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Preface

This preface will mainly be devided into two parts. First we will speak about plasma, the

fourth state of matter before giving a brief explanation about Landau-damping phenome-

nom.

What is a plasma?

Plasma is a state of matter that is often thought of as a subset of gases, but the two states

behave very di�erently. Like gases, plasmas have no �xed shape or volume, and are less

dense than solids or liquids. But unlike ordinary gases, plasmas are made up of atoms in

which some or all of the electrons have been stripped away. When a solid is heated su�-

ciently, usually a liquid is formed. When a liquid is heated enough that atoms vaporize o�

the surface faster than they recondense, a gaz is formed. When a gaz is heated enough a

plasma is formed : the so called ’fourth state of matter’.

The name plasma which means ’moldable substance’ or ’jelly’ was given by Irving Lang-

muir,the Nobel laureate who pioneered the scienti�c study of ionized gaz.

How is a plama made?

A plasma is not usually made simply by heating a container of gaz. The problem is that

container cannot be as hot as a plasma needs to be in order to be ionized or the container it-

self would vaporise and become plasma as well. Typically, in the laboratory, a small amount

of gaz is heated and ionized by using electricity, or by shining radio waves into it. Either

the thermal capacity of the container is used to keep it from getting hot enough to melt

during a short heating pulse, or the container is actively cooled (with water for example)

for longer pulse operation. Generally, these means of plasma formation give energy to free

electrons in the plasma directly, and these electron-atom collision liberate more electrons,

and the process cascades until the desired degree of ionization is achieved.

On the other hand, Landau damping, named after its discoverer, Russian physicist Lev Da-

vidovich Landau, is the damping phenomenon (exponential decay as a function of time) of

longitudinal oscillations in the electric �eld. This corresponds to a transfer of energy bet-

ween an electromagnetic wave and electrons. It was then proposed by Lynden-Bell that a

similar phenomenon took place in galaxy dynamics, where the gas of electrons interacting

through electrical forces is replaced by a “star gas” interacting with gravitational forces.

Landau damping is due to the exchange of energy between a wave of phase velocity v,

and a particle in a plasma whose velocity is approximately equal to v. The particles whose

speed is slightly lower than the phase speed of the wave will be accelerated by the electric

�eld of the wave to reach the phase speed. On the contrary, the particles whose speed is

slightly higher than the phase speed of the wave will be decelerated, giving up their energy

to the wave. In a non-collisional plasma where the velocities of the particles are distribu-
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ted as a Maxwellian function, the number of particles whose velocity is slightly lower than

the phase velocity of the wave is greater than the number of particles whose velocity is

slightly bigger. Thus, there are more particles which gain energy from the wave than par-

ticles which give up. Therefore, the wave giving up energy, it is damped. (For more details

about this phenomenom, check [1].)
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Abstract

The aim of this report is to study the linearized Vlasov equation, and prove that the electric

�eld can be decomposed into a part following a Klein Gordon type equation for long waves

and a part submitted to a Landau damping phenomenon.

As an introduction, we start by taking a look at the Vlasov equation and then linearize

it around an homogeneous Maxwellian. Using the method of characteristcs we can solve

the free transport equation to switch to a Volterra equation. This leads us to a complex

function L(z, k) which will interfere with its poles p±(k) later in the solution of our Vol-

terra equation. We then solve the Volterra equation, decompose its resolvent into multiple

parts and then give the decomposition of the electric �eld into two main parts EKG and

ELD. In the last part, we prove that EKG nearly solves a Klein-Gordon equation and that

ELD veri�es Landau-damping type decay estimates.

Finally, in the appendix, we recall some results about Cauchy integrals , and explain the

method of characteristics.

This internship is an adaptation of the article [7] by Bedrossian, Masmoudi and Mouhot.
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1 Introduction

The general model describing inhomogeneous kinetic equations is as follows. We have an

evolution equation of unknown f , a probability density function of presence of particules

in position and space. The function f depends on the time t, the position x ∈ Rd
and

the velocity v ∈ Rd
, and

∫∫
Rd×Rd

f(t, x, v)dxdv = 1. We assume as well that the particles

undergo shocks modeled by a collision kernelQ(f, f) and that the particles are submitted to

the action of an external forceF ∈ Rd
. The equation satis�ed by f de�ned onR+

t ×Rd
x×Rd

v

is

∂tf + v.∇xf + F (t, x).∇vf = Q(f, f)

with initial data f/t=0 = f0 where we have omitted the dependance on (t, x, v) for readabi-

lity. We are interested in Cauchy problem for this equation in the case of a self consistent

Poisson force Q = 0. In 1930s and 1940s, Vlasov suggested to neglect collisions and derive

the so-called Vlasov-Poisson equation for long range interactions (1.1). All the material in

this internship comes from [7] with slight changes here and there.

1.1 Notation

Fourier transform

For a function f : Rd → R, we de�ne

f̂(k) =

∫
Rd
f(x)e−ik.xdx.

Then we have the usual formulae

∇̂f(k) = ikf̂(k), and f̂ ∗ g(k) = f̂(k)ĝ(k).

Denote 〈x〉 = (1 + |x|2)
1
2 and 〈∇〉 the Fourier multiplier de�ned as follow

〈̂∇〉f(k) = 〈k〉f̂(k).

For a function f : Rd ×Rd → R, we de�ne

f̂(k, η) =

∫∫
Rd×Rd

f(x, v)e−ik.xe−iη.vdxdv

Similarly, we denote 〈(x, v)〉 = (1 + |x|2 + |v|2)
1
2 and 〈∇x.v〉 the Fourier multiplier de�ned

as follow

̂〈∇x,v〉f(k, η) = 〈(k, η)〉f̂(k, η).
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Sobolev spaces

We shall use the following norms, de�ned for σ,m, p ∈ R and (x, v) in R3 ×R3, by

||f ||Lpx,v :=

(∫
R3×R3

|f(x, v)|pdxdv
) 1

p

, ||g||Lpx :=

(∫∫
R3

g(x)dx

) 1
p

||f ||Wσ,p
m

:= ||〈v〉m〈∇x,v〉σf ||Lp .

Laplace transform

Let f : [0,∞[→ C satisfying e−µtf(t) ∈ L1
for some µ ∈ R. Then for all complex numbers

z ∈ C such that <(z) ≥ µ, we de�ne Fourier-Laplace transform by

f̂(z) :=

∫ ∞
0

e−ztf(t)dt.

For γ > µ, the inverse Laplace transfom by

f̌(t) :=

∫ γ+i∞

γ−i∞
eztf(z)dz.

1.2 The Vlasov equation

In Vlasov-Poisson model, shocks between particles are neglected and we impose throu-

ghout this work Q(f, f) = 0. The external force is an electrostatic force created by the

spatial distribution function of particles which is de�ned by

ρ(t, x) =

∫
Rd
f(t, x, v)dv.

The force F (t, x) is then given by

F (t, x) := E(t, x) = −∇xW ∗x ρ(t, x)

with W (x) =
q2

4πε0me|x|
, q the electron charge, me the electron mass, and ε0 the vacuum

permittivity. When studying the Vlasov-Poisson equation, it is interesting to start with the

simpliest case, called free transport.

8



For (x, v) ∈ Rd ×Rd
, the Vlasov equation is

∂tf + v.∇xf = 0,

with inital data f(0, x, v) = fin(x, v). It is the fundamental kinetic equation which describes

a system for which the particles do not undergo any forces or shocks. Let us take fin ∈ C1
,

and de�ne for (x, v) ∈ R2d
and s, t ∈ R+

,

x(s, t) = x+ v(s− t) v(s, t) = v.

We obtain that the function f(t, x, v) = fin(x(0, t), v(0, t)) veri�es ∂tf + v∇xf = 0.

Furthermore we notice that

dx

ds
(s, t) = v and

dv

ds
(s, t) = 0,

with initial data x(t, t) = x and v(t, t) = v. In fact, we recognize here exactly Newton �rst

Law governing trajectory of a particle of mass 1 and subjected to no external force.

More generally, we will prove (check 4) that under some hypothesis on F and fin, the

solution of

∂tf + v.∇xf + F.∇vf = 0

are given by f(t, x, v) = fin(x(0, t), v(0, t)) where (x, v) is the solution of

dx

ds
(s, t) = v and

dv

ds
(s, t) = F (t, x),

with initial data at s = t which is the Newton �rst law for a particle of mass 1 subjected to

the force F .

In this report we work on the following set of equations

∂tf + v.∇xf + E(t, x).∇vf = 0,

E(t, x) = −∇xW ∗x ρ(t, x),

ρ(t, x) =

∫
R3

f(t, x, v)dv − n0,

f(t = 0, x, v) = fin(x, v),

(1.1)

for the time dependent probability of presence function f(t, x, v) ≥ 0 of the electron in the

phase space (x, v) ∈ R3 ×R3
. Here n0 is the density of the constant ion background, and

W is the kernel of Coulomb interaction de�ned before. We will consider (1.1) linearized

around the homogeneous Maxwellian background with �xed temperature T

f 0(v) := n0

( me

2πT

)3/2
e
−me|v|2

2T . (1.2)
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1.3 The linearized Vlasov equation

We linearize the Vlasov-Poisson equation (1.1) onR3
x×R3

v around the homogeneous back-

ground f 0(v) ≥ 0. First we check that f 0(v) in a solution to (1.1). In fact f 0(v) is inde-

pendent from t and x with

∫
R3

f 0(v)dv = n0 which leads us to E(f 0) = 0 so that f 0(v) is

a solution. Let h(t, x, v) = f(t, x, v)− f 0(v), we have

∂tf = ∂th, ∇xh = ∇xf.

