider the scheme (43), with no source (fj = 0, ∀ j ∈ C) and with homoge-
neous Neumann boundary conditions (gr = 0, ∀ r ∈ Vb,c).

Then the scheme is exact for a constant solution p(x) = C, for all j ∈ C.

Proof. Let us write the scheme (43) with no source and homogeneous boundary conditions:

|Ωj |
pn+1

j − pn
j

∆t
−
( ∑

r∈Vi
j

⟨κrun+1
r , Cjr⟩ +

∑
r∈Vb

j

⟨κrun+1
r , (Îd − nr ⊗ nr)Cjr⟩

)
= 0

− βrun+1
r =

∑
j∈Cr

pn+1
j Cjr ∀ r ∈ Vi

βrun+1
r =

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr ∀ r ∈ Vb

(55)

with pn+1
r =

( ∑
j∈Cr

θjr

)−1 ∑
j∈Cr

θjrpn+1
j and θjr = ⟨β−1

r Cjr, vr⟩.
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Let us now consider that p is a constant at the time tn+1, which means that we inject pn+1
j = C in

the scheme. Then the second equation of (55) becomes, ∀ r ∈ Vi

− βrun+1
r =

∑
j∈Cr

C Cjr = C
∑
j∈Cr

Cjr = 0

⇔ un+1
r = 0 ∀ r ∈ Vi

due to Proposition 6.

On the other side, when r ∈ Vb, knowing that pn+1
j = C one has

pn+1
r =

( ∑
j∈Cr

θjr

)−1 ∑
j∈Cr

θjrC = C

Hence the third equation of (55) becomes

− βrun+1
r =

∑
j∈Cr

(C − C) Cjr = 0

⇔ un+1
r = 0 ∀ r ∈ Vb

One can now replace the values of un+1
r inside the first equation of (55) and obtain

|Ωj |
pn+1

j − pn
j

∆t
= 0

Then the scheme is constant in time and a constant is an exact solution.

Proposition 11. Let us consider the scheme (43), with no source (fj = 0, ∀ j ∈ C). Let us chose for

the boundary condition g(x) = ⟨
(

α
β

)
, κnΓ⟩. Assume that κ is a constant.

Then the scheme is exact for a linear solution p(x) = αx + βy + γ.

Proof. Knowing that the scheme is linear, we can split the solution p defined above in the base (1, x, y).
We already proved in Proposition 10 that the scheme is exact when p is a constant. Thus we are left
with p(x) = αx (by symmetry the proof will be the same for p(x) = βy). The corresponding boundary

condition is gr = ⟨
(

α
0

)
, κrnr⟩ (respectively gr = ⟨

(
0
β

)
, κrnr⟩).

Let us now inject the linear solution p(x) = αx into the scheme. It means for all j ∈ C, one can
replace pn+1

j with αxj .

Let us consider the second equation of (43) with pn+1
j = αxj :

−βrun+1
r =

∑
j∈Cr

αxjCjr ∀ r ∈ Vi (56)

This is a system of two equations for two unknowns, therefore it has a unique solution. Let us now
calculate −βrun+1

r with un+1
r =

(
α
0

)
. Thanks to the definition of βr one has

−βr

(
α
0

)
= −

∑
j∈Cr

Cjr ⊗ (xr − xj)
(

α
0

)
=
∑
j∈Cr

Cjr ⊗ xj

(
α
0

)

=
∑
j∈Cr

(
C

(1)
jr xj C

(1)
jr yj

C
(2)
jr xj C

(2)
jr yj

)(
α
0

)
=
∑
j∈Cr

(C(1)
jr xj + C

(2)
jr xj)α

=
∑
j∈Cr

αxjCjr
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Thus un+1
r =

(
α
0

)
is the unique solution of this system for all r ∈ Vi.

Let us now study the problem at the boundary of the domain: r ∈ Vb. The third equation of (43),
associated with the Neumann boundary condition gives the following system

βrur =
∑
j∈Cr

(pr − pj)Cjr

⟨ur, κrnr⟩ = gr

(57)

with gr =
〈(

α
0

)
, κrnr

〉
and pj = αxj as stated in the beginning of the proof.

Knowing that βr is invertible for all r ∈ Vb and this system has 3 equations for 3 unknowns (pr of
dimension 1 and ur of dimension 2), it admits a unique solution for the couple (pr, ur), for all r ∈ Vb.

Let us inject ur =
(

α
0

)
into the system (57).

The second equation gives 〈(α
0

)
, κrnr

〉
= gr

which is true by definition of gr.

Let us now consider the left term of the first equation of the system (57), with u =
(

α
0

)
:

βr

(
α
0

)
=
∑
j∈Cr

Cjr ⊗ (xr − xj)
(

α
0

)
=
∑
j∈Cr

⟨(xr − xj),
(

α
0

)
⟩Cjr

=
∑
j∈Cr

α(xr − xj)Cjr =
∑
j∈Cr

(αxr − pj)Cjr

The first equation of (57) is verified if pr = αxr.

Knowing that the system has a unique solution, (pr, ur) = (αxr,
(
α 0

)t) is the unique solution of
this system, for all r ∈ Vb.

We obtained un+1
r =

(
α
0

)
for all r ∈ Vi,b, hence we can inject this value inside the first equation of

the scheme (43).

|Ωj |
pn+1

j − pn
j

∆t
−
( ∑

r∈Vi
j

⟨κr

(
α
0

)
, Cjr⟩ +

∑
r∈Vb

j

⟨κr

(
α
0

)
, (Îd − nr ⊗ nr)Cjr⟩

)
= Bn+1

j

with Bn+1
j =

∑
r∈Vb

j

⟨Cjr, nr⟩gr +
∑

r∈Vc
j

1
2(ℓl1gl1 + ℓl2gl2).

Let us assume that κr is a constant, then thanks to Proposition 6 one has∑
r∈Vj

⟨κ
(

α
0

)
, Cjr⟩ = 0

⇔
∑

r∈Vi,b
j

⟨κ
(

α
0

)
, Cjr⟩ +

∑
r∈Vc

j

⟨κ
(

α
0

)
, Cjr⟩ = 0
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Moreover∑
r∈Vb

j

⟨κ
(

α
0

)
, (Îd − nr ⊗ nr)Cjr⟩ =

∑
r∈Vb

j

⟨κ
(

α
0

)
, Cjr⟩ −

∑
r∈Vb

j

⟨κ
(

α
0

)
, (nr ⊗ nr)Cjr⟩

=
∑

r∈Vb
j

⟨κ
(

α
0

)
, Cjr⟩ −

∑
r∈Vb

j

⟨κ
(

α
0

)
, ⟨nr, Cjr⟩nr⟩

=
∑

r∈Vb
j

⟨κ
(

α
0

)
, Cjr⟩ −

∑
r∈Vb

j

⟨nr, Cjr⟩⟨κ
(

α
0

)
, nr⟩

=
∑

r∈Vb
j

⟨κ
(

α
0

)
, Cjr⟩ −

∑
r∈Vb

j

⟨Cjr, nr⟩gr

Then∑
r∈Vi

j

⟨κ
(

α
0

)
, Cjr⟩ +

∑
r∈Vb

j

⟨κ
(

α
0

)
, (Îd − nr ⊗ nr)Cjr⟩ =

∑
r∈Vi,b

j

⟨κ
(

α
0

)
, Cjr⟩ −

∑
r∈Vb

j

⟨Cjr, nr⟩gr

= −
∑

r∈Vc
j

⟨κ
(

α
0

)
, Cjr⟩ −

∑
r∈Vb

j

⟨Cjr, nr⟩gr

Finally, we are left with

|Ωj |
pn+1

j − pn
j

∆t
+
∑

r∈Vc
j

⟨κ
(

α
0

)
, Cjr⟩ +

∑
r∈Vb

j

⟨Cjr, nr⟩gr =
∑

r∈Vb
j

⟨Cjr, nr⟩gr +
∑

r∈Vc
j

1
2(ℓl1gl1 + ℓl2gl2)

Thus the solution is constant in time (ie. |Ωj |
pn+1

j − pn
j

∆t
= 0) if

∑
r∈Vc

j

⟨κ
(

α
0

)
, Cjr⟩ =

∑
r∈Vc

j

1
2(ℓl1gl1 + ℓl2gl2)

=
∑

r∈Vc
j

1
2(ℓl1⟨κ

(
α
0

)
, nl1⟩ + ℓl2⟨κ

(
α
0

)
, nΓ2⟩)

=
∑

r∈Vc
j

⟨κ
(

α
0

)
,

1
2(ℓl1nl1 + ℓl2nl2)⟩

By definition of Cjr, on the corner one has Cjr = 1
2 (ℓl1nl1 + ℓl2nl2).

Remark 12. The approximation gr1,2 ≈ gl1,2 we made in Section 3.2.1 is exact in this case since the
boundary condition g is a constant for the linear solution. Therefore this approximation doesn’t compro-
mise the exactness of the scheme.

In conclusion, the solution is constant in time, which means that the scheme is exact for p(x) = αx.
As said in the beginning of the proof, the method is the same for p(x) = βy, and we have already proved
that the scheme is exact for a constant solution.
Therefore thanks to the linearity of the scheme, it is exact for any linear function p(x) = αx + βy + γ.

4.2.2 Dirichlet boundary condition

Proposition 12. Let us consider the scheme (44), with no source (fj = 0, ∀ j ∈ C) and with constant
Dirichlet boundary conditions (hr = C, ∀ r ∈ Vb,c).

Then the scheme is exact for a constant solution p(x) = C, for all j ∈ C.
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Proof. Let us write the scheme (44) with no source and with hr = C, ∀ r ∈ Vb,c



|Ωj |
pn+1

j − pn
j

∆t
−
∑
r∈Vj

⟨κrun+1
r , Cjr⟩ = 0

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr if r ∈ Vi

j

βrun+1
r =

∑
j∈Cr

(C − pn+1
j )Cjr if r ∈ Vb

j

βc
run+1

r =
∑
j∈Cr

(C − pn+1
j )Cjr if r ∈ Vc

j

Let us now inject the constant solution pn+1
j = C in the second, third and fourth equations of the

system. Then on Vb and Vc we immediately obtain that un+1
r = 0 and thanks to Proposition 6 one has

un+1
r = 0 ∀ r ∈ Vi.

Then one can replace un+1
r by its value inside the first equation of the system and obtain:

|Ωj |
pn+1

j − pn
j

∆t
= 0

Which means if one injects a constant solution in the scheme with the correct boundary conditions,
it stays constant. And that ends the proof.

Proposition 13. Let us consider the scheme (44), with no source (fj = 0, ∀ j ∈ C). Let us chose for
the boundary condition h(x) = αx+βy +γ. Assume that the mesh respects the following statement: there
is no corner with a unique cell (ie.Vc = ∅). Assume that κ is a constant.

Then the scheme is exact for a linear solution p(x) = αx + βy + γ if the mesh respects the condition
mentioned above.

Proof. In the same way as Proposition 11, one can decompose the solution and the boundary condition
in the base (1, x, y). It gives: p(x) = αx and h(x) = αx.

One can rewrite the scheme (44) with the source and boundary conditions of Proposition 13, and
according to the condition on the mesh with the discretization of h: hr = αxr

|Ωj |
pn+1

j − pn
j

∆t
−
∑
r∈Vj

⟨κrun+1
r , Cjr⟩ = 0

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr if r ∈ Vi

j

βrun+1
r =

∑
j∈Cr

(αxr − pn+1
j )Cjr if r ∈ Vb

j

Let us now inject the linear solution into the scheme, by replacing pn+1
j with αxj .

From the second equation, one gets

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr if r ∈ Vi

j

which is the same as in Proposition 11. Therefore, using the same principle of proof we obtain that this
system of two equations for two unknowns admits a unique solution, which is un+1

r =
(

α
0

)
, for all r ∈ Vi.
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The third equation of (44) writes

βrun+1
r =

∑
j∈Cr

(αxr − αxj)Cjr if r ∈ Vb
j

Knowing that βr is invertible for r ∈ Vb
j , the equation admits a unique solution for un+1

r .

Let un+1
r

(
α
0

)
. Then the left hand side of the equation gives

βr

(
α
0

)
=
∑
j∈Cr

Cjr ⊗ (xr − xj)
(

α
0

)

=
∑
j∈Cr

⟨xr − xj ,

(
α
0

)
⟩Cjr

=
∑
j∈Cr

α(xr − xj)Cjr

Hence the third equation of the scheme is verified by the solution un+1
r =

(
α
0

)
, ∀ r ∈ Vb.

Thanks to the condition on the mesh that states Vc = ∅, one has V = Vi ∪ Vb. Thus

un+1
r =

(
α
0

)
∀ r ∈ V

We can replace this value inside the first equation of the scheme (44)

|Ωj |
pn+1

j − pn
j

∆t
−
∑
r∈Vj

⟨κr

(
α
0

)
, Cjr⟩ = 0

Once again under the condition that κr = κ is a constant, the solution is constant in time when
we inject a linear function in the scheme with the corresponding Dirichlet boundary condition. The
result is the same for the two other elements of the base (1, x, y). Thus the scheme is exact for a linear
solution.

Remark 13. If the condition on the mesh is not respected, which means that Vc ̸= ∅, then the scheme is
not exact for a linear solution.

Indeed on the corners with a unique cell, we approached βr with βc
r so that it becomes invertible. But

then if we try to test the fourth equation of the scheme (44) with un+1
r =

(
α
0

)
in writes

βc
r

(
α
0

)
= (Cj1r ⊗ (xr − xj1) + Cj2r ⊗ (xr − xj2))

(
α
0

)
= ⟨xr − xj1 ,

(
α
0

)
⟩Cj1r + ⟨xr − xj2 ,

(
α
0

)
⟩Cj2r

= α(xr − xj1)Cj1r + α(xr − xj2)Cj2r

= αxrCjr − α(xj1Cj1r + xj2Cj2r)

since by definition Cjr = Cj1r + Cj2r.

In order to retrieve the right hand side of the fourth equation of the scheme (44), we need

xj1Cj1r + xj2Cj2r =
∑

j∈Vc

xjCjr ⇔ xj1 = xj2 = xj

because in a corner with a unique cell there is only one index j ∈ Vc, therefore the sum over j disappears.
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This condition is impossible because it leads to βc
r = βr which is not invertible, then the scheme is

ill-posed. Thus the solution is not exact for a linear solution as soon as there are some unique cells at
the corners of the mesh.

4.3 Stability
In order to study the stability, consistency and convergence of the scheme, let us consider the problem
with no source: f(x, t) = 0 and homogeneous boundary conditions: g(x) = 0 and h(x) = 0. The gener-
alization to the case where f ̸= 0 and non-homogeneous boundary conditions is straightforward.

This section as well as the two next ones (consistency and convergence) are inspired by the class of
B. Després [10].

Proposition 14 (L2 Stability of the periodic scheme). Let us keep on with the assumption that κrβr is
positive:

∀ x ∈ Ω, ⟨x, κrβrx⟩ > 0 ∀r ∈ V (58)
Then the implicit diffusion scheme (42) with no source (f(x, t) = 0) and periodic boundary conditions

is unconditionally stable in L2 norm, which means the following inequality stands

∥pn+1
h ∥L2(Ω) ≤ ∥pn

h∥L2(Ω) ∀ ∆t ≥ 0 (59)

Remark 14. Saying that the scheme is unconditionally stable means that no CFL condition is needed on
∆t for the scheme to be stable.

Proof. The scheme (42) rewrites:
pn+1

j − ∆t

|Ωj |
∑
r∈Vj

⟨un+1
r , κrCjr⟩ = pn

j

−βrun+1
r =

∑
j∈Cr

pn+1
j Cjr

(60)

We can multiply the first equation of (60) by pn+1
j , and sum it over j ∈ C:∑

j∈C
|Ωj |(pn+1

j )2 − ∆t
∑
j∈C

(
pn+1

j

∑
r∈Vj

⟨un+1
r , κrCjr⟩

)
=
∑
j∈C

|Ωj |pn+1
j pn

j

By permuting the sums on r and j, and using (15), we obtain:∑
j∈C

|Ωj |(pn+1
j )2−∆t

∑
r∈V

⟨un+1
r , κr

∑
j∈Cr

pn+1
j Cjr⟩ = 1

2
∑
j∈C

|Ωj |(pn+1
j )2+1

2
∑
j∈C

|Ωj |(pn
j )2−1

2
∑
j∈Cr

|Ωj |(pn+1
j −pn

j )2

Using the second equation of (60) the equation becomes

1
2
∑
j∈C

|Ωj |(pn+1
j )2 + ∆t

∑
r∈V

⟨un+1
r , κrβrun+1

r ⟩ + 1
2
∑
j∈C

|Ωj |(pn+1
j − pn

j )2 = 1
2
∑
j∈C

|Ωj |(pn
j )2

Obviously,
1
2
∑
j∈C

|Ωj |(pn+1
j − pn

j )2 ≥ 0

Thanks to the assumption (58), we have

∆t
∑
r∈V

⟨un+1
r , κrβrun+1

r ⟩ ≥ 0

Therefore
∥pn+1

h ∥L2(Ω) ≤ ∥pn
h∥L2(Ω) ∀ ∆t ≥ 0

and this ends the proof.
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Proposition 15 (L2 Stability with Neumann boundary conditions). Let us make the two following
assumptions:

⟨x, κrβrx⟩ > 0 ∀r ∈ Vi (61)
⟨x, κr(Îd − nr ⊗ nr)βrx⟩ > 0 ∀r ∈ Vb (62)

Then the implicit diffusion scheme (43) with no source (f(x, t) = 0) and homogeneous Neumann
boundary conditions (g(x) = 0) is unconditionally stable in L2 norm, which means the following inequality
stands

∥pn+1
h ∥L2(Ω) ≤ ∥pn

h∥L2(Ω) ∀ ∆t ≥ 0 (63)

Proof. The scheme (43) rewrites:

|Ωj |pn+1
j − ∆t

( ∑
r∈Vi

j

⟨κrun+1
r , Cjr⟩ +

∑
r∈Vb

j

⟨κrun+1
r , (Îd − nr ⊗ nr)Cjr⟩

)
= |Ωj |pn

j

− βrun+1
r =

∑
j∈Cr

pn+1
j Cjr ∀r ∈ Vi

βrun+1
r =

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr ∀r ∈ Vb

(64)

We can multiply the first equation of (64) by pn+1
j , and sum it over j ∈ C:∑

j∈C
|Ωj |(pn+1

j )2 − ∆t
∑
j∈C

pn+1
j

( ∑
r∈Vi

j

⟨κrun+1
r , Cjr⟩ +

∑
r∈Vb

j

⟨κrun+1
r , (Îd − nr ⊗ nr)Cjr⟩

)
=
∑
j∈C

|Ωj |pn+1
j pn

j

By permuting the sums on r and j, and using (15), we obtain:∑
j∈C

|Ωj |(pn+1
j )2 − ∆t

∑
r∈Vi

⟨κrun+1
r ,

∑
j∈C

pn+1
j Cjr⟩ − ∆t

∑
r∈Vb

⟨κrun+1
r , (Îd − nr ⊗ nr)

∑
j∈C

pn+1
j Cjr⟩

= 1
2
∑
j∈C

|Ωj |(pn+1
j )2 + 1

2
∑
j∈C

|Ωj |(pn
j )2 − 1

2
∑
j∈C

|Ωj |(pn+1
j − pn

j )2

Using the second equation of (64) the equation becomes

1
2
∑
j∈C

|Ωj |(pn+1
j )2 + ∆t

∑
r∈Vi

⟨κrun+1
r , βrun+1

r ⟩ + ∆t
∑

r∈Vb

⟨κrun+1
r , (Îd − nr ⊗ nr)βrun+1

r Cjr⟩

−∆t
∑

r∈Vb

⟨κrun+1
r , (Îd − nr ⊗ nr)

∑
j∈Cr

pn+1
r Cjr⟩ + 1

2
∑
j∈C

|Ωj |(pn+1
j − pn

j )2 = 1
2
∑
j∈C

|Ωj |(pn
j )2

(65)

By definition of nr, one has∑
j∈Cr

pn+1
r Cjr = pn+1

r

∑
j∈Cr

Cjr = pn+1
r nr

∥∥∥ ∑
j∈Cr

Cjr

∥∥∥
Then, thanks to Proposition 38, (65) becomes

1
2
∑
j∈C

|Ωj |(pn+1
j )2 + ∆t

∑
r∈Vi

⟨κrun+1
r , βrun+1

r ⟩ + ∆t
∑

r∈Vb

⟨κrun+1
r , (Îd − nr ⊗ nr)βrun+1

r Cjr⟩

+1
2
∑
j∈C

|Ωj |(pn+1
j − pn

j )2 = 1
2
∑
j∈C

|Ωj |(pn
j )2

(66)

Obviously,
1
2
∑
j∈C

|Ωj |(pn+1
j − pn

j )2 ≥ 0
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And thanks to the assumptions (61) and (62), we have

∆t
∑
r∈Vi

⟨un+1
r , κrβrun+1

r ⟩ ≥ 0 and ∆t
∑

r∈Vb

⟨un+1
r , κr(Îd − nr ⊗ nr)βrun+1

r ⟩ ≥ 0

Therefore
∥pn+1

h ∥L2(Ω) ≤ ∥pn
h∥L2(Ω), ∀ ∆t ≥ 0

and this ends the proof.

