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1. Introduction

We consider the non linear Schrödinger equation on the torus

(1.1) i∂tu+ ∂xxu = |u4|u, (t, x) ∈ R× T.

This system is Hamiltonian on the phase space (u, ū) ∈ L2(T) endowed with the symplectic

form −idu ∧ dū. The Hamiltonian of the equation is given by

h =

∫
T
|ux|2 +

1

3
|u|6dx.

Let us expand u and ū in Fourier basis:

u(x) =
∑
j∈Z

aje
ijx, ū(x) =

∑
j∈Z

bje
ijx.

In this variables, the symplectic structure becomes −i
∑

j∈Z daj ∧ dbj, and the Hamiltonian

h of the system reads

h = N + P =
∑
j∈Z

j2ajbj +
1

3

∑
j,`∈Z3,M(j,l)=0

aj1aj2aj3b`1b`2b`3

whereM(j, l) = j1+j2+j3−`1−`2−`3 denotes the momentum of the multi-index (j, `) ∈ Z6

or equivalently the momentum of the monomial aj1aj2aj3b`1b`2b`3 .

In this article, we are studying the persistence of two and three dimensional linear invari-

ant tori. Precisely, given p, q ∈ Z and ap, aq ∈ C, we are interesting in the persistence of

torus Tlin
c = {|ap|2 = c1, |aq|2 = c2} under the flow of h for c ∈ R2. By KAM theorem 2.3,

we prove that for ρ in a Cantor set of full measure in [1, 2]2 and for ν small enough, the

torus Tlin
νρ is linearly stable.

Theorem 1.1. Fix p, q ∈ Z, and s > 1
2
. There exists ν0 > 0, and for 0 < ν < ν0, there

exists Dν ⊂ [1, 2]2 asymptotically of full measure (i.e. meas([1, 2]2 \ Dν)→ 0 when ν → 0)

such that for ρ ∈ Dν , equation (1.1) admits a solution of the form

u(x) =
∑
j∈Z

aj(tω)eijx

where {aj}j is analytic function form T2 to `2
s satisfying uniformly in θ ∈ T2

|ap −
√
νρ1|2 + |aq −

√
νρ2|2 +

∑
j 6=p,q

(1 + j2)s|aj|2 = O(ν3).

Here ω is a nonresonant vector in R2 that satisfies

ω = (p2, q2) +O(ν2).

Furthermore, this solution is linearly stable.



4

For there dimensional tori, the dynamic structure is complicated. It depends on three

internal modes (p, q,m) of that torus and starting energy on each mode. In this paper, with

KAM theorem 2.3, we just focus on the case there is no ` solving equation

(1.2)

{
2j1 + j2 = j3 + `

2j2
1 + j2

2 = j2
3 + `2

where {j1, j2, j3} = {p, q,m}. We prove that for ρ = (ρ1, ρ2, ρ3) ∈ D1 = [1, 2]3, the torus

Tlin
νρ = {|ap|2 = νρ1, |aq|2 = νρ2, |am|2 = νρ3} is linearly stable for all p, q,m ∈ Z, while for

ρ = (ρ1, ρ2, ρ3) ∈ D2 = [1− ε, 1 + ε]× [1
2
− ε, 1

2
+ ε]× [9

2
− ε, 9

2
+ ε] with ε sufficiently small,

that torus is linearly unstable if there exist s, t solving the following equation system

(1.3)

{
2p+ q = m+ s+ t

2p2 + q2 = m2 + s2 + t2

Theorem 1.2. Fix p, q, m ∈ Z, and s > 1
2
, assume that we are not in the case (1.2). There

exists ν0 > 0, and for 0 < ν < ν0, there exists Dν ⊂ D asymptotically of full measure (i.e.

meas(D \ Dν) → 0 when ν → 0) such that for ρ ∈ Dν , equation (1.1) admits a solution of

the form

u(x) =
∑
j∈Z

aj(tω)eijx(1.4)

where {aj}j is analytic function form T3 to `2
s satisfying uniformly in θ ∈ T3

|ap −
√
νρ1|2 + |aq −

√
νρ2|2 + |am −

√
νρ3|2 +

∑
j 6=p,q,m

(1 + j2)s|aj|2 = O(ν3).(1.5)

Here ω is a non resonant vector in R3 that satisfies

ω = (p2, q2,m2) +O(ν2).

Furthermore, this solution is linearly stable if D = D1, linearly unstable if D = D2 and there

are s, t 6= p, q,m solving (1.3).

The main theorem used in this article is KAM theorem 2.3 which is stated without proof

in [5] to study a system of coupled nonlinear Schrödinger equations on the torus. We will

recall the theorem in section 2 and some of results needed to prove it in section 3. The

proof is presented in section 4.
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2. KAM theorem

In this section, I recall the KAM theorem stated in [5] , which is proved in section 4.

We consider a Hamiltonian H = h0 +f, where h0 is a quadratic Hamiltonian in normal form

h0 = Ω(ρ) · r +
∑
a∈Z

Λa(ρ)|ζa|2.(2.1)

Here

• ρ is a parameter in D, which is a compact in the space Rn;

• r ∈ Rn are the actions corresponding to the internal modes (r, θ) ∈ (Rn × Tn, dr ∧ dθ) ;

• L and F are respectively infinite and finite sets, Z is the disjoint uninon L ∪ F ;

• ζ = (ζa)a∈Z ∈ CZ are the external modes endowed with the standard complex

symplectic structure −idζ ∧ dη. The external modes decomposes in a infinite part

ζL = (ζa)a∈L , corresponding to elliptic directions, which means Λa ∈ R for a ∈ L,

and a finite part ζF = (ζa)a∈F , corresponding to hyperbolic directions, which means

=Λa 6= 0 for a ∈ F ;

• L has a clustering structure L = ∪j∈NLj, where Lj are finite sets of cardinality

dj ≤ d <∞. If a ∈ Lj, we denote [a] = Lj and wa = j, for a ∈ F we set wa = 1;

• the mappings

Ω : D → Rn,(2.2)

Λa : D → C, a ∈ Z,(2.3)

are smooth;

• f = f(r, θ, ζ; ρ) is a perturbation, small compare to the integrable part h0.

Linear space Let s ≥ 0, we consider the complex weighted `2− space

Zs = {ζ = (ζa ∈ C, a ∈ Z) | ‖ζ‖s} <∞,

where

‖ζ‖s =
∑
a∈Z

|ζa|2w2s
a .

Similarly we difine

Ys = {ζL = (ζa ∈ C, a ∈ L) | ‖ζL‖s} <∞,

with the same norm. We endow Zs and Ys with the symplectic structure −idζ ∧ dη, with

η = ζ̄ .

A class of Hamiltonian functions. Denote ω = (ζ, η). On the space

Cn × Cn × (Zs × Zs)
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we define the norm

‖(r, θ, ω)‖s = max (|r|, |θ|, ‖ζ‖s) .

For σ > 0 we denote

Tnσ = {θ ∈ Cn : |=θ| < σ}/2πZn.

For σ, µ ∈ (0, 1] and s ≥ 0 we set

Os(σ, µ) = {r ∈ Cn : |r| < µ2} × Tns × {ω ∈ Zs × Zs : ‖ζ‖s < µ}.

We will denote points inOs(σ, µ) as x = (r, θ, ω). Let f : O0(σ, µ)×D → C be a C1–function,

real holomorphic in the first variable x, such that for all ρ ∈ D, x ∈ Os(σ, µ) :

∇ωf(x, ρ) ∈ Zs × Zs

and

∇2
ωLωL

f(x, ρ) ∈ L(Ys, Ys)

are real holomorphic functions. We denote by T s(σ, µ,D) this set of functions. For f ∈
T s(σ, µ,D), we define

|∂jρf |σ,µ,D = sup
x∈Os(σ,µ); ρ∈D

max(|∂jρf |, µ
∥∥∂jρ∇ωf(x, ρ)

∥∥
s
, µ2

∥∥∇2
ωLωL

∂jρf(x, ρ)
∥∥),

and

[f ]sσ,µ,D = max
j

(|∂jρf |σ,µ,D)

where j = 0, 1.

Jet functions For any f ∈ T s(σ, µ,D), we define its jet fT (x) as the following Taylor

polynomial of f at r = 0 and ω = 0

fT (x) = f(0, θ, 0) + drf(0, θ, 0) · r + dωf(0, θ, 0)[ω] + 1/2d2
ωf(0, θ, 0)[ω, ω].

We say that f ∈ T sres(σ, µ,D) if there exists a constant M such that for all k 6= 0 and all

a, b ∈ L with [a] = [b] then

eik·θζaηb ∈ fT =⇒ a = b or |wa| ≤M |k|.

Infinite matrices For the elliptic variables, we denote by Ms the set of infinite matrices

A : L × L → C such that A maps linearly Ys into Ys. We provide Ms with the operator

norm

|A|s = ‖A‖L(Ys,Ys)
.

We say that a matrix A ∈Ms is in normal form if it is block diagonal and Hermitian, i.e.

Aβα = 0 for [α] 6= [β] and Aβα = Āαβ for α; β ∈ L.

In particular, if A ∈Ms is in normal form, its eigenvalues are real.
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Normal form A quadratic Hamiltonian function is on normal form if it reads

h = Ω(ρ) · r + 〈ζL, QηL〉+ 1/2〈ωF , KωF〉

for some vector function Ω(ρ) ∈ Rn, some matrix functions Q(ρ) ∈ Ms on normal form

and K(ρ) is a matrix F × F → C symmetric in the following sense:Kβ
α = tKα

β .

Hypothesis A0. There exists a constant C > 0 such that

|Λa − |wa|2| ≤ C, ∀a ∈ L.

Hypothesis A1.

|Λa| ≥ δ, ∀a ∈ L;

|=Λa| ≥ δ, ∀a ∈ F ;

|Λa − Λb| ≥ δ, ∀a, b ∈ Z, [a] 6= [b];

|Λa + Λb| ≥ δ, ∀a, b ∈ L.

Hypothesis A2. There exists δ > 0 such that for all Ω δ–close to Ω0 in C1 norm and for

all k ∈ Zn\{0} :

(1) either

|Ω(ρ) · k| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k) ≥ δ ∀ρ ∈ D;

(2) for all a ∈ L either

|Ω(ρ) · k + Λa| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k + Λa) ≥ δ ∀ρ ∈ D;

(3) for all α, β ∈ L and a ∈ [α], b ∈ [β] either

|Ω(ρ) · k + Λa ± Λb| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k + Λa ± Λb) ≥ δ ∀ρ ∈ D;

(4) for all a, b ∈ F
|Ω(ρ) · k + Λa ± Λb| ≥ δ.
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Remark 2.1. Hypotheses A1, A2 are used to control the following monomials of the pertur-

bation f

eik·θ ∀k 6= 0;

eik·θζa, e
ik·θηa ∀a ∈ Z, k ∈ Zn;

eik·θζaζb, e
ik·θηaηb ∀a, b ∈ Z, k 6= 0;

ζaζb, ηaηb a, b ∈ L;

eik·θζaηb a, b ∈ Z, k 6= 0;

ζaηb a, b ∈ Z, [a] 6= [b].

Remark 2.2. Even Hypothesis A2 is required for all k 6= 0, we will see that in KAM procedure

we just need to control a small divisor in case the corresponding monomial appears in the

jet of the perturbation terms. In Appendix, we use the preservation of mass and momentum

in order to reduce the number of divisors we have to control.