E(f).∇v(f) = E(f 0+h)∇v(f
0+h) = E(h)∇v(h)+E(h)∇v(f

0)+E(f 0)∇v(h)+E(f 0)∇v(f
0).

We neglect the bilinear termE(h)∇v(h) and since f 0
is a solution,E(f 0) = 0. Furthermore

observe that

ρ(t, x) =

∫
R3

f(t, x, v)dv − n0 =

∫
R3

h(t, x, v)dv.

This gives the linearized Vlasov equation

∂th+ v.∇xh+ E(t, x).∇vf
0(v) = 0,

E(t, x) = −∇xW ∗x ρ(t, x),

ρ(t, x) =

∫
R3

h(t, x, v)dv,

h(t = 0, x, v) = hin(x, v).

(1.3)

Here by assuming

∫∫
R3×R3

hin(x, v)dxdv = 0. For the following, we de�ne the standard

plasma constant (number density, plasma frequency and temperature)

n0 := f̂ 0(0), w2
p =

q2n0

ε0me

, T :=

∫
R3

|v|2f 0(v)dv.

1.4 Main results

Theorem 1 Suppose
∫
R3

hindxdv = 0 and let h and E be a solution to (1.3). There exists

a decomposition of the electric �eld E = EKG + ELD between a Klein-Gordon and Landau
damped parts with ELD decomposed as ELD = E

(1)
LD + E

(2)
LD and E(2)

LD satis�es the following
Landau-damping-type decay estimates for any σ, a ∈ N

||〈∇x, t∇x〉σE(2)
LD||L∞x .

1

〈t〉4
||hin||Wσ+3+a,1

0

Furthermore EKG decomposes as EKG = E
(1)
KG + E

(2)
KG, where E

(1)
KG solves a weakly damped

Klein-Gordon type equation in the following sense : there are bounded, smooth functions λ,Ω
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such that

Ê
(1)
KG(t, k) = Êin(k)e−λ(k)tcos(Ω(k)t)− w0e

−λ(k)t ik

|k|2
(
k.∇ηĥin(k, 0)

)sin(Ω(k)t

Ω(k)
+O(|k|)e−λ(k)t+iΩ(k)t +O(|k|)e−λ(k)t−iΩ(k)t

where Ω2(k) = w2
p +

9T

mew2
p

|k|2 + O(|k|4), λ(k) > 0, λ(k) = O(|k|∞) speci�cally,

for any N ≥ 0, the norm of λ(k) is less than |k|N .(For more details check (2.14)

Theorem 2 Consider and initial data hin(x, v) = ε3H0(εx, v) such that H0 has zero avera-
ging and H0 ∈ W 5,1

5 . Denote

E0 =
q2n0

ε0me

∇x(∆x)
−1

∫
R3

H0(., v)dv.

Let E ∈ L∞t H1
x and ∂tE ∈ L∞t L2

x be initial data of the following Klein-Gordon equation
∂2
t E(t, x) + (w2

p −
9T

me

∆)E(t, x) = 0,

E(0, x) = E0(x),

∂tE(0, x) = −n0∇x

( ∫
vhindv

)
.

(1.4)

Then for 0 < ε�, and 0 < t < ε−N there holds

ε||E1
KG,ε(t)− Eε(t)||H−s . ||H0||W 0,1

4
εs−

3
2 〈t〉

2 Decomposition of the electric �eld

2.1 Volterra equation

One can reduce the problem to a Volterra equation. In fact Duhamel principle gives

h(t, x, v) = hin(x− vt, v) +

∫ t

0

(∇xW ∗ ρ)(s, x− v(t− s)).∇vf
0(v)ds,

and taking the Fourier transform in x gets :

ĥ(t, k, v) = e−vktĥin(k, v) +

∫ t

0

∇̂xW (k)ρ̂(s, k)e−ivk(t−s)∇vf
0(v)ds.
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Integrating in v yields ( with w0 = w2
pn
−1
0 )

ρ̂(t, k) =

∫
ĥin(k, v)e−ivktdv + ∇̂xW (k)

∫ t

0

∫
∇vf

0(v)e−ivk(t−s)ρ̂(s, k)dvds

= ĥin(k, kt) + ∇̂xW (k)

∫ t

0

∫
ik(t− s)f 0(v)e−ivk(t−s)ρ̂(s, k)dvds

Observe W (x) = w0G(x) where G is the fundamental solution of the Laplacien in 3

dimensions. (Check [6] for more details about Laplacien fondamental solutions).

This gives Ŵ (k) =
w0

|k|2
, and ∇̂W (k) = w0i

k

|k|2
,

and eventually

ρ̂(t, k) = ĥin(k, kt)− w0

∫ t

0

(t− τ)f̂ 0(k(t− τ))ρ̂(τ, k)dτ, (2.1)

Taking the Fourier-Laplace transform in time for <(z) su�ciently large gives

ρ̂(z, k) = H(z, k) + L(z, k)ρ̂(z, k), (2.2)

where H(z, k) is the Fourier-Laplace transform of t→ ĥin(k, kt) and the disperssion

function is

L(z, k) := −w0

∫ ∞
0

tf̂ 0(kt)e−ztdt = − w0

|k|2

∫ ∞
0

e−
z
|k| ssf̂ 0(k̂s)ds (2.3)

with k̂ :=
k

|k|
.

2.2 Asymptotic expansions and lower bounds on the dispertion func-
tion L

Solving (2.2) for ρworks except where L(z, k) gets close to one. The following lemma treat

the case of not-so small spatial frequencies k.

Lemma 1 There exists a λ > 0 such that for any ν0 > 0, ∃ κ > 0 Verifying

∀|k| > ν0, inf
<(z)>−λ|k|

|1− L(z, k)| > κ (2.4)

Furthermore, the following estimate holds

∀|k| > ν0, w ∈ R, |L(−λ|k|+ iw, k)| .λ
1

1 + |k|2 + w2
. (2.5)
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Proof. Starting with the case where the dimension is 1 and k > 0, we have

L(−iw, k) = − w0

|k|2

∫ ∞
0

ei
w
k
ttf̂ 0(t)e−ivttei

w
k
tdt = − w0

|k|2
lim

λ→0+

∫ ∫
f 0(v)e−ivttei

w
k
te−λtdvdt

= −w0

ik2
lim

λ→0+

∫ ∫
(f 0)′(v)e−ivte−

w
k
te−λtdvdt = −w0

ik2
lim

λ→0+

∫ ∫
(f 0)′(v)e−[iv−iw

k
+λ]tdtdv

= −w0

ik2

∫
f 0(v)

iv − iw
k

+ λ
= −w0

k2
lim

λ→0+

∫
(f 0)′(v)

−v + w
k

+ iλ
dv =

w0

k2
lim

λ→0+

∫
(f 0)′(v)

v − w
k
− iλ

dv

which lead us by Plemelj Formula (see (4.3) in appendix) to the equality

L(−iw, k) =
w0

k2
P

∫
R

(f 0)′(r)

r − w

k

+ i
w0π

k2
(f 0)′(

w

k
). (2.6)

Since W is Real and even, Ŵ is real-valued, so the above formula yields the decomposition of

L(−iw, k) into real and imaginary parts. The problem is to check that the real part cannot

approach 1 at the same time as the imaginary part approaches 0. As soon as (f 0)′(v) =

O
(

1

|v|

)
, we have ∫

R

(f 0)′(v)

v − w
dv = O

(
1

|w|

)
, as |w| → ∞, (2.7)

so the real part in the right-hand side of (2.6) becomes small when |w| is large, and we can

restrict to a bounded interval. Then the imaginary part,

w0π

k2
(f 0
k )′(

w

k
)can become small

only in the limit k −→ ∞ (but then also the real part becomes small) or if w approaches

one of the zeroes of (f 0)′. Since w varies in a compact set, by continuity it will be su�cient

to check the condition (2.7) only at the zeroes of (f 0)′. In the end, we have obtained the

following stability criterion ( known as Penrose Criterion) :

(f 0)′(w) = 0⇒
(
w0

k2

∫
R

(f 0)′(r)

r − w

k

)
6= 1, for all w ∈ R (2.8)

Now if k < 0, we can restart the computation and the change of variable v → −v bring

us back to the previous computation with k replaced by |k| and f 0(v) replaced by f 0(−v).

However, it is immediately checked that (2.8) is invariant under reversal of velocities, that

is, if f 0(v) is replaced by f 0(−v).

Finally, we can generalize this to several dimensions. (check [1] for more details ).