Proposition 16 (L2 Stability with Dirichlet boundary conditions). Let us make the assumption that
κrβr and κrβc

r are positive:
∀ x ∈ Ω, ⟨x, κrβrx⟩ > 0 ∀r ∈ Vi,b (67)

and
∀ x ∈ Ω, ⟨x, κrβc

rx⟩ > 0 ∀r ∈ Vc (68)

Then the implicit diffusion scheme (44) with no source (f(x, t) = 0) and homogeneous Dirichlet
boundary conditions (h(x) = 0) is unconditionally stable in L2 norm, which means the following inequality
stands

∥pn+1
h ∥L2(Ω) ≤ ∥pn

h∥L2(Ω) ∀ ∆t ≥ 0 (69)

Proof. The scheme (44) rewrites:

pn+1
j − ∆t

|Ωj |
∑
r∈Vj

⟨un+1
r , κrCjr⟩ = pn

j

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr ∀r ∈ Vi,b

βc
run+1

r = −
∑
j∈Cr

pn+1
j Cjr ∀r ∈ Vc

(70)

We can multiply the first equation of (70) by pn+1
j , and sum it over j ∈ C:∑

j∈C
|Ωj |(pn+1

j )2 − ∆t
∑
j∈C

(
pn+1

j

∑
r∈Vj

⟨un+1
r , κrCjr⟩

)
=
∑
j∈C

|Ωj |pn+1
j pn

j

By permuting the sums on r and j, and using (15), we obtain:∑
j∈C

|Ωj |(pn+1
j )2−∆t

∑
r∈V

⟨un+1
r , κr

∑
j∈Cr

pn+1
j Cjr⟩ = 1

2
∑
j∈C

|Ωj |(pn+1
j )2+1

2
∑
j∈C

|Ωj |(pn
j )2−1

2
∑
j∈Cr

|Ωj |(pn+1
j −pn

j )2

Using the second and third equations of (70) the previous equation becomes

1
2
∑
j∈C

|Ωj |(pn+1
j )2 + ∆t

∑
r∈Vi,b

⟨un+1
r , κrβrun+1

r ⟩ + ∆t
∑

r∈Vc

⟨un+1
r , κrβc

run+1
r ⟩ + 1

2
∑
j∈C

|Ωj |(pn+1
j − pn

j )2

= 1
2
∑
j∈C

|Ωj |(pn
j )2

Obviously,
1
2
∑
j∈C

|Ωj |(pn+1
j − pn

j )2 ≥ 0

Thanks to the assumptions (67) and (68), we have

∆t
∑

r∈Vi,b

⟨un+1
r , κrβrun+1

r ⟩ ≥ 0
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and
∆t
∑

r∈Vc

⟨un+1
r , κrβc

run+1
r ⟩ ≥ 0

Therefore
∥pn+1

h ∥L2(Ω) ≤ ∥pn
h∥L2(Ω) ∀ ∆t ≥ 0

and this ends the proof.

4.4 Consistency
For this whole section, let us assume that the solution is smooth: p ∈ W 2,∞([0, T ], Ω). Let us introduce
pn

j = p(xj , tn), un
r = u(xr, tn) and κr = κ(xr). We will study the consistency errors an

h and bn
h of the

scheme.

Let us define the discrete L2 norm of these consistency errors

∥an
h∥2

L2(Ω) =
∑
j∈C

|Ωj |(an
j )2 and |||bn

h|||2L2(Ω) =
∑
r∈V

|Vr|∥bn
r ∥2

Where ∥.∥ is any norm over the coefficients of br.

For the scheme with periodic boundary conditions (42) the consistency errors are defined as follows
an

j =
pn+1

j − pn
j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨un+1
r , κrCjr⟩

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

) (71)

Proposition 17 (Consistency of the periodic scheme). Let us consider the scheme (42) with no source
(f(x, t) = 0) and periodic boundary conditions and the consistency errors (71). There exists a constant
C such that, if n∆t ≤ T

∥an
h∥L2(Ω) ≤ C(∆t + h) (72)

and
|||bn

h|||L2(Ω) ≤ Ch (73)

Proof. We have

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨un+1
r , κrCjr⟩

Knowing that
pn+1

j − pn
j

∆t
= ∂tp

n+1
j + O(∆t)

and since pj is p evaluated on the center of the cell Ωj ,

∂tp
n+1
j = 1

|Ωj |

∫
Ωj

∂tpn+1(x) dx + O(h)

= 1
|Ωj |

∫
Ωj

∇.κ(x)un+1(x) dx + O(h)

= 1
|Ωj |

∫
∂Ωj

⟨κ(x)un+1(x), nj⟩ dσ + O(h)
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By definition of Cjr, and based on Figure 1, one has

Cjr = njlℓjl + njkℓjk

2 = ñjr|Γjr| + ñjr−1|Γjr−1|
2

with ñjr = njl, |Γjr| = ℓjl and ñjr−1 = njk, |Γjr−1| = ℓjk.

This way, one can rewrite∑
r∈Vj

⟨κrun+1
r , Cjr⟩ =

∑
r∈Vj

⟨κrun+1
r ,

ñjr|Γjr| + ñjr−1|Γjr−1|
2 ⟩

= 1
2

( ∑
r∈Vj

⟨κrun+1
r , ñjr|Γjr|⟩ +

∑
r∈Vj

⟨κrun+1
r , ñjr−1|Γjr−1|⟩

)
As Vj is a loop, we can change the indices of the second sum:

= 1
2

( ∑
r∈Vj

⟨κrun+1
r , ñjr|Γjr|⟩ +

∑
r∈Vj

⟨κr+1un+1
r+1 , ñjr|Γjr|⟩

)

=
∑
r∈Vj

〈κr+1un+1
r+1 + κrun+1

r

2 , ñjr|Γjr|
〉

Finally, by transforming the sum over the vertices of Ωj into a sum over its edges, we obtain the
formula

∑
r∈Vj

⟨κrun+1
r , Cjr⟩ =

∑
l∈Cj

|∂Ωjl|
〈κ(x+

jl)un+1(x+
jl) + κ(x−

jl)un+1(x−
jl)

2 , njl

〉

where x+
jl and x−

jl are the ends of ∂Ωjl, the common face of Ωj and Ωl.

Therefore

an
j = O(∆t) + O(h) + 1

|Ωj |
∑
l∈Cj

〈∫
∂Ωjl

κ(x)un+1(x) dσ − |∂Ωjl|
κ(x+

jl)un+1(x+
jl) + κ(x−

jl)un+1(x−
jl)

2 , njl

〉
Since the function under the integral is approximated by the trapezoidal rule, the error of integration

is O(h2), which means there exists a C > 0 such that

∣∣∣〈 ∫
∂Ωjl

κ(x)un+1(x) dσ − |∂Ωjl|
κ(x+

jl)un+1(x+
jl) + κ(x−

jl)un+1(x−
jl)

2 , njl

〉∣∣∣ ≤ Ch2|∂Ωjl| ≤ Ch3

Dividing by |Ωj | and using the lower bound of (22), we obtain an
j ≤ C(∆t + h).

Therefore we have

∥an
h∥2

L2(Ω) =
∑
j∈C

|Ωj ||an
j |2 ≤ (C(∆t + h))2

⇒ ∥an
h∥L2(Ω) ≤ C(∆t + h)

Which gives us (72).
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Let us now consider bn
r .

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

Cjr ⊗ (xr − xj)un+1
r −

∑
j∈Cr

pn+1
j Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

⟨xr − xj , un+1
r ⟩Cjr −

∑
j∈Cr

pn+1
j Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

Cjr

(
⟨xr − xj , un+1

r ⟩ + pn+1
j

))
Let us write Taylor’s expansion of p

pn+1
j = pn+1

r + ⟨xj − xr, un+1
r ⟩ + O(h2)

Now we have
bn

r = 1
|Vr|

(
−
∑
j∈Cr

Cjr

(
pn+1

r + O(h2)
))

= −1
|Vr|

( ∑
j∈Cr

CjrO(h2)
)

because ∑
j∈Cr

Cjrpn+1
r = pn+1

r

∑
j∈Cr

Cjr = 0

Thanks to (23) and (21), we obtain

bn
r ≤ −1

C2h2

∑
j∈Cr

Ch O(h2) = O(h)

Which means ∥bn
r ∥ = O(h), and

|||bn
h|||L2(Ω) =

(∑
r∈V

|Vr|∥bn
r ∥2
)1/2

= O(h)

And that ends the proof.

Let us now define the consistency error of the scheme with Neumann boundary conditions (43)

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vi

j

⟨κrun+1
r , Cjr⟩ − 1

|Ωj |
∑

r∈Vb
j

⟨κrun+1
r , (Îd − nr ⊗ nr)Cjr⟩

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

)
∀r ∈ Vi

bn
r = 1

|Vr|

(
− βrun+1

r +
∑
j∈Cr

(pn+1
r − pn+1

j )Cjr

)
∀r ∈ Vb

(74)

Proposition 18 (Consistency with Neumann boundary conditions). Let us consider the scheme (43) with
no source (f(x, t) = 0) and homogeneous Neumann boundary conditions (g(x) = 0) and the consistency
errors (74). Then there exists a constant C such that, if n∆t ≤ T

∥an
h∥L2(Ω) ≤ C(∆t + h) (75)

and
|||bn

h|||L2(Ω) ≤ Ch (76)
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Proof. Let us consider

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vi

j

⟨κrun+1
r , Cjr⟩ − 1

|Ωj |
∑

r∈Vb
j

⟨κrun+1
r , (Îd − nr ⊗ nr)Cjr⟩

=
pn+1

j − pn
j

∆t
− 1

|Ωj |
∑
r∈Vi

j

⟨κrun+1
r , Cjr⟩ − 1

|Ωj |
∑

r∈Vb
j

⟨κrun+1
r , Cjr⟩

+ 1
|Ωj |

∑
r∈Vb

j

⟨κrun+1
r , (nr ⊗ nr)Cjr⟩

=
pn+1

j − pn
j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨κrun+1
r , Cjr⟩ + 1

|Ωj |
∑

r∈Vb
j

⟨κrun+1
r , (nr ⊗ nr)Cjr⟩

Thanks to Proposition 34, we have

⟨κrun+1
r , (nr ⊗ nr)Cjr⟩ = ⟨κrun+1

r , ⟨Cjr, nr⟩nr⟩ = ⟨Cjr, nr⟩⟨κrun+1
r , nr⟩

The Neumann boundary condition states that ⟨κrun+1
r , nr⟩ = 0.

Then, we obtain 

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨κrun+1
r , Cjr⟩

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

)
∀r ∈ Vi

bn
r = 1

|Vr|

(
− βrun+1

r +
∑
j∈Cr

(pn+1
r − pn+1

j )Cjr

)
∀r ∈ Vb

(77)

Note that the first equation of (77) is the same as in Proposition 17. Knowing that no property of the
periodic domain has been used in its proof, the method to prove the consistency for ah with Neumann
boundary conditions is identical. However, we have to work a little bit more with bh.

Inside the domain, when r ∈ Vi, the proof is the same as is Proposition 17, thus we obtain

∥br∥ = O(h) ∀ r ∈ Vi (78)

Let us now consider bn
r on the boundary of the domain.

bn
r = 1

|Vr|

(
− βrun+1

r +
∑
j∈Cr

(pn+1
r − pn+1

j )Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

Cjr ⊗ (xr − xj)un+1
r +

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

⟨xr − xj , un+1
r ⟩Cjr +

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

Cjr

(
⟨xr − xj , un+1

r ⟩ + pn+1
j

)
+
∑
j∈Cr

pn+1
r Cjr

)
Let us write Taylor’s expansion of p

pn+1
j = pn+1

r + ⟨xj − xr, un+1
r ⟩ + O(h2)
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Now we have
bn

r = 1
|Vr|

(
−
∑
j∈Cr

Cjr

(
pn+1

r + O(h2)
)

+
∑
j∈Cr

pn+1
r Cjr

)
= −1

|Vr|

( ∑
j∈Cr

CjrO(h2)
)

Therefore on the boundary, when r ∈ Vb, we can do the same as in the proof of Proposition 17, and
we obtain

∥br∥ = O(h) ∀ r ∈ Vb (79)

Thanks to (78) and (79), we obtain ∥bn
r ∥ = O(h)∀ r ∈ V, thus

|||bn
h|||L2(Ω) =

(∑
r∈V

|Vr|∥bn
r ∥2
)1/2

= O(h)

And that ends the proof.

Let us define the consistency errors of the scheme with Dirichlet boundary conditions (44)

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨un+1
r , κrCjr⟩

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

)
∀r ∈ Vi,b

bn
r = 1

|Vr|

(
− βc

run+1
r −

∑
j∈Cr

pn+1
j Cjr

)
∀r ∈ Vc

(80)

Proposition 19 (Consistency with Dirichlet boundary conditions). Let us consider the scheme (44) with
no source (f(x, t) = 0) and homogeneous Dirichlet boundary conditions (h(x) = 0) and the consistency
errors (80). Then there exists a constant C such that, if n∆t ≤ T

∥an
h∥L2(Ω) ≤ C(∆t + h) (81)

and
|||bn

h|||L2(Ω) ≤ Ch (82)

Proof. In this section, the formula for an
j is the same as in Proposition 17 and in its proof not any prop-

erty of the periodic boundary conditions have been used. Hence (81) is proved immediately.

One can notice that the third equation of (80) is the same as the second one, with βr = βc
r . Then we

will study the two equations in one with βr = βc
r on the corners.

Let us now consider bn
r for r ∈ Vb,c.

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

Cjr ⊗ (xr − xj)un+1
r −

∑
j∈Cr

pn+1
j Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

⟨xr − xj , un+1
r ⟩Cjr −

∑
j∈Cr

pn+1
j Cjr

)
= 1

|Vr|

(
−
∑
j∈Cr

Cjr

(
⟨xr − xj , un+1

r ⟩ + pn+1
j

))
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Let us write Taylor’s expansion of p

pn+1
r = pn+1

j + ⟨xr − xj , un+1
r ⟩ + O(h2)

Now we have
bn

r = −1
|Vr|

( ∑
j∈Cr

Cjr

(
pn+1

r + O(h2)
))

= −1
|Vr|

( ∑
j∈Cr

CjrO(h2)
)

because ∑
j∈Cr

Cjrpn+1
r = pn+1

r

∑
j∈Cr

Cjr ∀r ∈ Vb,c

and pn+1
r = 0 ∀r ∈ Vb,c, thanks to the homogeneous Dirichlet boundary conditions.

Thanks to (23) and (21), we obtain

bn
r ≤ −1

C2h2

∑
j∈Cr

Ch O(h2) = O(h) ∀r ∈ V

Which means ∥bn
r ∥ = O(h), and

|||bn
h|||L2(Ω) =

(∑
r∈V

|Vr|∥bn
r ∥2
)1/2

= O(h)

And that ends the proof.

Remark 15. We showed that the scheme is consistent and stable for each boundary condition. Now we
would like to use Lax theorem as in [8] which states that if a linear scheme is stable and consistent in a
certain norm, then it is convergent in the same norm. Unfortunately we can’t because the scheme is not
consistent in the sense of the finite differences. Indeed in the proofs of the previous propositions un+1

r is
considered to be exact in the expression of an

j while in reality it should be un+1
r + O(h). Therefore in an

j

one has
1

|Ωj |
∑
r∈Vj

⟨κrO(h), Cjr⟩ ≈ 1
|Ωj |

O(h2) ≈ O(1)

since |Ωj | is homogeneous to h2.

Therefore an
j is not consistent anymore.

4.5 Convergence
Let us define two error variables

en
j = pn

j − p(xj , tn) and fn
r = un

r − u(xr, tn)

and their norm

∥en∥L2(Ω) =
(∑

j∈C
|Ωj ||en

j |2
)1/2

and |||fn|||L2(Ω) =
(∑

r∈V
|Vr|∥fn

r ∥2
)1/2

Proposition 20 (Convergence of the periodic scheme). Assume that p ∈ W 3,∞ and the periodic scheme
is consistent: (72)-(73) are verified. Assume there exists a constant α > 0 such that

∀x ∈ Ω, ∀r ∈ V, ⟨x, (κrβr)sx⟩ ≥ α|Vr|∥x∥2 (83)
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with As the symmetric part of A defined in Definition 6.

