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Abstract

This memoir aims to review the h-principle and convex integration, as
tools to demonstrate the Hirsch theorem (and eventually Smale’s sphere ev-
ersion theorem). The most known application of these concepts is Smale’s
sphere eversion. The use of compact-open C"-topology is signalled by the ab-
breviation Com-Op.

To fulfill this objective, we will first define jets of order r (as vectors, and
then as equivalence classes) and relations of order r. Secondly, we will deal
with ample, open relations by using the theory of convex integration, partic-
ularly the immersion relation Z defined from the subsection 1.3.

These tools will be used to demonstrate the Hirsch theorem taking the im-
mersion curves 7 : [0,1] — R? as an easily understandable example, and then
we will address Smale’s sphere eversion theorem which states that a homotopy
of immersions allows to "turn" the unit sphere inside out without tearing nor
cutting it, and without any crease.
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1 Jets and relations

Let us denote H,(n,q) the real vector space of homogeneous polynomials of total
degree r, from R" to R?. Such polynomials are written in the form

p(x):ZCax?l...xgn7 CaeRq

la|=r
Let U ¢ R", W C R? be open and f € C"(U,W). If v = (vy,---,v,) is a basis
of R” with any point x € R"™ being written as the coordinates (uq,--- ,u,) in the

basis v, then we can denote 9; = ,;, and 9y = 0" ---9;". Furthermore, for all
(x,h) € U x R™ (with h = (hy,- -, h,) in the basis v):

D"f(z)(h) = D" f(z)(h,- - ,h) = (01 + -+ + hy0n)" f ()
r!
=3 St ot

|laf=r

thus D" f € C°(U, H,(n,q)).

From now, we adopt the following convention : any polynomial p € H,(n,q), writ-
ten as p(h) = > ,—, ca h?, is endowed with coordinates (a! ca)jaj=r € R? & where
d, =:dimH,.(n,q) = ("+:_1). In such weighed coordinates, we will have

1. o o't
HD f(]?) = (a'u f(x))loc\:r = (W@;))a ordered

.o au%n

where the subscript «a ordered» means that the n-tuples « of length r are ordered
lexicographically.

We define the space J"(U,W) =U x W x [[._, Hs(n,q), r > 1 (with J(U, W) =
U x W), whose expression as a Cartesian product allows for a natural projection
ph JI(U W) — J5(U,W) forany 0 < s <r—1.

We can prove that J"(U, W) is identified to the space of r-jets (of germs) of maps
within C"(U, W).

Remark. Two functions f and g are said to define the same germ at a point xz € U
if there is a neighborhood N around z such that fjy = gn (such equality can be
extended to derivatives up to order r).

We introduce the continuous operator j” : C™(U,W) — C°U,J"(U,W)) which
maps f to its r-jet, defined by

1) = (2 5@, 50, L D) 0
There are also projection maps s, 7 from J"(U, W) defined by {Tijgfr{;;)::f?;)

The source map s and the target map 7 are natural projections just like
ph s J(UW) — J5(UW)
3=t



(0<s<r—1)with s=pj and j' = (soj", 70 j").

Let ~, be the following equivalence relation on U x C™(U, W) : (z, f) ~, (y,9) <
r=1Y

{jrf(ﬂf) =Jj"g(x)

If we denote [f],(x) the equivalence classes, then the map [f].(z) — 5" f(z) is well-
defined and injective, and thus defines a bijection between the classes and J" (U, W).

¢ P.g

p N cR”xRY

Figure 1: The bundle p : X — V| with a local trivialization ¢ on a neighborhood of
reV.

1.1 The manifold X

Now, to generalize the definition of J" (U, W) to any smooth fiber bundle r : X — V|
the above equivalence relation can be seen as a tangency relation between function
up to order r, i.e., all derivatives of f and ¢ up to order r coincide in an open
neighborhood of x (denoted Op z) ; we also denote Xy, , C X the subset defined

by Xop» = p~H(Op ).

Definition 1.1. Let p : X — V be a smooth fiber bundle with fiber F', dimV =
n, dim F' = q. We call I'"(X) the space of C"-sections of p (in Com-Op). For any
point x € V, sections f, g € I'"(Xpp ,) have the same r-jet at x if 7" f = j7g on Op =,
in local coordinates.

With respect to this equivalence relation, X is defined as the set of all equiv-
alence classes [f].(z), x € V. With the local trivialization ¢ below, we can write
X0 = o= 1(Jr(U,W)).



Remark. Locally p is a product bundle py : Xy — U where Xy = U X F', where U =
R™ is a chart on V and same for W = RY?; thus we can identify I'"(Xy) = C"(U, F).
Then, for any f € I'"(X) such that f(U) C W, fiv € I"(Xy) and [f],(x) is locally
written as j"(fjr)(x) in the coordinates (1).