Theorem 2.3 (KAM theorem). Assume that hypothesis A0, A1, A2 are satisfied and that

f ∈ T sres(σ, µ,D) with s > 1/2. Let γ > 0, there exists a constant C0 such that if

[f ]sσ,µ,D ≤ C0δ, ε := [fT ]sσ,µ,D ≤ C0δ
1+γ,(2.4)

then there exists a Cantor set D′ ⊂ D asymptotically of full measure (i.e. meas(D\D′)→ 0

when ε→ 0) and there exists a symplectic change of variables Φ : Os(σ/2, µ/2)→ Os(σ, µ)

such that for all ρ ∈ D′

(h0 + f) ◦ Φ = h+ g

with h = Ω(ρ)·r+〈ζL, Q(ρ)ηL〉+1/2〈ωF , K(ρ)ωF〉 on normal form, and g ∈ T sres(σ/2, µ/2,D′)
with gT ≡ 0. Furthermore there exists C > 0 such that for all ρ ∈ D′

|Ω− Ω0| ≤ Cε, |Q− diag (Λa, a ∈ L) | ≤ Cε, |JK − diag (Λa, a ∈ F) | ≤ Cε.

As a dynamic consequence Φ ({0} × Tn × {0}) is an invariant torus for h0 +fand this torus

is linearly stable if and only if F = ∅ (see [5])

Here, the matrix J is of the form, (
0 −I
I 0

)
where I is identity matrix of size #F . .
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3. Preparation

In order to prove theorem 2.3, we need to recall some results which are proved in [4]

(Lemma 3.3 and 3.6), [5] (Lemma 3.4 and Proposition 3.5), [2] (Lemma 3.7 and 3.11).

Definition 3.1. The Poisson brackets of two Hamiltonian functions is defined by

{f, g} = ∇θf · ∇rg −∇rf · ∇θg − i〈∇ωf, J∇ωg〉.

Lemma 3.2. Let f : Tnσ −→ C be a periodic, analytic function on Tnσ′ and continuous on

Tnσ for 0 < σ′ < σ, then we have

|f̂(j)| ≤ Ce−|j|·σ|f(x)|σ.(3.1)

Here |j| = |j1|+ |j2|+ ...+ |jn|, j = (j1, j2, ..., jn) and |f(x)|σ = supx∈Tnσ |f(x)|

Proof. We have

f̂(j) =

∫ 2π

0

f(x)eijxdx =

∫ 2π+iσ′

0+iσ′
f(x)eijxdx

≤
∫ 2π

0

|f(x)|e−|j|·σ′dx

≤ 2πe−|j|·σ
′ |f(x)|σ′

for 0 < σ′ < σ. Since this is true for all σ′ < σ, f is continuous on Tnσ and f̂(j) is independent

of σ, we have (3.1).

�

Lemma 3.3. Let s > 1/2. Let f, g ∈ T s (σ, µ,D) be two jet functions then for any 0 <

σ
′
< σ we have f, g ∈ T s (φ, µ,D) and

[{f, g}]sσ′ ,µ,D ≤ C(σ − σ′)−nµ−2 [f ]sσ,µ,D [g]sσ,µ,D .

Furthermore if f, g ∈ T sres (σ, µ,D) then f, g ∈ T sres (φ, µ,D) .

See [4], Lemma 4.3.

Lemma 3.4. Let I be an open interval and let f : I → R be a C1-function satisfying

|f ′(x)| ≥ δ, ∀x ∈ I.

Then

meas{x ∈ I : |f(x)| < ε} ≤ C
ε

δ
.

See [5], Lemma 2.9.
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Proposition 3.5. Let M,N ≥ 1 and 0 < κ ≤ δ. Assume Hypothesis A0, A1 , A2. Then

there exists a closed subset D′ = D′(κ,N) ⊂ D satisfying

measD \ D′ ≤ Cδ−1κM2Nn+2,

such that for all ρ ∈ D′, for all |k| ≤ N and for all a, b ∈ Z

|Ω(ρ) · k| ≥ κ except if k = 0,(3.2)

|Ω(ρ) · k + Λa(ρ)| ≥ κ,(3.3)

|Ω(ρ) · k + Λa(ρ) + Λb(ρ)| ≥ κ,(3.4)

and for all ρ ∈ D′, for all |k| ≤ N and for all a, b ∈ L such that either [a] 6= [b] or [a] = [b]

and wa ≤M |k|
|Ω(ρ) · k + λa (ρ)− λb (ρ) | ≥ κ.

See [5], Proposition 2.8. Notice that this proposition is true for all Ω δ–close in C1 norm

from Ω0.

Lemma 3.6. Let f ∈ T s (σ, µ,D) then fT ∈ T s (σ, µ,D), and[
fT
]s
σ,µ,D ≤ C [f ]sσ,µ,D(3.5) [

f − fT
]s
σ,µ′,D ≤ C

(
µ′

µ

)3

[f ]sσ,µ′,D(3.6)

where C is an absolute constant and 0 < µ′ < µ.

See [4], Proposition 4.2.

Lemma 3.7. Let s > 1/2. Let f, g ∈ T s (σ, µ,D) then for any 0 < σ
′
< σ, 0 < µ′ < µ < 1

we have f, g ∈ T s (σ′, µ′,D) and

[{f, g}]sσ′ ,µ′,D ≤ C

(
1

(σ − σ′)n
+

1

(µ− µ′)2

)
[f ]sσ,µ,D [g]sσ,µ,D .

See [2], Proposition 2.9 which is not exactly stated for T s (σ, µ,D), but the proof can be

applied directly for this lemma.

Let

h = Ω · r + 1/2 〈ω,Aω〉 = Ω · r + 〈ζ,Qη〉+ 1/2 〈ωF , KωF〉(3.7)

is on normal form, when h0 is of that form with

Q0 = diag{Λa(ρ) : a ∈ L},

JK0 = diag{Λa(ρ) : a ∈ F}.
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Denote by Q[a] restriction of the matrix Q to [a]× [a] and let Q∅ = 0. Let also H∅ = 0.

For any a, b ∈ L ∪∅ and λ ∈ R, denote

L(ρ, k, a, b)± : X −→ 〈k,Ω(ρ)〉+Q[a](ρ)X ±XQ[b],

L(ρ, k, a,F) : X −→ 〈k,Ω(ρ)〉+Q[a]X +XJK(ρ),

L(ρ, k,F)± : X −→ 〈k,Ω(ρ)〉+K(ρ)JX ±XJK(ρ).

For simplicity, we write L(ρ, k,Ω) instead of L(ρ, k,∅,∅), and L(ρ, k) in the case we want

to mention all these functions. We also denote L0(ρ, k, a, b)±, L
0(ρ, k, a,F), L0(ρ, k,F)±

respectively for L(ρ, k, a, b)±, L(ρ, k, a,F), L(ρ, k,F)± in case Ω δ–close in C1 norm from

Ω0 and A = A0.

Then, we can rewrite the conditions A1, A2 into the following way:

Hypothesis A1

Since |=Λa| ≥ δ for all a ∈ F and since Λb ∈ R:∥∥L0(ρ, k, b,F)
∥∥ ≥ δ ∀b ∈ L.

Since |Λa| ≥ δ, ∀a ∈ L: ∥∥L0(ρ, 0, a,∅)
∥∥ ≥ δ.

Since |Λa + Λb| ≥ δ, ∀a, b ∈ L: ∥∥L0(ρ, 0, a, b)+

∥∥ ≥ δ,

and for a, b ∈ L, [a] 6= [b] since |Λa − Λb| ≥ δ∥∥L0(ρ, 0, a, b)−
∥∥ ≥ δ.

Hypothesis A2

For all k ∈ Zn{0}:
a) for a, b ∈ L ∪∅ either ∥∥L0(ρ, k, a, b)±

∥∥ ≥ δ,

or there exists a unit vector z = z(k) ∈ Rn such that∥∥(∂ρ · z)L0(ρ, k, a, b)±
∥∥ ≥ δ;

b) ∥∥L0(ρ, k,F)±
∥∥ ≥ δ.

Hence, Proposition 3.5 becomes:

Proposition 3.8. Let M,N ≥ 1 and 0 < κ ≤ δ. Assume Hypothesis A0, A1, A2. Then

there exists a closed subset D′ = D′(κ,N) ⊂ D satisfying

meas(D \ D′) ≤ C
κ

δ
M2Nn+2,
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such that for all ρ ∈ D′, for all |k| ≤ N and for all a, b ∈ L ∪ {∅}∥∥L0(ρ, k,Ω)
∥∥ ≥ κ except if k = 0,(3.8) ∥∥L0(ρ, k, a, b)+

∥∥ ≥ κ,(3.9) ∥∥L0(ρ, k, a,F)±
∥∥ ≥ κ,(3.10) ∥∥L0(ρ, k,F)
∥∥ ≥ κ,(3.11)

and for all ρ ∈ D′, for all |k| ≤ N and for all a, b ∈ L such that either [a] 6= [b] or [a] = [b]

and wa ≤M |k| ∥∥L0(ρ, k, a, b)−
∥∥ ≥ κ.(3.12)

Although this proposition is crucial in our proof, we do not work exactly with h0 but with

other normal forms hk sufficiently close to h0. So we need to change it a little bit.

Proposition 3.9. Let M,N ≥ 1 and 0 < κ ≤ δ/2. Assume that the Hamiltonian normal

form h (3.7) satisfies

|∂jρ(A− A0)|s ≤
δ

4
, |∂jρ(Ω− Ω0)| < δ(3.13)

for j = 0, 1 and ρ ∈ D. Then there exists a closed subset D′ = D′(κ,N) ⊂ D satisfying

meas(D \ D′) ≤ C
κ

δ
M2Nn+2,

such that for all ρ ∈ D′, for all |k| ≤ N and for all a, b ∈ L ∪ {∅}

‖L(ρ, k,Ω)‖ ≥ κ except if k = 0,(3.14)

‖L(ρ, k, a, b)+‖ ≥ κ,(3.15)

‖L(ρ, k, a,F)±‖ ≥ κ,(3.16)

‖L(ρ, k,F)‖ ≥ κ,(3.17)

and for all ρ ∈ D′, for all |k| ≤ N and for all a, b ∈ L such that either [a] 6= [b] or [a] = [b]

and wa ≤M |k|

‖L(ρ, k, a, b)−‖ ≥ κ.(3.18)

To prove this, we recall a result proved in the appendix of [1]

Lemma 3.10. Let A(t) be a real diagonal N×N–matrix with diagonal components aj which

are C1 on I =]− 1, 1[, satisfying for all j = 1, . . . , N and for all t ∈ I

a′(j) ≥ δ.
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Let B(t) be a Hermitian N ×N–matrix of class C1 on I such that

‖B′(t)‖ ≤ δ/2,

for all t ∈ I. Then

meas{t ∈ I : min
λ(t)∈σ(A(t)+B(t))

|λ(t)| ≤ κ} ≤ CN
κ

δ
,

where C is a constant independent of N.

Proof of Proposition 3.9. The estimate (3.14) is true by Proposition 3.5. For (3.16) and

(3.17), by Hypothesis A1, A2, we already have∥∥L0(ρ, k, a,F)±
∥∥ ≥ δ,

∥∥L0(ρ, k,F)
∥∥ ≥ δ.