Turn now to (2.5). From (2.3) we know that

L(z, k) = − w0

|k|2

∫ ∞
0

e−
z
|k| sf̂ 0(k̂s)ds.
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When z = −λ|k|+ iw,

L(−λ|k|+iw, k) = − w0

|k|2

∫ ∞
0

eλs−i
w
|k| ssf̂ 0(k̂s)ds = − w0

|k|2

∫ ∞
0

1

(λ− i w|k|)2
∂2
s (e

λs−i w|k| s)sf̂ 0(k̂s)ds

= − w0

|k|2(λ− i w|k|)2

[
sf̂ 0(k̂s)∂s(e

λs−i w|k| s)

)s=∞
s=0

−
∫ ∞

0

∂s(e
λs−i w|k| s)∂s(sf̂ 0(k̂s))ds

]
=

w0

|k|2(λ− i w|k|)2

[
∂s(sf̂ 0(k̂s)eλs−i

w
|k| s

)s=∞
s=0

−
∫ ∞

0

eλs−i
w
|k| s∂2

s (sf̂
0(k̂s)ds

]
=

w0

|k|2(λ− i w|k|)2

[
− n0 −

∫ ∞
0

eλs−i
w
|k| s∂2

s (sf̂
0(k̂s)ds

]
since ∂s(sf̂ 0(k̂s)) = f̂ 0(k̂s) + sk̂∇f̂ 0(k̂s), so ∂s(sf̂ 0(k̂s)/s=0 = n0. Then

∣∣L(−λ|k|+ iw, k)
∣∣ ≤ w0

(λ2|k|2 + w2)

∣∣∣∣[n0 +

∫ ∞
0

|eλs−i
w
|k| s∂2

s (sf̂
0(k̂s)|ds

]∣∣∣∣.
.λ

1

1 + |k|2 + w2
.

since

w0

λ2|k|2 + w2
.λ

1

1 + |k|2 + w2
.

In fact, λ2|k|2 + w2 ≥ λ2ν2
0 and λ2|k|2 + w2 ≥ min(λ2, 1)(|k|2 + w2)

so for Cλ := min(λ2ν2
0 , λ

2, 1), we have

λ2|k|2 + w2 ≥ Cλ

and λ2|k|2 + w2 ≥ Cλ(|k|2 + w2). We get λ2|k|2 + w2 ≥ Cλ
2

(1 + |k|2 + w2) which yields

the result.

Next we turn to the low frequency estimates. For δ, δ′ > 0, de�ne the following region

in the complex plane

Λδ,δ′ = {z = λ+ iw ∈ C : λ > −min
[
(1− δ)|w|, δ′|k|

]
}.
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<(z) = −δ′|k|

<(z) = −(1− δ)|=(z)|

<(z) = −(1− δ)|=(z)|

Λδ,δ′

Figure 1 – The region Λδ,δ′

We will next show that L(z, k) stays uniformly away from one in the region

Λδ,δ′\{|z± iwp| < ε}where wp is the cold plasma frequency. The proof relies on two repre-

sentation : (1) an expansion obtained by successive integrations by parts in time meaningful

for large values of

z

|k|
, (2) an approximation argument using the explicit formula obtained

from Plemelj formula at the imaginary line<(z) = 0, that provides estimates near this line.

The �rst representation is given by the following lemma.

Lemma 2 (Asymptotic expansion of L(z, k) for |k| � |z|). Given δ′ > 0 su�ciently small
depending only on f 0,

∀z ∈ Λδ,δ′ , L(z, k) = −
w2
p

z2

[
1 +

9T |k|2

mez2
+O

(
|k|4

|z|4

)]
, as

|z|
|k|
→ ∞ (2.9)

Proof. By integrating by parts consecutively

L(z, k) = − w0

|k|z

∫ ∞
0

e−
z
|k| s∂s(sf̂ 0(k̂s))ds = −w0

z2
f̂ 0(0)− w0|k|

z2

∫ ∞
0

e−
z
|k| s∂3

s (sf̂
0(k̂s))ds,

since the map s→ ∂2
s (sf̂

0(k̂s) is odd . Integrating by parts two more times one gets.

L(z, k) =
−w0

z2
f̂ 0(0)−w0|k|

z3

([
−|k|
z
e−

z
k
s∂3
s (sf̂

0(k̂s))

]s=∞
s=0

+
|k|
z

∫ ∞
0

e−
z
|k| s∂4

s (sf̂
0(k̂s))ds

)
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= −w0

z2
f̂ 0(0)− w0|k|2

z4

(
∂3
s (sf̂

0(k̂s))/s=0

)
− w0|k|2

z4

∫ ∞
0

e−
z
|k| s∂4

s (sf̂
0(k̂s))ds.

Now ∂3
s (sf̂

0(k̂s)) = 3k̂.∇2f̂ 0(k̂s).k̂ = 3k̂ ⊗ k̂ : ∇2f̂ 0(k̂s) because ∇2f̂ 0
is symmetric.

One gets therefore

L(z, k) = −w0

z2
f̂ 0(0)− 3

w0

z4
|k|2
(
k̂ ⊗ k̂ : ∇2f̂ 0(k̂s)

)
− w0

z4
|k|2

∫ ∞
0

e−
z
|k| s∂4

s (sf̂
0(k̂s))ds

= −w0

z2
f̂ 0(0)− 3w0

z4
|k|2
(
k̂ ⊗ k̂ : ∇2f̂ 0(0)

)
− 3w0|k|2

z4
ζ(z, k),

since w0f̂ 0 = w0n0 = w2
p and 3n0T := mek̂ ⊗ k̂ : ∇2f̂ 0(0).

It remains to show that for z ∈ Λδ,δ′ there holds |ζ(z, k)| .δ′
|k|2

|z|2
. First consider the region

<(z) ≥ −δ′|k|.

∀ <z ≥ −δ′|k|, ζ(z, k) =

∫ ∞
0

e−
z
|k|∂4

s (sf̂
0(k̂s))ds

=
|k|
z

∫ ∞
0

e−
z
|k| s∂5

s (sf̂
0(k̂s))ds

=
|k|2

z2
(∂5
s (sf̂

0(k̂s)/s=0 +

∫ ∞
0

e−
z
|k| s∂6

s (sf̂
0(k̂s))ds).

It implies |ζ(z, k)| ≤ |k|2
|z|2

(
|∂5
s f̂

0(k̂s)/s=0|+
∫ ∞

0

eδ
′s|∂6

s (sf̂
0(k̂s))|ds

)
.δ′
|k|2

|z|2(
since <(z) ≥ −δ′|k| ⇒ <(z)

|k| s ≤ δ′s for s positive

)
.

Turn next to the region <(z) < −δ′|k| with <(z) > −(1− δ)|=z|. Observe then

arg z2 ∈ [π
2

+ β, 3π
2
− β] for a small β > 0 depending on δ. Write

ζ(z, k) =

∫ ∞
−∞

e−
z
|k| s∂4

s

(
sf̂ 0(k̂s)

)
ds−

∫ 0

−∞
e−

z
|k| s∂4

s

(
sf̂ 0k̂s)

)
ds := ζ1 + ζ2

On the one hand ζ2 is bounded as in the region <(z) ≥ −δ′|k| because s < 0 and we are

working in the region <(z) < −δ′|k|. On the other hand due to (1.2),

ζ1 =

∫ ∞
−∞

e−
z
|k| s∂4

s

(
sf̂ 0(k̂s)

)
=

z4

|k|4

∫ ∞
−∞

e−
z
|k| ssf̂ 0(k̂s)ds

=
n0

(2π)3/2

z4

|k|4

∫ ∞
−∞

se−
z
|k| s−s

2 T
2me

ds =
n0

(2π)3/2

z4

|k|4

∫ ∞
−∞

se
− T

2me
(s+

mez

T |k|
)2+ mez

2

2T |k|2
ds
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=
n0

(2π)3/2

z4

|k|4
e
mez

2

2T |k|2

∫ ∞
−∞

se−
T

2me
(s+mez

T |k| )
2

ds = − n0mez

(2π)3/2T |k|
z4

|k|4

√
2meπ

T
e
mez

2

2T |k|2
.

Now since we are working in the region <(z) < −δ′|k| with <(z) > −(1 − δ)|=(z)| it

holds <(z2) .δ −|=(z)|2 .δ −|z|2 and this terms vanishes when

|z|
|k|
→ ∞.

For claiming this, just notice that, for z = a + ib we have z2 = a2 − b2 + 2iab so that

a2 − b2 ≤ −C1b
2 ≤ −C2(a2 + b2) where C1 = C1(δ) > 0 and C2 = C2(δ) > 0.

For the �rst inequality, (a2 − b2 ≤ −C1b
2
) we are working in the area where

−(1− δ)|b| < a < −δ′|k| < 0 so a2 < (1− δ)2b2 so a2 − b2 < −(1− (1− δ))2b2

and we obtain the �rst inéquality with C(δ) = 1− (1− δ)2
. For the second inequality : as

z ∈ [π
2

+β, 3π
2
−β] implies z2 ∈ Λδ,δ′ . So like before we have<(z2) = a2− b2 < −δ′|k| < 0

so a2 < b2
. But C1b

2 ≥ C2(a2 + b2)⇔ C1b
2 − C2b

2 ≥ C2a
2 ⇔

(
C1−C2

C2

)
b2 ≥ a2 ⇔ a2 ≤(

C1

C2
− 1

)
b2

so in particular for C2 which veri�es
C1

C2
− 1 > 1 we get our inequality .

The next lemma gives and estimate of the resolvent for low frequencies in the half plane

<(z) ≥ −δ′|k|with δ′ small enough and away from±iwp.Given ε > 0, de�ne the following

region

Hε,δ′ := {z = λ+ iw ∈ C;λ > −δ′|k| and |z +±iwp| > ε}.
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<(z) = −δ′|k|

|z + iωp| < ε

|z − iωp| < ε

Hε,δ′

•

•

Figure 2 – The region Hε,δ′

Lemma 3 (Resolvent estimates for low frequency). Given ε, δ′ > 0, there are ν0, κ > 0 such
that

∀|k| < ν0, ∀z ∈ Hε,δ′ , |1− L(z, k)| ≥ κ.

Proof. Let R > 0 �xe independant of k.

Case 1 : |z| > R|k|. In this region the estimate follows from (2.9) taking R su�ciently

large.