Then the scheme (42) is convergent for all final time T > 0: there exist a constant C such that

∥en∥L2(Ω) ≤ C(∆t + h) (84)

Proof. By construction 
en+1

j − en
j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨κrfn+1
r , Cjr⟩ = −an

j

βrfn+1
r +

∑
j∈Cr

Cjren+1
j = bn

r |Vr|
(85)

We can multiply the first equation of (85) by ∆t|Ωj |en+1
j and sum it over j ∈ C:∑

j∈C
|Ωj ||en+1

j |2 −
∑
j∈C

|Ωj |en+1
j en

j = ∆t
∑
j∈C

en+1
j

∑
r∈Vj

⟨κrfn+1
r , Cjr⟩ − ∆t

∑
j∈C

|Ωj |en+1
j an

j

1
2
∑
j∈C

|Ωj ||en+1
j |2 − 1

2
∑
j∈C

|Ωj ||en
j |2 = −1

2
∑
j∈C

|Ωj ||en+1
j − en

j |2 + ∆t
∑
r∈V

⟨κrfn+1
r ,

∑
j∈Cr

en+1
j Cjr⟩

−∆t
∑
j∈C

|Ωj |en+1
j an

j

We can now replace the sum in the scalar product with the second line of the equation (85)∑
j∈C

|Ωj ||en+1
j |2 −

∑
j∈C

|Ωj ||en
j |2 = −

∑
j∈C

|Ωj ||en+1
j − en

j |2 + 2∆t
∑
r∈V

⟨κrfn+1
r , bn

r |Vr|⟩

−2∆t
∑
r∈V

⟨κrfn+1
r , βrfn+1

r ⟩ − 2∆t
∑
j∈C

|Ωj |en+1
j an

j

Thanks to Proposition 39 and the assumption (83), we know that there exists α > 0 such that

−2∆t
∑
r∈V

⟨κrfn+1
r , βrfn+1

r ⟩ = −2∆t
∑
r∈V

⟨fn+1
r , (κrβr)sfn+1

r ⟩ ≤ −2∆tα
∣∣∣∣∣∣fn+1∣∣∣∣∣∣2

L2(Ω)

One can write

−2∆t
∑
j∈C

|Ωj |en+1
j an

j = −2∆t
∑
j∈C

|Ωj |(en+1
j − en

j )an
j − 2∆t

∑
j∈C

|Ωj |en
j an

j

Young’s inequality gives us the following results:

−2∆t
∑
j∈C

|Ωj |(en+1
j − en

j )an
j ≤

∑
j∈C

|Ωj ||en+1
j − en

j |2 + ∆t2
∑
j∈C

|Ωj ||an
j |2

−2∆t
∑
j∈C

|Ωj |en
j an

j ≤ ∆t
∑
j∈C

|Ωj ||en
j |2 + ∆t

∑
j∈C

|Ωj ||an
j |2

2∆t
∑
r∈V

|Vr|⟨fn+1
r , κrbn

r ⟩ ≤ ∆tε
∑
r∈V

|Vr|∥fn+1
r ∥2 + ∆t

1
ε

∑
r∈V

|Vr|∥κrbn
r ∥2

Finally, we obtain the following inequation, with ε > 0

∥en+1∥2
L2(Ω) − ∥en∥2

L2(Ω) ≤ ∆tε
∣∣∣∣∣∣fn+1∣∣∣∣∣∣2

L2(Ω) + ∆t
|||κ|||2Ω,∞

ε
|||bn|||2L2(Ω) − ∆t2α

∣∣∣∣∣∣fn+1∣∣∣∣∣∣2
L2(Ω) + ∆t2∥an∥2

L2(Ω)

+∆t∥an∥2
L2(Ω) + ∆t∥en∥2

L2(Ω)
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where |||κ|||2Ω,∞ = max
r∈V

|||κr|||∞ which is a discretization of the infinity norm defined in the statement of
the problem. Therefore the majoration of κ still holds with this discrete norm.

One can chose ε = 2α and rewrite

∥en+1∥2
L2(Ω) ≤ (1 + ∆t)∥en∥2

L2(Ω) + ∆t
(

(1 + ∆t)∥an∥2
L2(Ω) +

|||κ|||2Ω,∞

2α
|||bn|||2L2(Ω)

)
Using the consistency estimates (72)-(73), one can write

∥en+1∥2
L2(Ω) ≤ (1 + ∆t)∥en∥2

L2(Ω) + ∆t
(

(1 + ∆t)C1(∆t + h)2 +
|||κ|||2Ω,∞

2α
C2h2

)
≤ (1 + ∆t)∥en∥2

L2(Ω) + K ′∆t((1 + ∆t)(∆t + h)2 + h2)
≤ (1 + ∆t)∥en∥2

L2(Ω) + K∆t(∆t + h)2

where
K = 3K ′ = 3 max

(
C1,

M

2α
C2

)
with M the upper bound of |||κ|||Ω,∞.

Thanks to Grönwall’s lemma, we obtain

∥en+1∥2
L2(Ω) ≤

n−1∑
p=0

ep∆tK∆t(∆t + h)2

Which means, for n∆t ≤ T
∥en+1∥2

L2(Ω) ≤ Q(∆t + h)2

where
Q = KTeT

And that ends the proof.

Proposition 21 (Convergence with Neumann boundary conditions). Assume that p ∈ W 3,∞ and the
scheme with Neumann boundary conditions is consistent: (75)-(76) are verified. Assume there exists two
constants α1, α2 > 0 such that

∀x ∈ Ω, ∀r ∈ Vi, ⟨x, (κrβr)sx⟩ ≥ α1|Vr|∥x∥2 (86)

and
∀x ∈ Ω, ∀r ∈ Vb, ⟨x, (κr(Îd − nr ⊗ nr)βr)sx⟩ ≥ α2|Vr|∥x∥2 (87)

with As the symmetric part of A defined in Definition 6.

Then the scheme (43) is convergent for all final time T > 0: there exists a constant C such that

∥en∥L2(Ω) ≤ C(∆t + h) (88)

Proof. By construction

en+1
j − en

j

∆t
− 1

|Ωj |
∑
r∈Vi

j

⟨κrfn+1
r , Cjr⟩ − 1

|Ωj |
∑

r∈Vb
j

⟨κrfn+1
r , (Îd − nr ⊗ nr)Cjr⟩ = −an

j

βrfn+1
r +

∑
j∈Cr

Cjren+1
j = bn

r |Vr|

βrfn+1
r −

∑
j∈Cr

Cjr(en+1
r − en+1

j ) = bn
r |Vr|

(89)
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We can multiply the first equation of (89) by ∆t|Ωj |en+1
j and sum it over j ∈ C:∑

j∈C
|Ωj ||en+1

j |2 −
∑
j∈C

|Ωj |en+1
j en

j = ∆t
∑
j∈C

en+1
j

∑
r∈Vi

j

⟨κrfn+1
r , Cjr⟩ + ∆t

∑
j∈C

en+1
j

∑
r∈Vb

j

⟨κrfn+1
r ,

(Îd − nr ⊗ nr)Cjr⟩ − ∆t
∑
j∈C

|Ωj |en+1
j an

j

1
2
∑
j∈C

|Ωj ||en+1
j |2 − 1

2
∑
j∈C

|Ωj ||en
j |2 = −1

2
∑
j∈C

|Ωj ||en+1
j − en

j |2 + ∆t
∑
r∈Vi

⟨κrfn+1
r ,

∑
j∈Cr

en+1
j Cjr⟩

+∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd − nr ⊗ nr)

∑
j∈Cr

en+1
j Cjr⟩ − ∆t

∑
j∈C

|Ωj |en+1
j an

j

We can now replace the sums in the scalar products with the second and third lines of the equation (89)∑
j∈C

|Ωj ||en+1
j |2 −

∑
j∈C

|Ωj ||en
j |2 = −

∑
j∈C

|Ωj ||en+1
j − en

j |2 + 2∆t
∑
r∈Vi

⟨κrfn+1
r , bn

r |Vr|⟩ − 2∆t
∑
r∈Vi

⟨κrfn+1
r , βrfn+1

r ⟩

+2∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd − nr ⊗ nr)bn

r |Vr|⟩ + 2∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd − nr ⊗ nr)

∑
j∈Cr

en+1
r Cjr⟩

−2∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd − nr ⊗ nr)βrfn+1

r ⟩ − 2∆t
∑
j∈C

|Ωj |en+1
j an

j

By definition of nr and thanks to Proposition 38, one has

2∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd − nr ⊗ nr)

∑
j∈Cr

en+1
r Cjr⟩ = 2∆t

∑
r∈Vb

⟨κrfn+1
r , (Îd − nr ⊗ nr)en+1

r

∥∥∥ ∑
j∈Cr

Cjr

∥∥∥nr⟩ = 0

Which leads to∑
j∈C

|Ωj ||en+1
j |2 −

∑
j∈C

|Ωj ||en
j |2 = −

∑
j∈C

|Ωj ||en+1
j − en

j |2 + 2∆t
∑
r∈Vi

⟨κrfn+1
r , bn

r |Vr|⟩ − 2∆t
∑
r∈Vi

⟨κrfn+1
r , βrfn+1

r ⟩

+2∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd − nr ⊗ nr)bn

r |Vr|⟩ − 2∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd − nr ⊗ nΓ)βrfn+1

r ⟩ − 2∆t
∑
j∈C

|Ωj |en+1
j an

j

Thanks to Proposition 39 and the assumptions (86) and (87), we know that there exists α1, α2 > 0
such that

−2∆t
∑
r∈Vi

⟨κrfn+1
r , βrfn+1

r ⟩ = −2∆t
∑
r∈Vi

⟨fn+1
r , (κrβr)sfn+1

r ⟩ ≤ −2∆tα1
∑
r∈Vi

|Vr|∥fn+1∥2

and

−2∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd−nr⊗nr)βrfn+1

r ⟩ = −2∆t
∑

r∈Vb

⟨fn+1
r , (κr(Îd−nr⊗nr)βr)sfn+1

r ⟩ ≤ −2∆tα2
∑

r∈Vb

|Vr|∥fn+1∥2

Thus

−2∆t
∑

r∈Vb

⟨κrfn+1
r , (Îd −nr ⊗nr)βrfn+1

r ⟩−2∆t
∑
r∈Vi

⟨κrfn+1
r , βrfn+1

r ⟩ ≤ −2∆t min(α1, α2)
∑
r∈V

|Vr|∥fn+1∥2

One can write

−2∆t
∑
j∈C

|Ωj |en+1
j an

j = −2∆t
∑
j∈C

|Ωj |(en+1
j − en

j )an
j − 2∆t

∑
j∈C

|Ωj |en
j an

j
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Young’s inequality gives us the following results:

−2∆t
∑
j∈C

|Ωj |(en+1
j − en

j )an
j ≤

∑
j∈C

|Ωj ||en+1
j − en

j |2 + ∆t2
∑
j∈C

|Ωj ||an
j |2

−2∆t
∑
j∈C

|Ωj |en
j an

j ≤ ∆t
∑
j∈C

|Ωj ||en
j |2 + ∆t

∑
j∈C

|Ωj ||an
j |2

2∆t
∑
r∈Vi

|Vr|⟨fn+1
r , κrbn

r ⟩ ≤ ∆tε
∑
r∈Vi

|Vr|∥fn+1
r ∥2 + ∆t

1
ε

∑
r∈Vi

|Vr|∥κrbn
r ∥2

2∆t
∑

r∈Vb

|Vr|⟨fn+1
r , κr(Îd − nr ⊗ nr)bn

r ⟩ ≤ ∆tµ
∑

r∈Vb

|Vr|∥fn+1
r ∥2 + ∆t

1
µ

∑
r∈Vb

|Vr|∥κr(Îd − nr ⊗ nr)bn
r ∥2

Let us now gather the previous inequalities

∥en+1∥2
L2(Ω) − ∥en∥2

L2(Ω) ≤ ∆tε
∑
r∈Vi

|Vr|∥fn+1
r ∥2 + ∆t

1
ε

∑
r∈Vi

|Vr|∥κrbn
r ∥2 − 2∆t min(α1, α2)

∣∣∣∣∣∣fn+1∣∣∣∣∣∣2
L2(Ω)

+∆tµ
∑

r∈Vb

|Vr|∥fn+1
r ∥2 + ∆t

1
µ

∑
r∈Vb

|Vr|∥κr(Îd − nr ⊗ nr)bn
r ∥2

+∆t2∥an∥2
L2(Ω) + ∆t∥en∥2

L2(Ω) + ∆t∥an∥2
L2(Ω)

Let us chose µ = ε = 2 min(α1, α2), therefore some of the terms simplify:

Firstly

∆tε
∑
r∈Vi

|Vr|∥fn+1
r ∥2+∆tµ

∑
r∈Vb

|Vr|∥fn+1
r ∥2 = ∆t2 min(α1, α2)

∑
r∈V

|Vr|∥fn+1
r ∥2 = ∆t2 min(α1, α2)

∣∣∣∣∣∣fn+1∣∣∣∣∣∣2
L2(Ω)

Secondly

∆t
1
ε

∑
r∈Vi

|Vr|∥κrbn
r ∥2∆t

1
µ

∑
r∈Vb

|Vr|∥κr(Îd − nr ⊗ nr)bn
r ∥2

= ∆t
1

2 min(α1, α2) |||κ|||2Ω,∞

∑
r∈Vi

|Vr|∥bn
r ∥2 + ∆t

1
2 min(α1, α2) |||κ|||2Ω,∞

∣∣∣∣∣∣∣∣∣(Îd − nr ⊗ nr)
∣∣∣∣∣∣∣∣∣2

∞

∑
r∈Vb

|Vr|∥bn
r ∥2

= ∆t
1

2 min(α1, α2) |||κ|||2Ω,∞

∑
r∈V

|Vr|∥bn
r ∥2 = ∆t

1
2 min(α1, α2) |||κ|||2Ω,∞|||bn

r |||2Ω,∞

because
∣∣∣∣∣∣∣∣∣(Îd − nr ⊗ nr)

∣∣∣∣∣∣∣∣∣2
∞

= 1

Finally, we obtain

∥en+1∥2
L2(Ω) ≤ (1 + ∆t)∥en∥2

L2(Ω) + ∆t
( |||κ|||2Ω,∞

2 min(α1, α2) |||bn|||2L2(Ω) + (1 + ∆t)∥an∥2
L2(Ω)

)

Using the consistency estimates (75)-(76), one can write

∥en+1∥2
L2(Ω) ≤ (1 + ∆t)∥en∥2

L2(Ω) + ∆t
(

(1 + ∆t)C1(∆t + h)2 +
|||κ|||2Ω,∞

2 min(α1, α2)2α
C2h2

)
≤ (1 + ∆t)∥en∥2

L2(Ω) + K ′∆t((1 + ∆t)(∆t + h)2 + h2)
≤ (1 + ∆t)∥en∥2

L2(Ω) + K∆t(∆t + h)2
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where
K = 3K ′ = 3 max

(
C1,

M

2 min(α1, α2)C2

)
with M the upper bound of |||κ|||Ω,∞.

Thanks to Grönwall’s lemma, we obtain

∥en+1∥2
L2(Ω) ≤

n−1∑
p=0

ep∆tK∆t(∆t + h)2

Which means, for n∆t ≤ T
∥en+1∥2

L2(Ω) ≤ Q(∆t + h)2

where
Q = KTeT

And that ends the proof.

Proposition 22 (Convergence with Dirichlet boundary conditions). Assume that p ∈ W 3,∞ and the
scheme (44) with Dirichlet boundary conditions is consistent: (81)-(82) are verified. Assume there exists
two constants α1, α2 > 0 such that

∀x ∈ Ω, ∀r ∈ Vi,b, ⟨x, (κrβr)sx⟩ ≥ α1|Vr|∥x∥2 (90)

and
∀x ∈ Ω, ∀r ∈ Vc, ⟨x, (κrβc

r)sx⟩ ≥ α2|Vr|∥x∥2 (91)

with As the symmetric part of A defined in Definition 6.

Then the scheme (44) is convergent for all final time T > 0: there exists a constant C such that

∥en∥L2(Ω) ≤ C(∆t + h) (92)

Proof. By construction, and choosing to write the third equation of (44) as the second one with βr = βc
r

when r ∈ Vc, one has 
en+1

j − en
j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨κrfn+1
r , Cjr⟩ = −an

j

βrfn+1
r +

∑
j∈Cr

Cjren+1
j = bn

r |Vr| ∀r ∈ V
(93)

The rest of the proof is the same as in the one of Equation 84, choosing α = min(α1, α2) in order to
have the following inequality

∀x ∈ Ω, ∀r ∈ V, ⟨x, (κrβr)sx⟩ ≥ α|Vr|∥x∥2

Finally we obtain (92) with
C = KTeT

where K = 3 max
(

C1, M
2α C2

)
. And that ends the proof.

5 Second order in time
The scheme as we built it is theoretically order 1 in space and time. We will see in Section 7 that its
numerical order in space is 2 and we want to obtain order 2 in time too.
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5.1 Crank-Nicolson method
5.1.1 Construction of the scheme

Crank-Nicolson method is based on the trapezoidal rule, let us introduce un+ 1
2

r = 1
2(un+1

r + un
r ).

Therefore for periodic boundary conditions the new scheme writes
|Ωj |

pn+1
j − pn

j

∆t
−
∑
r∈Vj

⟨un+ 1
2

r , κrCjr⟩ = 1
2 |Ωj |(fn+1

j + fn
j )

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr

(94)

The schemes for Neumann, Dirichlet and Mixed boundary condition are the same as respectively (43), (44)
and (45) replacing each time un+ 1

2
r by 1

2 (un+1
r + un

r ) in the first line of the system.

5.1.2 Matrix-vector form

In order to solve the problem with Crank-Nicolson method, let us get back to the scheme in vectorial
form

IΩ
P n+1 − P n

∆t
− 1

2(MP n+1 + MP n) = 1
2(Bn+1 + Bn) (95)

where

• P n =
(
pn

1 · · · pn
N

)t is known at each iteration, initialized with P 0 in the statement;

• Bn, IΩ and M are the same as in Section C.1, known for all tn ∈ [0, T ].

Therefore the problem becomes:

Find P n+1 such that

(IΩ − ∆t

2 M)P n+1 = ∆t

2 (Bn+1 + Bn) + (IΩ + ∆t

2 M)P n (96)

5.2 Properties of the scheme
In order to study the stability, consistency and convergence of the scheme, let us consider the problem
with no source: f(x, t) = 0 and homogeneous boundary conditions: g(x) = 0 and h(x) = 0.

5.2.1 Stability

Proposition 23 (L2 Stability of the periodic scheme). Let us make the assumption that κrβr is positive:

∀ x ∈ Ω, ⟨x, κrβrx⟩ > 0 ∀r ∈ V (97)

Then the diffusion scheme with Crank-Nicolson method (94) with no source (f(x, t) = 0) and periodic
boundary conditions is unconditionally stable in L2 norm, which means the following inequality stands

∥pn+1
h ∥L2(Ω) ≤ ∥pn

h∥L2(Ω) ∀ ∆t ≥ 0 (98)

Proof. The scheme (94) rewrites:
pn+1

j − ∆t

|Ωj |
∑
r∈Vj

⟨1
2(un+1

r + un
r ), κrCjr⟩ = pn

j

−βrun+1
r =

∑
j∈Cr

pn+1
j Cjr

(99)
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We can multiply the first equation of (99) by (pn+1
j + pn

j ), and sum it over j ∈ C:

∑
j∈C

|Ωj |pn+1
j (pn+1

j + pn
j ) − ∆t

∑
j∈C

(
(pn+1

j + pn
j )
∑
r∈Vj

⟨1
2(un+1

r + un
r ), κrCjr⟩

)
=
∑
j∈C

|Ωj |pn
j (pn+1

j + pn
j )

By permuting the sums on r and j, and using (15), we obtain:∑
j∈C

|Ωj |(pn+1
j )2 − ∆t

2
∑
r∈V

⟨(un+1
r + un

r ), κr

∑
j∈Cr

(pn+1
j + pn

j )Cjr⟩ =
∑
j∈C

|Ωj |(pn
j )2

Using the second equation of (99) the equation becomes

1
2
∑
j∈C

|Ωj |(pn+1
j )2 + ∆t

2
∑
r∈V

⟨(un+1
r + un

r ), κrβr(un+1
r + un

r )⟩ = 1
2
∑
j∈C

|Ωj |(pn
j )2

Thanks to the assumption (97), we have

∆t

2
∑
r∈V

⟨(un+1
r + un

r ), κrβr(un+1
r + un

r )⟩ ≥ 0

Therefore
∥pn+1

h ∥L2(Ω) ≤ ∥pn
h∥L2(Ω) ∀ ∆t ≥ 0

and this ends the proof.