By assumption (3.13),∥∥L0(ρ, k, a,F)± − L(ρ, k, a,F)±
∥∥ ≤ δ/2,

∥∥L0(ρ, k,F)− L(ρ, k,F)
∥∥ ≤ δ/2.

Hence

‖L(ρ, k, a,F)±‖ ≥ δ/2, ‖L(ρ, k,F)‖ ≥ δ/2.

For (3.15) (similar as (3.18)), for a, b ∈ L we have L(ρ, k, a, b)+ is Hermitian matrix operator

for all k ∈ Rn. Eigenvalues of L0(ρ, k, a, b)+ are of form

ν(ρ) = 〈k,Ω〉+ Λa + Λb.

By Hypothesis A2, we have either |ν(ρ)| ≥ δ or there exists a unit vector z = z(k) ∈ Rn

such that (∂ρ · z)ν(ρ) ≥ δ. To apply Lemma 3.10 we consider Hermitian matrix operator

eρ·zL(ρ, k, a, b). Then we have

(∂ρ · z)(eρ·zν) ≥ eρ·zδ,

and ∥∥eρ·z(L(ρ, k, a, b)+ − L0(ρ, k, a, b)+)
∥∥ ≤ eρ·zδ/2

for all a, b ∈ L ∪ {∅}. Hence by Lemma 3.10,

meas{t ∈ I : min
a,b

min
λ(t)∈σ(L(ρ,k,a,b)+)

|λ(t)| ≤ κ} ≤ CN
κ

δ

for |k| ≤ N fixed, i.e. there exists a subset Dk(κ,N) ⊂ D such that for all |k| ≤ N and

a, b ∈ L ∪ {∅}:
meas(D \ Dk(κ,N)) ≤ CN

κ

δ
and on Dk(κ,N),

‖L(ρ, k, a, b)+‖ ≥ κ.
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Now sum up all together, we get

meas(D \
⋃
|k|≤N

Dk) ≤ CNn+2κ

δ
.

�

Lemma 3.11. Let S ∈ T s(σ, µ,D), and let σ′ < σ and µ′ < µ ≤ 1. If

[S]sσ,µ,D ≤
1

C
min (σ − σ′, µ− µ′)

then

• the Hamiltonian flow map Φt = Φt
S, for |t| ≤ 1 is a C1-map

Os(σ′, µ′)×D → Os(σ, µ)

which is real holomorphic and symplectic for any fixed ρ ∈ D. Moreover,∥∥∂jρ (Φt(x, ρ)− x
)∥∥ ≤ C[S]sσ,µ,D

and ∥∥∂jρ (dΦt(x, ρ)− I
)∥∥ ≤ C[S]sσ,µ,D

for any x ∈ Os(σ′, µ′) and j = 0, 1;

• f ◦ Φt ∈ T s(σ, µ,D) for |t| ≤ 1 and

[f ◦ Φt]sσ′,µ′,D ≤ C[f ]sσ,µ,D,(3.19)

See [2], Proposition 2.11 for the proof.

Scheme of the proof of KAM theorem. We would like to construct sequences of Hamil-

tonian normal forms hk, perturbations fk defined on domains Os(σk, µk)×Dk and symplectic

changes of variables Φk : Os(σk, µk)→ Os(σk−1, µk−1) such that

• the normal form hk = Ωk · r + 〈ω,Akω〉 stays closed to h0 when k →∞, i.e.

|∂jρ(Ωk − Ω0)| ≤ Cδ1+α |∂jρ(Ak − A0)| ≤ Cδ1+α j = 0, 1;

• the perturbation fk is in good class, i.e. fk ∈ T sσk,µk,Dk and

[fTk ]sσk,µk,Dk ≤ εk ∼ εβk−1

with β > 1;

• for all ρ ∈ Dk
(hk−1 + fk−1) ◦ Φk = hk + fk;

• the symplectic change of variable Φk stays closed to identity map and Φk
N = Φk+1 ◦

. . .ΦN close to identity map too, for N > j ≥ 0.
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• σk > σ/2, µk > µ/2 and Dk stays closed to D;

• hk, fk, Φk, σk, µk and Dk converge respectively to desired h, g, Φ, σ/2, µ/2 and D′.
At each step of this procedure, we need to solve equation

(h+ f) ◦ Φ = h′ + f ′.

Normally, we will try to find a jet function S, such that Φ = Φ1
S and

{h, S}+ fT = h+ +R(3.20)

where h+ is a normal form and R is a very small error term. However, by this way, the

perturbation f ′ will be of form

f ′ = f − fT + {f − fT , S}+ {fT , S}+

∫ 1

0

{(1− t)(h+ +R) + tfT , S} ◦ Φt
Sdt+R.

Its jet function (f ′)T is of order O(ε) not O(εβ) with β > 1 as we want. The problem here

is {f − fT , S}. To deal with this, we shall solve non linear homological equation

{h, S}+ fT + {f − fT , S}T = h+ +R.

This equation may look difficult because of its non-linearity, but luckily, it can be solved

easily after solving 3.20. In both equations, we need to estimate S, h+, R, f ′ and Φt
S up

to t = 1. The estimation of h+ and R are directly verified by the estimation of f. The

Proposition 3.9 allows us to control S, and hence combine with Lemma 3.11 control Φt
S. As

we will se that

(f ′)T = {fT , S}+

(∫ 1

0

{(1− t)(h+ +R) + tfT , S} ◦ Φt
Sdt

)T
+RT .

By Lemma 3.3 we can control the first term, and by Lemma 3.11 we can control the second

term. Finally, we need to study the limit when k rises to infinity.

In next section, we understand all functions as functions of ρ and we omit ρ in their

presentations unless necessary.
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4. Homological equation

Let h is a Hamiltonian normal form satisfying assumptions (3.13), i.e. ∀ρ ∈ D

|∂jρ(A− A0)| ≤ δ

4
, |∂jρ(Ω− Ω0)| < δ

for j = 0, 1. Let f ∈ T sres(σ, µ,D), we will construct a jet function S that solves the non-linear

homological equation

{h, S}+ {f − fT , S}+ fT = h+ +R,(4.1)

where h+ is normal form and R plays as an error term.

In order to do this, we shall start by analysing the homological equation

{h, S}+ fT = h+ +R.(4.2)

Let us write

fT (θ, r, ω) = fr(r, θ) + 〈fω, ω〉+ 1
2
〈fωωω, ω〉,

where

fr(r, θ) = fθ(θ) + fr(θ) · r,
〈fω, ω〉 = 〈fζL(θ), ζL〉+ 〈fη(θ), ηL〉+ 〈fωF (θ), ωF〉,
1
2
〈fωωω, ω〉 = 1

2
〈fηLηL(θ)ηL, ηL〉+ 1

2
〈fηLηL(θ)ηL, ηL〉+ 〈fηLηL(θ)ηL, ηL〉

+1
2
〈fηLωF (θ)ηL, ωF〉+ 1

2
〈fηLωF (θ)ηL, ωF〉+ 1

2
〈fωFωF (θ)ωF , ωF〉.

Let

S(θ, r, ω) = ST (θ, r, ω) = Sr(r, θ) + 〈Sω, ω〉+
1

2
〈Sωω(θ)ω, ω〉,

then the Poisson bracket equals

−Ω · ∂θSr(θ, r)− Ω · ∂θ〈Sω, ω〉 − 1
2
Ω · ∂θ〈Sωω(θ)ω, ω〉+ i〈AJSω, ω〉+

+i1
2
〈AJSωω(θ)ω, ω〉 − i1

2
〈Sωω(θ)JAω, ω〉.

Accordingly, the homological equation decomposes into three linear equations

Ω · ∂θSr(θ, r) = fr(θ, r) + h+
r (r, θ)−Rr,(4.3)

Ω · ∂θSω(θ)− iAJSω(θ, ) = fω(θ) + h+
ω (θ)−Rω(θ),(4.4)

Ω · ∂θSωω(θ) + iAJSωω(θ)− iSωω(θ)JA = fωω(θ) + h+
ωω(θ)−Rωω(θ)(4.5)

Denote

χ := |∂ρΩ0|+ supa∈L|∂ρΛa|+ supb∈F |∂ρΛb|.
Assume that χ ≤ Cδ, where C is an independent constant.
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The first equation. Write it in the Fourier form so that we get

L(k,Ω)Ŝr(k) = 〈k,Ω〉Ŝr(k) = −if̂r(k),(4.6)

for 0 < |k| ≤ N, and hr(θ) = f̂r(0). The error term

Rr =
∑
|k|≥N

f̂r(k)eik·θ.

By Lemma 3.2 we get

|∂jρRr|σ′ ≤
∑
|k|≥N

e−(σ−σ′)|k||∂jρfr|σ ≤
e−(σ−σ′)N

(σ − σ′)n
|∂jρfr|σ,

where j = 0, 1. All the error terms in other equations are treated in the same way, so we

do not care about them again.

By Proposition 3.9, for any ρ ∈ D′(κ,N):

‖L(k,Ω)‖ ≥ κ,

thus

|Ŝr(k)| ≤ |f̂r(k)|
κ

.

By Lemma 3.2, we get

|Ŝr(k)| ≤ C
e−|k|σ

κ
sup
θ∈Tnσ
|fr|.

Since

Sr =
∑
|k|≤N

Ŝr(k)eik·θ

we get

|Sr|σ′ ≤ C
∑
|k|≤N

e−(σ−σ′)|k| |fr|σ
κ
≤ C

1

(σ − σ′)nκ
|fr|σ.

Take the derivative of the equation 4.6

L(k,Ω) · ∂ρŜr(k) = −i∂ρf̂r(k)− ∂ρL(k,Ω) · Ŝr(k).

Since

‖∂ρL(k,Ω)‖ ≤
∥∥∂ρL0(k,Ω)

∥∥+
∥∥∂ρ(L0(k,Ω)− L(k,Ω))

∥∥ ≤ Nχ+ |k|δ ≤ N(χ+ δ) ≤ CNδ,

then

|∂ρŜr(k)| ≤ 1

κ
|∂ρf̂r(k)|+ CNδ

κ2
|f̂r(k)|.

Hence, using Lemma 3.2, we get
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|∂ρSr|σ′ ≤
∑
|k|≤N

|∂ρŜ(k)|e|k|σ′ ≤ C
∑
|k|≤N

e−|k|(σ−σ
′)

(
1

κ
|∂ρfr|σ +

δN

κ2
|fr|σ

)

≤ C
1

(σ − σ′)n

(
1

κ
|∂ρfr|σ +

δN

κ2
|fr|σ

)
.

The second equation. The equation decomposes into

Ω · ∂θSζL + iQSζL = fζL + h+
ζL
−RζL ,(4.7)

Ω · ∂θSζL + iQSηL = fζL + h+
ζL
−RζL ,(4.8)

Ω · ∂θSF + iKJSF = fF + h+
F −RF .(4.9)

Let consider the equation 4.7 (the others are similar). Write it in Fourier fomular, we get

〈k,Ω〉ŜζL(k) +QŜζL(k) = −i
(
f̂ζL(k) + ĥ+

ζL
(k)− R̂ζL(k)

)
.