Case 2 : In this region the asymptotic expansion (2.9) is no longer useful and we use the

Plemelj formula instead. Writing z = λ + iw, for λ = 0, we have by Plemlej formula in

multidimension,

L(−iw, k) =
w0

|k|2

∫
R

(f 0
k )′(r)

r − w
|k|
dr + i

w0π

|k|2
(f 0
k )′
(
w

|k|

)
. (2.10)

where, for any k 6= 0, the partial hyperplane average is de�ned as

∀r ∈ R f 0
k (r) :=

∫
k
|k| r+k⊥

f 0(v∗)dv∗
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Subcase 2.1 : |z| ≤ R|k| and c|k| ≤ |w| ≤ R|k|. Given any c > 0, we deduce from decay

and smoothness of f 0
that

inf
c< w
|k|<R

∣∣(f 0
k )′
( w
|k|
)∣∣ &c,R

1

|k|2
≥ 1.

Therefore |=
(
L(z, k

)
)| ≥ 1 for <(z) ∈] − δ′|k|, 0].The lengthier calculations for the last

case are omitted for the sake of brevity.

Notice that thes di�erent cases above together prove that

1

1− L
is bounded from above on

the strip <(z) ∈]δ′|k|, 0] and outsideB(0, R|k|)∩{<(z) > 0}, and since there are no poles

within the remaining region B(0, R|k|) ∩ {<(z) > 0}, the function is holomorphic in this

region and the upper bound is also valid there by the maximum principle.

2.3 Branches of poles of the dispertion function L(z,k)

From Lemma 2, (1− L(z, 0))−1
has 2 poles at (iwp, 0) and (−iwp, 0). Given ε > 0, de�ne

F := 1− L(z, 0) G := 1− L(z, k).

We know from Lemma 2 that

|F −G| = |L(z, k)− L(z, 0)| . |k|2, on the set |z ± iwp| ≤ ε

Indeed |L(z, k)− L(z, 0)| =
∣∣∣∣9Tw2

p|k|2

z4me

+
w2
p

z2
O
(
|k|4

z4

)∣∣∣∣ . |k|2 because

|z|
|k|
→ ∞.

On the other hand

|1− L(z, 0)| = |1 +
w2
p

z2
| ≥ ε.

So we obtain,

|F −G| = |L(z, k)− L(z, 0)| < |k|2 < ε < |1− L(z, 0)| = |F | provided that |k| � ε.

So (1− L(z, k))−1
and (1− L(z, 0))−1

have the same number of pole in |z ± iwp| ≤ ε
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•

•iωp

−iωp

p+(k) = i
(
ωp + 9T

2meω3
p
|k|2 +O(|k|4)

)

p−(k) = −i
(
ωp + 9T

2meω3
p
|k|2 +O(|k|4)

)

Figure 3 – The branch of poles k → p±(k)

We next use the implicit function theorem to construct the branches of poles p±(k).

Lemma 4 There are ε, ν0 > 0 such that for all |k| < ν0, there are unique p±(k) ∈ C solutions
to L(p±(k), k) = 1 in {|z ∓ iwp| < ε}. Moreover k → p±(k) := −λ(k) ± iΩ(k) and
p±(k) ∼k→0 ±iwp with the following expansions as k → 0

Ω(k)2 = w2
p +

9T

mew2
p

|k|2 +O
(
|k|4
)
, (2.11)

∇Ω(k) = i
3T

mewp
k +O

(
|k|3
)
, (2.12)

∇2Ω(k) = i
3T

mewp
Id+O

(
|k|2
)
, (2.13)

|∇jλ(k)| .j,N |k|Nfor any j,N ∈ N. (2.14)

Proof. Since f 0(v) is an even real function, f̂ 0(k) is also real, and from the de�nition

of L(z, k) it is easy to check that if L(p+(k), k) = 1 we have that L(p̄+, k) = 1 so

p−(k) = p̄+(k) and it is enough to build the branch near iwp. We aim to use the impli-

cit function theorem applied to the function L(z, k), the result will follow by verifying that

∂zL(iwp, 0) 6= 0, since L is smooth in this neighborhood. From (2.3) and integrating by

parts, we get

∂zL(z, k) =
w0

|k|3

∫ ∞
0

e−
z
|k| ss2f̂ 0(k̂s)ds

=
w0

|k|3

[
− |k|

z
e−

z
|k| ss2f̂ 0(k̂s)ds

)s=∞
s=0

+
|k|
z

∫ ∞
0

e−
z
|k| s∂s(s

2f̂ 0(k̂s))ds

]
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=
w0

|k|2z

∫ ∞
0

e−
z
|k| s∂s(s

2f̂ 0(k̂s)ds

=
w0

|k|z

[
− |k|

z
e−

z
|k| s∂s(s

2f̂ 0(k̂s)

)s=∞
s=0

+
|k|
z

∫ ∞
0

e−
z
|k| s∂2

s (s
2f̂ 0(k̂s)ds

]
= ...

=
2w0n0

z3
+

6w0|k|
z4

[
k̂.∇f̂ 0(0)

]
+
w0|k|
z4

∫ ∞
0

e−
z
|k| s∂4

s (s
2f̂ 0(k̂s))ds.

Eventually we get ∂zL(iwp, 0) =
2i

wp
6= 0. Then by the implicit function theorem we get

the existence of a unique smooth solution k → p+(k) to the equation L(p+(k), k) = 1 in a

neighborhood of iwp. More precisely from Lemma 2

L(z, k) = −
w2
p

z2

[
1 +

9T

mez2
|k|2 +O

(
|k|4

z4

)]
.

So p2
+ = p2

+L(p+(k), k) = −w2
p +

9T

mep2
+

|k|2 +O(|k|4) = −w2
p +O(|k|2) +O(|k|4)

= −w2
p +

9T

me(−w2
p +O(|k|2)

+O(|k|4)

= −w2
p −

9T

mew2
p

|k|2 +O(|k|4)

= (iwp)
2

[
1 +

9T

mew4
p

|k|2 +O(|k|4)

]
.

Then,

p+(k) = iwp

(
1 +

9T

mew4
p

+O(|k|4)

)1/2

= i

(
wp +

9T

2mew3
p

|k|2 +O(|k|4)

)
,

where we have used that (1 + x)1/2 = 1 +
1

2
x+O(x) near 0. Next observe that

L(p+(k), k) = 1 and ∇kL(p+(k), k) = 0,

This yields the following result

∇p+(k) = −∇kL(p+(k), k)

∂zL(p+(k), k)
. (2.15)

Now L(z, k) = −w0

∫ ∞
0

tf̂ 0(kt)e−ztdt so that

∇kL(z, k) = −w0

∫ ∞
0

t2∇kf̂ 0(kt)e−ztdt = −w0

∫ ∞
0

s2

|k|2
∇kf̂ 0(k̂s)e−

z
|k| s

1

|k|
ds
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= − w0

|k|3

∫ ∞
0

s2∇kf̂ 0(k̂s)e−
z
|k| sds.

By the same method used in Lemma 2 we obtain

∇kL(z, k) =
2w0k

z4

[
k̂ ⊗ k̂ : ∇2f̂ 0(0)

]
=

2w0k

z4
× 3n0T

me

+O(|k|3) =
6w2

pTk

z4me

.

This implies

∇kL(p+(k), k) =
6Tk

w2
pme

+O(|k|3),

and since ∂zL(p+(k), k) =
2i

wp
, this yields

∇p+(k) = −∇kL(p+(k), k)

∂zL(p+(k), k)
= i

3T

mewp
k +O(|k|3).

Next observe that

∇k

[
(∇kL)(p+, k)

]
= (∇kp+).(∇k∂zL)(p+, k) + (∇2

kL)(p+, k)

∇k

[
(∂zL)(p+, k)

]
= ∇kp+.∂

2
z2L)(p+, k) + (∇k∂zL)(p+, k).

We get from (2.12) that∇2p+ is equal to the following expression

(∇2
kL)(P+, k) + 2(∇k∂zL)(P+, k).∇p+ + (∂2

z2L)(p+, k)|∇p+|2 + (∇k∂zL)(P+, k).(∇p+)

(∂zL)(p+, k)
.

(2.16)

The proof of (2.16) is similar to (2.12) but using (2.16) instead of (2.15). If we conti-

nue the computations of ∇m
k p+(k) for m ∈ N, we see that in ∇m

k L(z, k) (respectively

∇m
k ∂zL(z, k)), the leading order as k → 0 is an even (respectively odd) power of z−1

. Thus

at z = ±iwp all derivatives ∇m
k L(iwp, 0) are purely real (respectively purely imaginary).

We can see for exemple that if m = 0, ∂zL(iwp, 0) =
2i

wp
which is purely imaginary and

from the expression of ∇kL(z, k) then ∇kL(iwp, 0) is purely real which let us conclude

that all the derivatives∇m
k p+(0) are purely imaginary (for example see expressions (2.12)

and (2.13). Since p+(k) = iwp +O(|k|2) = −iλ(k) + iΩ(k) we obtain that

|∇jλ(k)| . |k|N .
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2.4 Extraction of Klein-Gordon waves

The equation (2.1) is equivalent to ρ̂(t, k)+w0

(
tf̂ 0(kt)∗ ρ̂(t, k)

)
= ĥin(k, kt). The solution

to this equation is (the convolution is in the �rst variable)

ρ̂(t, k) = ĥin(k, kt) +R(t, k) ∗ ĥin(k, kt) (2.17)

whereR(t, k) = −r(t, k) and r is the solution of

r(t, k) + w0

(
tf̂ 0(kt)

)
∗ r(t, k) = w0tf̂ 0(kt).