Proposition 24 (L2 Stability with Neumann boundary conditions). Let us make the two following
assumptions:

κrβr > 0 ∀r ∈ Vi (100)
κr(Îd − nr ⊗ nr)βr > 0 ∀r ∈ Vb (101)

Then the diffusion scheme with Crank-Nicolson method with no source (f(x, t) = 0) and homogeneous
Neumann boundary conditions (g(x) = 0) is unconditionally stable in L2 norm, which means the following
inequality stands

∥pn+1
h ∥L2(Ω) ≤ ∥pn

h∥L2(Ω) ∀ ∆t ≥ 0 (102)

Proof. The scheme rewrites:

|Ωj |pn+1
j − ∆t

2

( ∑
r∈Vi

j

⟨κr(un+1
r + un

r ), Cjr⟩ +
∑

r∈Vb
j

⟨κr(un+1
r + un

r ), (Îd − nr ⊗ nr)Cjr⟩
)

= |Ωj |pn
j

− βrun+1
r =

∑
j∈Cr

pn+1
j Cjr ∀r ∈ Vi

βrun+1
r =

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr ∀r ∈ Vb

(103)
In order to prove the stability of the scheme with Neumann boundary conditions with Crank-Nicolson

method, we will repeat the steps of the proof for the implicit scheme (Proposition 15) adapted as in
Proposition 23 for Crank-Nicolson method.

Proposition 25 (L2 Stability with Dirichlet boundary conditions). Let us make the assumption that
κrβr and κrβc

r are positive:
∀ x ∈ Ω, ⟨x, κrβrx⟩ > 0 ∀r ∈ Vi,b (104)
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and
∀ x ∈ Ω, ⟨x, κrβc

rx⟩ > 0 ∀r ∈ Vc (105)
Then the diffusion scheme with Crank-Nicolson method with no source (f(x, t) = 0) and homogeneous

Dirichlet boundary conditions (h(x) = 0) is unconditionally stable in L2 norm, which means the following
inequality stands

∥pn+1
h ∥L2(Ω) ≤ ∥pn

h∥L2(Ω) ∀ ∆t ≥ 0 (106)

Proof. The scheme with Crank-Nicolson method rewrites:

|Ωj |pn+1
j − ∆t

2
∑
r∈Vj

⟨(un+1
r + un

r ), κrCjr⟩ = |Ωj |pn
j

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr ∀r ∈ Vi,b

βc
run+1

r = −
∑
j∈Cr

pn+1
j Cjr ∀r ∈ Vc

(107)

Once again the proof of stability for this scheme is the same as the one for the implicit scheme
(Proposition 16) adapted as in Proposition 23 for Crank-Nicolson method.

5.2.2 Consistency

For the scheme with periodic boundary conditions and with Crank-Nicolson method, the consistency
errors are defined as follows 

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨un+ 1
2

r , κrCjr⟩

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

) (108)

Proposition 26 (Consistency of the periodic scheme with Crank-Nicolson method). Let us consider
the scheme (94) with no source (f(x, t) = 0) and periodic boundary conditions and the consistency
errors (108). There exists a constant C such that, if n∆t ≤ T

∥an
h∥L2(Ω) ≤ C(∆t2 + h) (109)

and
|||bn

h|||L2(Ω) ≤ Ch (110)

Proof. We have

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨un+ 1
2

r , κrCjr⟩

Let us consider Taylor’s expansion of pn
j and pn+1

j

pn
j = p

n+ 1
2

j − ∆t

2 ∂tp
n+ 1

2
j + O(∆t2)

and

pn+1
j = p

n+ 1
2

j + ∆t

2 ∂tp
n+ 1

2
j + O(∆t2)

Then
pn+1

j − pn
j

∆t
= ∂tp

n+ 1
2

j + O(∆t2)
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This time, let us consider Taylor’s expansion of ∂tpn
j and ∂tp

n+1
j

∂tpn
j = ∂tp

n+ 1
2

j − ∆t

2 ∂2
t p

n+ 1
2

j + O(∆t2)

and

∂tp
n+1
j = ∂tp

n+ 1
2

j + ∆t

2 ∂2
t p

n+ 1
2

j + O(∆t2)

Then
pn+1

j − pn
j

∆t
=

∂tp
n+1
j + ∂tpn

j

2 + O(∆t2)

Since pj is p evaluated on the center of the cell Ωj , one has

∂tp
n+1
j = 1

|Ωj |

∫
Ωj

∂tpn+1(x) dx + O(h)

= 1
|Ωj |

∫
Ωj

∇.κ(x)un+1(x) dx + O(h)

= 1
|Ωj |

∫
∂Ωj

⟨κ(x)un+1(x), nj⟩ dσ + O(h)

and
∂tpn

j = 1
|Ωj |

∫
∂Ωj

⟨κ(x)un(x), nj⟩ dσ + O(h)

Then we use the same manipulation of Cjr as in Proposition 17 and we obtain

∑
r∈Vj

⟨κrun+ 1
2

r , Cjr⟩ =
∑
l∈Cj

|∂Ωjl|
〈κ(x+

jl)un+ 1
2 (x+

jl) + κ(x−
jl)un+ 1

2 (x−
jl)

2 , njl

〉

where x+
jl and x−

jl are the ends of ∂Ωjl, the common face of Ωj and Ωl.

Therefore

an
j = O(∆t) + O(h) + 1

|Ωj |
∑
l∈Cj

〈∫
∂Ωjl

κ(x)un+ 1
2 (x) dσ − |∂Ωjl|

κ(x+
jl)un+ 1

2 (x+
jl) + κ(x−

jl)un+ 1
2 (x−

jl)
2 , njl

〉
Since the function under the integral is approximated by the trapezoidal rule, the error of integration

is O(h2), which means there exists a C > 0 such that∣∣∣〈 ∫
∂Ωjl

κ(x)un+1(x) dσ − |∂Ωjl|
κ(x+

jl)un+1(x+
jl) + κ(x−

jl)un+1(x−
jl)

2 , njl

〉∣∣∣ ≤ Ch2|∂Ωjl| ≤ Ch3

Dividing by |Ωj | and using the lower bound of (22), we obtain an
j ≤ C(∆t2 + h).

Therefore we have

∥an
h∥2

L2(Ω) =
∑
j∈C

|Ωj ||an
j |2 ≤ (C(∆t2 + h))2

⇒ ∥an
h∥L2(Ω) ≤ C(∆t2 + h)

Which gives us (109).

The consistency error bn
r is the same as in Proposition 17, therefore the consistency error is the same.

Thus we obtain (110) and that ends the proof.
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Let us now define the consistency error of the scheme with Neumann boundary conditions and Crank-
Nicolson method

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vi

j

⟨κrun+ 1
2

r , Cjr⟩ − 1
|Ωj |

∑
r∈Vb

j

⟨κrun+ 1
2

r , (Îd − nr ⊗ nr)Cjr⟩

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

)
∀r ∈ Vi

bn
r = 1

|Vr|

(
− βrun+1

r +
∑
j∈Cr

(pn+1
r − pn+1

j )Cjr

)
∀r ∈ Vb

(111)

Proposition 27 (Consistency with Neumann boundary conditions and Crank-Nicolson method). Let
us consider the scheme with no source (f(x, t) = 0) and homogeneous Neumann boundary conditions
(g(x) = 0) and the consistency errors (74). Then there exists a constant C such that, if n∆t ≤ T

∥an
h∥L2(Ω) ≤ C(∆t2 + h) (112)

and
|||bn

h|||L2(Ω) ≤ Ch (113)

Proof. The beginning of the proof is the same as for Proposition 18 replacing un+1
r with un+ 1

2
r .

Once we transformed the consistency error of (111) into (108), one has to follow the steps of Proposition 26
in order to prove (112) and (113).

Let us define the consistency errors of the scheme with Dirichlet boundary conditions and Crank-
Nicolson method 

an
j =

pn+1
j − pn

j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨un+ 1
2

r , κrCjr⟩

bn
r = 1

|Vr|

(
− βrun+1

r −
∑
j∈Cr

pn+1
j Cjr

)
∀r ∈ Vi,b

bn
r = 1

|Vr|

(
− βc

run+1
r −

∑
j∈Cr

pn+1
j Cjr

)
∀r ∈ Vc

(114)

Proposition 28 (Consistency with Dirichlet boundary conditions and Crank-Nicolson method). Let
us consider the scheme with no source (f(x, t) = 0) and homogeneous Dirichlet boundary conditions
(h(x) = 0) and the consistency errors (114). Then there exists a constant C such that, if n∆t ≤ T

∥an
h∥L2(Ω) ≤ C(∆t2 + h) (115)

and
|||bn

h|||L2(Ω) ≤ Ch (116)

Proof. The proof for the consistency error an
j is the same as in Proposition 26 and the one for bn

r is the
same as in Proposition 19. Therefore (115) and (116) are immediately proved.

5.2.3 Convergence

Let us use the same convergence errors as in Section 4.5 and the norm associated to them.
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Proposition 29 (Convergence of the periodic scheme with Crank-Nicolson method). Assume that p ∈
W 3,∞ and the periodic scheme with Crank-Nicolson method is consistent: (109)-(110) are verified. Assume
that ∆t ≤ 1 and there exists a constant α > 0 such that

∀x ∈ Ω, ∀r ∈ V, ⟨x, (κrβr)sx⟩ ≥ α|Vr|∥x∥2 (117)

with As the symmetric part of A defined in Definition 6.

Then the scheme (94) is convergent for all final time T > 0: there exist a constant C such that

∥en∥L2(Ω) ≤ C(∆t2 + h) (118)

Proof. By construction 
en+1

j − en
j

∆t
− 1

|Ωj |
∑
r∈Vj

⟨κrfn+ 1
2

r , Cjr⟩ = −an
j

βrfn+1
r +

∑
j∈Cr

Cjren+1
j = bn

r |Vr|
(119)

where fn+ 1
2

r = 1
2(fn+1

r + fn
r ).

We can multiply the first equation of (119) by ∆t|Ωj |en+ 1
2

j with e
n+ 1

2
j = 1

2 (en+1
j + en

j ) and sum it over
j ∈ C: ∑

j∈C
|Ωj |en+1

j e
n+ 1

2
j −

∑
j∈C

|Ωj |en
j e

n+ 1
2

j = ∆t
∑
j∈C

e
n+ 1

2
j

∑
r∈Vj

⟨κrfn+ 1
2

r , Cjr⟩ − ∆t
∑
j∈C

|Ωj |en+ 1
2

j an
j

1
2
∑
j∈C

|Ωj ||en+1
j |2 − 1

2
∑
j∈C

|Ωj ||en
j |2 = ∆t

∑
r∈V

⟨κrfn+ 1
2

r ,
∑
j∈Cr

e
n+ 1

2
j Cjr⟩ − ∆t

∑
j∈C

|Ωj |en+ 1
2

j an
j

We can now replace the sum in the scalar product with the second line of the equation (119)

∑
j∈C

|Ωj ||en+1
j |2 −

∑
j∈C

|Ωj ||en
j |2 = 2∆t

∑
r∈V

⟨κrfn+ 1
2

r ,
bn

r + bn−1
r

2 |Vr|⟩ − 2∆t
∑
r∈V

⟨κrfn+ 1
2

r , βrfn+ 1
2

r ⟩

−2∆t
∑
j∈C

|Ωj |en+ 1
2

j an
j

Thanks to Proposition 39 and the assumption (117), we know that there exists α > 0 such that

−2∆t
∑
r∈V

⟨κrfn+ 1
2

r , βrfn+ 1
2

r ⟩ = −2∆t
∑
r∈V

⟨fn+ 1
2

r , (κrβr)sfn+ 1
2

r ⟩ ≤ −2∆tα
∣∣∣∣∣∣∣∣∣fn+ 1

2

∣∣∣∣∣∣∣∣∣2
L2(Ω)

One can write
−2∆t

∑
j∈C

|Ωj |en+ 1
2

j an
j = −∆t

∑
j∈C

|Ωj |en+1
j an

j − ∆t
∑
j∈C

|Ωj |en
j an

j

and
2∆t

∑
r∈V

⟨κrfn+ 1
2

r ,
bn

r + bn−1
r

2 |Vr|⟩ = ∆t
∑
r∈V

⟨κrfn+ 1
2

r , bn
r |Vr|⟩ + ∆t

∑
r∈V

⟨κrfn+ 1
2

r , bn−1
r |Vr|⟩
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Young’s inequality gives us the following results:

−∆t
∑
j∈C

|Ωj |en+1
j an

j ≤ ∆t

2
∑
j∈C

|Ωj ||en+1
j |2 + ∆t

2
∑
j∈C

|Ωj ||an
j |2

−∆t
∑
j∈C

|Ωj |en
j an

j ≤ ∆t

2
∑
j∈C

|Ωj ||en
j |2 + ∆t

2
∑
j∈C

|Ωj ||an
j |2

∆t
∑
r∈V

|Vr|⟨fn+ 1
2

r , κrbn
r ⟩ ≤ ∆t

2 ε
∑
r∈V

|Vr|∥fn+ 1
2

r ∥2 + ∆t

2ε

∑
r∈V

|Vr|∥κrbn
r ∥2

∆t
∑
r∈V

|Vr|⟨fn+ 1
2

r , κrbn−1
r ⟩ ≤ ∆t

2 ε
∑
r∈V

|Vr|∥fn+ 1
2

r ∥2 + ∆t

2ε

∑
r∈V

|Vr|∥κrbn−1
r ∥2

Finally, we obtain the following inequation, with ε > 0

∥en+1∥2
L2(Ω) − ∥en∥2

L2(Ω) ≤ ∆tε
∣∣∣∣∣∣∣∣∣fn+ 1

2

∣∣∣∣∣∣∣∣∣2
L2(Ω)

+ ∆t
|||κ|||2Ω,∞

ε

|||bn|||2L2(Ω) +
∣∣∣∣∣∣bn−1

∣∣∣∣∣∣2
L2(Ω)

2 − 2∆tα
∣∣∣∣∣∣∣∣∣fn+ 1

2

∣∣∣∣∣∣∣∣∣2
L2(Ω)

+∆t∥an∥2
L2(Ω) + ∆t

2 ∥en∥2
L2(Ω) + ∆t

2 ∥en+1∥2
L2(Ω)

where |||κ|||2Ω,∞ = max
r∈V

|||κr|||∞ which is a discretization of the infinity norm defined in the statement of
the problem. Therefore the majoration of κ still holds with this discrete norm.

One can chose ε = 2α and rewrite

(
1 − ∆t

2

)
∥en+1∥2

L2(Ω) ≤
(

1 + ∆t

2

)
∥en∥2

L2(Ω) + ∆t
(

∥an∥2
L2(Ω) +

|||κ|||2Ω,∞

2α

|||bn|||2L2(Ω) +
∣∣∣∣∣∣bn−1

∣∣∣∣∣∣2
L2(Ω)

2

)
⇔ ∥en+1∥2

L2(Ω) ≤
(

1 − ∆t

2

)−1(
1 + ∆t

2

)
∥en∥2

L2(Ω) + ∆t
(

1 − ∆t

2

)−1(
∥an∥2

L2(Ω) +
|||κ|||2Ω,∞

2α

|||bn|||2L2(Ω) +
∣∣∣∣∣∣bn−1

∣∣∣∣∣∣2
L2(Ω)

2

)
Let us now use the method found in [17] in order to bound ∥en+1∥2

L2(Ω).

Thanks to the assumption that ∆t ≤ 1, then one has(
1 − ∆t

2

)
≥ 1

2 ⇒
(

1 − ∆t

2

)−1
≤ 2

Remark 16. Assuming that ∆t ≤ 1 is not a problem since we are considering the convergence of the
scheme when ∆t tends to 0 which means it will eventually be as small as we need it to be.

Moreover (
1 − ∆t

2

)−1(
1 + ∆t

2

)
=
(

1 − ∆t

2

)−1
+ ∆t

2

(
1 − ∆t

2

)−1

=
(

1 − ∆t

2 + ∆t

2

)(
1 − ∆t

2

)−1
+ ∆t

2

(
1 − ∆t

2

)−1

= 1 + ∆t
(

1 − ∆t

2

)−1

≤ 1 + 2∆t

Then the previous inequality on the error of convergence becomes

∥en+1∥2
L2(Ω) ≤ (1 + 2∆t)∥en∥2

L2(Ω) + 2∆t
(

∥an∥2
L2(Ω) +

|||κ|||2Ω,∞

2α

|||bn|||2L2(Ω) +
∣∣∣∣∣∣bn−1

∣∣∣∣∣∣2
L2(Ω)

2

)
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Using the consistency estimates (109)-(110), one can write

∥en+1∥2
L2(Ω) ≤ (1 + 2∆t)∥en∥2

L2(Ω) + 2∆t
(

C1(∆t2 + h)2 +
|||κ|||2Ω,∞

2α
C2h2

)
≤ (1 + 2∆t)∥en∥2

L2(Ω) + K ′∆t((∆t2 + h)2 + h2)
≤ (1 + 2∆t)∥en∥2

L2(Ω) + K∆t(∆t2 + h)2

where
K = 3K ′ = 2 max

(
2C1,

M

α
C2

)
with M the upper bound of |||κ|||Ω,∞.

Thanks to Grönwall’s lemma, we obtain

∥en+1∥2
L2(Ω) ≤

n−1∑
p=0

e2p∆tK∆t(∆t2 + h)2

Which means, for n∆t ≤ T
∥en∥2

L2(Ω) ≤ Q(∆t2 + h)2

where
Q = KTe2T

And that ends the proof.

Proposition 30 (Convergence with Neumann boundary conditions). Assume that p ∈ W 3,∞ and the
scheme with Neumann boundary and Crank-Nicolson method conditions is consistent: (112)-(113) are
verified. Assume there exists two constants α1, α2 > 0 such that

∀x ∈ Ω, ∀r ∈ Vi, ⟨x, (κrβr)sx⟩ ≥ α1|Vr|∥x∥ (120)

and
∀x ∈ Ω, ∀r ∈ Vb, ⟨x, (κr(Îd − nr ⊗ nr)βr)sx⟩ ≥ α2|Vr|∥x∥ (121)

with As the symmetric part of A defined in Definition 6.