This equation decomposes into its components over the blocks [a], which takes the form

L(k, a,∅)+Ŝ[a](k) = 〈k,Ω〉Ŝ[a](k) +Q[a]Ŝ[a](k) = −if̂[a](k),

for |k| ≤ N. Argument now is similar to the first equation. Thanks to Proposition 3.9, for

any ρ ∈ D′(κ,N) we have estimate

‖L(k, a,∅)+‖ ≥ κ

i.e.

|Ŝ[a](k)| ≤
|f̂[a](k)|

κ
≤ C

e−|k|σ

κ
|f[a]|σ

which leads us to estimate

|S[a]|σ′ ≤ C
1

(σ − σ′)nκ
|f[a]|σ

for any 0 < σ′ < σ. For ∂ρS[a], again we have estimate

‖∂ρL(k, a,∅)+‖ ≤ CNδ

thus

|∂ρŜ[a](k)| ≤ 1

κ
|∂ρf̂[a](k)|+ CNδ

κ2
|f̂[a](k)|.

In the end

|∂ρS[a]|σ′ ≤ C
1

(σ − σ′)n
(
1

κ
|∂ρf[a] +

Nδ

κ2
|f[a]|σ).



19

The third equation. The equation decomposes into its components:

Ω · ∂θSζLζL + iQSζLζL + iSζLζLQ = fζLζL + h+
ζLζL
−RζLζL ,(4.10)

Ω · ∂θSζLηL + iQSζLηL − iSζLηLQ = fζLηL + h+
ζLηL
−RζLηL ,(4.11)

Ω · ∂θSζLωF + iQSζLωF + SζLωFJK = fζLωF + h+
ζLωF

−RζLωF ,(4.12)

Ω · ∂θSωFωF +KJSωFωF − SωFωFJK = fωFωF + h+
ωFωF

−RωFωF ,(4.13)

and the similar equations with ζL is replaced by ηL, which are treated in the same way.

Equation 4.10. Written in the Fourier variables, it becomes

〈k,Ω(ρ)〉ŜζLζL(k) +QŜζLζL(k) + ŜζLζL(k)Q = −if̂ζLζL(k)

for |k| ≤ N. Here we get h+
ζLζL

= 0, R̂ζLζL(k) = f̂ζLζL(k) for |k| > N and R̂ζLζL(k) = 0 for

|k| ≤ N. This equation decomposes into its components over the product blocks [a] × [b],

which takes the form

L(k, a, b)+Ŝ
[b]
[a] = 〈k,Ω(ρ)〉Ŝ[b]

[a](k) +Q[a]Ŝ
[a]
[b] (k) + Ŝ

[a]
[b] (k)Q[b] = −if̂ [b]

[a](k).(4.14)

Since ‖L(k, a, b)+‖ ≥ κ, ∀ρ ∈ D we have

|Ŝ[b]
[a](k)| ≥ 1

κ
|f̂ [b]

[a](k)|.

Therefor we obtain a solution satisfying for any |=θ| ≤ σ′

|S(θ)ζLζL | ≤ C
1

(σ − σ′)n · κ
|f(θ)ζLζL|.

For the estimating of ∂ρSζLζL , we have

L(k, a, b)+∂ρŜ
[b]
[a](k) = −i∂ρf̂ [b]

[a](k)− ∂ρL(k, a, b)+Ŝ
[b]
[a](k).(4.15)

Since ∥∥∂ρ(L(k, a, b)+ − L0(k, a, b)+)
∥∥ ≤ kδ,

we have

‖∂ρL(k, a, b)+‖ ≤
∥∥∂ρ(L(k, a, b)+ − L0(k, a, b)+)

∥∥+
∥∥∂ρL0(k, a, b)+

∥∥ ≤ Nχ+ |k|δ ≤ CNδ.

Now we consider this equation as the equation 4 where if̂
[b]
[a] is replaced by −i∂ρf̂ [b]

[a](k) −
∂ρL(k, a, b)Ŝ

[b]
[a](k), then we get the desired estimate

|∂ρŜζLζL| ≤ C
1

(σ − σ′)n

(
1

κ
|∂ρf̂ζLζL |+

Nδ

κ2
|f̂ζLζL|

)
.
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The others are solved in the same way and give us the same estimation except the case

k = 0 and [a] = [b] in the equation 4.11. In this case, we get hba = f̂ ba(0). In the end, we get

the solution S the normal form h+ and the error term R such that

|S|σ′ ≤ C
1

(σ − σ′)nκ
|fT |σ,(4.16)

|∂ρS|σ′ ≤ C
1

(σ − σ′)n

(
1

κ
|∂ρfT |σ +

δN

κ2
|fT |σ

)
,(4.17)

|∂jρR|σ′ ≤ C
e−(σ−σ′)N

(σ − σ′)n
|∂jρfT |σ,(4.18)

|∂jρh+|σ ≤ C|∂jρfT |σ,(4.19)

for j = 0, 1, and C is an absolute constant. We would like to have ∂jρS and ∂jρR small

and controlled, which is dependent on the choice of κ, σ′ and N. A specific choice of such

parameters would be given later, but we can see that for ∂jρR we just need to take N

sufficiently large. Since [f ]sσ,µ,D ≤ ε = δ1+γ, the terms |f
T |
κ

and |∂ρfT |
κ

in estimates of S and

∂ρS are small and controlled if δ > κ > ε. The only remained problem is the term δ|fT |σ
κ2

which is small when δ > κ > δ1+γ/2.

Proposition 4.1. Let h is a Hamiltonian normal form satisfying (3.13), and f ∈ T sres(σ, µ,D)

with s > 1/2. Assume aslo that Hypothesis A0, A1, A2 are satisfied, then there exist a closed

subset D′ ⊂ D such that

meas(D \ D′) ≤ C
κ

δ
M2Nn+2

and there exist jet function S,R and h+ verifying, for ρ ∈ D′

{h, S}+ fT = h+ +R

and

[S]sσ′,µ,D′ ≤ C
1

(σ − σ′)n
Nδ

κ
[fT ]sσ,µ,D(4.20)

[R]sσ′,µ,D′ ≤ C
e−(σ−σ′)N

(σ − σ′)n
[fT ]sσ,µ,D(4.21)

[h+]sσ′,µ,D′ ≤ [fT ]sσ,µ,D.(4.22)

for any 0 < σ′ < σ.

Here we use 1
κ
< 1

κ
+ Nδ

κ2
< C Nδ

κ2
, which is satisfied by the choice of parameters.

Now, we turn back to the non linear homological equation

The non linear homological equation

{h, S}+ fT + {f − fT , S}T = h+ +R.
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Let S = S0 + S1 + S2, with S0, S1, S2 are jet functions start with oder 0, 1, 2 of r, ω. The

equation now decomposes into three equations:

{h, S0}+ fT = h+
1 +R1,(4.23)

{h, S1}+ fT1 = h+
2 +R2, {f − fT , S0} = f1,(4.24)

{h, S2}+ fT2 = h+
3 +R3, {f1 − fT1 , S1} = f2.(4.25)

Let

X = C

(
1

(σ − σ′)n
+

1

(µ− µ′)2

)
, Y =

1

(σ − σ′)nµ2
.

Let σ′ < σ3 < σ2 < σ1 < σ, µ′ < µ3 < µ2 < µ1 < µ and D′ ⊂ D1 ⊂ D. Denote ε = [fT ]sσ,µ,D
by Lemma 3.7 and Proposition 4.1, we have

[f1]sσ2,µ2,D1
≤ X[f ]sσ1,µ1,D1

[S]sσ1,µ1,D1
≤ XY δ

δN

κ2
[fT ]sσ,ν,D = XYN

δ2

κ2
ε.

By Lemma 3.6, [fT1 ]sσ2,µ2,D1
have the same bound as [f1]sσ2,µ2,D1

, hence

ε1 = [fT1 ]sσ2,µ2,D1
≤ XYN

δ2

κ2
ε

Similar, we get

ε2 = [fT2 ]sσ′,µ′,D′ ≤ XYN
δ2

κ2
ε1

Hence

[Si]
s
σ′,µ′,D′ ≤ CY

Nδ

κ2
εi,(4.26)

[Ri]
s
σ′,µ′,D′ ≤ C

e−(σ−σ′)N

(σ − σ′)n
εi,(4.27)

[h+,i]
s
σ′,µ′,D′ ≤ Cεi(4.28)

for i = 0, 1, 2. Putting each term respectively together, we find that

ε+ ε1 + ε2 ≤
(

1 +XYN
δ2

κ2

)3

ε ≤ CX3Y 3N3 δ
6ε

κ6
,(4.29)

and

[S]sσ′,µ′,D′ ≤ CX3Y 4N4 δ
7ε

κ8
(4.30)

[R]sσ′,µ′,D′ ≤ C
e−(σ−σ′)N

(σ − σ′)n
X3Y 3N3 δ

6ε

κ6
(4.31)

[h+]sσ′,µ′,D′ ≤ CX3Y 3N3 δ
6ε

κ6
.(4.32)
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Proposition 4.2. Let h is a Hamiltonian normal form satisfying (3.13), and f ∈ T sres(σ, µ,D)

with s > 1/2. Assume aslo that Hypothesis A0, A1, A2 are satisfied, then there exist a closed

subset D′ ⊂ D such that

meas(D \ D′) ≤ C
κ

δ
M2Nn+2

and there exist jet functions S,R and h+ verifying, for ρ ∈ D′

{h, S}+ fT + {f − fT , S} = h+ +R

and S,R, h+ satisfies estimates (4.30) to (4.32) for any 0 < σ′ < σ, 0 < ν ′ < ν.
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5. Proof of the KAM theorem

The theorem 2.3 is proved by an interactive KAM procedure. We first describe the general

step of this KAM procedure.

The KAM step. Let h be a Hamiltonian normal form

h = Ω · r +
1

2
〈ω,Aω〉

such that

|∂jρ(A− A0)| ≤ δ

4
, |∂ρ(Ω− Ω0)| ≤ δ

for j = 0, 1. Let f ∈ T sres(σ, µ,D) be a (small) Hamiltonian perturbation. Let S = ST ∈
T sres(σ′, µ′,D′) be the solution of the homological equation

{h, S}+ fT + {f − fT , S}T = h+ +R.

Then defining

h̃ := h+ h+,

we get

h ◦ ΦS = h̃+ f̃

with

f̃ = f − fT − {f − fT , S}T + {fT , S}+

∫ 1

0

{(1− t)(h+ +R) + tfT , S} ◦ Φt
Sdt+R.

We first estimate the new perturbation.

Esmating f̃T .

f̃T = {fT , S}+

(∫ 1

0

{(1− t)(h+ +R) + tfT , S} ◦ Φt
Sdt

)T
+R.

For the first term, thank to (4.30) and Lemma 3.3, we get

[{fT , S}]sσ′,µ′,D ≤ C
1

(σ − σ′)n · µ2
[fT ]sσ′′,µ′,D′|S|σ′′,µ′,D′ ≤ CX3Y 5N4 δ

7ε2

κ8
,

here we choose 0 < σ′ < σ′′ = σ+σ′

2
< σ.

For the second term, let gt = (1− t)(h+ + R) + tfT . Thank to all estimate of h+ and R

we have done:

[{gt, S}]sσ′,µ′,D′ ≤ CX3Y 3N3 δ
6

κ6
[{fT , S}]sσ′,µ′,D′ ,

By Lemma 3.11,

[{gt, S} ◦ Φt
S]sσ′,µ′,D′ ≤ C[{gt, S}]sσ,µ,D ≤ CX6Y 8N7 δ

13ε2

κ14
,
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For estimating R, we choose N = −8(σ − σ′)−1lnε then for ε sufficiently small we get a

good estimate

[R]sσ′,µ′,D′ ≤ ε2.