The Fourier-Laplace transform yields

r̂(z, k)− L(z, k)r̂(z, k) = −L(z, k).

It implies r̂(z, k) = − L(z, k)

1− L(z, k)
and R(t, k) =

1

2iπ

∫ γ+i∞

γ−i∞

L(z, k)

1− L(z, k)
eztdt, for a sui-

table Bromwish contour such that z → L(z, k)

1− L(z, k)
is holomorphic for <(z) ≥ γ. The

calculations in the two previous subsections 2.2-2.3 show that for |k| < ν0 su�ciently

small,

L(., k)

1− L(., k)
is holomorphic in the regionHε,δ′ represented in �gure 2 (the half plane

<(z) > −δ′|k| minus a disc of raduis ε around each pole) with one isolated pole p±(k) in

each disc, depending on k as studied in the last subsection.

Let us de�ne f and ∆ as follow

f(z, k) :=
L(z, k)

1− L(z, k)
ezt,

and ∆ = [γ′ − i∞, γ − i∞] ∪ [γ − i∞, γ + i∞] ∪ [γ + i∞, γ′ + i∞] ∪ [γ′ + i∞, γ′ − i∞].

By Cauchy’s Residue theorem, we get

1

2iπ

∫
∆

f(z, k)dz = Res(f(z, k), p+)Ind(f(z, k), p+) +Res(f(z, k), p−)Ind(f(z, k), p−)

= Res(f(z, k), p+) +Res(f(z, k), P−),

so that

R(t, k) = Res(f(z, k), p+)+Res(f(z, k), p−)− 1

2iπ

∫ γ−i∞

γ′−i∞
f(z, k)dz− 1

2iπ

∫ γ′+i∞

γ+i∞
f(z, k)dz

− 1

2iπ

∫ γ′−i∞

γ′+i∞
f(z, k)dz.
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Now Res(f(z, k), p±(k)) = lim
z→p±(k)

(z − p±)L(z, k)ezt

1− L(z, k)

= ep±(k)tL(p±(k), k) lim
z→p±(k)

z − p±(k)

1− L(z, k)

= ep±(k)tL(p±(k), k) lim
z→p±(k)

z − p±(k)

L(p±(k), k)− L(z, k)

=
ep±(k)t

−∂zL(p±(k), k)
,

Since the two other integrals vanishes, so

R(t, k) =
ep+(k)t

−∂zL(p+(k), k)
+

ep−(k)t

−∂zL(p−(k), k)
+

1

2iπ

∫ γ′+i∞

γ′−i∞
ezt

L(z, k)

1− L(z, k)
ds

:= R+
KG(t, k) +R−KG(t, k) +RRFT (t, k),

for γ′ so that the vertical line is to the left of the poles p±(k) but still in Hε,δ′ . This de-

composes the resolvent R = RKG +RLD into a Klein-Gordon part and a remainder free

transport part. We will only do the calculus of the �rst integral since the computation of

the second one is similar. Recall that

L(z, k) = −
w2
p

z2
+O(|k|2)

and parameterize the line between γ + iR and γ′ + iR as follow

Γ(x) = (1− x)(γ + iR) + x(γ′ + iR) = γ(1− x) + xγ′ + iR, we get∫ γ′+iR

γ+iR

L(z, k)

1− L(z, k)
eztdz =

∫ 1

0

eΓ(x)t L(Γ(x), k)

1− L(Γ(x), k)
Γ′(x)dx −→

R→∞
0.

Note that we used that |L(Γ(x), k)| −→
R→∞

0 which lead us to the corresponding expression

ofR(t, k). This yiledsR = RKG +RLD where

RKG(t, k) := R+
KG(t, k) +R−KG(t, k) and RLD(t, k) := RRFT (t, k).

This also yields the corresponding decomposition of ρ̂(t, k) through (2.17)

ρ̂(t, k) = ĥin(k, kt) +

∫ t

0

RKG(t− τ, k)ĥin(k, kτ)dτ +

∫ t

0

RRFT (t− τ, k)ĥin(k, kτ)dτ

= ρ̂FT (t, k) + ρ̂+
KG(t, k) + ρ̂−KG(t, k) + ρ̂RFT (t, k).

We �rst prove a general expansion of ρ̂±KG(t, k) by succesive integrations in time.
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Lemma 5 (Expansion of the Klein-Gordon density). For all |k| < ν0 and all l ∈ N, we have

ρ̂±KG(t, k) =
j=l∑
j=0

ep±(k)tA±j (k)
[
k⊗j : ∇j

ηĥin(k, 0)
]
−

j=l∑
j=0

A±j (k)
[
k⊗j : ∇j

ηîn(k, kt)
]

+

∫ t

0

ep±(k)(t−τ)A±l (k)

[
k⊗(l+1) : ∇l+1

η ĥin(k, kτ)

]
dτ, (2.18)

where∇ηĥin(k, η) is the di�erential in the second Fourier variable, and with the notation

A±j (k) :=
J±(k)

p±(k)j+1
and J±(k) := − 1

∂zL(p±(k), k))
.

Proof. ρ̂±KG(k, t) =

∫ t

0

ep±(k)(t−τ)

−∂zL(p+(k), k)
ĥin(k, kτ)dτ =

∫ t

0

J±(k)ep±(k)(t−τ)ĥin(k, kτ)

= −
∫ t

0

J+(k)

p±(k)
∂τ
(
ep±(k)(t−τ)

)
ĥin(k, kτ)dτ

= −J±(k)

p±(k)

([
ĥin(k, kτ)ep±(k)(t−τ)

]τ=t

τ=0
−
∫ t

0

ep±(k)(t−τ)∂τ ĥin(k, kτ)dτ
])

=
J±(k)

p±(k)
ĥin(k, 0)ep±(k)t−J±(k)

p±(k)
ĥin(k, kt)+

J±(k)

p±(k)

∫ t

0

ep±(k)(t−τ)∂τ
(
ĥin(k, kτ)

)
dτ .

And iterating �nitely many times yields the result.

Furthermore note that J−(k) = J+(k) and A−(k) = A+(k), so that the computations

made in the proof of Lemma 4 give J±(k) = ∓wp
2i

+O(|k|2). Precisely,

J+(k) = − 1

∂zL(p+(k), k)
= −p+(k)3

2w2
p

= −(iwp +O(|k|2))3

2w2
p

=
iw3

p(1 +O(|k|2)

2w2
p

=
−wp
2i

+O(|k|2),

where we used the fact (1 + x)a = 1 + ax+O(x) near 0. A similar computation gives

the expansion of J−(k). Denoting p±(k) = −λ(k) + iΩ(k) with λ(k) > 0 and

Ω(k) = wp +O(|k|2 it implies

Lemma 6 One has as k� 0,

A+
0 (k) + A−0 (k) = 1 +O(|k|2) (2.19)

A+
1 (k) + A−1 (k) = O(|k|2)

ep+(k)tA+
0 (k) + ep−(k)tA−0 (k) = e−λ(k)t

[
cos[Ω(k)t] +O(|k|2)eiΩ(k)t +O(|k|2)e−iΩ(k)t

]
ep+(k)tA+

1 (k) + ep−(k)tA−1 (k) = e−λ(k)t

[
sin[Ω(k)t]

Ω(k)
+O(|k|2)eiΩ(k)t +O(|k|2)e−iΩ(k)t

]
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Proof. by de�nition of A,

A+
0 (k) + A−0 (k) =

J+(k)

p+(k)
+
J−(k)

p−(k)
=
−wp

2i
+O(|k|2)

iwp +O(|k|2)
+

wp
2i

+O(|k|2)

−iwp +O(|k|2)

=
−wp +O(|k|2)

−2wp +O(|k|2)
+

wp +O(|k|2)

2wp +O(|k|2)

=
−wp +O(|k|2)

−2wp(1 +O(|k|2))
+

wp +O(|k|2)

2wp(1 +O(|k|2))
,

and using that near 0,

1

1± x
= 1∓ x+O(x) we get the result.

For the second equality,

A+
1 (k) + A−1 (k) =

J+(k)

p+(k)2
+
J−(k)

p−(k)2
=

−wp
2i

+O(|k|2)(
iwp +O(|k|2)

)2 +

wp
2i

+O(|k|2)(
− iwp +O(|k|2)

)2

=
−wp +O(|k|2)

−2iw2
p(1 +O(|k|2))

+
wp +O(|k|2)

−2iw2
p(1 +O(|k|2))

= O(|k|2),

and

ep+(k)tA+
0 (k) + ep−(k)tA−0 (k) = e−λ(k)t+iΩ(k)tA+

0 (k) + e−λ(k)t−iΩ(k)tA−0 (k)

= e−λ(k)t
[
eiΩ(k)tA+

0 (k) + e−iΩ(k)tA−0 (k)
]

= e−λ(k)t
[
eiΩ(k)t(1/2 +O(|k|2) + e−iΩ(k)t(1/2 +O(|k|2)

]
= e−λ(k)t

[
1

2
eiΩ(k)t +O(|k|2)eiΩ(k)t +

1

2
e−iΩ(k)t +O(|k|2e−iΩ(k)t

]
= e−λ(k)t[cos(Ω(k)t) +O(|k|2)eiΩ(k)t +O(|k|2)e−iΩ(k)t].

ep+(k)tA+
1 (k) + ep−(k)tA−1 (k) = e−λ(k)t+iΩ(k)t

[
1

2iwp
+ O(|k|2)

]
+ e−λ(k)t−iΩ(k)t

[
−1

2iwp
+

O(|k|2)

]
= ...