Then the scheme with Neumann boundary conditions and Crank-Nicolson method is convergent for all
final time T > 0: there exists a constant C such that

∥en∥L2(Ω) ≤ C(∆t2 + h) (122)

Proof. In order to prove this proposition, let us repeat the steps of Proposition 21 adapting it to the
Crank-Nicolson method as in the proof of Proposition 29.

Proposition 31 (Convergence with Dirichlet boundary conditions). Assume that p ∈ W 3,∞ and the
scheme with Dirichlet boundary conditions and Crank-Nicolson method is consistent: (115)-(116) are
verified. Assume there exists two constants α1, α2 > 0 such that

∀x ∈ Ω, ∀r ∈ Vi,b, ⟨x, (κrβr)sx⟩ ≥ α1|Vr|∥x∥2 (123)

and
∀x ∈ Ω, ∀r ∈ Vc, ⟨x, (κrβc

r)sx⟩ ≥ α2|Vr|∥x∥2 (124)
with As the symmetric part of A defined in Definition 6.

Then the scheme with Dirichlet boundary conditions and Crank-Nicolson method is convergent for all
final time T > 0: there exists a constant C such that

∥en∥L2(Ω) ≤ C(∆t2 + h) (125)
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Proof. Once again to prove this proposition, one can repeat the steps of Proposition 22 adapting it to
the Crank-Nicolson method as in the proof of Proposition 29.

6 Hybrid face-node scheme
We saw in Section 7 that the nodal scheme has its limits in the case of Cartesian quad or triangle meshes:
that is when spurious modes appear. In order to fix that, we propose to use an hybrid scheme with fluxes
on both faces and nodes of the mesh. This way each cell will communicate with all of its neighbors.
Similar construction for the gradient at the middle of the faces can be found in [2, 3].

6.1 Space discretization
The idea is to get back to the integration of the continuous problem as seen in Section 3.1 and discretize
the gradient with a nodal and a face formulation.

|Ωj |∂tpj −
∫

∂Ωj

⟨κu, n⟩ dσ = |Ωj |fj

As a reminder in nodal formulation, we approached the gradient as follows:∫
∂Ωj

⟨κu, n⟩ dσ ≈
∑
r∈Vj

⟨κru(xr), Cjr⟩

We now introduce the gradient discretized at the faces:∫
∂Ωj

⟨κu, n⟩ dσ ≈
∑
l∈Fj

ℓl⟨κlu(xl), nl⟩

Knowing that F = F i ∪ Fb, and since κl = κ(xl) is symmetric, one has:∑
l∈Fj

ℓl⟨κlu(xl), nl⟩ =
∑
l∈Fi

j

ℓl⟨u(xl), κlnl⟩ +
∑
l∈Fb

j

ℓl⟨u(xl), κlnl⟩ (126)

In the case of a periodic domain, there are no boundary conditions to the problem (ie. Fb = ∅). We
will study the boundaries of the domain for different boundary conditions later in this section.

In order to approach u(xl), let us introduce j1,2, the indices of the cells that share the face l. We
consider Taylor’s expansion of p at the points xj1 and xj2 :

p(xj1) = p(xl) + ⟨u(xl), xj1 − xl⟩ + O(h2)
p(xj2) = p(xl) + ⟨u(xl), xj2 − xl⟩ + O(h2)

Then
⟨u(xl), xj1 − xj2⟩ = p(xj1) − p(xj2) + O(h2) (127)

Now we have a formula for u(xl) in the direction xj1 −xj2 and we want one in the orthogonal direction.

In order to approach u(xl) in the direction (xj1 − xj2)⊥, let us define an approximation of u(xl):

⟨u(xl), (xj1 − xj2)⊥⟩ ≈ ⟨
∑
r∈Vl

u(xr)
2 , (xj1 − xj2)⊥⟩ (128)

Then the approximation of u at the point xl is entirely defined.

Let us now introduce (αl, δl) ∈ R2 such that

κlnl = αl(xj1 − xj2)⊥ + δl(xj1 − xj2)
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Then from (128) and (127)

⟨u(xl), κlnl⟩ = αl⟨u(xl), (xj1 − xj2)⊥⟩ + δl⟨u(xl), xj1 − xj2⟩

≈ αl

∑
r∈Vl

⟨u(xr)
2 , (xj1 − xj2)⊥⟩ + δl(p(xj1) − p(xj2))

Finally, the face flux for the hybrid scheme writes

⟨ul, κlnl⟩ = αl

∑
r∈Vl

⟨ur

2 , (xj1 − xj2)⊥⟩ + δl(pj1 − pj2) (129)

One can combine the nodal flux from Section 3.1 and the face flux from (129) with a coefficient
λ ∈ [0, 1] in order to build the semi-discrete hybrid scheme on a periodic domain:

|Ωj |∂tpj − λ
∑
l∈Fi

j

ℓl⟨ul, κlnl⟩ − (1 − λ)
∑
r∈Vi

j

⟨κrur, Cjr⟩ = |Ωj |fj

⟨ul, κlnl⟩ = αl

∑
r∈Vi

l

⟨ur

2 , (xj1 − xj2)⊥⟩ + δl(pj1 − pj2) ∀ l ∈ F i

βrur = −
∑
j∈Cr

pjCjr ∀ r ∈ Vi

(130)

As a reminder, j1 and j2 are the indices of the cells that share the face l as one can see in Figure 11.
Since the face l belongs to the cells Ωj , Ωj1 and Ωj2 , one has Ωj = Ωj1 or Ωj = Ωj2 . We chose Ωj = Ωj2

so that the vector xj2xj1 is in the same direction as nl, thus αl and δl are positive.

xr2 •

xr1
•

xj1•
xj2•

l

nl

Ωj

Figure 11: Construction of the flux at the face l

Remark 17. For the nodal flux solver to be well posed, we need the matrix βr to be invertible, which will
bring some conditions on the mesh. These conditions are given in Section 3.4.

Remark 18. What is interesting with the hybrid scheme when λ = 1 is that on Cartesian meshes and
when κ = Id, it degenerates towards the most intuitive scheme with fluxes at the faces, named TPFA [12],
which we know is order 2 in space and even preserves the maximum principle.
Indeed, on Cartesian meshes the vector xj1 − xj2 has the same direction as nl, therefore the scalar
product of ul with (xj1 − xj2)⊥ disappears. We are then left with the most intuitive gradient formula:
⟨ul, nl⟩ = pj1 − pj2 .
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Remark 19. The choice of λ is not obvious. Ideally we would like to chose λ << 1 so that the scheme
stays as close as possible from the original nodal solver, with some of the fluxes that pass through the
faces. We would like for the hybrid scheme to correct the issues encountered with the nodal scheme
(spurious modes).
Unfortunately, even though we have good reasons to believe that the hybrid scheme will be efficient with
λ = 1, we have no certainty that it will work for 0 < λ < 1. That is why we will implement the method
in a way that makes it possible to chose λ ∈ [0, 1] and make numerical tests to determine which are a
sufficient value for λ.

6.2 Boundary conditions
Let us now build the hybrid scheme with Neumann and Dirichlet boundary conditions. As a reminder,
working with Neumann or Dirichlet boundary conditions leads to adding respectively (131) or (132) to
the problem:

κ(x)u(x, t).nΓ = g(x, t) ∀ x ∈ Γ, t ∈ [0, T ] (131)
p(x, t) = h(x, t) ∀ x ∈ Γ, t ∈ [0, T ] (132)

6.2.1 Neumann boundary conditions

Let us get back to the first equation of (130) with λ = 1 so that the nodal flux disappears since we
already built its boundary conditions in Section 3.2:

|Ωj |∂tpj −
( ∑

l∈Fi
j

ℓl⟨ul, κlnl⟩ +
∑
l∈Fb

j

ℓl⟨ul, κlnl⟩
)

= |Ωj |fj

⇔ |Ωj |∂tpj −
∑
l∈Fi

j

ℓl⟨ul, κlnl⟩ = |Ωj |fj +
∑
l∈Fb

j

ℓlgl

where gl = g(xl, t) which is given in the statement of the problem.

Therefore the semi-discrete hybrid scheme with Neumann boundary conditions writes, for λ = 1:

|Ωj |∂tpj −
∑
l∈Fi

j

ℓl⟨ul, κlnl⟩ = |Ωj |fj +
∑
l∈Fb

j

ℓlgl

⟨ul, κlnl⟩ = αl

∑
r∈Vl

⟨ur

2 , (xj1 − xj2)⊥⟩ + δl(pj1 − pj2) ∀ l ∈ F i

βrur = −
∑
j∈Cr

pjCjr ∀ r ∈ Vi

βrur =
∑
j∈Cr

(pr − pj)Cjr ∀r ∈ Vb

(133)

where

• pr = θ−1
r

( ∑
j∈Cr

θjrpj + gr

∥κrnr∥

)
;

• θjr = ⟨β−1
r Cjr, vr⟩;

• vr = κrnr

∥κrnr∥
.

Remark 20. We do not have to consider r ∈ Vc since when l ∈ Fb, we immediately replace ⟨ul, κlnl⟩ by
the Neumann boundary condition gl and on the other hand when l ∈ F i, Vl ∩ Vc = ∅.
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6.2.2 Dirichlet boundary conditions

With Dirichlet boundary conditions, we saw earlier in Section 3.2.2 that the nodal flux writes as follows

βrur =
∑
j∈Cr

(hr − pj)Cjr ∀r ∈ Vb (134)

with hr = h(xr) which is given in the statement.

Let us consider the second equation of the scheme (130) and inject ur from (134) in it.

⟨ul, κlnl⟩ = αl

∑
r∈Vb

l

⟨1
2β−1

r

∑
k∈Cr

(hr − pk)Ckr, (xl − xj2)⊥⟩ + δl(pl − pj2) (135)

Since we consider the boundary of the domain, the point xj1 does not exist anymore, it would be
outside the domain. Therefore we chose xl, which is the middle of the face l, to replace it.

As the boundary values for Dirichlet boundary conditions are known at the vertices of the boundary
in the code, one can approximate pl as follows

pl = hl =
∑
r∈Vl

hr

2 ∀ l ∈ Fb

Therefore the semi-discrete hybrid scheme with Dirichlet boundary conditions writes, with λ = 1

|Ωj |∂tpj −
∑
l∈Fj

ℓl⟨ul, κlnl⟩ = |Ωj |fj

⟨ul, κlnl⟩ = αl

∑
r∈Vl

⟨ur

2 , (xj1 − xj2)⊥⟩ + δl(pj1 − pj2) ∀ l ∈ F i

⟨ul, κlnl⟩ = αl

∑
r∈Vb

l

⟨ur

2 , (xl − xj2)⊥⟩ + δl(hl − pj2) ∀ l ∈ Fb

βrur = −
∑
j∈Cr

pjCjr ∀ r ∈ Vi

βrur =
∑
j∈Cr

(hr − pj)Cjr ∀ r ∈ Vb

βc
rur =

∑
j∈Cr

(hr − pj)Cjr ∀ r ∈ Vb

(136)
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6.2.3 Mixed boundary conditions

The semi-discrete hybrid scheme for mixed boundary conditions with λ = 1 is directly built from the
schemes (133) and (136):

|Ωj |∂tpj −
( ∑

l∈Fi
j

ℓl⟨ul, κlnl⟩ +
∑

l∈FD,b
j

ℓl⟨ul, κlnl⟩
)

= |Ωj |fj +
∑

l∈FN,b
j

ℓlgl

⟨ul, κlnl⟩ = αl

∑
r∈Vl

⟨ur

2 , (xj1 − xj2)⊥⟩ + δl(pj1 − pj2) ∀ l ∈ F i

⟨ul, κlnl⟩ = αl

∑
r∈Vb

l

⟨ur

2 , (xl − xj2)⊥⟩ + δl(hn+1
l − pn+1

j2
) ∀ l ∈ FD,b

βrur = −
∑
j∈Cr

pjCjr ∀ r ∈ Vi

βrur =
∑
j∈Cr

(pr − pj)Cjr ∀r ∈ VN,b

βrur =
∑
j∈Cr

(hr − pj)Cjr ∀r ∈ VD,b

βc
rur =

∑
j∈Cr

(hr − pj)Cjr ∀r ∈ VD,c

(137)

where

• pr = θ−1
r

( ∑
j∈Cr

θjrpj + gr

∥κrnr∥

)
;

• θjr = ⟨β−1
r Cjr, vr⟩;

• vr = κrnr

∥κrnr∥
.

6.3 Time discretization
In order to discretize the scheme in time, let us use the same method as in Section 3.3 which is the
backward Euler method (or implicit Euler method). Let us reuse the time step ∆t > 0, such that
tn = n∆t ≤ T , with T the final time.

The hybrid scheme writes, for periodic boundary conditions

|Ωj |
pn+1

j − pn
j

∆t
− λ

∑
l∈Fi

j

ℓl⟨un+1
l , κlnl⟩ − (1 − λ)

∑
r∈Vj

⟨κrun+1
r , Cjr⟩ = |Ωj |fj

⟨un+1
l , κlnl⟩ = αl

∑
r∈Vl

⟨un+1
r

2 , (xj1 − xj2)⊥⟩ + δl(pn+1
j1

− pn+1
j2

) ∀ l ∈ F i

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr ∀ r ∈ Vi

(138)

In the rest of the section, for the sake of clarity we will consider that λ = 1, which leads to the
disappearance of the nodal part in the first equation of the scheme.
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For Neumann boundary conditions one has

|Ωj |
pn+1

j − pn
j

∆t
−
∑
l∈Fi

j

ℓl⟨un+1
l , κlnl⟩ = |Ωj |fj +

∑
l∈Fb

j

ℓlg
n+1
l

⟨un+1
l , κlnl⟩ = αl

∑
r∈Vl

⟨un+1
r

2 , (xj1 − xj2)⊥⟩ + δl(pn+1
j1

− pn+1
j2

) ∀ l ∈ F i

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr ∀ r ∈ Vi

βrun+1
r =

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr ∀r ∈ Vb

(139)

where

• pn+1
r = θ−1

r

( ∑
j∈Cr

θjrpn+1
j + gn+1

r

∥κrnr∥

)
;

• θjr = ⟨β−1
r Cjr, vr⟩;

• vr = κrnr

∥κrnr∥
.

And for Dirichlet boundary conditions:

|Ωj |
pn+1

j − pn
j

∆t
−
∑
l∈Fj

ℓl⟨un+1
l , κlnl⟩ = |Ωj |fj

⟨un+1
l , κlnl⟩ = αl

∑
r∈Vl

⟨un+1
r

2 , (xj1 − xj2)⊥⟩ + δl(pn+1
j1

− pn+1
j2

) ∀ l ∈ F i

⟨un+1
l , κlnl⟩ = αl

∑
r∈Vb

l

⟨un+1
r

2 , (xl − xj2)⊥⟩ + δl(hn+1
l − pn+1

j2
) ∀ l ∈ Fb

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr ∀ r ∈ Vi

βrun+1
r =

∑
j∈Cr

(hn+1
r − pn+1

j )Cjr ∀r ∈ Vb

βc
run+1

r =
∑
j∈Cr

(hn+1
r − pn+1

j )Cjr ∀r ∈ Vc

(140)
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Finally, for mixed boundary conditions the implicit hybrid scheme writes:

|Ωj |
pn+1

j − pn
j

∆t
−
( ∑

l∈Fi
j

ℓl⟨un+1
l , κlnl⟩ +

∑
l∈FD,b

j

ℓl⟨un+1
l , κlnl⟩

)
= |Ωj |fj +

∑
l∈FN,b

j

ℓlg
n+1
l

⟨un+1
l , κlnl⟩ = αl

∑
r∈Vl

⟨un+1
r

2 , (xj1 − xj2)⊥⟩ + δl(pn+1
j1

− pn+1
j2

) ∀ l ∈ F i

⟨un+1
l , κlnl⟩ = αl

∑
r∈VD,b

l

⟨un+1
r

2 , (xl − xj2)⊥⟩ + δl(hn+1
l − pn+1

j2
) ∀ l ∈ FD,b

βrun+1
r = −

∑
j∈Cr

pn+1
j Cjr ∀ r ∈ Vi

βrun+1
r =

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr ∀r ∈ VN,b

βrun+1
r =

∑
j∈Cr

(hn+1
r − pn+1

j )Cjr ∀r ∈ VD,b

βc
run+1

r =
∑
j∈Cr

(hn+1
r − pn+1

j )Cjr ∀r ∈ VD,c

(141)

where

• pn+1
r = θ−1

r

( ∑
j∈Cr

θjrpn+1
j + gn+1

r

∥κrnr∥

)
;

• θjr = ⟨β−1
r Cjr, vr⟩;

• vr = κrnr

∥κrnr∥
.

7 Numerical results
Let us consider the following problem:

Find p such that 
∂tp(x, t) − ∇.(κ(x)u(x, t)) = f(x, t) ∀ x ∈ Ω, t ∈ [0, T ]

p(x, 0) = p0(x) ∀ x ∈ Ω
κ(x)u(x, t).nΓ = g(x, t) ∀ x ∈ ΓD, t ∈ [0, T ]

p(x, t) = h(x, t) ∀ x ∈ ΓN , t ∈ [0, T ]

(142)

where ΓN and ΓD represent the boundaries of Ω with respectively Neumann and Dirichlet boundary
conditions.

We chose to study the convergence of the scheme on the domain Ω = [0, 1] × [0, 1] discretized with
four non-cartesian meshes of quads, going from N = 10 cells per side to N = 80. We chose T = 1 as final
time. As we consider the backward Euler method, let us chose ∆t = a × h2, with h = 1

N the space step.
We chose a = 10 so that the time step does not become too small when we refine the mesh.

We shall study the L2 error of the scheme at the time T , calculated as follows

Err =
(∫

Ω
|pex(x, T ) − ph(x, T )|2 dx

) 1
2

where the exact solution pex is given for each test-case. The boundary condition and the source are
constructed using this exact solution, this way we do not need the computer to calculate a reference
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solution of the problems.

In this section, non Cartesian meshes of quads are made from Cartesian meshes in which the position
of the vertices is randomly shifted of a length between 0 and h. We obtain a mesh of quadrangular cells
that one can see on Figure 12b, with 20 cell per side.

(a) Example of Cartesian mesh of squares (b) Non Cartesian mesh of quadrangles

Figure 12: Randomization of a mesh for N = 20 cell per side

7.1 Stationary solutions
7.1.1 Linear solution

Let us consider the following linear solution

p(x, t) = 5x + y + 2 (143)

with a constant diffusion coefficient κ = Id.

Then we have

f(x, t) = 0 and

 g(x, t) =
(

5
1

)
.nΓ ∀ x ∈ ΓN

h(x, t) = 5x + y + 2 ∀ x ∈ ΓD

The convergence order of the scheme with Neumann boundary conditions is not given here because
the scheme is exact for this type of solution. As stated in Proposition 13 the scheme is not exact for
Dirichlet and mixed boundary conditions here because there are corners with a unique cell in our mesh.
Therefore one can see on Figure 13 that for Dirichlet and mixed boundary conditions the numerical order
of convergence in space is 2.