In the end, since X, Y, N > 1 and δ > κ, we get

ε+ = [f̃T ]sσ′,µ′,D′ ≤ CX6Y 8N7 δ
13ε2

κ14
.

Here we use C as a constant which is the maximum of constants should appear in each

estimate. Sine δ is very small compare to σ, µ, and 1 , the parameters relate to X, Y, N

appear in each estimate are very small compare to 1
δ

and easy to deal with. By the definitions

of X, Y and N , these parameters rise again slowly compare to decreasing of ε.

Let κ = δ1+α, and ε = δ1+γ, assume that

CX6Y 8N7 <
1

δα

we get:

ε+ ≤ δ1+2γ−15α(5.1)

Choose α small enough compare to γ, (α = γ/100 for example) we get:

ε+ = [f̃T ]sσ′,µ′,D′ ≤ δ1+ 4
3
γ

when [fT ]sσ,µ,D ≤ δ1+γ.

Choice of parameters. We shall construct a transformation Φ as the composition of

infinite many transformations ΦSk :

(hk + fk) ◦ ΦSk = hk+1 + fk+1.

At each step the domain is Os(σk, µk) × Dk, with Dk = D(κk, Nk) ∩ Dk−1 ⊂ Dk−1. The

normal form hk = Ωk · r + 1
2
〈ω,Akω〉 is closed to h0, and its Fourier series are truncated at

order Nk. We now give here a specific choice of all the parameters for k ≥ 1.

Let εk = δ1+γk , κk = δ1+αk such that

γk =
4

3
γk−1, αk =

4

3
αk−1,

with γ0 = γ, α0 = 1
100
γ. We also choose

σk =
1

2
σ +

1

2k+1
σ, µk =

1

2
µ+

1

2k+1
µ Nk = −8(σk − σk+1)−1lnεk.
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Iterative lemma. We have

h0 = Ω0 · r +
1

2
〈ω,A0ω〉

and f0 = f ∈ T sσ0,µ0,D0
satisfying

[f0]σ0,µ0,D0 ≤ δ, [fT0 ]σ0,µ0,D0 ≤ ε = δ1+γ.

Let us denote D0 = D and Ok = Osσk,µk .

Lemma 5.1. For δ sufficiently small compare to σ0, µ0 and 1, assume that δ ≤ χ ≤ δ1− γ0
2 .

Then for all k ≥ 1 there exist Dk ⊂ Dk−1, Sk ∈ T sσk,µk,Dk , hk = Ωk · r+ 1
2
〈ω,Akω〉 on normal

form and fkT sσk,µk,Dk such that

• The mapping

Φk = Φt
Sk

: Ok+1 → Ok, ρ ∈ Dk, k = 1, 2, . . .

is an analytic symplectomorphism verifying

(hk + fk) ◦ Φk = hk+1 + fk+1.

• we have the estimates

meas(Dk−1 \ Dk) ≤ δ
αk
2 ,(5.2)

[hk − hk−1]sσk,µk,Dk ≤ δ1+
γk
3 ,(5.3)

[fTk ]sσk,µk,Dk ≤ εk,(5.4) ∥∥∂jρ (Φk(x, ρ)− x)
∥∥ ≤ Cδ

γk
3 x ∈ Ok+1, ρ ∈ Dk+1,(5.5)

for j = 0, 1.

Here C is an absolute constant.

Proof. At step 1, h0 = Ω0 · r+ 1
2
〈ω,A0ω〉 satisfies condition 3.13 trivially, so by Proposition

4.2 and the choices of parameters, we can construct S0, R0, h
+
0 verifying, for ρ ∈ D1

{h0, S0}+ fT0 + {f0 − fT0 , S0}T = h+
0 +R0

such that

meas(D0 \ D1) ≤ C
κ0

δ
M2Nn+2

0 ≤ δ
κ0
2

and

[S0]sσ1,µ1,D1
≤ CX3

0Y
4

0 N
4
0

δ7ε0

κ8
0

≤ δγ0−9α0 ≤ δ
γ0
3(5.6)

[h+
0 ]sσ1,µ1,D1

≤ CX3
0Y

3
0 N

3
0

δ6ε0

κ6
0

≤ δ1+γ0−7α0 ≤ δ1+
γ0
3 .(5.7)
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By Lemma 3.11, for any ρ ∈ D1, Φ0 = Φ1
S0

: O1 → O0 is an analytic symplectomorphism

such that

(h0 + f0) ◦ Φ1 = h1 + f1

with h1 = h0 + h+
0 and∥∥∂jρ (Φ0(x, ρ)− x)

∥∥ ≤ C[S0]sσ1,µ1,D1
≤ Cδ

γ0
3 x ∈ O1, ρ ∈ D1,

for j = 0, 1. The estimate of fT1 is already done before.

Assume that the iteration is true up to step `. We want to prove it for step ` + 1. By

construction

h` = h0 + h+
0 + h+

1 + . . . h+
`−1

satisfying

[h` − h0]sσ`,µ`,D` ≤ δ(δ
γ0
3 + δ

γ1
3 + . . .+ δ

γ`−1
3 ) ≤ 2δ1+

γ0
3 ≤ δ

4
.

So that

|∂jρ(A` − A0)| ≤ δ

4
, |∂jρ(Ω` − Ω0)| ≤ δ

for j = 0, 1. Therefore condition (3.13) is satisfied at rank ` and by Proposition 4.2 we can

construct S`, h
+
` , R` verifying the non linear homological equation on D`+1 such that

meas(D` \ D`+1) ≤ C
κ`
δ
M2Nn+2

` ≤ δ
κ`
2

and

[S`]
s
σ`+1,µ`+1,D`+1

≤ CX3
` Y

4
` N

4
`

δ7ε`
κ8
`

≤ δγ`−9α` ≤ δ
γ`
3(5.8)

[h+
` ]sσ`+1,µ`+1,D`+1

≤ CX3
` Y

3
` N

3
`

δ6ε`
κ6
`

≤ δ1+γ`−7α` ≤ δ1+
γ`
3 .(5.9)

By Lemma 3.11, for any ρ ∈ D`+1, Φ` = Φ1
S`

: O`+1 → O` is an analytic symplectomorphism

such that

(h0 + f0) ◦ Φ1 = h1 + f1

with h`+1 = h` + h+
` and∥∥∂jρ (Φ`(x, ρ)− x)

∥∥ ≤ C[S`]
s
σ`+1,µ`+1,D`+1

≤ Cδ
γ0
3 x ∈ O`+1, ρ ∈ D`+1,

for j = 0, 1. Finally, we have

f`+1 = f` − fT` − {f` − fT` , S`}T + {fT` , S`}+

∫ 1

0

{(1− t)(h+
` +R`) + tfT` , S`} ◦ Φt

S`
dt+R`,

satisfying

[fT`+1]sσ`+1,µ`+1,D`+1
≤ ε`+1.

�
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Proof of KAM theorem. Let

D′ = ∩k≥0Dk.
By Lemma 5.1:

meas(D\D′) ≤ δ
α0
2 + δ

α1
2 + . . . ≤ 2δ

α0
2 .

Notice that σk > σ/2 and µk > µ/2 and

Os(σ/2, µ/2) = ∩k≥0Os(σk, µk) = lim
k→∞
Os(σk, µk).

Let us denote Φ`
N = Φ`+1 ◦ . . . ◦ ΦN for N ≥ ` ≥ 0. By Lemma 5.1, ΦN

j is an analytic

symplectomorphism from ON to Oj satisfying

(h` + f`) ◦ Φ`
N = hN + fN

and ∥∥∂jρ (Φ`
N(x, ρ)− Id

)∥∥ ≤ C(δ
γ`
3 + . . .+ δ

γN
3 ) ≤ 2Cδ

γ`
3 x ∈ ON , ρ ∈ DN , j = 0, 1.

We also have for M > N > `∥∥∂jρ (Φ`
N − Φ`

M

)∥∥ ≤ Cδ
γN
3 , j = 0, 1;

i.e. (Φ`
N)N is a Cauchy sequence, which converge to the analytic symplectomorphism Φj

∞ :

Os(σ/2, µ/2) → O`. By Lemma 5.1, we also have hk and fk are Cauchy sequences. Let us

denote h = limk→∞hk, g = limk→∞fk and Φ = Φ0
∞. By construction, we have for ρ ∈ D′

(h0 + f) ◦ Φ = h+ g

with g ∈ T sσ/2,µ/2,D′ and gT ≡ 0. The normal form

h = Ω · r + 1/2〈ω,Aω〉 = Ω(ρ) · r + 〈ζL, Q(ρ)ηL〉+ 1/2〈ωF , K(ρ)ωF〉

satisfies

[h− h0]sσ/2,µ/2,D′ ≤ δ(δ
γ0
3 + δ

γ1
3 + . . .) ≤ 2δ1+

γ0
3

that is

|∂jρ(Ω− Ω0)| ≤ 2δ1+
γ0
3 , |∂ρ(Q−Q0)| ≤ 2δ1+

γ0
3 , |∂ρ(K −K0)| ≤ 2δ1+

γ0
3

for j = 0, 1.
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6. Applications

Consider the non linear Schrödinger equation on the torus

(6.1) i∂tu+ ∂xxu = |u4|u, (t, x) ∈ R× T.

The Hamiltonian of the equation is given by

h =

∫
T
|ux|2 +

1

3
|u|6dx.

Let us expand u and ū in Fourier basis:

u(x) =
∑
j∈Z

aje
ijx, ū(x) =

∑
j∈Z

bje
ijx.

Define

P (a, b) =
1

3

∫
S1
|u|6dx =

1

3

∑
j,`∈Z3,M(j,`)=0

aj1aj2aj3b`1b`2b`3 ,(6.2)

N(a, b) =
∑
j∈Z

j2ajbj,(6.3)

whereM(j, `) = j1+j2+j3−`1−`2−`3 denotes the momentum of the milti-index (j, l) ∈ Z6

or equivalently the momentum of the monomial aj1aj2aj3b`1b`2b`3 . In this Fourier formular,

the equation 6.1 reads as an infinte Hamiltonian system

{
iȧj = j2aj + ∂P

∂bj
j ∈ Z,

−iḃj = j2bj + ∂P
∂aj

j ∈ Z,

and the Hamiltonian:

h = N + P =
∑
j∈Z

j2ajbj +
1

3

∑
j,`∈Z3,M(j,`)=0

aj1aj2aj3b`1b`2b`3 .

We also introduce the mass and momentum Hamiltonians:

L =
∑
j∈Z

ajbj, M =
∑
j∈Z

jajbj.

Notice that the Hamiltonian flow preserves the mass and the momentum, or equivalently h

commutes with both L and M :

{h,L} = {h,M} = 0.

The Birkhoff normal form procedure. We first recall a result proved in [3].
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Proposition 6.1. There exist a canonical change of variable τ from Os(σ, µ) into Os(2σ, 2µ)

such that

h̄ = h ◦ τ = N + Z6 +R10,

where

• N is the term N(I) =
∑

j∈Z j
2Ij;

• Z6 is the homogeneous polynomial of degree 6

Z6 =
∑
R

aj1aj2aj3b`1b`2b`3

where

R = {(j, `) ∈ Z3 × Z3 s.t j1 + j2 + j3 = `1 + `2 + `3, j2
1 + j2

2 + j2
3 = `2

1 + `2
2 + `2

3};
• R10 is the remainder of order 10, i.e a Hamiltonian satisfying

‖XR10(x)‖s ≤ C ‖x‖9
s

for all x ∈ Os(σ, µ);

• τ is close to the identity: there exists a constant C such that

‖τ(x)− x‖ ≤ C ‖x‖2

for all x ∈ Os(σ, µ).