= e−λ(k)t

[
sin[Ω(k)t]

Ω(k)
+O(|k|2)eiΩ(k)t +O(|k|2)e−iΩ(k)t

]
.
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The following de�nition yields the decomposition in theorem 1.

De�nition 1 (decomposition of the electric �eld.)

Ê
(1;l)
LD (t, k) = −w0

ik

|k|2

[
ĥin(k, kt)−

l∑
j=1

A±j (k)
(
k⊗j : ∇j

ηĥin(k, kt)
)]

Ê
(2)
LD(t, k) = −w0

ik

|k|2

∫ t

0

RRFT (t− τ, k)ĥin(k, kτ)dτ

Ê
(1;l)
KG (t, k) = −w0

ik

|k|2

[
l∑

j=0

ep+(k)tA+
j (k)

(
k⊗j : ∇j

ηĥin(k, 0)
)
+

l∑
j=0

ep(k)tAj(k)
(
k⊗j : ∇j

ηĥin(k, 0)
)]

Ê
(2;l)
KG (t, k) = −w0

ik

|k|2

∫ t

0

ep±(k)(t−τ)A±l (k)
[
k⊗(l+1) : ∇l+1

η ĥin(k, kτ)
]
dτ

and accordingly de�ne the particular decomposion for l = 4

E
(1)
LD := E

(1;4)
LD , E

(2)
LD :=as above ELD = E

(1)
LD + E

(2)
LD,

E
(1)
KG := E

(1;4)
KG , E

(2)
KG := E

(2;4)
KG , EKG = E

(1)
KG + E

(2)
KG.

Next, we estimate the remainder free transport part of the resolvent RRFT . The gain in

powers of k present in lemma 7 is critical to the high quality decay rate of landau damping

electric �eld (check lemma 10)

Lemma 7 There exists λ0 > 0 such that for all |k| < ν0 there holds,

∀|k| < ν0, |RRFT (t, k)| . |k|3e−λ0|k|t.

Proof. De�ne α := 9Tw2
pm
−1
e , and Q(z, k) =

w2
p

z2 + w2
p

+
α|k|2

(z2 + w2
p)

2
.
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R|k|

Γ−

−R|k|

Γ0

−δ|k|

Γ+

∂Λδ,δ′

Figure 4

where

Γ0 =
{
z = λ+ iw : λ = −δ|k|, w ∈]−R|k|, R|k|[

}
Γ+ =

{
z = λ− i(1 + δ)λ+ i[R− (1 + δ)δ]|k| : λ ∈]−∞,−δ|k|]

}
Γ− =

{
z = λ+ i(1 + δ)λ− i[R− (1 + δ)δ]|k| : λ ∈]−∞,−δ|k|]

}
.

The function z → eztQ(z, k) is holomorphic in the left plane <z < −γ′|k|, and hence we

deduce by deforming the contour suitably,

RRFT (t, k) =
1

2iπ

(∫
Γ0

+

∫
Γ+

+

∫
Γ−

)
ezt
(

L(z, k)

1− L(z, k)
+Q(z, k)

)
dz

=: R0
RFT +R+

RFT +R−RFT .

Roughly speaking, we used Cauchy’s Residue theorem and the fact that there is no poles

to the left of γ′.
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R|k|

Γ−

−R|k|

Γ0

−δ|k|

Γ+

γ′

Figure 5 – The contour of integration

We separate cases as in Lemma 3. Consider �rst z ∈ Γ0 with |=(z)| < δ′|k| so

z = −δ|k| + iw and hence |z| ≤
√
δ2|k|2 + δ′2|k|2, Then z = O(|k|). From the proof of

Lemma 3, for all z ∈ Γ0, with |=(z)| < δ′|k|, L(−=(z), k) =
w0

|k|2
+O

(
|=(z)|
|k|3

)
so that for all |z| . |k|,

|L(z, k)| ≤ |k|−2,

and by Taylor expansion near 0,

|RRFT (t, k)| ≤
∫

Γ0

∣∣∣∣ezt z2L(z, k) + w2
p

(1− L(z, k))(z2 + w2
p

+
α|k|2

(z2 + w2
p)

2

∣∣∣∣dz
. e−δ

′|k|t
∫ δ′|k|

−δ′|k|
O(|k|2)dw

. |k|3e−δ′|k|t.

Now we study the case δ′|k| ≤ |=(z)| ≤ R|k|. From Lemma 3 we have |1−L(z, k)| ≥ |k|−2

and |L(z, k)| . |k|−2
. So with a similar method done in the �rst case, the integrand in

RRFT (t, k) is O(|k|2) which lead us to result. This complete the estimates on Γ0.

For Γ+ and Γ− we use a similar method as the one used in the decomposition of L in

Lemma 2

L(z, k) =
−w2

p

z2
−

9w2
pT |k|2

mez4
+O

(
|k|4

|z|6

)
,
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which yields the result.

In the next lemma we estimate the whole resolvent at bounded frequencies away from

zero.

Lemma 8 (Non-small frequencies resolvent estimate). Given any ν0 > 0 there is λ > 0 such
that

∀|k| ≥ ν0

2
, R(t, k) .

1

|k|
e−λ|k|t.

Proof. We take λ that veri�es lemma 1 from which we know that there is no pole in the

region <(z) ≥ −λ|k| and we deforme the contour to get

R(t, k) =
1

2iπ

∫ −λ|k|+i∞
−λ|k|−i∞

ezt
L(z, k)

1− L(z, k)
dz.

Using the estimate of Lemma 1 gives

|R(t, k)| . e−λ|k|t
∫ +∞

−∞

1

|k|2 + |w|2
dw .

1

|k|
e−λ|k|t.

Since L(−λ|k|+ iw, k) .
1

1 + |k|2 + w2
, we get

∣∣∣∣ L(−λ|k|+ iw, k)

1− L(−λ|k|+ iw, k)

∣∣∣∣ . 1

|k|2 + |w|2
.

2.5 The Klein-Gordon part of the electric �eld

In this part we will prove theorem 2, the proof is based on de�nition 1 and the previous

estimates of this section.

Proof. For any �eld F we de�ne Fε(t, x) :=
1

ε3
F (t,

x

ε
) with fourier transform

F̂ε(t, k) = F̂ (t, εk).

Note that we have de�ned hin in theorem 2 such that for all ε > 0, hin,ε(x, v) = H0(x, v).
We also de�ne

jin(x) :=
1

n0

∫
R3

vhindv

with fourier transform ĵin(k) =
1

n0

i∇ηĥin(k, 0).
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Denote Ĵ(k) =
1

n0

i∇ηĤ0(k) and recall the system(1.4)
∂2
t E(t, x) + (w2

p −
9T

me

∆)E(t, x) = 0,

E(0, x) = E0(x),

∂tE(0, x) = −n0∇x

( ∫
vhindv

)
= −n0∇x(n0jin(x))

with E0 =
q2n0

ε0me

∇x(−∆x)
−1

∫
R3

H0(., v)dv.

Applying Fourier transform to (1.4) yields


∂2
t Ê(t, k) + (w2

p +
9T

me

|k|2)Ê(t, k) = 0,

Ê(0, k) = Ê0(k),

∂tÊ(0, k) = −n2
0ik.ĵin(k).

Since E0 =
q2n0

ε0me

∇x(−∆x)
−1

∫
R3

H0(., v)dv, we have Ê0(k) =
q2n0

ε0me

ik

|k|2

∫
R3

Ĥ0(k, v)dv.

The solution to this system is

Ê(t, k) = Acos(ΩKG(k)t) +Bsin(ΩKG((k)t) where ΩKG(k) =

√
w2
p +

9T

me

|k|2.

and A = Ê(0, k) =
q2n0

ε0me

i
k

|k|2
Ĥ0(k, 0), B =

∂tÊ(0, k)

ΩKG(k)
=
−n2

0ikĵin(k)

ΩKG(k)
.

So we get

Ê(t, k) =
q2n0

ε0me

i
k

|k|2
Ĥ0(k, 0)cos(ΩKG(k)t)− n2

0ikĵin(k)
sin(ΩKG(k)t)

ΩKG(k)
.

We multiply by ε and appply this equality in εk instead of k to get

εÊε(t, k) = iw2
p

k

|k|2
Ĥ0(k, 0)cos(ΩKG(εk)t)− iε2n2

0(k.Ĵ(k))
sin(ΩKG(εk)t)

ΩKG(εk)
.

|Ω(εk)− ΩKG(εk)| .
∣∣∣∣√w2

p +
9T

me

|εk|2 +O(|εk|4)−
√
w2
p +

9T

me

|εk|2
∣∣∣∣,

we deduce that

|Ω(εk)− ΩKG(εk)| .
∣∣wp(1 +

9T

2mew2
p

|εk|2 +O(|εk|4)
)
− wp

(
1 +

9T

2mew2
p

|εk|2
)∣∣ . |εk|4.
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and therefore

|sin[Ω(εk)t]− sin[ΩKG(εk)t]| = |Ω(εk)t− ΩKG(εk)t| = O(|εk|4).

For t < 1,∣∣cos[Ω(εk)t]− cos[ΩKG(εk)t]
∣∣ =

∣∣Ω2(εk)t2 − Ω2
KG(εk)t2

∣∣ = O(ε|k|4t2) = O(ε|k|4t).