Definition 1.2. The above projections s,7 can be regarded as s : X — V, 7 :
XM — X with so [f].(z) =2, 7o [f],.(z) = f(x).

We can also take, for 0 < s <7, pl : X — X defined by p’ o [f], = [f]s.

The transition maps gap : AN B — Diff(F') of the bundle p (with overlapping charts
A, B within the base manifold V'), verify, for fia € C"(A,Wh), fig € C"(B,W,), © €
AN B:

fis(x) = g(z) o fla(z), g(x) € DHE(W1, W)

Using equation (1) on j" fia, j" fip and identifying g = ev g : (AN B) x Wy — Wy,

3" fis =3"g 0 (id, fia)(x) (2)

This calculation induce a change of coordinates for overlapping charts J" (A, Wy), J" (B, Ws)
in a fashion illustrated by the commutating diagram below (where ¢! (U) C V and
writing )

¢_1(U) (]

|
Ve OW)

Xy

local coordinates

Thus X is the smooth manifold of r-jets of germs of C"-sections of the bundle
p: X — V, topologized in this manner : the charts of X are defined on J" (U, W)
and, in these chart coordinates, [f],(z) € X" is expressed as j"(¢.f ) (¢(x)).

Remark. Up to a chart of X, we can make the local interpretation ¢ o [f]r-(z) =

Definition 1.3. T'(X (’“)) is the space of continuous sections (in compact-open topol-
ogy) of the bundle s : X — V.

Let U’ = (U,k) be a chart on ¢~'(U) and set W D f(U’). If a € T(X®) and
f = phoa € I'(X), then, interpreting (in local coordinates) the source map s as



the projection s : J"(U,W) — U, for all x € U’, there exist, for multi-indices [
(1 < |B| < r), continuous functions 15 € C°(U’,RY) such that

a(r) = (m’f(m)’ (%W(@)ﬁ@)

For any f € I"(X), the space I'(X (")) has a continuous map ;" f : x — [f],(z) such
that, locally, j" fio(x) € F(Xg,)) has coordinates (1).

Remark. The projection p’ : X — X ) satisies p7 o j7f = j°f € [(X®).

Example 1.1. The most trivial example is with the trivial fibration p: V x Z — V
which is a projection onto the first factor. Generally, any smooth fiber bundle can
be handled as a local product bundle, using a neighborhood of x € V. But here,
the projection p induces, not just a local, but a global product bundle, espectially

if we have {V = k(U) for k (respectively 1) an invertible map on R"™ (resp. R?).

Z =1(W)
Thus, representing [f],(x) € X in local coordinates seems more obvious than with
non-trivial bundles.

1.2 The manifold X+ ("between" X"~! and X")

The projection map pl_; : X — X~ can be seen as an affine bundle, fiber

H.(n,q), for any » > 1. Let h € I'"(X), o € U’ ; employing local coordinates
in a chart J"(U',R?) on X the fiber (pr_,)"*({j"'h(zo)}) contains exactly all
the r-jet extensions j"(h + p(x — x¢))(x), p € H,(n,q). because, for all || <

— 1’ 8‘5‘17(;23—500)
(2) to f = gap o (h+ p(e — xp)), since p is homogeneous,

7" f(zo) = 57 (gaB o h)(zo)

this change of coordinates induces an affine transformation on H,.(n, ) over the base
point 5" h(xy).

() = Z\a|=r Co (a%!ﬁ)!(:v—xo)o‘_ﬁ vanishes at xy. Applying equation

We keep the smooth fiber bundle p : X — V. fiber F. Let 7 C TV be a hy-
perplane field on V' (dim7 = n — 1), to which is associated a manifold X+ and
an affine R%-bundle p] : X — X1 This bundle is defined to turn p’_, into a
product, via the diagram

XJ_




where p’_, = pt,op. For any f € I"(X), the (r — 1)-jet extension j*~'f €
['(XT=1) is here given by the C* map ;"' f.

Definition 1.4 (_L-jet relation). The manifold X is constructed with the following
equivalence relation on sections f,g € I'"(X) at x € V. For an affine hyperplane
7. C T, V, f, g have the same 1-jet at x if :

(i) 7 f(x) = 5 g(x)
(i) D" f) = D" g) : Tjr1g0) — Ty XY

The equivalence class of f that relation is [f], (), and the projections above are
verify

P (@) e [flu@) s pe s (@) = [l (@)

Lemma 1.1. With respect to v = (vy,- -+ ,v,) any basis for R™, there is a splitting
Ho(n,q) = H; (n,q) x L
Proof. A polynomial of the form p(h) = Z|a|:r h® ¢, can be written as p = p* + p,

with p,(h) = p(0,---,0,h,) = Al ¢, 0. Then, it is enough conclusive to define
L7 as the space of such polynomials p,,, with the local identification L? = RY. [

Corollary 1.1.1. Using weighted coordinates on H,.(n,q), p,(h) =r!c € R? . For
any f € C"(U, W) where U C R", W C R? are open, for (z,h) € U x R",

S0 0 = (D, o)

Explicitly, D+ f(x)(h) has weighted coordinates (9% f(x)) oo 4oy (the pure derivative
o is ignored).