Start with two modes.

Firstly, we want to study the persistence of a two dimensional invariant torus for equation

(6.1) around the original point. Assume that
ap = (νρ1 + r1(t))

1
2 eiθ1(t) =:

√
Ipe

iθ1(t)

aq = (νρ2 + r2(t))
1
2 eiθ2(t) =:

√
Iqe

iθ2(t)

aj = ζj j 6= p, q,

where {ρ1, ρ2} ∈ [1, 2]2 = D and ν is a small parameter such that

|ap −
√
νρ1|2 + |aq −

√
νρ2|2 +

∑
j 6=p,q

(1 + j2)s|aj|2 = O(ν3).

The canonical symplectic structure now becomes

−idζ ∧ dη − dI ∧ dθ

with I = (I1, I2), θ = (θ1, θ2), ζ = (ζj)j and η = (ηj)j = (ζ̄j)j.

Let

Tlin
ρ := {(I, θ, ζ)||I − νρ| = 0, |=θ| < σ, ‖ζ‖s = 0}
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and its neighborhood

Tρ(ν, σ, µ, s) := {(I, θ, ζ)||I − νρ| < νµ2, |=θ| < σ, ‖ζ‖s < ν1/2µ}.

We want to study the persistence of torus Tρ(ν, σ, µ, s). Indeed we have

Tρ(ν, σ, µ, s) ≈ Os(σ, ν1/2µ) = {(r, θ, ζ)||r| < νµ, |=θ| < σ, ‖ζ‖s < ν1/2µ}.

By theorem 6.1 we have

h ◦ τ = N + Z6 +R10.

We see that the term N contributes the effective Hamiltonian and the term R10 contributes

the remainder term f. So we just need to focus on the term Z6. Let us split it:

Z6 = Z0,6 + Z1,6 + Z2,6 + Z3,6.

Here Z0,6, Z1,6, Z2,6 are homogeneous polynomial of degree 6 which contains respectively

external modes of order 0, 1, 2. Z3,6 is an homogeneous polynomial of degree 6 contains

external modes of at least order 3,this term contributes the remainder term.

Thank to Lemma 2.2 on [3], the term Z1,6 = 0. We have

Z0,6 = |ap|6 + |aq|6 + 9
(
|ap|4|aq|2 + |ap|2|aq|4

)
= (νρ1 + r1)3 + (νρ2 + r2)3 + 9 (νρ1 + r1) (νρ2 + r2) (νρ1 + r1 + νρ2 + r2)

= ν3(ρ3
1 + ρ3

2 + 9ρ2
1ρ2 + 9ρ2

2ρ1) + 3ν2
(
r1(ρ2

1 + 6ρ1ρ2 + 3ρ2
2) + r2(ρ2

2 + 6ρ1ρ2 + 3ρ2
1)
)

+ remainder.

For the term Z2,6, there are two cases that can happen.

The first case

There are not s, t 6= p, q such that

(6.4)

{
2p+ s = 2q + t

2p2 + s2 = 2q2 + t2.

Hence

Z2,6 = Z1
2,6 = 9

(
|ap|4 + |aq|4 + 4|ap|2|aq|2

) ∑
j 6=p,q

|aj|2 = 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

) ∑
j 6=p,q

|ζj|2+remainder.

Hence the effective Hamiltonian he reads

he =
(
p2 + 3ν2

(
ρ2

1 + 3ρ2
2 + 6ρ1ρ2

))
r1 +

(
q2 + 3ν2

(
ρ2

2 + 3ρ2
1 + 6ρ1ρ2

))
r2

+
∑
j

(
j2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζj|2
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It is on normal form

Ω(ρ) · r +
∑
j 6=p,q

Λj|ζj|2(6.5)

where

Ω(ρ) =

(
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)

)
and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
.

The remainder term R reads

R = R10 + Z3,6 + 3νρ1r
2
1 + r3

1 + 3νρ2r
2
2 + r3

2 + 9r1r2(r1 + r2)

+
(
r2

1 + r2
2 + 2ν(ρ1 + 2ρ2)r1 + 2ν(ρ2 + 2ρ1)r2

) ∑
j 6=p,q

|ζj|2.

In order to work on Os(σ, µ) we use the rescaling Ψ : r 7→ νr, ζ 7→ ν1/2ζ. The symplectic

structure now becomes

−νdr ∧ dθ − iνdζ ∧ dη.

By definition, this change of variables send Os(σ, µ) to the neighborhood of T linρ . By this

rescaling, we get

(he +R) ◦Ψ = νh0 + νf

where h0 and f are defined by

h0 =
1

ν
he ◦Ψ f =

1

ν
R ◦Ψ.

By theorem 6.1, R10 ∈ T s(σ, ν1/2µ,D). It is straightforward to prove that the rest part of

R is in T s(σ, ν1/2µ,D). By construction, all of these terms commute with L and M, hence

thank to Lemma 4.3 on [5] they are all in T sres(σ, ν1/2µ,D), so that R ∈ T sres(σ, ν1/2µ,D).

After rescaling, we get f ∈ T sres(σ, µ,D). For estimating the norm of f, notice that R contains

only term of order at least 3 in ν and RT = RT
10 is of order 9 in ν, so that

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

Theorem 6.2. Assume that for p, q ∈ Z there are not s, t solving the equation 6.4. The

change of variables Φρ = τ ◦ Ψ is a real holomorphic transformations, symplectic and ana-

lytically depending on ρ satisfying

• Φρ : Os(σ, µ)→ Tρ(ν, 2σ, 2ν, s);
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• Φρ puts the Hamiltonian h in normal form in the following sense:

1

ν
(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑
j 6=p,q

Λj|ζj|2

where

Ω(ρ) =

(
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)

)
and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
;

• The remainder term f belongs to T s(σ, µ,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

The second case

There are s, t 6= p, q solving 6.4, so

Z2,6 = Z1
2,6 + (a2

pasb
2
qbt + b2

pbsa
2
qat) = Z1

2,6 + Zs,t

For the second term, let us rewrite it∑
s,t

(νρ1 + r1)(νρ2 + r2)
(
e2i(θ1−θ2)ζsηt + e−2i(θ1−θ2)ηsζt

)
The effective part of this term is just given by

ν2ρ1ρ2

∑
s,t

(
e2i(θ1−θ2)ζsηt + e−2i(θ1−θ2)ηsζt

)
.

Notice that

{Is, ζsηt + ηsζt} = {It, ζsηt + ηsζt} = 0.

This gives us a clue that the above term does not effect to the stability of the solution.

In order to kill the angles, we introduce the symplectic change of variables

Ψangles(r1, r2, θ, ζ) = (r′1, r
′
2, θ, ζ

′) ,
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defined by



ζ ′s = e2i(θ1−θ2)ζs

ζ ′t = ζt

ζ ′j = ζj, j 6= s, t, p, q

r′1 = r1 − 2|ζs|2

r′2 = r2 + 2|ζs|2.
By this change of variables

h̃ = h̄ ◦Ψangles = C + he +R.

Here C is a constant given by

C = ν3(ρ3
1 + ρ3

2 + 9ρ2
1ρ2 + 9ρ2

2ρ1) + νp2ρ1 + νq2ρ2.

The effective Hamiltonian he reads

he =
(
p2 + 3ν2

(
ρ2

1 + 3ρ2
2 + 6ρ1ρ2

))
r′1 +

(
q2 + 3ν2

(
ρ2

2 + 3ρ2
1 + 6ρ1ρ2

))
r′2

+
∑

j 6=p,q,s,t

(
j2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζ ′j|2 +

(
t2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζ ′t|2

+
(
s2 + 2p2 − 2q2 + ν2

(
21ρ2

2 − 3ρ2
1 + 36ρ1ρ2

))
|ζ ′s|2 + ν2ρ1ρ2(ζ ′sη

′
t + η′sζ

′
t).

It is on normal form

Ω(ρ) · r +
∑

j 6=p,q,s,t

Λj|ζ ′j|2 + Λs|ζ ′s|2 + Λt|ζ ′t|2 + ν2ρ1ρ2(ζ ′sη
′
t + η′sζ

′
t)

where Ω(ρ) and Λj are defined as in the first case except

Λs = t2 + ν2
(
21ρ2

2 − 3ρ2
1 + 36ρ1ρ2

)
.

We would like to diagonalize it into the normal form as in KAM theorem. In order to do

that, we use a change of variables{
ζt,+ = 1√

1+α2 (ζ ′t + αζ ′s)

ζt,− = 1√
1+α2 (ζ ′s − αζ ′t)

Then he can be rewritten in normal form

Ω(ρ) · r +
∑

j 6=p,q,s,t

Λj|ζj|2 + Λt,+|ζt,+|2 + Λt,−|ζt,−|2

Here α, Λt,+, Λt,− are chosen by solving
α(Λt,+ − Λt,−) = (1 + α2)ν2ρ1ρ2

Λt,+ + α2Λt,− = (1 + α2)Λt

Λt,− + α2Λt,+ = (1 + α2)Λs
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After solving this equation system, we get α ≥ 1 and Λt,+ = Λt− ν2ρ1ρ2
α

, Λt,− = Λs + ν2ρ1ρ2
α

.

The remainder term R reads

R = R10 ◦Ψangles + Z3,6 ◦Ψangles + 3νρ1r
2
1 + r3

1 + 3νρ2r
2
2 + r3

2

+ 9r1r2(r1 + r2) +
(
r2

1 + r2
2 + 2ν(ρ1 + 2ρ2)r1 + 2ν(ρ2 + 2ρ1)r2

) ∑
j 6=p,q

|ζj|2

with r1 = r′1 + 2|ζs|2, r2 = r′2 − 2|ζs|2.
By rescaling

(he +R) ◦Ψ = νh0 + νf.

The study of f is the same as in the previous case.

Theorem 6.3. Assume that p, q, s, t satisfy the equation 6.4. The change of variables

Φρ = τ ◦ Ψangles ◦ Ψ is a real holomorphic transformations, analytically depending on ρ

satisfying

• Φρ : Os(σ
2
, e
−1
2 µ

2
)→ Tρ(ν, σ, µ, s);

• Φρ puts the Hamiltonian h in normal form in the following sense:

1

ν
(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑

j 6=p,q,s,t

Λj|ζj|2 + Λt,+|ζt,+|2 + Λt,−|ζt,−|2

where

Ω(ρ) =

(
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)

)
and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
j 6= s,

• The remainder term f belongs to T s(1, 1,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

Proof of Theorem 1.1. By Theorem 6.2 and 6.3, there exists a symplectic change of

variables Φ1, on D = [1, 2]2, puts the Hamiltonian h = N + P in normal form h0 + f,

that satisfy assumption of KAM theorem 2.3 for δ = ν2, ε = ν7/2 = δ7/4 and Ω0 = ω =

(p2, q2) +O(ν2). So by KAM theorem, since the hyperbolic set F is empty, the torus

Tlin
ρ := {(I, θ, ζ)||I − νρ| = 0, |=θ| < σ, ‖ζ‖s = 0}
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or equivalently, its neighborhood

Tρ(ν, 1, 1, s) := {(I, θ, ζ)||I − νρ| < ν, |=θ| < 1, ‖ζ‖s < ν1/2}.

is linear stable. Here we denote I = (Ip, Iq).