7.1.2 Trigonometric solution

Let us consider the following stationary solution

p(x, t) = sin(πx) sin(πy) (144)

with a constant diffusion coefficient κ = Id.
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Figure 13: Convergence graph of the linear solution (143) at T = 1

Then we have

f(x, t) = 2π sin(πx) sin(πy) and

 g(x, t) =
(

π cos(πx) sin(πy)
π sin(πx) cos(πy)

)
.nΓ ∀ x ∈ ΓD

h(x, t) = sin(πx) sin(πy) ∀ x ∈ ΓN

One can see on Figure 14 that for every boundary condition the numerical order of convergence in
space is 2.

Figure 14: Convergence graph of the constant solution (144) at T = 1

Let us now represent the trigonometric solution (144) and its diagonal section on an annulus of center
O = (1, 1) and radius R = 1. The solution is approximated with Neumann boundary conditions. This
way we can verify the definition of the normal nr at the “angle” nodes from Definition 10. The formula
for the normal at the “angles” is given in remark 8. With this test, we want to verify that this formula
is true when three adjacent points of the boundary are not aligned and when they do not form a right
angle. As one can see on Figure 15 the solution and its diagonal section on the annulus are correct. Thus
the formula for nr at the angles is verified in that case.

Remark 21. Note that the linear solution (143) was also tested on this domain and the scheme gave the
exact solution for Neumann and Dirichlet boundary conditions. For Dirichlet boundary conditions this
result is explained by the fact that there are no “corner” nodes that belong to only one cell in that mesh,
thus there is no approximation of βr at the corner nodes that breaks the exactness of the scheme. More-
over this result shows that the definition of nr at the “angle” nodes preserves the exactness of the scheme.



59 7 NUMERICAL RESULTS

(a) Allure of the solution (b) Diagonal section of the solution

Figure 15: Solution (144) on an annulus mesh of quads

7.2 Non stationary solutions
For this section we found the two following test-cases in Andrei D. Polyanin’s Handbook of linear partial
differential equations [18].

7.2.1 Linear solution

Let us consider the following stationary solution

p(x, t) = Ax2 + By2 + 2(A + B)t (145)

with a constant diffusion coefficient κ = Id and A = 2, B = 1.

Then we have

f(x, t) = 0 and

 g(x, t) =
(

2Ax
2By

)
.nΓ ∀ x ∈ ΓD

h(x, t) = Ax2 + By2 + 2(A + B)t ∀ x ∈ ΓN

Once again the numerical order of convergence in space is 2 for every boundary conditions as one can
see on Figure 16.

7.2.2 Non-linear solution

Let us consider the following stationary solution

p(x, t) = Ae−µx−λy cos(µx − 2µ2t + C1) sin(λy − 2λ2t + C2) (146)

with a constant diffusion coefficient κ = Id and A = 2, C1 = λ = 1, C2 = 1.5 and µ = 0.5.

Then we have
f(x, t) = 0

and g(x, t) =
(

−µAe−µx−λy cos(λy − 2λ2t + C2)
(

cos(µx − 2µ2t + C1) + sin(µx − 2µ2t + C1)
)

−λAe−µx−λy cos(µx − 2µ2t + C1)
(

cos(λy − 2λ2t + C2) + sin(λy − 2λ2t + C2)
)) .nΓ ∀ x ∈ ΓD

h(x, t) = Ae−µx−λy cos(µx − 2µ2t + C1) sin(λy − 2λ2t + C2) ∀ x ∈ ΓN



60 7 NUMERICAL RESULTS

Figure 16: Convergence graph of the linear unstationary solution (145) at T = 1

Once again the numerical order of convergence in space is 2 for every boundary conditions as one can
see on Figure 17.

Figure 17: Convergence graph of the non linear unstationary solution (146) at T = 1

7.3 Non-constant and tensorial diffusion coefficient
Let us now consider the following solution

p(x, t) = t + sin(πx) sin(πy) (147)

With a diffusion coefficient that depends on space:

κ(x) =
(

cos2(x + y) + 2 sin2(x + y) − cos(x + y) sin(x + y)
− cos(x + y) sin(x + y) sin2(x + y) + 2 cos2(x + y)

)
(148)

Remark 22. Note that κ = ODOt with 0 an orthogonal matrix and D a diagonal matrix defined as
follows

O =
(

cos(x + y) − sin(x + y)
sin(x + y) cos(x + y)

)
and D =

(
1 0
0 2

)
This way, κ has for eigenvalues 1 and 2, thus it is positive. Moreover it is symmetric and bounded:

|||κ(x)|||∞ = max(| cos2(x+y)+2 sin2(x+y)|+ |− cos(x+y) sin(x+y)|, | cos(x+y) sin(x+y)|+ | sin2(x+
y) + 2 cos2(x + y)|) ≤ 4, thus |||κ|||Ω,∞ = max

x∈Ω
(|||κ(x)|||∞) ≤ 4.
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Then we can build the second member and the boundary conditions

f(x, t) = 1 + 3π2 sin(πx) sin(πy) − π cos(πx) sin(πy)(2 cos(x + y) sin(x + y) + sin2(x + y) − cos2(x + y))
+2π2 cos(πx) cos(πy) cos(x + y) sin(x + y) + π sin(πx) cos(πy)(sin2(x + y)

− cos2(x + y) − 2 sin(x + y) cos(x + y))

and  g(x, t) = κ(x)
(

π cos(πx) sin(πy)
π sin(πx) cos(πy)

)
.nΓ ∀ x ∈ ΓD

h(x, t) = t + sin(πx) sin(πy) ∀ x ∈ ΓN

One can see on Figure 18 that the numerical order of convergence in space is 2 for every boundary
conditions. Note that the Dirichlet and mixed boundary conditions graphs are overlaid on each other.

Figure 18: Convergence graph of the solution (147) with a diffusion coefficient that depends on space at
T = 1

7.4 Crank-Nicolson method
Thanks to Crank-Nicolson method, the time order of error of the scheme is supposed to be the same as
its space order (Order 2). Let us see if this property is numerically verified.

Let us chose ∆t ≈ h and study the L2 errors of the solutions on meshes going from N = 10 to 160
cells per side.

In this section, we will use the solutions mentioned earlier and their corresponding boundary condi-
tions, defined above.

First of all with the linear stationary solution

p(x, t) = 5x + y + 2 (149)

with a constant diffusion coefficient κ = Id, the scheme with Neumann boundary conditions is exact,
so we represent its convergence order with Dirichlet and mixed boundary conditions. One can see on
Figure 19 that the convergence graph tends to the order 2.

Let us continue with another stationary solution, but this time trigonometric:

p(x, t) = sin(πx) sin(πy) (150)
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Figure 19: Convergence graph for the linear solution (149)

Figure 20: Convergence graph for the trigonometric solution (150)

with a constant diffusion coefficient κ = Id.

Once again, as expected order 2 is found in time and space on Figure 20.
Let us now consider the following unstationary linear solution

p(x, t) = Ax2 + By2 + 2(A + B)t (151)

with a constant diffusion coefficient κ = Id and A = 2, B = 1.

One has order 2 in time and space as one can see on Figure 21.

For the second unstationary solution, we will study:

p(x, t) = Ae−µx−λy cos(µx − 2µ2t + C1) sin(λy − 2λ2t + C2) (152)

with a constant diffusion coefficient κ = Id and A = 2, C1 = λ = 1, C2 = 1.5 and µ = 0.5.

One has order 2 in time and space as one can see on Figure 22.

Finally, let us consider another unstationary solution

p(x, t) = t + sin(πx) sin(πy) (153)

with a diffusion coefficient that depends on space:

κ(x) =
(

cos2(x + y) + 2 sin2(x + y) − cos(x + y) sin(x + y)
− cos(x + y) sin(x + y) sin2(x + y) + 2 cos2(x + y)

)
(154)

Once again order 2 is found in time and space on Figure 23.
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Figure 21: Convergence graph for the unstationary linear solution (151)

Figure 22: Convergence graph for the unstationary trigonometric solution (152)

Figure 23: Convergence graph for the solution with a non constant κ (153)

7.5 Spurious modes
As it is done in [5], let us study the scheme on Cartesian mesh. In that case the fluxes Cjr point in the
direction of the diagonals of the square Ωj , therefore the adjacent cells are not impacted by Ωj , only the
diagonal ones are.

We can easily spot this problem by choosing a Dirac mass for initial condition. In Figure 24a we see
the initialization of the problem where only the center cell Ωj is non-null. Let us chose the following
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initial condition:
p0(x) = 100 × 1x∈Ωj

with homogeneous Neumann boundary conditions, on a Cartesian mesh with 21 cell per side.

With this initial data we should obtain the fundamental solution of the heat equation. Its formula is
given in [18].

However as one can see on Figure 24b, spurious modes appear immediately at the beginning of the
simulation and they only fade away when the non-null values reach the boundary of the domain.

(a) Initialization (b) T = 0.14

Figure 24: Spurious mode on a Cartesian mesh

Let us now study the same problem on a non Cartesian mesh.

The initialization is the same as for the Cartesian mesh, but on Figure 25b to Figure 25d, notice that
the situation is fixed quickly (after about 6 time iterations).

Another way to fix this problem is given in [5].

It consists in slightly changing the definition of Cjr: one does not consider the middle of the edges
(xr−1, xr) and (xr, xr+1) called respectively xr− 1

2
and xr+ 1

2
but points shifted by ±α where α = 1

6 h with
h the length of each edge. The choice of point on an edge must be the same for two cells having the edge
in common. Then for quadrangular meshes there are 16 groups of Cjr that can be chosen.

In practice let (a, b) ∈ { 1
3 , 2

3 }2. Let us now redefine the middle of the edges: xr− 1
2

becomes xr +
a(xr−1 − xr) and xr+ 1

2
becomes xr + b(xr+1 − xr). This way the two following identities are preserved

inside the domain ∑
j∈Cr

Cjr = 0 and
∑
r∈Vj

Cjr = 0 (155)

Finally the scheme is defined by the average over the four choices for (a, b).

7.6 Triangle meshes
After studying this scheme on a square domain with meshes of quads, we are interested in testing the
method on meshes of triangles. To do so, we will consider the following meshes of triangles, cartesian
and random. Note that for the Cartesian mesh, the corner cells are quads in order to avoid the forbidden
mesh seen on Figure 7.
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(a) Initialization (b) T = 0.04

(c) T = 0.07 (d) T = 0.14

Figure 25: Spurious mode on a non-Cartesian mesh

In this section the solutions are represented at the time T = 10 with a constant time step of ∆t = 0.1.
Tests have been made and reducing the time step at every refinement of the mesh doesn’t impact the
convergence order, hence we chose to keep ∆t constant so that the computation time doesn’t explode for
the finest mesh.

The domain remains the same as presented in the introduction of the section, such as the L2 error
formula.

7.6.1 Linear solutions

Let us once again consider the linear solution (143):

p(x, t) = 5x + y + 2 (156)

with a constant diffusion coefficient κ = Id and the same second member and boundary conditions as in
Section 7.1.1.

In this case the scheme is exact, therefore we won’t calculate its order of convergence but one can see
its L2 error on different meshes and for different boundary conditions on Table 1.

Remark 23. At the first iteration the errors are on a 10−15 scale which is the machine precision. The
slight augmentation of this error at the final time is due to approximations errors at every time step. We
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(a) Cartesian left triangle mesh (b) Cartesian alternated triangle mesh

(c) Random triangle mesh

Figure 26: Examples of triangle meshes for N = 20 triangles per side

Cartesian left triangles Cartesian alternated triangles Random triangles
Dirichlet BC 1.95 × 10−14 4.3 × 10−13 9.3 × 10−14

Neumann BC 1.2 × 10−13 3.89 × 10−13 1.41 × 10−13

Mixed BC 5.83 × 10−14 3.96 × 10−13 6.33 × 10−14

Table 1: L2 error of the linear solution at T = 10 for N = 20 cell per side

can still assert that the scheme is exact in this case.

7.6.2 Quadratic solution

Let us consider the quadratic solution:
p(x, t) = x2 − y2 (157)

In Figure 27, one can see that the quadratic solution is very well approximated by the scheme as the
horizontal sections on the left sided triangle and the random triangle meshes show. Indeed the approxi-
mation and the exact solution overlay each other, and the final error with Dirichlet boundary conditions
and T = 10 is of order 10−4, which is satisfying.
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(a) Cell value on the left-sided triangle mesh - N = 80 (b) Horizontal section on the left-sided triangle mesh

(c) Cell value on the random triangle mesh - N = 80 (d) Horizontal section on the random triangle mesh

Figure 27: Allure of the solution (157) and its horizontal section at T = 10 with N = 80

7.6.3 Trigonometric solution

Let us now consider the trigonometric solution

p(x, t) = sin(πx) sin(πy) (158)

with a constant diffusion coefficient κ = Id.

Once again the second member and the boundary conditions are the same as in Section 7.1.2.

In the first place, let us observe the solution obtained on a Cartesian mesh with alternated or left-
sided triangles and Dirichlet Boundary conditions. One can see on Figure 28a and Figure 28b that
some kind of spurious modes appear even though the initial condition is regular (in opposition with the
spurious modes on the quad mesh, where the initial condition had to be a Dirac mass for them to appear).

Let us consider the average solution at the nodes of the mesh, calculated with the values of their
neighbour cells. To do so we use a median dual mesh on which the center of each cell corresponds to the
nodes of the primal mesh. The solutions obtained can be seen on Figure 28c and Figure 28d. On that
new mesh the spurious modes disappear.

Refining the solution on a mesh of N = 80 cell per side makes the spurious modes fade away in the
case of the alternated triangles (see Figure 28e), but it worsens them on the refined left sided triangles
mesh (Figure 28f).
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(a) Cell value on the alternated triangle mesh - N = 20 (b) Cell value on the left-sided triangle mesh - N = 20

(c) Node mean-value on the alternated triangle dual
mesh - N = 20

(d) Node mean-value on the left-sided triangle dual
mesh - N = 20

(e) Cell value on the alternated triangle mesh - N = 80 (f) Cell value on the left-sided triangle mesh - N = 80

Figure 28: Allure of the solution (158) on the cells and its node mean-value at T = 10

On Figure 29a and Figure 29b one can see the shape of the solutions on the horizontal section of the
domain {x = [0, 1], y = 0.5}. The solution on the alternated triangle mesh is almost overlaid with the
exact solution while on the left sided triangles mesh the approximated solution has a completely different
shape from the exact solution.
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(a) Alternated triangle mesh

(b) Left sided triangle mesh

Figure 29: Horizontal section of the solution (158) at T = 10 with N = 80

Remark 24. In order to explain this result, let us first redefine the node values βr. In the particular case
of a Cartesian triangle mesh, one can rewrite βr = |Vr|Id. Vr is defined in Definition 11 and can be seen
in Figure 30 in the particular case of the Cartesian left-sided triangle mesh.
This new writing of βr comes from Proposition 7 where we stated that

βr = |Vr|Id + P

where

• P =
∑
j∈Cr

1
2

(
v⊥

j+ 1
2

⊗ vj+ 1
2

− w⊥
j− 1

2
⊗ wj− 1

2

)
• wj− 1

2
= xj − xj− 1

2

• vj+ 1
2

= xj+ 1
2

− xj

• Id is the identity matrix.

In the Cartesian meshes of triangles, one has vj+ 1
2

= wj+ 1
2
, therefore the terms of P cancel each other

two by two. We are left with P = 0 and we retrieve the new definition of βr.

Tanks to this new definition, it is immediate to see that the flux between some cells that share an
edge in a Cartesian triangle mesh is null in the case of an isotropic diffusion coefficient (take κr = λId

for example). Indeed, as one can see in Figure 30, Cjr and Ckr are orthogonal, therefore the flux in the
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matrix M is null between the cell j and k:

(M i)jk = −
∑

r∈Vi
jk

⟨κrβ−1
r Ckr, Cjr⟩ = −

∑
r∈Vi

jk

λ

|Vr|
⟨Ckr, Cjr⟩ = 0

The same phenomenon appears at the boundary of the mesh where some cells aren’t impacted by the
boundary condition at one of their nodes that is on the boundary.

Vr

xr1
•

• • xr2
•

•

•••

•

□

xk
□

xj
□

xi
□

□

□

• xj+ 1
2•

xj− 1
2

•

••

Cjr1

Ckr1

Cjr2

Ckr2

Figure 30: Control volume Vr on a left-sided triangle mesh and orthogonal Cjr’s

Finally, let us observe the convergence graphs of the scheme on the primal (cell value) and the dual
(node mean-value) meshes. On Figure 31a one can see that on a mesh with alternated triangles the
L2 error of the solution with Dirichlet or Neumann boundary conditions are the same. The order of
convergence is 2 with the cell values and the node mean-values, even though the average solution at the
nodes is six to sixty times more precise than the cell value one.
On the other hand, on the left-sided triangle mesh of Figure 31b, the cell value solution converges with an
order 1 towards the exact solution (for Neumann and Dirichlet Boundary conditions), while the average
value at the nodes converges with an order between 1.5 and 2 for the Dirichlet boundary conditions and
2 with the Neumann ones.

Let us now study the same solution on the random triangle mesh.

One can see on Figure 32a that the solution on the random triangle mesh presents a lot of incorrect
patterns. However when we consider the mean value of the solution at the nodes it seems to be better.
On this figure the solution is represented with Neumann boundary conditions but the result is the same
with Dirichlet ones.

Let us now focus on the convergence graph of this problem with Neumann and Dirichlet boundary
conditions. One can see on Figure 32c that the order of convergence of the solution with Dirichlet bound-
ary conditions is 1 and the one for Neumann boundary conditions is 1.4.

As one can see on Figure 33a the solution on the refined mesh (N = 80 cell per side of the domain) still
presents the same patterns as in Figure 32a. Therefore even though it converges with an order 1.4, the
solution on a refined mesh is not smooth and the conclusion is the same for Dirichlet boundary conditions.

One can see the difference between the nodal scheme on a triangle mesh, the same scheme on a random
quad mesh and the Diamond scheme on a the same triangle mesh represented in Figure 33b and Fig-
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(a) Alternated triangle mesh

(b) Left-sided triangle mesh

Figure 31: L2 error graphs for the solution (158)

ure 33c. The irregularities of the solution only appear in the case of the triangle mesh for the nodal scheme.

The convergence graphs of these three problems is presented in Figure 33d. The order of convergence
of the Diamond scheme on triangles and the Nodal scheme on quads is 2 while it is 1 for the Nodal scheme
on triangles.

On Figure 34a and Figure 34b one can see the shape of the solutions on the horizontal section of the
domain {x = [0, 1], y = 0.5}. The solution on the random triangle mesh is full of variations while the
one on a random quad mesh is more steady and it almost overlays the exact solution.

Finally, let us summarize the convergence graphs obtained for the trigonometric solution on the three
triangle meshes in Figure 35. One has order 1 on the left-aligned triangle mesh, order 1.4 on the random
triangle mesh and order 2 on the alternated triangle mesh.

Remark 25. As a reminder we did not prove in this document that the solution of the scheme is unique
in this particular case (unstructured mesh and non-null source term).