Definition 1.5. The L-jet of f € C"(U,W) at x is

i f@) = (" (@), DHf(x)
and the space of all L-jets is J:(U, W) := J"~Y (U, W) x H}(n,q).

Definition 1.6. We denote ~, the L-jet equivalence relation on U x C"(U,W). f, g

Tr =
have the same | -jet extension at x, i.e. (x, f) ~ ,g)if and only if < . .
J (z, ) ~1 (y,9) y {]Lf(x) _ ng(l’)
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Remark. The map [f].(x) — j*f(x) induces locally a well-defined bijection. In
fact, we could also be able to write X+ = ¢~ (J-(U, W)).

Returning top : X — V, weset x € V and v = (vy,--- ,v,) a basis of T, V
adapted to 7, with all v; € 7,. For any f € I'"(X), in local coordinates in V' x X
at (z, f(z)), we assume ¢, f € C"(U,W). We will use directional derivatives (oper-
ators) 0, = 0/0,, in local coordinates (ui,--- ,u,) in the basis v for R, since in
general 7 is not well covered by global smooth coordinates on some neighborhoods
Op x. With such basis v, around x € ¢~ (U), we can find again

P00 = (70D, 10760 0) )
and

FH(0ef)((2) = (57 f)((x)), D9 f)(B(2)))
= (7" (@) (0(2)), 03 (8 £)(6(x)))og 2y

If we extend the relation ~ | to functions mapping to X+, we can say that the equiv-
alence [f]1(x) = [g]L(y) & (¢(z), puf) ~1 (6(y), P.g) holds in local coordinates of
¢~ H(U).

Lemma 1.2. X' is the smooth manifold of L-jets of germs of C"-sections of the
bundle p : X — V, such that, with respect to local coordinates, the below diagram
commutes

o (U) ——— Xy~

local coordinates

¢

[f]
J (¢*f)

In particular, the change of local coordinates (2) can be extended to L-jets.

Considering the hyperplane 7., in local coordinates, identifying L9 = RY from
Lemma 1.1, we have j"f(z) = (j*f(z),0; f(z)) € X* x RY, therefore X is a
split manifold on r-jet spaces : X = X+ x R9.



1.3 On relations

When any subset R C C"(U, W) is characterized by the condition imposed on the
partial derivatives of any function f(z) € R, we say R be a partial differential
relation on C"(U, W) ; a solution of R is any function which satisfies the condi-
tion/relation with respect to its partial derivatives up to order r.

For example, using directional derivative 9/06 with § = (cosx,sinx) € S!, we can
define the immersion relation Z C C'(S',R?) as the set of all functions f : S* — R?
such that % # 0.

More generally, for open U C R*, W C R, Z C C"(U, W) is the space of functions
f U — W such that Df is an injective linear application, i.e. that the partial
derivatives %(m), cee %(m) are linearly independent for all z € U. This is equiv-

alent to saying that D f(z) has maximal rank n for every z.

But, to be able to use the A-principle properly, we will have to extend the con-
cept of relation to smooth bundles, typically p : X — V and setting R ¢ X ).

Definition 1.7. A relation R over X is a continuous map p : R — X, where
X @) is defined in Section 1.1.

['(R) is the space of continuous sections of the map sop : R — V in Com-Op,
implying o € I'(R) = poa € ['(X™).

Definition 1.8. A section a € I'(R) is said to be holonomic if 3f € T'(X), poa =
4" f. This section f = p§ o p o« is unique within T'(X).

Example 1.2. The easiest example is the inclusion i : R — X, which extends
classic partial differential relations into smooth bundles. Here, a section a € T'(R)
is holonomic if there is a unique C"-section f such that o = j"f.

Definition 1.9. A formal solution of R is any section f : V — R. A genuine
solution of R is a section f :V — R such that [f],(V) C R.

Example 1.3. We start from the embedding p : R? — S'. Let i : T — X be the
inclusion of the immersion relation, and f : S* — R? be written as a section of X1,

Thus, f is a genuine solution of R if and only if, for any x = (cosf, sinf) € S!, in
local coordinates, [f]i(z) € {z} x f(S') x (R?\ {0}).