�

3 modes Assume that


ap = (νρ1 + r1(t))

1
2 eiθ1(t) =:

√
Ipe

iθ1(t)

aq = (νρ2 + r2(t))
1
2 eiθ2(t) =:

√
Iqe

iθ2(t)

am = (νρ3 + r3(t))
1
2 eiθ3(t) =:

√
Ime

iθ3(t)

aj = ζj j 6= p, q,m

where ρ = (ρ1, ρ2, ρ3) ∈ D ⊂ R3 and ν is a small parameter such that

|ap −
√
νρ1|2 + |aq −

√
νρ2|2 + |am −

√
νρ1|2 +

∑
j 6=p,q

(1 + j2)|aj|2 = O(ν3).

The canonical symplectic structure now becomes

−idζ ∧ dη − dI ∧ dθ

with I = (I1, I2, I3), θ = (θ1, θ2, θ3) ζ = (ζj)j and η = (ηj) = (ζ̄j).

The same as the two-modes case, we have

h̄ := h ◦ τ = N + Z6 +R10.

We see that as the previous case, the term N contributes the effective Hamiltonian h0 and

the term R10 contributes the remainder term f. So we just need to focus on the term Z6.

Let us split it:

Z6 = Z0,6 + Z1,6 + Z2,6 + Z3,6.

Here, Z0,6 is homogeneous polynomial of degree 6 which just contains inner modes (p, q,m);

Z1,6, Z2,6 are homogeneous polynomials of degree 6 which contain outer modes of order 1

and 2. Z3,6 is an homogeneous polynomial of degree 6 contains outer modes of at least order

3, this term contributes the remainder term. We have:

Z0,6 = |ap|6 + |aq|6 + |am|6 + 9
∑

j,`∈{p,q,m}

|aj|4|a`|2 + 36|ap|2|aq|2|am|2

Even it looks a bit more complicated, we deal with Z0,6 as in the previous case.
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For Z1,6 there are two case:

The first case, there is no s solving the equation

(6.6)

{
2j1 + j2 = 2`+ s

2j2
1 + j2

2 = 2`2 + s2

with {j1, j2, `} = {p, q,m}. In this case, Z1,6 = 0.

The second case, there exist s solving the above equation, then Z1,6 contains monomials

of forms

a2
j1
aj2b

2
`bs and b2

j1
bj2a

2
`as.

In this case we are not in KAM theorem. So we just assume that we are in the first case.

For Z2,6, we have

Z2,6 =
∑
j1,j2,`

|aj1|2|aj2|2|a`|2 +
∑

j3,j4,s1,t1∈A

(
a2
j3
as1b

2
j4
bt1 + b2

j3
bs1a

2
j4
at1
)

+
∑

j5,j6,j7,s2,t2∈B

(
a2
j5
aj6bj7bs2bt2 + b2

j5
bj6aj7as2at2

)
+

∑
j8,j9,j10,s3,t3∈C

(
a2
j9
as3bj8bj10bt3 + b2

j9
bs3aj8aj10at3

)
+

∑
j11,j12,j13,s4∈E

(
a2
j11
aj12bj13b

2
s4

+ b2
j11
bj12aj13a

2
s4

)
with ji ∈ {p, q,m}, s 6= t. The sets A, B, C, E are finite and possibly empty such that{

2j3 + s1 = 2j4 + t1
2j2

3 + s2
1 = 2j2

4 + t21

{
2j5 + j6 = j7 + s2 + t2
2j2

5 + j2
6 = j2

7 + s2
2 + t22{

2j9 + s3 = j8 + j10 + t3

2j2
9 + s2

3 = j2
8 + j2

10 + t23

{
2j11 + j12 = j13 + 2s4

2j2
11 + j2

12 = j2
13 + 2s2

4

We shall deal with each term one by one (in case it’s not empty). The first term is just

depends on the actions, and we have

|aj1|2|aj2|2|a`|2 = ν2ρj1ρj2|ζ`|2 + remainder.

The second and the fourth term are similar, since their effective parts are all of the form

eiαζsηt + e−iαηsζt.

The idea to deal with these two terms is the same as that in the two-modes case. Since

{Is + It, ζsηt} = {Is + It, ζtηs} = 0,
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these terms do not affect the stability of the flow. We see that A,B, C,D are disjointed,

and as in the two-modes case, a change of variables that used to deal with a pair s, t only

affect that modes, i.e the changes of variables commute. We call Φ1 the composition of all

changes of variables used to deal with the sets A and C.
For the third term, its effective parts are of the form

ν2ρj5
√
ρj6ρj7(e

iαζsζt + e−iαηsηt)

where α = θj7 − θj6 − 2θj5 . For explicitness, assuming that we are dealing with the case

j5 = p, j6 = q, j7 = m, and s, t solve the following equation

(6.7)

{
2p+ q = m+ s+ t

2p2 + q2 = m2 + s2 + t2,

then α = θ3 − θ2 − 2θ1. An example for this could be (p, q,m, s, t) = (3, 10, 9, 1, 6). In order

to kill the angles, we introduce the symplectic change of variables

Ψang,1(r, θ, ζ) = (r′, θ, ζ ′) ,

defined by 

ζ ′s = ie−iαηs η′s = ieiαζs
ζ ′t = ζt η′t = ηt
ζ ′j = ζj, η′j = ηj j 6= s, t, p, q

r′1 = r1 + 2|ζs|2

r′2 = r2 + |ζs|2,
r′3 = r3 − |ζs|2.

The effective part related to s, t is of form

(6.8) Λs|ζ ′s|2 + Λt|ζ ′t|2 − iν2ρ1
√
ρ2ρ3(ζ ′sη

′
t + η′sζ

′
t)

where

Λt = t2 + 9ν2(ρ2
1 + ρ2

2 + ρ2
3 + 4ρ1ρ2 + 4ρ2ρ3 + 4ρ3ρ1)

and

Λs = t2 + 3ν2(−ρ2
1 + ρ2

2 + 5ρ2
3 − 6ρ1ρ2 + 12ρ2ρ3 + 6ρ3ρ1).

Denoting a = Λt−Λs
2

and b = Λt+Λs
2

, we diagonalize (6.8) by the change of variables{
ζt,− = 1√

1−α2 (ζ ′s − iαζ ′t) ηt,− = 1√
1−α2 (η′s − iαη′t)

ζt,+ = 1√
1−α2 (ζ ′t + iαζ ′s) ηt,+ = 1√

1−α2 (η′t + iαη′s)

where

α = −a−
√
a2 − ν4ρ2

1ρ2ρ3

ν2ρ1
√
ρ2ρ3

.
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Then (6.8) becomes

Λt,+|ζt,+|2 + Λt,−|ζt,−|2

where Λt,± = b ±
√
a2 − ν4ρ2

1ρ2ρ3. We see that Λt,± is real or not depends on sign of

a2 − ν4ρ2
1ρ2ρ3, which is dependent on choice of parameter ρ. Precisely, for ρ ∈ D1 = [1, 2]3,

we have Λt,± ∈ R while there is a neighborhood of (1, 1
2
, 9

2
) : D2 = Dε = [1− ε, 1 + ε]× [1

2
−

ε, 1
2

+ ε]× [9
2
− ε, 9

2
+ ε] such that |=Λt,±| > ν2 for all ρ ∈ D.

We call Φ2 the composition of all changes of variables related to B.
For the set E , assume that we are dealing with the case

(6.9)

{
2p+ q = m+ 2s

2p2 + q2 = m2 + 2s2.

Then, using the change of variables

Ψang,2(r, θ, ζ) = (r′, θ, ζ ′) ,

defined by



ζ ′s = eiα/2ζs η′s = e−iα/2ηs
ζ ′j = ζj, η′j = ηj j 6= s, p, q

r′1 = r1 + |ζs|2

r′2 = r2 + 1
2
|ζs|2

r′3 = r3 − 1
2
|ζs|2.

The effective part related to s becomes

(6.10) Λs|ζ ′s|2 + ν2ρ1
√
ρ2ρ3(ζ ′2s + η′2s )

where

Λs = 3ν2(2ρ2
1 + ρ2

2 − ρ2
3 + 9ρ1ρ2 + 3ρ3ρ1)

If Λs 6= 0, we can rewrite (6.10) into 1−β2

1+β2 Λs| ζ
′
s+βη

′
s√

1−β2
|2 with β satisfying Λsβ = (1 −

β2)ν2ρ1
√
ρ2ρ3, otherwise we rewrite it into iν2ρ1

√
ρ2ρ3( ζ

′
s+iη

′
s√

2

η′s+iζ
′
s√

2
). However, meas{ρ ∈

R3 : Λs = 0} = 0, so we do not focus on this case. We call Φ3 the composition of all changes

of variables related to E . Using the rescaling Ψ introduced in the two-modes case, we get

Theorem 6.4. Assume that we are not in case of (6.6). The change of variables Φρ :=

Ψ ◦Φ3 ◦Φ2 ◦Φ1 ◦ τ is a holomorphic, symplectic transformation, and analytically depending

on ρ ∈ D, satisfying

• Φρ : Os(σ
2
, e
− 1

2 µ
2

)→ Tρ(ν, σ, µ, s);
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• Φρ puts the Hamiltonian h in normal form in the following sense:

1

ν
(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑
a∈Z

Λa|ζa|2

where

Ω(ρ) =

 p2 + 3ν2 (ρ2
1 + 3ρ2

2 + 3ρ2
3 + 6ρ1ρ2 + 6ρ1ρ3 + 12ρ2ρ3)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 3ρ2
3 + 6ρ1ρ2 + 6ρ2ρ3 + 12ρ1ρ3)

m2 + 3ν2 (ρ2
3 + 3ρ2

1 + 3ρ2
2 + 6ρ1ρ3 + 6ρ3ρ2 + 12ρ2ρ1)


• Z is the disjoint union L ∪ F ; L corresponds to elliptic part, and F corresponds to

hyperbolic part;

• for D = D1, then F = {∅};
• for D = D2, then F = {∅} if and only if B = {∅};
• Λa satisfies the Hypothesis A0, A1, A2;

• the remainder term f belongs to T s(σ, µ,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

The remainder term is dealt as in the two-modes case. It remains to verify the Hypothesis

A0, A1, A2, which requires explicit and careful calculus, but the idea is similar as in the

two-modes case.

Proof of Theorem 1.2 By Theorem 6.4, there exists a symplectic change of variables Φ1,

on D2 puts the Hamiltonian h = N + P in normal form h0 + f, that satisfies assumptions

of KAM theorem 2.3 for δ = ν2, ε = ν7/2 = δ7/4 and Ω0 = ω = (p2, q2,m2) + O(ν2). So

by KAM theorem, the hyperbolic set F is not empty if and only if D = D2 and there are

s, t 6= p, q,m solving the equation

(6.11)

{
2p+ q = m+ s+ t

2p2 + q2 = m2 + s2 + t2

Hence, for ρ ∈ D1, the torus

Tlin
ρ := {(I, θ, ζ)||I − νρ| = 0, |=θ| < σ, ‖ζ‖s = 0}

or equivalently, its neighborhood

Tρ(ν, 1, 1, s) := {(I, θ, ζ)||I − νρ| < ν, |=θ| < 1, ‖ζ‖s < ν1/2}
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is linearly stable, while for ρ ∈ D2 and p, q,m satisfying (6.11), that torus is linearly unstable.