7.6.4 Non stationary solutions

Let us study the following unstationary solution:

p(x, t) = Ae−µx−λy cos(µx − 2µ2t + C1) sin(λy − 2λ2t + C2) (159)
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(a) Cell value - Primal mesh (b) Average node value - Dual mesh

(c) L2 error graphs for the solution (158) on a random triangle mesh

Figure 32: Allure of the solution (158) at T = 10 with N = 20 and Neumann BC

with a constant diffusion coefficient κ = Id and A = 2, C1 = λ = 1, C2 = 1.5 and µ = 0.5.

The second member and the boundary conditions are the same as in Section 7.1.2.

One can see on Figure 36b that the unstationary solution (159) does not present the spurious modes
as clearly as they appear on the same mesh for the trigonometric solution, and its diagonal section in
Figure 36b confirms that the approximation is correct. Likewise, the same unstationary solution on the
random triangle mesh (Figure 36c) is smooth and the diagonal section is of the approximation is close to
the one of the exact solution (see Figure 36d).

One can see in Figure 36e that the order of convergence of the nodal scheme is 1 for the left-aligned
triangle mesh, 1.4 on the random triangle mesh and 2 on the alternated triangle mesh, as for the trigono-
metric solution.

Let us now consider a second unstationary solution:

p(x, t) = x3 − 6xt (160)

with κ = Id and

f(x, t) = −12x and

g(x, t) =
(

3x2 − 6t
0

)
.nΓ ∀ x ∈ ΓD

h(x, t) = x3 − 6xt ∀ x ∈ ΓN

The second unstationary solution does not present any spurious modes and the approximation is cor-
rect on the left-sided and random triangle meshes as one can see in Figure 37.
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(a) Nodal scheme on random triangles (b) Nodal scheme on random quads

(c) Diamond method on random triangles (d) Comparison of the convergence graphs

Figure 33: Allure of the solution (158) on different meshes with different methods

Let us now represent the solution (160) and its diagonal section on an annulus discretized with a
random triangle mesh. As one can see on Figure 38 the solution and its diagonal section with Neumann
boundary conditions on the annulus are correct.

7.7 Hybrid method
Once the hybrid method from Section 6 is implemented, we want to test its numerical performances. To
do so, we will begin with a constant λ = 1, testing the scheme on quad and triangle meshes for the same
test cases as above. Then we will try it with λ = hn, with different values of n so that the hybrid scheme
converges at different speeds towards the nodal scheme when h tends to 0.

7.7.1 Hybrid scheme with λ = 1

For the linear solution, as one can see on Table 2 the hybrid scheme is exact for λ = 1 on the Cartesian
quad mesh, the left aligned and the random triangle meshes for Neumann and Dirichlet boundary con-
ditions. The scheme is not exact for Dirichlet boundary conditions on random quad meshes because of
the approximation βr ≈ βc

r at the corners.

Let us now consider the allure of the trigonometric solution and the order of convergence of the scheme
on triangle meshes, which was causing trouble on triangle meshes with the purely nodal scheme.
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(a) Random triangle mesh

(b) Random quad mesh

Figure 34: Horizontal section of the solution (158) at T = 10 with N = 80

Figure 35: Convergence graph of the trigonometric solution on triangle meshes

As a reminder, the trigonometric test-case is the following:

p(x, t) = sin(πx) sin(πy) (161)

with a constant diffusion coefficient κ = Id.
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(a) Cell value on the left-sided triangle mesh - N = 80 (b) Diagonal section on the left-sided triangle mesh

(c) Cell value on the random triangle mesh - N = 80 (d) Diagonal section on the random triangle mesh

(e) Convergence graph of the non stationary solution on triangle
meshes

Figure 36: Allure of the solution (159) and its diagonal section at T = 10 with N = 80

The second member and the boundary conditions are the same as in Section 7.1.2.

One can see on Figure 39 that the hybrid scheme with λ = 1 gives us smooth solutions on triangle
meshes and the horizontal sections of the approximated solution overlay the exact solution. One does not
see the oscillations from the nodal scheme anymore. Moreover one can see on Figure 40 that the order



76 7 NUMERICAL RESULTS

(a) Cell value on the left-sided triangle mesh - N =
80 (b) Horizontal section on the left-sided triangle mesh

(c) Cell value on the random triangle mesh - N = 80 (d) Horizontal section on the random triangle mesh

Figure 37: Allure of the solution (160) and its horizontal section at T = 10 with N = 80

(a) Allure of the solution (b) Diagonal section of the solution

Figure 38: Solution (160) on an annulus mesh of triangles

of convergence of this scheme is 2 for any quad or triangle mesh.

Remark 26. We chose to only represent the solution and the order of convergence of the scheme for the
trigonometric problem on random and left aligned triangle meshes since they were the ones causing the
most trouble with the nodal scheme. However tests have been made for the hybrid scheme with λ = 1
on all the quad and triangle meshes mentioned earlier and on all the test cases (linear, quadratic, non
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Cartesian quad mesh Left aligned triangle mesh Random triangle mesh
Dirichlet BC 4.05 × 10−16 1.91 × 10−15 1.3 × 10−15

Neumann BC 1.82 × 10−14 2.16 × 10−13 1.96 × 10−13

Mixed BC 5.32 × 10−16 4.54 × 10−15 2.08 × 10−15

Table 2: L2 error of the linear solution for the hybrid scheme at T = 10 for N = 20 cell per side

(a) Allure of the solution on the random triangle
mesh (b) Horizontal section on the random triangle mesh

(c) Allure of the solution on the left aligned tri-
angle mesh (d) Horizontal section on the left aligned triangle mesh

Figure 39: Allure of the solution (161) and its horizontal section at T = 10 with N = 80 obtained with
the hybrid scheme

stationary...) and solutions are smooth and the orders of convergence are always 2.

7.7.2 Hybrid scheme with λ = hn

Let us now consider the hybrid scheme with λ = hn with n ≥ 0. As a reminder, when λ = 0 the scheme
is purely nodal which means when λ = hn the scheme converges towards the nodal scheme at the speed
of n as the mesh is refined.

Let us begin with the linear solution. The hybrid scheme is exact for any value of λ since it is a convex
combination of two exact schemes for the linear solutions. For the same reason the scheme with λ = hn

is order 2 in space for the quadratic and non stationary solutions on any type of quad or triangle mesh.

Let us now go back to the spurious modes problem and see if the hybrid scheme resolves it. Let us
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Figure 40: Convergence graph of the hybrid scheme for the trigonometric solution (161) at T = 10 for
Neumann boundary conditions

consider a Cartesian quad mesh, with for initialization

p0(x) = 100 × 1x∈Ωj

and homogeneous Neumann boundary conditions.

One can see without any surprise on Figure 41b that the spurious modes disappear when λ = 1
since all the fluxes are spread through the faces of the cells. When λ = h

1
2 , there are still no spuri-

ous modes appearing (see Figure 41c). However when λ = h one can slightly see them on Figure 41d
at T = 0.14 but they will disappear as T increases. Finally on Figure 41e when λ = h2, the spurious
modes are almost as bad as with the purely nodal scheme (Figure 41f) and they don’t disappear with time.

Therefore one can consider that the hybrid scheme corrects the spurious modes up to λ = hn where
n ∈ [0,

1
2 ].

Let us now focus on the trigonometric solution

p(x, t) = sin(πx) sin(πy)

on triangle meshes for different values of λ.

We know that for λ = 1 the solution is smooth and the problems of the purely nodal scheme do not
appear. We will visualise the solution of the scheme with λ = hn, n > 0 on Figure 42. Let us begin with
n = 1

2 so that the hybrid scheme tends to the nodal one but not too fast. One can see on Figure 42a and
Figure 42b that the solution is smooth and we can not spot any pattern or oscillation on the horizontal
section of the solution. The result is the same with λ = h and λ = h2 as seen in Figure 42c and Figure 42e.
However when λ = h3 the parasitic patterns appear once again in Figure 42g and the horizontal section
in Figure 42h is full of oscillations.

One can deduce from these results that when λ = h3 the scheme converges too fast towards the purely
nodal scheme. Therefore we will study the order of convergence of the scheme for λ = hn, n ∈ {0, 1

2 , 1, 2}
in Table 3 for the random triangle mesh and in Table 4 for the left aligned triangle mesh.

In order to calculate the order of convergence let us use the following formula:

q = log(e1/e2)
log(N2/N1)

where e1,2 are respectively the errors associated with the meshes with N1 and N2 cells per side.
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(a) Initialization (b) λ = 1 - T = 0.14

(c) λ = h
1
2 - T = 0.14 (d) λ = h - T = 0.14

(e) λ = h2 - T = 0.14 (f) λ = 0 - T = 0.14

Figure 41: Spurious modes appearing depending the value of λ

As one can notice in Table 3, the order of convergence of the hybrid scheme on random triangle mesh
tends to 2 when λ → 1. That is what we expected since the scheme is order 2 in space when λ = 1. From
λ = h the order of convergence is superior to 1.8 which means the hybrid scheme raises significantly the
order of the purely nodal scheme.
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Dirichlet BC Neumann BC
λ = 0 1.19 1.34
λ = h2 1.27 1.42
λ = h 1.8 1.91
λ = h

1
2 1.93 1.98

λ = 1 1.95 2

Table 3: Order of convergence between N1 = 80 and N2 = 160 for the trigonometric solution on the
random triangle mesh

On the left-aligned triangle mesh (Table 4) the results are even more extreme: the order of convergence
of the hybrid scheme is 1 for λ ∈ {0, h} and it switches to 2 (or almost 2) as soon as λ = hn, n ≤ 1.

Dirichlet BC Neumann BC
λ = 0 0.86 0.95
λ = h2 0.97 1.14
λ = h 1.97 2
λ = h

1
2 1.99 2

λ = 1 1.99 2

Table 4: Order of convergence between N1 = 80 and N2 = 160 for the trigonometric solution on the
left-aligned triangle mesh

Remark 27. The order of convergence of the scheme for the trigonometric solution is only 0.86 between
N = 80 and N = 160 cell per side but it becomes 0.93 with one more refinement. Thus in that case the
order of convergence still tends to 1.

8 Conclusion
In this document we have built the nodal diffusion scheme with a non constant tensorial diffusion coef-
ficient and Neumann, Dirichlet and mixed boundary conditions that preserve the order of the periodical
scheme. It was not an easy task because of the nodal fluxes. We have also built the Euler implicit
time discretization and the Crank-Nicolson one in order to extend it to second order in time. We have
also proved that the solution of the scheme is unique on structured meshes with homogeneous Dirichlet
boundary conditions. Then we proved that the scheme with no source is exact for linear solutions with
Dirichlet and Neumann boundary conditions. Finally, we proved under some conditions of positivity and
coercivity of κrβr, the stability, consistency and convergence of the scheme with no source and periodic,
homogeneous Dirichlet and homogeneous Neumann boundary conditions with Euler implicit and Crank-
Nicolson time discretization. The theoretical convergence order obtained was 1 in space and up to 2 in
time.

After implementing and testing this scheme on various test cases (linear, quadratic, trigonometric,
non-stationary solutions and with a non constant tensorial diffusion coefficient) we obtained on the meshes
of quads a numerical order of convergence of 2 in time and space. The only problem on quad meshes is
the spurious modes appearing on Cartesian meshes when initializing the problem with the fundamental
solution of the heat equation, but it is a very specific test because the initial condition is not a function
(it is a measure). However when testing the scheme on meshes of triangle we had many more surprises.
First of all the order of convergence in space depends on the considered mesh, but it stays between 1
and 2 so it remains coherent with the theoretical proof of convergence. However the scheme presents
serious oscillations with the trigonometric test-case on triangle meshes even for regular initial conditions.
Unfortunately we can’t explain this behavior but we noticed that there was no flux between some cells
that share an edge.

The idea was then to use an hybrid scheme that allowed some of the flux to pass through the faces
and to make it converge towards the nodal scheme when the mesh is refined. This hybrid scheme gave
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us a good correction of the nodal scheme and we retrieved order 2 in space when λ = hn, n ≤ 1, where
λ is the parameter of the convex combination between the nodal and the face fluxes.

A perspective of this work could be to finish the study of the hybrid scheme (theoretical study).
Another idea would be to take interest in the the M1 model. This non linear model approximates the
transport equation and it is studied by B. Dubroca in [11] and C. D. Levermore in [15]. It has the partic-
ularity to be entropic, to preserve the maximum principle and to converge towards a diffusion equation.
In his thesis [13], E. Franck has built and studied an AP scheme for the M1 model with nodal fluxes.
Theoretical and numerical properties of this scheme are also studied in [6]. Since it is asymptotic pre-
serving it would be interesting to study the limit diffusion of the Lagrangian part of this nodal scheme
with an implicit time discretization and non periodic boundary conditions, which means trying to prove
that it is positive, conservative, stable, consistent and convergent.

A Useful formulas
General formulas and properties used in the document are listed and proved in this section.

Proposition 32. Let A be a square matrix of size d = 2, and λ its eigenvalues. Then its characteristic
polynomial writes

P (λ) = λ2 − tr(A)λ + det(A) (162)

Proof. For d = 2, one can express the matrix A as A =
(

a b
c d

)
.

Its characteristic polynomial writes

det(A − λId) = (a − λ)(d − λ) − bc

= ad − aλ − dλ + λ2 − bc

= λ2 − (a + d)λ + (ad − bc)
= λ2 − tr(A)λ + det(A)

and that ends the proof.

Proposition 33. For any vector u, v ∈ Rd, one has

u ⊗ v = (v ⊗ u)t (163)

Proof. Thanks to Definition 4, one can write

(u ⊗ v)i,j = uivj = vjui = (v ⊗ u)j,i

Thus u ⊗ v = (v ⊗ u)t.

Proposition 34. For any vector u, v and w ∈ Rd, one has

⟨u, v⟩w = (w ⊗ u)v (164)

Proof. By definition of the scalar product one has

(
⟨u, v⟩w

)
i=1,...,d

=
( d∑

j=1
ujvjwi

)
i=1,...,d

On the other hand by definition of the tensor product and the matrix-vector product

(
(w ⊗ u)v

)
i=1,...,d

=
( d∑

i=1
(w ⊗ u)i,jvj

)
i=1,...,d

=
( d∑

i=1
wiujvj

)
i=1,...,d
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Hence (164) is verified.

Proposition 35. For any vector u, v ∈ Rd, one has

tr(u ⊗ v) = ⟨u, v⟩ (165)

Proof. By definition of the tensor product, one has

tr(u ⊗ v) =
d∑

i=1
(u ⊗ v)i,i =

d∑
i=1

uivi = ⟨u, v⟩

which gives us (165).

Proposition 36. For any vector u, v ∈ Rd, the tensor product u ⊗ v is a rank one matrix.

Proof. Let us define x the kernel of u ⊗ v such that

u ⊗ vx = 0
⇔ ⟨v, x⟩u = 0

Then the space spanned by the orthogonal vectors to v is in the kernel of u ⊗ v. Thus u ⊗ v is a rank
one matrix.

In this part, let n be any vector in Rd, and we chose t such that t = n⊥, which means

⟨t, n⟩ = 0 (166)

Proposition 37. For any vector u ∈ Rd and any matrix A ∈ Rd×d, one has

⟨(t ⊗ t)A(t ⊗ t)u, n⟩ = 0 (167)

Proof. Let us consider the left hand of (167). Using Proposition 34 two times in a row and thanks
to (166), we obtain

⟨(t ⊗ t)A(t ⊗ t)u, n⟩ = ⟨(t ⊗ t)A⟨t, u⟩t, n⟩
= ⟨t, u⟩⟨(t ⊗ t)At, n⟩
= ⟨t, u⟩⟨t, At⟩⟨t, n⟩
= 0

And this ends the proof.

Proposition 38. For any vector u ∈ Rd, one has

⟨(t ⊗ t)u, n⟩ = ⟨u, (t ⊗ t)n⟩ = 0 (168)

Proof. Using Proposition 34 and thanks to (166), one obtains

⟨(t ⊗ t)u, n⟩ = ⟨t, u⟩⟨t, n⟩ = 0

And this ends the proof.

Proposition 39. For any vector u ∈ Rd and any matrix A ∈ Rd×d, one has

⟨u, Au⟩ = ⟨u, Asu⟩ (169)

with As the symmetric part of A defined in Definition 6.

Proof. Let us consider

⟨u, Au⟩ = ⟨u,
(A + At

2 + A − At

2

)
u⟩ = ⟨u,

A + At

2 u⟩ + 1
2 ⟨u, Au⟩ − 1

2 ⟨u, Atu⟩ = ⟨u, Asu⟩

because ⟨u, Au⟩ = ⟨u, Atu⟩
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B Proofs
B.1 Proof of Proposition 2
Let us integrate the first equation of (1) over the domain Ω. It gives∫

Ω
∂tp dx −

∫
Ω

∇.(κu) dx = 0

Using the divergence formula this equation becomes:

∂t

∫
Ω

p dx −
∫

Γ
⟨κu, n⟩ dσ = 0

Since we consider the scheme with homogeneous Neumann boundary conditions we obtain:

∂t

∫
Ω

p dx = 0

And that ends the proof.

B.2 Proof of Proposition 3
Let us begin with a multiplication of the first equation of (1) by p and an integration over Ω:∫

Ω
p∂tp dx −

∫
Ω

p∇.(κu) dx = 0

Using Green’s formula, and since u = ∇p, we obtain:∫
Ω

1
2∂tp

2 dx +
∫

Ω
⟨u, κu⟩ dx +

∫
Γ

p⟨κu, nΓ⟩ dσ = 0

Knowing that κ is positive by construction, one has∫
Ω

⟨u, κu⟩ dx ≥ 0

Then with the homogeneous boundary conditions one has p|Γ = 0 or ⟨κu|Γ, nΓ⟩ = 0, therefore∫
Γ

p⟨κu, nΓ⟩ dσ = 0

Thus we obtain ∫
Ω

1
2∂tp

2 dx = 1
2∂t∥p∥2

L2
≤ 0

And that ends the proof.

C Construction of the matrices
C.1 Nodal scheme matrix
Let us rewrite the scheme in vectorial form with backward Euler method:

IΩ
P n+1 − P n

∆t
− MP n+1 = Bn+1 (170)

where

• P n =
(
pn

1 · · · pn
N

)t is known at each iteration, initialized with P 0 in the statement;

• (IΩ)jk = |Ωj |1j=k is the diagonal matrix with the volume of each cell j;
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• Bn =
(
Bn+1

1 · · · Bn+1
N

)t is given in the statement of the problem;

• M is a matrix of size N × N to determine, with N = |C|, the number of cells in the mesh.

In order to resolve this problem, we want to write it under the form
(IΩ − ∆tM)P n+1 = ∆tBn+1 + P n (171)

Let us now construct the matrix M .

Let us write M = M i + M b + M c with M i the contribution of the vertices inside the domain to the
matrix M , M b the contribution of the boundary vertices to M and M c for the corner vertices contribu-
tion. We can decompose the vector B with the same method.