Furthermore, using (2.14) we have for any N > 0 that |1− e−λ(εk)t| ∼ |λ(εk)t| ≤ |εk|N t

so we can prove (but will admit ) that

ε|Ê(1)
KG,ε − Êε| . (|εk|4t+ ε|εk|2)||H0||W 0,1

4
.

and thus,

ε2||E(1)
KG,ε − Eε||

2
H−s . ||H0||2W 0,1

4

∫
|εk|.1

ε2|εk|4 + |εk|8t2

〈k〉2s
dk.

Now∫
|εk|.1

ε2|εk|4 + |εk|8t2

〈k〉2s
dk ≤ ε2

∫
|εk|.1

|εk|4

|k|2s
dk+

∫
|εk|.1

|εk|8t2

|k|2s
dk . ε2

∫
|εk|.1

dk

|k|2s
+t2

∫
|εk|.1

dk

|k|2s

Using spherical coordinates, we obtain

ε2
∫

0<r<1/ε

r2

r2s
dr + t2

∫
0<r<1/ε

r2

r2s
dr . ε2s−1 + t2ε2s−3 . ε2s−3(1 + t2) = ε2s−3〈t〉2

since ε� 1 and 2s− 3 < 2s− 1 so ε2s−1 < ε2s−3
.

we therefore get

ε||E(1)
KG,ε − Eε||H−s . ||H0||W 0,1

4
εs−

3
2 〈t〉.

3 Landau damping estimates on the electric �eld

In this section we provide an estimate for ELD. Denote the spatial density of the solution

to the free transport equation

H(t, x) :=

∫
R3

hin(x− tv, v)dv

with fourier transform Ĥ(t, k) = ĥin(k, kt).
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We will assume the following result.

Lemma 9 For all σ ≥ 0,

||〈∇x, t∇x〉σH(t, .)||L1
x
. ||hin||Wσ,1

0
.

Lemma 10 There holds the following estimate

||〈∇x, t∇x〉σE(2)
LD(t)||L∞x .

1

〈t〉4
||hin||Wσ+3+a,1

0
.

Proof.Consider the low spatial frequencies |k| . ν0. Using lemma 7 for any a > 0, we have

|〈(∇x, t∇x)〉σE(2)
LD(t, x)||L∞x . ||〈(k, tk)〉σÊ(2)

LD(t, k)||L1
k

.
∫
R3

〈(k, tk)〉σ|k|−1

∫ t

0

RRFT (t− τ, k)ĥim(k, kτ)dτdk

.
∫ t

0

∫
R3

〈(k, tk)〉σ|k|−1|RRFT (t− τ, k)||ĥin(t, kτ)|dkdτ .

Using the fact 〈(k, tk)〉 . 〈(k, (t− τ)k)〉〈(k, τk)〉, we get

||〈(∇x, t∇x)〉σE(2)
LD(t, x)||L∞x .

∫ t

0

∫
R3

〈(t, (t− τ)k)〉σ|k|−1|RRFT (t− τ, k)|〈(k, τk))〉σ|ĥin(k, kτ)|dkdτ.

Lemma 9 and Lemma 7 yield,

|〈(∇x, t∇x)〉σE(2)
LD(t, x)||L∞x .

∫ t

0

∫
R3

〈(k, (t− τ)k)〉σ|k|2〈(k, τk)〉−3−adkdτ ||hin||Wσ+3+a,1
0

.
∫ t

0

∫
R3

|k|2〈τk〉−3−a〈(t− τ)k〉−3−adkdτ ||hin||Wσ+3+a,1
0

.

Since 〈(k, (t− τ)k〉σ〈(k, τk)〉−3−a . 〈k〉σ〈(t− τ)k〉σ〈k〉−3−a〈τk〉−3−a

and using |k| ≤ ν0,

. 〈(t− τ)k〉σ〈τk〉−3−a

. 〈(t− τ)k〉−3−a〈τk〉−3−a

because 〈(t− τ)k〉σ = 〈(t− τ)k〉σ+3+a〈(t− τ)k〉−3−a . 〈(t− τ)k〉−3−a
.
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We split the integral∫ t

0

(∫
R3

|k|2〈τk〉−3−a〈(t− τ)k〉−3−adk

)
dτ =

(∫ t
2

0

+

∫ t

t
2

)(∫
R3

|k|2〈τk〉−a−3〈(t− τ)k〉−3−adk
)
dτ,

and use the change of variable k′ = τk in the �rst integral and k′ = (t− τ)k in the second

one, we get∫ t
2

0

∫
R3

|k|2〈τk〉−a−3〈(t−τ)k〉−3−adk
)
dτ =

∫ t
2

0

τ−3

∫
R3

τ−2|τk|2〈τk〉−3−a〈(t−τ)k〉−3−adk′dτ

=

∫ t
2

0

τ−5

∫
R3

|k′|2〈k′〉−3−a〈( t
τ
− 1)k′〉−3−adk′dτ .

Since τ ∈ [0, t
2
] we have

t
τ
∈ [2,∞[ and then 〈

(
t
τ
− 1
)
k′〉−3−a ≤ 〈k′〉−3−a

. This yields∫ t
2

0

∫
R3

|k|2〈τk〉−a−3〈(t− τ)k〉−3−adk
)
dτ =

∫ t
2

0

τ−5

(∫
R3

|k′|2〈k′〉−3−a〈k′〉−3−adk′
)
dτ

. t−4.

For the second integral, we have similarly∫ t

t
2

∫
R3

|k|2〈τk〉−a−3〈(t−τ)k〉−3−adk
)
dτ =

∫ t

t
2

∫
R3

(t−τ)−5|k′|−2〈 τk
′

t− τ
〉−3−a〈k′〉−3−adk′dτ

.
∫ t

t
2

(∫
R3

(t− τ)−5|k′|2〈k′〉−3−adk′
)
dτ . t−4.
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4 Appendix

In this section we will prove some results that we used in the main part of this report. We

will start by stating Green theorem which will helps us to prove Cauchy integral Theorem.

Green Theorem

Let γ be a positeviley oriented, smooth, simple closed curve in a plane, and let D be the region
bounded by γ. If u and v are functions of (x, y) de�ned on an open region containing D and
having continiuous partial derivatives then∫

γ

udx+ vdy =

∫∫
D

(
∂v

∂x
− ∂u

∂y

)
dxdy

4.1 Cauchy Integral Theorem

Let U ⊆ C be a simply connected open set, and let f : U → C be a holomorphic function. Let
γ : [a, b]→ U be a smooth closed curve. then∫

γ

f(z)dz = 0

Proof. For simplicity, we will assume that the partial derivatives of a holomorphic func-

tion are continuous, then the Cauchy theorem can be proved as a direct consequence of

Green theorem and the fact that the real and imaginary parts of f = u + iv must satisfy

the Cauchy-Riemann equations in the region bounded by Γ, moreover in the open neigh-

borhood U of this region. We can break the integral of f(z), as well as the di�erentiel dz
into their real and imaginary part component

f(z) = u(x, y) + iv(x, y)

dz = dx+ idy
In this case, we have∫
γ

f(z)dz =

∫
γ

(
u(x, y) + iv(x, y)

)
(dx+ idy)

=

∫
γ

(
u(x, y)dx− v(x, y)dy

)
+ i

∫
γ

v(x, y)dx+ u(x, y)dy

By Green theorem, we may then replace the integrals around the closed contour γ with

an area integral throughout th domain D that is enclosed by γ as follows
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∫
γ

(
u(x, y)dx− v(x, y)dy)

)
=

∫∫
D

(
− ∂v

∂x
− ∂u

∂y

)
dxdy∫

γ

(
v(x, y)dx+ u(x, y)dy

)
=

∫∫
D

(
∂u

∂x
− ∂v

∂y

)
dxdy.

But as the real and imaginary part of a holomorphic function in the domain D, u and v must

satisfy the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

We therefore �nd that both integrands (and hence their integrals) are zero, which lead us

to ∫
γ

f(z)dz = 0.

4.2 Cauchy Residue theorem

Suppose f(z) is analytic in U except for a set of n isolated singularities. Suppose also that γ is
a simple closed curve in U that doesnt go trough any of the singularites of f and is oriented
positevily (counterclockwise) and suppose that the singularites lies inside of γ then∫

γ

f(z)dz = 2πi
n∑
j=1

Res(f, zj)
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Proof. Let γ̃ = γ1 + γ2 − γ3 − γ2 + γ4 + γ5 − γ6 − γ5. γ the biggest circle, Where γ3

is the circle surrounding the point z1 and γ5 the circle surrounding the point z2. We have

γ = γ1 + γ4 and since there is no pole inside γ̃ we get by Cauchy integral theorem∫
γ̃

f(z)dz =

∫
γ1...−γ5

f(z)dz) = 0

Dropping γ2 and γ5 which are both added and substracted, we get∫
γ1+γ4

f(z)dz =

∫
γ3+γ6

f(z)dz (4.1)

If f(z) = ... +
a2

(z − z1)2
+

a1

(z − z1)
+ a0 + a1(z − z1) + ... is the Laurent expansion

of f around z1 then∫
γ3

f(z)dz =

∫
γ3

...+
a2

(z − z1)2
+

a1

(z − z1)
+a0+a1(z−z1)+... dz = 2πia−1 = 2πiRes(f, z1).