�
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7. Appendix

In this appendix, we will verify the hypothesis A0, A1, A2 for the Hamiltonian in our

applications. The hypothesis A0 is trivial, so we focus on A1 and A2.

The two-modes case. The first case In this case, we have F = ∅ and the other estimates

are trivial. For the hypothesis A2, we recall that

Ω(ρ) =

(
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)

)
and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
.

Let k = (k1, k2) ∈ Z2/{0} and z = z(k) = (k2,k1)
|k| , then we have

(∇ρ · z)(Ω(ρ) · k) = 6ν2
(
3(ρ1 + ρ2)k2

2 + 3(ρ2 + 3ρ1)k2
1 + 4(ρ1 + ρ2)k1k2

)
|k|−1

≥ 6√
2
ν2|k|

and

(∇ρ · z)Λj = 18ν2((ρ1 + 2ρ2)k2 + (ρ2 + 2ρ1)k1)|k|−1.

Choosing δ = 4ν2, we get the hypothesis A2 (1). Since (∇ρ · z)(Λj − Λ`) = 0, the estimate

of small divisor Ω · k + Λj − Λ` is followed. To estimate the small divisors Ω · k + Λj and

Ω · k + Λj + Λ` we use the fact that f commute with both the mass L and momentum M.

We just need to control small divisors Ω · k + Λj and Ω · k + Λj + Λ` whenever eik·θηj ∈ f
and eik·θηjη` ∈ f , respectively. We have for the mass and momentum:

L = ν(ρ1 + ρ2) + r1 + r2 +
∑
j

|ζj|2

and

M = ν(pρ1 + qρ2) + pr1 + qr2 +
∑
j

j|ζj|2.

By conservation of L, we have

{eik·θηj,L} = ieik·θηj(k1 + k2 + 1) = 0.
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Therefore, for A2 (2) we just have to study the case k1 + k2 = −1. In this situation

(∇ρ · z)(Ω(ρ) · k + Λj) = 6ν2|k|−1
(
3(ρ1 + ρ2)k2

2 + 3(ρ2 + ρ1)k2
1 + 4(ρ1 + ρ2)k1k2

)
+ 6ν2|k|−1 (3(ρ1 + 2ρ2)k2 + 3(ρ2 + 2ρ1)k1)

= 6ν2|k|−1
(
(ρ1 + ρ2)k2

2 + (ρ2 + ρ1)k2
1 + 2(ρ1 + ρ2)

)
+ 6ν2|k|−1 (3ρ2k2 + 3ρ1k1 − 3(ρ1 + ρ2))

= 6ν2|k|−1
(
2(ρ1 + ρ2)k2

1 + (5ρ1 − ρ2)k1 − 3ρ2

)
.

This term is bigger than δ except the cases k = (−1, 0) and (0,−1). The conservation of M
gives us

{eik·θηj,M} = ieik·θηj(pk1 + qk2 + j) = 0.

For k ∈ {(−1, 0), (0,−1)}, this implies j ∈ {p, q}, which is excluded.

We consider the small divisor Ω·k+Λj+Λ` in the same way. The conservation of the mass L
gives us k1+k2 = −2 and then by computation we get k ∈ {(0,−2), (−2, 0), (−1,−1), (−3, 1), (1,−3)}.
The conservation of the momentum gives us pk1 + qk2 + j + ` = 0. We have

Ω · k + Λj + Λ` = N(p, q, j, `) + µ(ρ, k, )

where N(p, q, j, `) = p2k1 + q2k2 + j2 + `2 and µ(ρ) very small for |k| ≤ 4. We see that

N(p, q, j, `) ∈ Z, so N(p, q, j, `) ≤ δ if and only if p2k1 + q2k2 + j2 + `2 = 0. Combined with

conservation of the momentum, this gives

for the case k = (−1,−1)

p+ q = j + ` and p2 + q2 = j2 + `2

for the case k = (−2, 0)

2p = j + ` and 2p2 = j2 + `2

for the case k = (0,−2)

2q = j + ` and 2q2 = j2 + `2

for the case k = (−3, 1)

3p = q + j + ` and 3p2 = q2 + j2 + `2

for the case k = (1,−3)

3q = p+ j + ` and 3q2 = p2 + j2 + `2

In all these cases, we get j, ` ∈ {p, q} which is excluded.

The second case We see that Ω and {Λj}j 6=p,q,s,t are all the same as the previous case

except Λt,+ and Λt,−. We remind that Λt,+ = Λt − ν2ρ1ρ2
α

and Λt,− = Λs + ν2ρ1ρ2
α

with
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α ≥ 1. It is easy to see that |(∇ρ · z)j ν
2ρ1ρ2
α
| ≤ 2ν2 = δ/2, so instead of estimating directly

with Λt,+,Λt,−, we can estimate with Λt and Λs. Since Λt has the same form as the other

Λj we just need to focus on estimating divisors relating to Λs, which are Ω · k + Λs and

Ω · k + Λs ± Λ`. For simplicity, we omit
ν4ρ21ρ

2
2

2Λt
since it is very small. For Ω · k + Λs, using

the conservation of the mass, we get k1 + k2 = −1 and

(∇ρ · z)(Ω(ρ) · k + Λs) = 6ν2|k|−1
(
2(ρ1 + ρ2)k2

1 + (9ρ1 + 3ρ2)k1 + 4ρ1 − 3ρ2

)
.

Then we get the estimate except for k ∈ {(0, 1), (−1, 0), (−2, 1), (−3, 2)}. By the conserva-

tion of the momentum, combining with 6.4, we need
pk1 + qk2 + t = 0

2p+ s = 2q + t

2p2 + s2 = 2q2 + t2

For k ∈ {(0, 1), (−1, 0), (−2, 1), (−3, 2)}, this gives either {s, t} = {p, q} or p = q which are

all excluded. For Ω · k + Λs −Λ`, by the conservation of the mass, we have k1 + k2 = 0 and

then

(∇ρ · z)(Ω · k + Λs − Λ`) = 6ν2|k|−1
(
2(ρ1 + ρ2)k2

1 + 8(ρ2 + ρ1)k1 + 12ρ1 + 16ρ2

)
≥ ν2

we get the estimate. For Ω ·k+Λs+Λ`, the conservation of the mass L gives us k1 +k2 = −2

and then by computation we get the estimate except for k ∈ {(−1,−1), (−2, 0), (−3, 1), }.
Combining with the conservation of the momentum and the equation 6.4, we get that all

these cases are excluded.

The three modes case. Let us start with simple probability assuming that A, B, C are

all empty. In this case, we have

Ω(ρ) =

 p2 + 3ν2 (ρ2
1 + 3ρ2

2 + 3ρ2
3 + 6ρ1ρ2 + 6ρ1ρ3 + 12ρ2ρ3)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 3ρ2
3 + 6ρ1ρ2 + 6ρ2ρ3 + 12ρ1ρ3)

m2 + 3ν2 (ρ2
3 + 3ρ2

1 + 3ρ2
2 + 6ρ1ρ3 + 6ρ3ρ2 + 12ρ2ρ1)


and

Λj = j2 + 9ν2(ρ2
1 + ρ2

2 + ρ2
3 + 4ρ1ρ2 + 4ρ2ρ3 + 4ρ3ρ1).

Let k = (k1, k2, k3) ∈ Z3/{0}, k′ = (k2 + k3, k1 + k3, k1 + k2) and z = z(k) = k′

|k′| , then we

have

(∇ρ · z)(Ω(ρ) · k) = 6ν2|k′|−1(3(ρ2 + ρ3)k2
1 + 3(ρ1 + ρ3)k2

2 + 3(ρ2 + ρ1)k2
3+

6(ρ1 + ρ2 + ρ3)(k1 + k2 + k3)2 + (ρ1 + ρ2)k1k2 + (ρ3 + ρ2)k3k2 + (ρ1 + ρ3)k1k3)

and

(∇ρ · z)Λj = 18ν2|k′|−1((4ρ1 + 3ρ2 + 3ρ3)k1 + (4ρ2 + 3ρ1 + 3ρ3)k2 + (4ρ3 + 3ρ2 + 3ρ1)k3).
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Choosing δ = ν2, we get the hypothesis A2 (1). Since (∇ρ · z)(Λj − Λ`) = 0, the estimate

of small divisor Ω · k + Λj − Λ` is followed. For Ω · k + Λj, by conservation of the mass,

we just need to estimate this divisor in the case k1 + k2 + k3 = −1, then by computation

we have estimate except for k ∈ {(0, 0,−1); (0,−1, 0); (−1, 0, 0)}. By conservation of the

momentum, we have pk1 + qk2 + mk3 + j = 0, so that j ∈ p, q,m which is excluded. For

Ω · k + Λj + Λ`, again we have k1 + k2 + k3 = −2 by conservation of the mass, which leads

us to consider |k| = |k1| + |k2| + |k3| ≤ 2. By conservation of the momentum, we have

pk1 + qk2 +mk3 + j + ` = 0, and the term Ω · k + Λj + Λ` is small if only if

pk2
1 + qk2

2 +mk2
3 + j2 + `2 = 0.

After all, we will get j, ` ∈ {p, q,m} which is excluded. Now, we will estimate divisors in

case A, B, C are not empty.

The set B For ρ ∈ D2: we have

|=Λt,±| > ν2

and so that

|Ω · k + Λt,+ − Λt,−| ≥ 2ν2.

For Ω ·k+Λt,+ +Λt,−, we see that Λt,+ +Λt,− = Λt+Λs = 2Λt+2Ω1 +Ω2−Ω3, so argument

as in the trivial case above for k′1 = k1−2, k′2 = k2−1, k′3 = k3 + 1 we get desired estimates.

Nevertheless, by the conservation of the mass and the momentum, we just need to estimate

this small divisor if k1 + k2 + k3 = 2t and p2k1 + q2k2 +m2k3 = 2t2, combining with (6.11),

this is never the case.

For ρ ∈ D1 : the importance of this domain is
√
a2 − ν4ρ2

1ρ2ρ3 ∈ R, so we can forget√
a2 − ν4ρ2

1ρ2ρ3 in estimating (if it is not small we can change the domain). Besides, we

have b = Λs+Λt
2

= Λt + 2Ω1+Ω2−Ω3

2
, so by checking estimates in trivial case above with a

change k′1 = k1 − 1, k′2 = k2 − 1
2
, k′3 = k3 + 1

2
, we get desired estimates.

The set A Assume that s, t solve the following equation{
2p+ s = 2q + t

2p2 + s2 = 2q2 + t2

Then by change of variables, we have Λs = Λt + 2Ω1 − 2Ω2 + s2 − t2 +O(ν4). Using results

in the trivial case for k′1 = k1 − 2, k′2 = k2 + 2, we get desired estimates.

The set C Assume that s, t solve the following equation{
2p+ s = q +m+ t

2p2 + s2 = q2 +m2 + t2
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Then by change of variables, we have Λs = Λt + 2Ω1 − Ω2 − Ω3 + s2 − t2 + O(ν4). Using

results in the trivial case for k′1 = k1 − 2, k′2 = k2 + 1, k′3 = k3 + 1 we get desired estimates.

The set E is just a special case of the set B when s = t.
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