8



Example 1.4. Let ¥ : X — R. Then, defining the relation R = ¥~({0}), any
section f being a genuine solution of R satisfy, in local coordinates on X (), the
partial differential equation

¥ (x,f(a:), . ,%DTf(x)) ~0

Definition 1.10. We denote I'g (X) the subspace of I'"(X) such that f € I'g(X) <
J"f € L(R).

We introduce for the next section the following notation :

for, a relation R on X and a chart U within a smooth fiber bundle p : X — V, we
set Ru =R N X ((JT ). We analogously define R, the fiber of R over a point z € X
with respect to the projection p’| :

R —— X0

XL

where 7 is the inclusion R — X ™),



2 Ample and/or open relations and the h-principle

In this section we will deal with the h-principle applied to ample and/or open re-
lations. We already saw that any relation R over X () is written from a subset of
X which leads to the following definition :

Definition 2.1. A relation R on X ) is open or closed when R is an open or closed
subset of X in Com-Op.

In any two topological spaces E, F, two distinct functions f and ¢ from E to F
are homotopic to each other if they are linked together by a continuous homotopy
H:[0,1] x E — E such that H(0) = f and H(1) = g.

Furthermore, for a compact K C X, we say that f and g are homotopic rela-
tively to K when H satifsies, for all t € [0,1], H(t)x = fix = gjx (H is said to be
a homotopy rel K).

Y1 (1)

Figure 2: Classic examples of homotopy (courtesy of Wikipedia).

Homotopy principle (classic). A relation R over X is said to satisfy it when
any section o € I'(R) is linked to a holonomic section oy through a homotopy of
sections oy € I'(R) with 0 <t < 1.

Definition 2.2. For an integer k£ > 1, the k-th homotopy group m(E, p) is the set
of all homotopy classes between functions f : S¥ — E through a basepoint p € E,
S* being the unit sphere within RF*!,

10



Remark. For k = 1, the set of path components of F based at p € E may be seen as
the set of homotopy classes of loops in E based at p, this is called the fundamental
group of E.

Weak homotopy equivalence. A continuous function f : F — F is a weak
homotopy equivalence when it meets both following conditions :

(i) f induces a bijection f, between the sets of path components of F and of F'.

(ii) for all x € E, k € N*, the morphism f, : my(E, z) — 7 (F, f(z)) is bijective.

2.1 Convex integration and the Integral Representation The-
orem

The Integral Representation Theorem represents a continuous function f : E — R
with values in the convex hull of a connected open set X C R?, as the Riemann
integral of a continuous function A from [0,1] x E to X ; for all x € E,

@) = /0 h(t, ) dt

We define below the tools used to formulate the Integral Representation Theorem.

Definition 2.3. Let p : X — R? be continuous, where we suppose X is path
connected. We define the convex hull of p(X),

N
Conv,(X) = {Zpi plzi); w € X, pr+-+py=10<p < 1}
=1

and IntConv,(X) the interior of Conv,(X).
If X is not path connected, we denote Conv,(X,y) = Conv,(Y') where Y is the path
component in X containing y ; and IntConv,(X,y) = IntConv,(Y").

Example 2.1. The most obvious example of convex hull is for the inclusion i : X —
RY. In this case, we can drop the letter p from the (interior) convex hull notation :
Conv(X) = Conv;(X).

Definition 2.4. A subset X C R?is said to be ample (for p) when, for every x € X,
we have Conv,(X, z) = R%
A relation p: R — X is ample if Conv,(R, f) = X for any f € R.

11



Alongside with these definitions, quoting the Integral Representation Theorem will
involve a concept of contraction on loops, which is central to convex integration.

Definition 2.5. Fix a basepoint z € X, and let g : [0, 1] — X be a continuous loop
such that g(0) = g(1) = = (we say that ¢ is based at z). A point z € Conv,(X, )
is given the adjective surrounded with the convention

z surrounded by ¢ if z € Conv,(g([0, 1]))
z strictly surrounded by g if z € IntConv,(¢([0, 1]))

Definition 2.6. A loop ¢ : [0,1] — X based at x is contractible if it is homotopic
to the constant path [0,1] — {z}. The homotopy between g and the constant path
is a contraction of g.

Definition 2.7. We suppose z € Conv,(X,z). XZ is the space of pairs (g, G)
satisfying the following properties :

(i) g:[0,1] — X is a contractible loop based at x and surrounds z.
(ii) G :[0,1]> = X is a basepoint-preserving contraction of g to [0,1] — {x}

G(t,0) ==z
G(t,1) = g(t)
int X7Z is the space of (almost) such pairs (g, G) but where g strictly surrounds
z € IntConv,(X, x).

that is, for (¢, s) € [0,1]%, { and G(0,s) = G(1,s) = x.