C.1.1 Inside the domain

The second equation of (45) gives, for all r ∈ Vi

un+1
r = −β−1

r

∑
j∈Cr

pn+1
j Cjr

Let us replace un+1
r in the first equation of (42), it becomes

|Ωj |
pn+1

j − pn
j

∆t
+
∑
r∈Vi

j

〈
κrβ−1

r

∑
k∈Cr

pn+1
k Ckr, Cjr

〉
= |Ωj |fn+1

j

Now, we want to invert the sums over r and k so that we obtain the matrix-vector product.∑
r∈Vi

j

〈
κrβ−1

r

∑
k∈Cr

pn+1
k Ckr, Cjr

〉
=
∑
k∈Cj

∑
r∈Vi

jk

⟨κrβ−1
r Ckrpn+1

k , Cjr⟩

=
∑
k∈C

∑
r∈Vi

jk

⟨κrβ−1
r Ckrpn+1

k , Cjr⟩

Thus the matrix of contribution of the vertices inside the domain writes, for all j, k ∈ C

(M i)jk = −
∑

r∈Vi
jk

⟨κrβ−1
r Ckr, Cjr⟩ (172)

And the second member gives
(Bi)n+1

j = |Ωj |fn+1
j (173)

C.1.2 On the boundary

Let us now focus on the boundary of the domain. First of all for Neumann boundary conditions we can
build MN,b and BN,b.

The third equation of (45) gives, for all r ∈ VN,b

un+1
r = β−1

r

∑
j∈Cr

(pn+1
r − pn+1

j )Cjr

Replacing un+1
r in the first equation of (45) gives us on the boundary with Neumann boundary

conditions:
−
∑

r∈VN,b
j

〈
κrβ−1

r

∑
k∈Cr

(pn+1
r − pn+1

k )Ckr, (Îd − nr ⊗ nr)Cjr

〉
= −

∑
r∈VN,b

j

〈
κrβ−1

r pn+1
r

∑
k∈Cr

Ckr, (Îd − nr ⊗ nr)Cjr

〉
+
∑

r∈VN,b
j

〈
κrβ−1

r

∑
k∈Cr

pn+1
k Ckr, (Îd − nr ⊗ nr)Cjr

〉 (174)
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We can replace pn+1
r given in (37) in the first term of the right hand of (174)

−
∑

r∈VN,b
j

〈
κrβ−1

r θ−1
r

( ∑
k∈Cr

θkrpn+1
k + gr

∥κrnr∥

)∑
l∈Cr

Clr, (Îd − nr ⊗ nr)Cjr

〉
= −

∑
r∈VN,b

j

〈
κrβ−1

r θ−1
r

∑
l∈Cr

Clr

∑
k∈Cr

θkrpn+1
k , (Îd − nr ⊗ nr)Cjr

〉
−
∑

r∈VN,b
j

〈
κrβ−1

r θ−1
r

∑
l∈Cr

Clr
gr

∥κrnr∥
, (Îd − nr ⊗ nr)Cjr

〉 (175)

with θkr = ⟨β−1
r Ckr, vr⟩.

Let us replace (175) into (174) and invert the sums on r and k

−
∑

r∈VN,b
j

〈
κrβ−1

r

∑
k∈Cr

(pn+1
r − pn+1

k )Ckr, (Îd − nr ⊗ nr)Cjr

〉
(176)

=
∑
k∈Cj

∑
r∈VN,b

jk

〈
κrβ−1

r

(
Ckr − θ−1

r θkr

∑
l∈Cr

Clr

)
pn+1

k , (Îd − nr ⊗ nr)Cjr

〉
−
∑

r∈VN,b
j

〈
κrβ−1

r θ−1
r

∑
l∈Cr

Clr
gr

∥κrnr∥
, (Îd − nr ⊗ nr)Cjr

〉 (177)

One can notice that that the second line of (177) doesn’t depend on pk thus it will go into the right-
hand side (BN,b)n+1.

This way we have built the matrix MN,b with, for all j, k ∈ C

(MN,b)jk = −
∑

r∈VN,b
jk

〈
κrβ−1

r

(
Ckr − θ−1

r θkr

∑
l∈Cr

Clr

)
, (Îd − nr ⊗ nr)Cjr

〉
(178)

And the contribution to the right hand side vector is for all j ∈ C

(BN,b)n+1
j =

∑
r∈VN,b

j

gr

( 1
∥κrnr∥

θ−1
r

〈
κrβ−1

r

∑
l∈Cr

Clr, (Îd − nr ⊗ nr)Cjr

〉
+ ⟨Cjr, nr⟩

)
(179)

After that, let us build MD,b and BD,b for Dirichlet boundary conditions.

Let us consider the fourth equation of (45)

un+1
r = β−1

r

∑
j∈Cr

(hr − pn+1
j )Cjr ∀ r ∈ VD,b

j

Let us replace this formula into the first equation of (45) and invert the sums on r and k

−
∑

r∈VD,b
j

〈
κrβ−1

r

∑
k∈Cr

(hr − pn+1
k )Ckr, Cjr

〉
= −

∑
r∈VD,b

j

〈
κrβ−1

r

∑
k∈Cr

hrCkr, Cjr

〉
+

∑
r∈VD,b

j

〈
κrβ−1

r

∑
k∈Cr

pn+1
k Ckr, Cjr

〉
=
∑
k∈C

∑
r∈VD,b

jk

⟨κrβ−1
r Ckrpn+1

k , Cjr⟩ −
∑

r∈VD,b
j

〈
κrβ−1

r

∑
k∈Cr

hrCkr, Cjr

〉
The second term of the right hand side of this equation does not depend on pn+1

k , therefore it will go
into (BD,b)n+1.
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Thus, we obtain the matrix MD,b with for all j, k ∈ C

(MD,b)jk = −
∑

r∈VD,b
jk

⟨κrβ−1
r Ckr, Cjr⟩ (180)

And the second member writes for all j ∈ C

(BD,b)n+1
j =

∑
r∈VD,b

j

〈
κrβ−1

r

∑
k∈Cr

hrCkr, Cjr

〉
(181)

Thus we have built he matrix M b = MN,b + MD,b and the second member Bb = BN,b + BD,b.

C.1.3 On the corners

Finally, we will focus on the corner values r ∈ Vc.

For the Neumann boundary condition vertices r ∈ VN,c, their contribution only appears in the second
member of the problem, thus one has

MN,c = 0 (182)
and for all j ∈ C

(BN,c)n+1
j =

∑
r∈VN,c

j

1
2(ℓl1gl1 + ℓl2gl2) (183)

Let us finish with the Dirichlet boundary condition on the corners r ∈ VD,c.

Let us consider the last equation of (45)

un+1
r = (βc

r)−1
∑
j∈Cr

(hr − pn+1
j )Cjr if r ∈ VD,c

j

We will repeat the same steps as for the Neumann boundary condition on the boundaries and we
obtain for all j, k ∈ C

(MD,c)jk = −
∑

r∈VD,c
jk

⟨κr(βc
r)−1Ckr, Cjr⟩ (184)

And the second member writes for all j ∈ C

(BD,c)n+1
j =

∑
r∈VD,c

j

〈
κr(βc

r)−1
∑
k∈Cr

hrCkr, Cjr

〉
(185)

Thus we have built he matrix M c = MN,c + MD,c and the second member Bc = BN,c + BD,c.

Thus every component of the matrix M and the second member B is entirely built.

Remark 28. In the scheme one can see that the boundary conditions are taken at the nodes of the bound-
ary which is also true in the code for Dirichlet boundary conditions. However in the case of Neumann
boundary conditions, the values are given at the middle of the boundary faces.

In order to retrieve the node values on straight borders, let us use the following formula where the
boundary node r is linked to the cells j1 and j2 with their face on a boundary called respectively l1 and
l2:

gr = gl1ℓl1 + gl2ℓl2

ℓl1 + ℓl2

where g stands for the Neumann boundary condition, gl1,2 and ℓl1,2 are respectively the value of the
boundary condition and the length of the faces l1 and l2.
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In order to preserve the exactness of the scheme for linear solutions (proved in Section 4.2), we need
to change the definition of the Neumann boundary values at the angles of the mesh. As a reminder, the
definition of an “angle” of the mesh is given in Definition 10.

Let us begin with finding the two coefficients α, β such that nr = αℓl1nl1 + βℓl2nl2 . This is easily
done by finding the solution of the following system

A

(
α
β

)
=
(

n(1)
r

n(2)
r

)
where A =

(
n(1)

l1
ℓl1 n(1)

l2
ℓl2

n(2)
l1

ℓl1 n(2)
l2

ℓl2

)

Then we know that

gr = ⟨κr∇pr, nr⟩ = ⟨κr∇pr, nl1⟩αℓl1 + ⟨κr∇pr, nl2⟩αℓl2 ≈ αℓl1gl1 + βℓl2gl2

Note that this approximation is exact when κ and ∇p are constant, which are the hypothesis made to
prove the exactness of the scheme in Section 4.2.

If the node is linked to two different boundary conditions then the Dirichlet one prevails.

C.2 Hybrid scheme matrix
Using the same method as in Section C.1, we want to write the scheme under the form

(IΩ − ∆tM)P n+1 = ∆tBn+1 + P n (186)

with M = λMH + (1 − λ)MN and B = λBH + (1 − λ)BN , where MN and BN are respectively the matrix
and the second member of the nodal scheme built in Section C.1.

Let us now construct the matrix MH and the second member BH .

Let us write MH = M i
H + M b

H with M i
H the contribution of the faces inside the domain and M b

H the
contribution of the boundary faces. We can decompose the vector BH with the same method.

C.2.1 Inside the domain faces

Let us inject the second equation of (141) into the sum on the faces of the first equation which becomes∑
l∈Fi

j

ℓl⟨un+1
l , κlnl⟩ =

∑
l∈Fi

j

(ℓl

2 αl

∑
r∈Vl

⟨un+1
r , (xj1 − xj2)⊥⟩ + ℓlδl(pn+1

j1
− pn+1

j2
)
)

(187)

One can now replace ur
n+1 into (187) given in the fourth to the sixth equations of (141):

= −
∑
l∈Fi

j

ℓl

2 αl

∑
r∈Vi

l

⟨β−1
r

∑
k∈Cr

pn+1
k Ckr, (xj1 − xj2)⊥⟩ (188)

+
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r

∑
k∈Cr

(pn+1
r − pn+1

k )Ckr, (xj1 − xj2)⊥⟩ (189)

+
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VD,b

l

⟨β−1
r

∑
k∈Cr

(hn+1
r − pn+1

k )Ckr, (xj1 − xj2)⊥⟩ (190)

+
∑
l∈Fi

j

ℓlδl(pn+1
j1

− pn+1
j2

) (191)

Let us now consider the first sum over l (188). We want to bring the sum over k outside of the other
sums so that we obtain a matrix-vector product. It can be decomposed into three steps. The first one



88 C CONSTRUCTION OF THE MATRICES

consists in swapping the sums over l and r. Secondly one can invert the sums over l and k since they
do not depend on each other. Finally one can swap the sum over r and k, so that the sum over k is the
most external one:

−
∑
l∈Fi

j

ℓl

2 αl

∑
r∈Vi

l

⟨β−1
r

∑
k∈Cr

pn+1
k Ckr, (xj1 − xj2)⊥⟩ = −

∑
r∈Vi

j

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r

∑
k∈Cr

pn+1
k Ckr, (xj1 − xj2)⊥⟩

= −
∑
r∈Vi

j

∑
k∈Cr

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r pn+1

k Ckr, (xj1 − xj2)⊥⟩

= −
∑
k∈Cj

∑
r∈Vi

jk

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r pn+1

k Ckr, (xj1 − xj2)⊥⟩

= −
∑
k∈C

∑
r∈Vi

jk

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r pn+1

k Ckr, (xj1 − xj2)⊥⟩

(192)

This contribution will be incorporated into the matrix M i
H .

Thus the matrix of contribution of the faces inside the domain writes from (192) and (191), for all
j, k ∈ C

(M i
H)jk = −

∑
r∈Vi

jk

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r Ckr, (xj1 − xj2)⊥⟩ +

∑
l∈Fi

j

ℓlδl(1k=j1 − 1k=j2) (193)

And the second member gives
(Bi

H)n+1
j = |Ωj |fn+1

j (194)

Let us now consider the second sum over l (189).

−
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r

∑
k∈Cr

(pn+1
r − pn+1

j )Ckr, (xj1 − xj2)⊥⟩ = −
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r

∑
k∈Cr

pn+1
r Ckr, (xj1 − xj2)⊥⟩

+
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r

∑
k∈Cr

pn+1
k Ckr, (xj1 − xj2)⊥⟩

(195)

One can replace pn+1
r by its formula into the first sum of (195):

−
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r

∑
k∈Cr

pn+1
r Ckr, (xj1 − xj2)⊥⟩ = −

∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r θ−1

r

( ∑
k∈Cr

θkrpn+1
k + gn+1

r

∥κrnr∥

)
∑

k′∈Cr

Ck′r, (xj1 − xj2)⊥⟩

= −
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r θ−1

r

∑
k′∈Cr

Ck′r

∑
k∈Cr

θkrpn+1
k , (xj1 − xj2)⊥⟩

−
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r θ−1

r

gn+1
r

∥κrnr∥
∑

k′∈Cr

Ck′r, (xj1 − xj2)⊥⟩

(196)

One can now replace (196) into (195) and invert the sums over l, r and k just like above in order to
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obtain the matrix-vector product:

−
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VN,b

l

⟨β−1
r

∑
k∈Cr

(pn+1
r − pn+1

j )Ckr, (xj1 − xj2)⊥⟩

= −
∑
k∈C

∑
r∈VN,b

jk

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r

(
Ckr − θ−1

r

∑
k′∈Cr

Ck′r

)
pn+1

k , (xj1 − xj2)⊥⟩

−
∑

r∈VN,b
j

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r θ−1

r

gn+1
r

∥κrnr∥
∑

k′∈Cr

Ck′r, (xj1 − xj2)⊥⟩

(197)

The sum over k will be a contribution to the matrix MN,b
H and the second sum will be added to (BN,b

h )n+1.

For now one has

(MN,b
H )jk = −

∑
r∈VN,b

jk

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r

(
Ckr − θ−1

r

∑
k′∈Cr

Ck′r

)
, (xj1 − xj2)⊥⟩ (198)

and
(BN,b

H )n+1
j =

∑
r∈VN,b

j

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r θ−1

r

gn+1
r

∥κrnr∥
∑

k′∈Cr

Ck′r, (xj1 − xj2)⊥⟩ (199)

Finally, one can consider the third sum over l (190) and invert the sums as before:

−
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VD,b

l

⟨β−1
r

∑
k∈Cr

(hn+1
r − pn+1

k )Ckr, (xj1 − xj2)⊥⟩ =
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VD,b

l

⟨β−1
r

∑
k∈Cr

pn+1
k Ckr, (xj1 − xj2)⊥⟩

−
∑
l∈Fi

j

ℓl

2 αl

∑
r∈VD,b

l

⟨β−1
r

∑
k∈Cr

hn+1
r Ckr, (xj1 − xj2)⊥⟩

=
∑
k∈C

∑
r∈VD,b

jk

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r pn+1

k Ckr, (xj1 − xj2)⊥⟩

−
∑

r∈VD,b
j

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r

∑
k∈Cr

hn+1
r Ckr, (xj1 − xj2)⊥⟩

The sum over k will be a contribution to the matrix MD,b
H and the second sum will be added to (BD,b

h )n+1.

Therefore for now one has

(MD,b
H )jk = −

∑
r∈VD,b

jk

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r Ckr, (xj1 − xj2)⊥⟩ (200)

and
(BD,b

H )n+1
j =

∑
r∈VD,b

j

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r

∑
k∈Cr

hn+1
r Ckr, (xj1 − xj2)⊥⟩ (201)

C.2.2 Boundary faces

In the case of the Neumann boundary conditions, since the boundary faces only appear in the second
member of the hybrid scheme, then it is obvious that nothing is added to the matrix (198), therefore for
all j, k in C one has:

(MN,b
H )jk = −

∑
r∈VN,b

jk

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r

(
Ckr − θ−1

r

∑
k′∈Cr

Ck′r

)
, (xj1 − xj2)⊥⟩ (202)
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And we add the sum over the boundary faces to the second member (199), therefore for all j in C:

(BN,b
H )j =

∑
r∈VN,b

j

∑
l∈Fi

jr

ℓl

2 αl⟨β−1
r θ−1

r

gn+1
r

∥κrnr∥
∑

k′∈Cr

Ck′r, (xj1 − xj2)⊥⟩ +
∑

l∈FN,b
j

ℓlg
n+1
l (203)

On the other hand, with Dirichlet boundary conditions, one has

un+1
r = β−1

r

∑
j∈Cr

(hn+1
r − pn+1

j )Cjr ∀ r ∈ VD,b

Let us inject this definition of ur into the third equation of (141) so that we obtain for the Dirichlet
boundary faces

⟨un+1
l , κlnl⟩ = αl

∑
r∈VD,b

l

⟨un+1
r

2 , (xl − xj2)⊥⟩ + δl(hn+1
l − pn+1

j2
)

= αl

∑
r∈VD,b

l

⟨1
2β−1

r

∑
k∈Cr

(hn+1
r − pn+1

k )Ckr, (xl − xj2)⊥⟩ + δl(hn+1
l − pn+1

j2
)

One can now split this formula into two: one part that depends on the unknown p and the other one
only depending on the Dirichlet boundary condition h. Then it can be replaced inside the the sum on
the boundary faces of the first equation of (141):

−
∑

l∈FD,b
j

ℓl⟨un+1
l , κlnl⟩ =

∑
l∈FD,b

j

ℓl

(
αl

∑
r∈VD,b

l

⟨1
2β−1

r

∑
k∈Cr

pn+1
k Ckr, (xl − xj2)⊥⟩ − δlp

n+1
j2

)

−
∑

l∈FD,b
j

ℓl

(
αl

∑
r∈VD,b

l

⟨1
2β−1

r

∑
k∈Cr

hn+1
r Ckr, (xl − xj2)⊥⟩ + δlh

n+1
l

)

Using the same sum inversion as for the inside of the domain on the part including the unknown p
and adding it to (200), one gets for all j, k ∈ C:

(MD,b
H )jk = −

∑
r∈VD,b

jk

∑
l∈Fi

jr
∪FD,b

jr

ℓl

2 αl⟨β−1
r Ckr, (xj1 − xj2)⊥⟩ −

∑
l∈FD,b

j

ℓlδl1k=j2 (204)

And the part that only depends on the boundary conditions gives, by adding the previous equation
to (201), for all j ∈ C:

(BD
H )n+1

j =
∑

r∈VD,b
jk

∑
l∈Fi

jr
∪FD,b

jr

ℓl

2 αlh
n+1
r ⟨β−1

r

∑
k∈Cr

Ckr, (xl − xj2)⊥⟩ +
∑

l∈FD,b
j

ℓlδlh
n+1
l (205)
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(a) Allure of the solution for λ = h
1
2 (b) Horizontal section of the solution for λ = h

1
2

(c) Allure of the solution for λ = h (d) Horizontal section of the solution for λ = h

(e) Allure of the solution for λ = h2 (f) Horizontal section of the solution for λ = h2

(g) Allure of the solution for λ = h3 (h) Horizontal section of the solution for λ = h3

Figure 42: Allure and horizontal sections of the trigonometric solution on a random triangle mesh de-
pending on the value of λ for N = 80
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