Because for n 6= 1,

∫
γj

1

(z − zj)n
= 0 where zj is in the region bounded by γj

In fact γj = zj +Reit t ∈ [0, 2π] so∫
γj

1

(z − zj)n
dz =

∫ 2π

0

Rieit

(Reit)n
dt = iRn−12π

0 e
i(n−1)tdt = 0.

Likewize

∫
γ6

f(z)dz = 2iπRes(f, z2) Using these residues and the fact that γ = γ1 + γ4

(4.1) becomes ∫
γ

f(z)dz = 2πi

j=2∑
j=1

Res(f, zj)

That proves the residue theorem for the case of two poles, which gives the result by the

same method for n poles.

4.3 Method of characteristics

We consider the general problem. For 0 < t < T, x ∈ Rn

∂tu+ a(t.x)∇xu = 0 (4.2)

Known as transport equation and we assume that a :]a, T [×Rn → Rn
is smooth.

De�nition Let t ≥ 0 and x ∈ Rn
. We call characteristics of (4.2) a solution s → x(s.t) ∈

C1(Rn,R) such that
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dx

ds
(s.t) = a(s, x(s, t)) and x(t, t) = x.

Theorem A1
Let a ∈ C([0, T ]×Rn) di�erentiable in x with ∂xa ∈ C([0, T ]×Rn) and

∀t ∈ [0, T ], x ∈ Rn, |a(t, x)| ≤ κ(1 + |x|).

so for all t ∈ [0,T] and x ∈ Rn
, there exists a unique characteristic de�ned for s ∈ [0, T ]

and such that x(t, t) = x, which we will denote as x(s, t, x) and we have that

x∈ C1([0, T ]s × [0, T ]t ×Rn
x
).

Furthermore ∂s∂xx and ∂x∂sx existe and are continiuos on [0, T ]s × [0, T ]t ×Rn
x

Proof We can check [5]

Proposition 1 under the assumptions of theorem A1 we have

(i) ∀r, s, t ∈ [0, T ], s ∈ Rn
x(t, s.x(s, r, x)) = x(t, r, x)

(ii) ∀s, t ∈ [0, T ], the map x→ x(s, t, x) is C1
di�eomorphism ofRn

with inverse x(t, s, .)

Proof (i) from the de�nition of x, we have that both terms of the equality veri�es x(r, r) =
x and from the unicity of Cauchy problem solution we get the result.

(ii) The regularity is given from Theorem A1. On the other hand, if we denote

f1 : Rn → Rn
and f2 : Rn → Rn

x→ x(s, t, x) x→ x(t, s, x)

we have

(
f1 ◦ f2(x) = f1(x(t, s, x)) = x(s, t, x(t, s, x))

)
= x(s, s, x) = x(s, s) = x

and

(
f2 ◦ f1

)
(x) = f2(x(s, t, x)) = x(t, s, x(s, t, x)) = x(t, t, x) = x(t, t) = x

38



Proposition 2 The characteristic satisfy the following equation

dx

dt
(s, t, x) + a(t, x)∇xx(s, t, x) = 0.

Proof We di�erentiate x(t, s, x(s, r, x)) = x(t, r, x) with respect to s to get

∂tx(t, s, x(s, r, x)) +
∂x

∂s
(s.t)

∂x

∂x
(t, s, x(s, r, x)) = 0,

∂tx(t, s, x(s, r, x)) + a(s, x(s, t, x))∇xx(t, r, x) = 0,

∂tx(t, r, x) + a(s, x(s, t, x))∇xx(t, r, x)) = 0.

Applying it for r = s and switching the roles between t and s we get

∂tx(s, t, x) + a(t, x)∇xx(s, t, x) = 0 since x(t, t, x) = x)

Theorem A2 (Existence and unicity of the solution.)

Under the assumptions of theorem A1, and if we suppose that u0 ∈ C1(Rn), then there

exists a unique solution to (??) with initial data u(0, x) = u0 and u is given by

u(t, x) = u0(x(0, t, x)).

Proof We will start by proving that u given in the statement in a solution.

From proposition 2,

dx

dt
(s, t, x) + a(t, x)∇xx(s, t, x) = 0,

then

∇xu0(x(0, t, x))
dx

dt
(s, t, x) + a(t, x)∇xu0(x(0, t, x))∇xx(s, t, x) = 0.

So s = 0,

∇xu0(x(0, t, x))
dx

dt
(0, t, x) + a(t, x)∇xu0(x(0, t, x))∇xx(0, t, x) = 0

which lead us to the following result

d

dt

(
u0(x(0, t, x))

)
+ a(t, x)

d

dx

(
u0(x(0, t, x))

)
= 0

and u0(x(0, t, x) is a solution.

In the opposite way , let u ∈ (C)1
a solution to ??. For all (t0, x0) we have

d

ds
[u(s, x(s, t0, x0))] = ∂tu(s, x(s, t0, x0) +∇xu(s, x(s, t0, x0))∂sx(s, t0, x0)

= ∂tu(s, x(s, t0, x0)) +∇xu(s, x(s, t0, x0))a(s, x(s, t0, x0)

= 0.
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And we deduce that u(s, x(s, t0, x0)) = u0(x(0, t0, x0)) Now let x = x(0, s, x)). we get

u(s, x) = u0(x(0, t0, x0)

because u0(x(0, s, x)) = u0x(0, s, x(s, t0, x0)) = u0(0, t0, x0).

4.4 The Sokhotski-Plemelj Formula

The Sokhotski-Plemelj formula is a relation between distributions,

lim

ε→0

1

x± iε
= P

1

x
∓ iπδ(x), (4.3)

where ε > 0 is an in�nitesimal quantity. This identity formally makes sense only when

�rst multiplied by a function f(x) that is smooth and non singular in a neighborhood of

the origin, and then integrated over a range of x containing the origin. We shall also assume

that f(x)→ 0 su�ciently fast as x→ ±∞ in order that integrals evaluated over the entire

real line are convergent.

To establish (4.3), we shall prove that

lim

ε→0

∫ +∞

−∞

f(x)dx

x± iε
= P

∫ +∞

−∞

f(x)dx

x
∓ iπf(0), (4.4)

where the cauchy principal value integral is de�ned as

P

∫ +∞

−∞

f(x)dx

x
:= lim

δ→0

{∫ −δ
−∞

f(x)dx

x
+

∫ ∞
δ

f(x)dx

x

}
, (4.5)

assuming f(x) is regular in a neighborhood of the real axis and vanishes as x→ ±∞.

Proof of (4.4) We begin with the identity,

1

x± iε
=

x∓ iε
x2 + ε2

,

where ε is a positive in�nitesimal quantity. Thus, for any smooth function that is non-

singular in a neighborhood of the region.∫ ∞
−∞

f(x)dx

x± iε
=

∫ ∞
−∞

xf(x)dx

x2 + ε2
∓ iε

∫ ∞
−∞

f(x)dx

x2 + ε2
. (4.6)

The �rst integral on the right hand side of equation (4.6),∫ ∞
−∞

xf(x)dx

x2 + ε2
=

∫ −δ
−∞

xf(x)dx

x2 + ε2
+

∫ ∞
δ

xf(x)dx

x2 + ε2
+

∫ δ

−δ

xf(x)dx

x2 + ε2
. (4.7)
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In the �rst two integrals on the right hand side of equation (4.7), we can take the limit

ε→ 0. In the last integal on the right hand side of the same equation, if δ is small enough,

then we can approximate f(x) ' f(0) for values of |x| < δ. Therefore, equation (4.7)
yields,∫ ∞

−∞

xf(x)dx

x2 + ε2
= lim

δ→0

{∫ −δ
−∞

f(x)dx

x
+

∫ ∞
δ

f(x)dx

x

}
+ f(0)

∫ δ

δ

xdx

x2 + ε2
. (4.8)

However, ∫ δ

δ

xdx

x2 + ε2
= 0,

since the integrand in an odd function of x that is being integrated symmetrically about

the origin, and

P

∫ +∞

−∞

f(x)dx

x
:= lim

δ→0

{∫ −δ
−∞

f(x)dx

x
+

∫ ∞
δ

f(x)dx

x

}
,

de�nes the principal value integral. Hence, equation (4.8) yields∫ ∞
−∞

xf(x)dx

x2 + ε2
= P

∫ ∞
−∞

f(x)dx

x
. (4.9)

Next, we consider the second integral on the right hand side of equation (4.6). We assume

that the only signi�cant contribution from

ε

∫ ∞
−∞

f(x)dx

x2 + ε2

can comme from the integration where x ' 0. Thus, we can again approximate f(x) '
f(0), in which case we obtain

ε

∫ ∞
−∞

f(x)dx

x2 + ε2
' εf(0)

∫ ∞
−∞

dx

x2 + ε2
= πf(0), (4.10)

where we have made use of∫ ∞
−∞

dx

x2 + ε2
=

1

ε
tan−1(

x

ε
)

)∞
−∞

=
π

ε
.

Now using the results of equations (4.9 and (4.10), we see that equation (4.6) yields

lim

ε→0

∫ ∞
−∞

f(x)dx

x± iε
= P

∫ ∞
−∞

f(x)dx

x
∓ iπf(0),

which establishes equation (4.4). Note that (4.3) can be generalized as follows,

lim

ε→0

1

x− x0 ± iε
= P

1

x− x0

∓ iπδ(x− x0),

where

P

∫ ∞
−∞

f(x)dx

x− x0

:= lim

δ→0

{∫ x0−δ

−∞

f(x)dx

x− x0

+

∫ ∞
x0+δ

f(x)dx

x− x0

}
.

The proof is similar for what we have done for (4.4).
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