Remark. int X7 and X7 are subspaces of C°([0, 1], X) x C°([0,1]%, X) in Com-Op. In
the next paragraph, second-countable (for E') means there exists a countable family
U = (U,)ien of open subsets of E, such that any open O C B can be written as the
union of some opens from the family U.

The spaces int X? can be generalized for relations p: R =+ Z. Weset p: Z = FE
an affine R%bundle, with E supposed to be a second-countable paracompact base
space ; such affine bundle is the restriction over a submanifold £ C X of the affine
P+ X — X+ (cf. Subsection 1.2). Just as I'(Z) is the space of continuous sec-
tions of Z in Com-Op, we can define spaces of sections for such a relation below.

Definition 2.8. A relation over Z is a continuous map p : R — Z, where R C Z.
['(R) is the space of continuous section of pop : R — F in Com-Op. I'k(Z), T'k(R)
are the analogous space of sections over some subspace K C F.

12



Definition 2.9. Let b € E be a basepoint, then Z, = p~'({b}) is the R%fiber over
b within the bundle Z, and R, =R N p~'(Z,). When a € R,, then Conv,(Ry, a) is
the convex hull (within Z,) of p(S), S being the path component of R, containing
a.

Remark. With the above setting, we can define ampleness in the following sense :
R (precisely p : R — Z) is ample when Conv,(Ry, a) = Z, for every b € E, a € Ry,

Definition 2.10. For a relation p: R — Z over Z, let f € T'(Z), f € T'(R) such
that, for all b € E, f(b) € IntConv,(Rys, 5(b)).

For some subset K C E, a C-structure over K with respect to f, 5 is a pair (g, G)
satisfying the following properties :

i) g : [0,1] — I'k(R) is a contractible loop based at [§jx and fiberwise strictly
\
gy - [0, 1] — Rb

L g(H)(b) then the path g,

surrounds fig, i.e., for all b € K, defining

strictly surrounds f(b).

(ii) G : [0,1]> — T'x(R) is a fiberwise basepoint-preserving contraction of g to

[0,1] = {Bk}

G(tv O) = 6[(

Gt 1) = g(#) and G(0,s) = G(1,s) = Pk

that is, for (¢,s) € [0,1]?, {

C-structures defined in int X allow us to represent z as the Riemann integral
of a function with values in X, which leads to the Integral Representation Theorem.

Integral Representation Theorem. For the affine bundle p : 7 — F defined as
above, we suppose R C Z is an open subset, and f € ['(Z), f € I'(R) such that,
for all b € E, f(b) € Conv,(Rs, 5(D)).

Then, each C-structure (g,G) over E with respect to f, b can be reparametrized
into a C-structure (h, H), with h : [0,1] — ['(R) such that, for every b € E, f(b) =
[ h(t,b) dt.

2.2 One particular example: the Hirsch theorem.

Setting p : X — V a smooth fiber bundle over a smooth manifold V' (dimV = n,
fiber dimension ¢), we work with some relation R in the space of 1-jets X, Locally
at any point in X, p: X — V is a product bundle Xy =U x R? — U, with U C V

13



working as a chart. With respect to local coordinates (uq,--- ,u,) in U, a section
f eTYXy) = CH(U,RY) induces (for &; = 9/du;) the 1-jet extension, within X\,
jlf(w) = (33', f(x)aalf(x)a U ,8nf(l'))
~——
J°f ()

we have also X,(Jl) = X x R with the equation j!f(x) = (j* f(x),d,f(x)), thus, at
a local level, the projection p! is a product R%bundle. We denote X m = {z} x R?
the fiber of this bundle over a point z € Xz.

For this case, we will say that R C XU is ample if, with respect to any local
coordinates, for all z € Xz, w € R,, Conv(R,,w) = xM =Re (convex hull using
the inclusion i : R — X)),

We suppose V, W to be smooth manifolds, with dim V =n, dim W =¢ >n. A
map f € C'(V,W) is an immersion if the tangent bundle map df : TV — TW has
maximal rank n. The inequality n < ¢ can be split in two cases :

1. the extra dimensional case n < ¢,

2. the equidimensional case n = q.

Now, for p : V. x W — V the product bundle, fiber W, the immersion relation
7T is the subspace of germs of functions f € T''(X) such that all partial derivatives
0;f(z) € RY are linearly independent for any = € U, with respect to local coordinates
of 71 f on U. Likewise, we can say that Z;; is the subspace of vectors (z,y, vy, -+, vy)
such that the vectors v; are linearly independent within RY. It is obvious that Z; is
open in X[(Jl) and therefore Z ¢ X is open too.

When is Z ample ?

Let us write w = (z,y,v1,- -+ ,v,) € Iy and L = Vect(vy, -+ ,v,-1) C R?. For any
z = pt(w) = (z,y,v1, -+ ,v,_1), the fiber Z, is formed by points (z,v) such that
v ¢ L, thus we have Z, = R?\ L, identifying {z} x R? = R?, all in local coordinates,
whence dimZ, = ¢ —n+ 1. In the equidimensional case, Z, = ¢ —n + 1 is just a line
with two path connected 1/2-spaces Iy and I_ ; we have for a € I, Conv(Z,,a) =
I # R? thus Z is not ample. Only in the extra dimensional case (¢ > n + 1) Z, is
path connected in R? since dimZ, = ¢ —n + 1 > 2, letting Z be ample.

Theorem 2.1. (Hirsch) We suppose that ¢ > n + 1. Then J: FI(§L71€L<I)

induces a weak homotopy equivalence.

C°-dense h-principle. For the above bundle p : X — V', let R € X be open and
ample, ¢ € T'(R) and a section h = p} o ¢ € I'(X). We suppose K, C V is a closed
subset such that h is C* on Op K and j'h = ¢ on K ; and N, a neighborhood of
R(V)in X.

Then, there exists a section f € I''(X) and a homotopy F : [0,1] — I'(R) between
¢ and j'f, such that

14



(1) j1f €T(R) ;

(i) f(V )cNh,

(i) F(0) = ¢, F(1) =35 f;

(iv) for any 0 < ¢ <1, p} o F(t)(V) C N,
)

(v) (relative theorem) for any 0 <t <1, F(t)x = ¢k-

Proof. The general proof for the above principle is hard to understand, so we will
illustrate it with the immersion relation Z.

We set X = [0,1] x R?, V = [0,1], W = R?. We have an immersion v : [0, 1] — R?,
defining h(z) = (z,7(z)) and ¢(x) = (z,7(z),7 (x)), all in local coordinates. We
will have Ky = [a,b] C [0,1]. When we suppose the local representation h = j%y on
a subinterval [a, b] C [0, a[U]b, 1], let (h;)i>1 be a sequence of sections such that each
h; improves h;_; by solving Z on some increasing neighborhoods of [a, l;], according
to an induction, the main step of which is illustrated below with some couple (g, p).
We can take f = lim;_, h; for the conclusions of the theorem.

For [c,d] C [0,1], we have p € T'°(Zy), with U a chart on [0, 1] whose interior
contain a closed set w. We suppose the following conditions hold :

(ag) p=j'y on UNDplc,d|

(bo) p(x) = (x,v(x),¥(x)) where p € C*>([0, 1], R?), for all z € w

see One-Dimensional Theorem as a tool to get the conditions (ay), (by). For M
a neighbourhood of the image v(U) in Xy, and a small §, there is also a map
q € C*(U,R?) and a smooth homotopy @ : [0,1] — I'(Zy;) such as (|| - || being the
sup-norm on C°([0, 1], R?))

® |lg—gll <9, and Vt € [0,1], (pso Q(t))(U) C M

o Q0)=p, pioQ(1) = f, and for all z € w,
Q(1)(z) = (z,7(x),7 (x))

e g=gonUNDp[ed.

Remark. There is a homotopy F' from a true immersion f : [0,1] — R?* = C to
t— (t,0, e¥mik):

F.(t) = (t, 0(e)f(1), O(e)f'(t) + O(1 — €)™
with 6 : [0,1] — [0, 1] a continuous function satisfying #(0) = 0 and (1) =

15



3 Analytic theory and the proof of Hirsch

In this section, we set £ = B x RY, with a B being a compact Hausdorff space
(separate means that two distinct points are always separated by respective neigh-
borhoods not intersecting each other). In case B = [0,1]" = [0,1]""! x [0, 1] when
we denote (uq,--- ,u,_1,t) the coordinates on B, for any a = (aq, -+, 1) We
write

ag:asllo...oaanfl

Un—1

Moreover, all used norms || - || without subscript are C° function sup-norms.

One-Dimensional Theorem. (general enunciation) Let 7 : F — B be the
product R%-bundle over some space B = C x [0,1] R C FE an open relation,
and suppose sections 8 € T'(R), fo € T'(E) such that f; is C'in ¢, and for all
be B, 8tf0(b) € COHV(R[,, 6({)))

Then there is a C! (in t)-section f. € I'(R) and a continuous homotopy F : [0, 1] —
['(R) such that

<1> hme%O ||f€ - fo” =0

(ii) O,f € T(R); Fy = B, F1 = 0,f, and the image of F' is contained in the image
of a C-structure with respect to 9, f, .

.. where, for s > r > 0,
117" = sup{[|07 0 O fI| + k+|af <s; k <7}

and || == | f]]*°.

Proposition 3.1. Given 7 : B x R? the product R?%bundle over B, let g € T'(E)
be C! in ¢ and a continuous map ¢ : [0, 1] — I'(E) be an integral representation of
0:go, that is, for all b € B,

ammzﬂw@@w

Then, for any € > 0, there is a continuous function 6. : [0,1] — [0, 1] such that the
section g, € T'(F) defined for (¢, t) € C' x [0, 1] by

g@@:%mmﬁfwwwmﬁw

is C' with respect to the variable ¢, and lim._,o || — Yo|| = 0.

Proof. To prove this proposition in a simplified manner, we study the case of
7 : [0,1] = R? being an immersion over [0, 1] ; with the change of notation from the
above statement to hereafter.

16



Statement ‘ Proof

Ge Ve

9o Yo

W(f(s))(e,s) | go f(s), with f:[0,1] = [0,1]

We suppose, along with 7o being an immersion, that B = {0} x [0,1] = [0, 1],
so we can drop the variable c.

For some 0 < € < 1, we define by I; = [t;,t; + €|, 1 < j < m a sequence of disjoint
subintervals in [0, 1] suth that the total sum of their lengths is |I1| + -+ + | L] >
1 — e. While specifying below the construction of a suitable continuous function
6 =10.:[0,1] — [0, 1], we set auxiliary step functions [, % : [0,1] — R?

() =20) +e D> ()

J, I;C[0,1]

k(t) = + 0y /

J, I;C[0,1]

where we have the estimate max{j, I; C [0,1]} < 1/e. We also set the section 7.,

then from the hypothesis on v in the statement, it is obvious that 7. is C* with
derivative . (t) = g(0()).

The function 6, is specified as a piecewise linear function which highly oscillates,
such that, its restriction to each subinterval I; is a linear homeomophism onto [0, 1].
When ¢ is small enough, changing variables by 6. allows for the following approxi-
mation, for 1 < 57 < m,

/ /w ) ds = e (1)

which proves that lim. o ||l — k|| = 0.

As for 0., we can assert that it is the piecewise C! function defined by

S —

\V/SGIJ‘, 06|[j(8): J, 1§j§m

which allows for the change of variables u = 6.(s) on the subinterval I;, hence

/Ij 9(0c(s)) ds = /Ij P(0(s))(s) ds = ¢ /01 D)t + eu) du

thus we see that [, k, 7. converge together towards v, as € vanishes. O

17



Example 3.1. For the constant path 7,(¢) = 0 to be approximated by an immersion
Ve, we will have [(t) = k(t) = 0 for all ¢, and we can set

o(6) = {ew itte[0,1]uU[? 1]

—4mit el 3
e leStSZ

Then using the change of variables u = fe(s) in the above proof and supposing there
is some subinterval I; covering almost the interval [0, 1], we will have

0.00015 A

0.00010 A

0.00005 ~

0.00000 A

—0.00005 A

T T T T T T T
—0.00015-0.00010 —0.00005 0.00000 0.00005 0.00010 0.00015

Figure 3: Graph of the integral of s — €'%™* ¢)(6.(s)) from 0 to t, as a path [0, 1] —
R?. Here, we have € = 0.001 — 107'% and for 0 << 999, I; = [0.0015 ; 0.001j + €]

The following theorem generalizes the C°-dense h-principle to the case of an auxiliary
compact space of parameters P. Its consequence is the Weak Homotopy Equivalence
Theorem, which states that for any relation R ¢ X that is open and ample,

J: Tr(X) = T(R)
h s jth

is a weak homotopy equivalence, is obtained by proving that, for any h € I'r (X)), k >

1 the induced map J, : m,(T'r(X),h) = m(T(R), j'h) is bijective. This is done by
applying the Parametric h-principle to it, in the following manner :
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(i) on the one hand, by setting P = S* x [0, 1], to prove the injectivity of J,.

(i) on the other hand, by setting P = S%, to prove the surjectivity of J,

Parametric h-principle For some open and ample relation R ¢ XM let ¢ €
C°(P,T(R)) and h € C°(P,T'(X)) such that h = p} o ¢. Suppose that Py is closed
with P C Py C P, such that h is C' on Op Py and j'(h(p)) = ¢(p) for all p € B.

Then, there exists a function f € C'(P,T'(X)) and a homotopy rel Py, F : P X
[0,1] = T'(R) such that

(i) H(0) = o¢.
(i) for all p € P, H(p)(1) = j'(f(p))-

Proof of Hirsch theorem

We still review the immersion relation Z with respect to the (trivial) product bundle
X = [0,1] x R?, to give the proof of Hirsch theorem. From the subsection 2.2 we
recall that Z was open and ample, and is the subspace of vectors (z,y,v) with v # 0
in R2. Then we apply the Weak Homotopy Equivalence Theorem to Z. 0
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4 Smale’s sphere eversion

Let S? be the unit sphere in R®*. We build the following functions on R?, using a
positive real § > 1, and the following spherical coordinates :

cosf cos ¢
P:(u,0,¢)— u | sinf cos¢
sin ¢

Denoting A := H, 5[ - S? the spherical "annulus" defined for the Euclidean norm in
R3 by 3 < [|z| < 4, we define
fo: P14 - R?
(u,0,0) = (u,0,9¢)
as well as

inv: P~Y(R*\ {0}) — R*\ {0}
(1,0, ) 1> (%e ¢)

r:R® = R3
(U, 67 ¢) = (U, 07 _¢)

We define f; = r oinv o fy which everts A outside in. In fact, while f is just the
inclusion i4 : A = R? (canonical coordinates), for any u > 0, inv maps u - S? onto
.52 and r is the reflection through the horizontal plane {(a, 3,7) € R* | v =0} .

Smale stated that fy and f; are regularly homotopic to each other, that is, they
are homotopic to each other through a family of immersions f, : A — R3. First, we
find out that, for any z € A

fi(u,8,¢) =roinv(u, b, ¢)
(L)
u
— (1797 _¢)
U

and that, both maps fy, fi are immersions, when looking at their Jacobian matrices:

—L 0 0
0 0 -1

Since S? is a subset of A, any smooth map from A to R3 can be restricted to S?
where its differential can be seen as an endomorphism of R3. Precisely, when re-
stricted to S?, both maps dfy(z) and dfi(x) belong to the group SO(3) and it is
admitted that m(SO(3)) = {0}, that is, any continuous map from S? to SO(3) is
homotopic to a constant map.
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Remark. It is recalled that a n x n matrix M, to belong to SO(n), must fulfill both
conditions: that M* M = I,,, and det M = 1.

Since the above matrices are homotopic to the same constant map = — 0, they
are homotopic to each other.

Figure 4: For t = 0, the red vector is z, and ¢y(z) = 0.

Figure 5: For ¢ = 1, we denote %(m) the red vector of spherical coordinates
(1,0 — g,O), pointing outwards (i.e. it is tangent to the parallel of latitude z is
located on). We have also ¢ = ¢;(z) = § — ¢, from the spherical coordinates stated
above.

21



Let
G :[0,1] x S* = SO(3)
(t,2) = Ry,(@), 2 1 ()

be a homotopy between the maps R, ¢ = id = dfy(z), and R%(x)’ 2y = dfi(z), where
xr = (1,0,¢) € S%. Furthermore, we can continuously extend G; to the poles of S* :

o 8(1707:|: 7/2) = id.

We may figure both homotopies, the first resembling a "rotation" in ¢ from -Z(z) to

96

x, and the other just linear
Vi(x)
Yr(z)

Riz), = 4(2)
t(3-9)

where 7i(z) is obtained by the Gram-Schmidt process such that (z, (), 7i(z)) is a
direct orthonormal basis of R3.

Furthermore, in Figure 4, s, is simply the reflection orthogonal to Vect{z} defined
by

Sm(Oé, ﬁa ’7) - <1d - 2p$)(a7 ﬁ? 7)
= (o, B8,7) =2 - (ami + Pg +ya3) @
whose matrix, in linear algebra, is

1—222 —2myw9 —2m173
[s.] = | —2z129 1 —223 —2z913 | = d inv(2)
—2r103 —219703 1 — 2m§

We have found a homotopy between dfy(x) and dfi(x) for z € S?, and therefore f
and f; are homotopic to each other through a family of immersions f;, ¢ € [0, 1].

The projection
5| — S? x s
5)

u) — (z,1)

1
5% x| =,
pi x|
(=,
is obviously homotopic to the identity on S? x H, ) [ This homotopy equivalence

p ~ id, and the inclusion S? < S? x }%, 0| induce a homotopy equivalence between

the homotopies on S — SO(3) and 5% x |, 6] — SO(3).

Therefore, there is a homotopy F : [0,1] x (52 x |3, 6]) = SO(3) C GL(3) with
F(0) = dfy and F(1) = dfy, then inducing a homotopy (h(t))o<t<1 with h(0) = fy
and h(1) = fi, and such that d(h(t)) is C%-close to F(t), and h(t) € T'7(5? x |5, d[)
for any t.

CO
~

Thus, using the Hirsch theorem, we obtain a homotopy (5! (h(t)))o<i<1 with j1(h(t))(z)
(z, fi(x), F(t)(z)).
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