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Abstract. The VFRoe scheme has been recently introduced to approximate the solutions of
the shallow water equations. One of the main interest of this method is to be easily implemented.
As a consequence, such a scheme appears as an interesting alternative to other more sophisticated
schemes. The VFRoe methods perform approximate solutions in a good agreement with the ex-
pected ones. However, the robustness of this numerical procedure has not been proposed. Following
the ideas introduced by Jin-Xin [Comm. Pure Appl. Math., 45, 235–276 (1995)], a relevant relax-
ation method is derived. The interest of this relaxation scheme is twofold. In the first hand, the
relaxation scheme is shown to coincide with the considered VFRoe scheme. In the second hand, the
robustness of the relaxation scheme is established and thus the non-negativity of the water height,
obtained involving the VFRoe approach, is ensured. Following the same idea, a family of relaxation
schemes is exhibited. Next, robust high order MUSCL extensions are proposed. The final scheme
is obtained when considering the hydrostatic reconstruction to approximate the topography source
terms. Numerical experiments are performed to attest the interest of the procedure.
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1. Introduction. The present work is devoted to the numerical approximations
of weak solutions of the shallow water equations, also known as the Saint-Venant
equations. When specified in one space dimension, the system under consideration
reads as follows:

{
∂th + ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + gh2/2

)
= −ghd′(x) (1.1)

where h is the local water depth, u is the depth-averaged velocity and d : R → R+

denotes the topography. For the sake of simplicity in the notations, it is convenient
to rewrite the system (1.1) in the following condensed form:

∂tw + ∂xf(w) = S(w, d), (1.2)

with

w =
(

h
hu

)
, f(w) =

(
hu

hu2 +
g

2
h2

)
and S(w) =

(
0

−ghd′(x)

)
, (1.3)

where w : R×R+ → Ω is the state vector in conservative variables and f(w) : Ω → R2

stands for the flux function. The convex set Ω of the admissible states is defined by:

Ω =
{
w ∈ R2; h ≥ 0, u ∈ R}

. (1.4)

The homogeneous Saint-Venant system associated with (1.1), given by

∂tw + ∂tf(w) = 0, (1.5)
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is known to be hyperbolic over Ω. As a consequence, the solutions may develop shock
discontinuities. In order to rule out the unphysical solutions, the system (1.5) must be
supplemented by entropy inequalities [27, 28] (see also [7] and the references therein):

∂tη̃(w, d) + ∂xG̃(w, d) ≤ 0, (1.6)

where

η(w) = h
u2

2
+

g

2
h2, G(w) =

(
h

u2

2
+ gh2

)
u,

η̃(w, d) = η(w) + hgd, G̃(w, d) = G(w) + hgdu.

Let us emphasize that the steady state solutions of (1.1) are of primary importance.
These specific solutions are given by (for instance, see [18, 13]):





hu = cste,
u2

2
+ gh + gd = cste.

(1.7)

One of them, the steady state of a lake at rest, defined by

u = 0, h + d = cste,

plays a crucial role. From a numerical point of view, the considered schemes must
satisfy such a property. After the pioneer work of Greenberg et al. [18, 19], schemes
that preserve the lake at rest are called well-balanced.

During the last ten years, several schemes have been proposed according to the
well-balanced strategy (see [7, 13, 23, 24, 25]). More recently, in [1], a well-balanced
hydrostatic reconstruction has been derived. This technique can be applied to any
conservative finite volume scheme approximating the homogeneous Saint-Venant sys-
tem (1.5), to obtain a suitable approximation of the topography source terms. In
addition, as soon as the homogeneous system’s scheme is robust, the hydrostatic re-
construction preserves the robustness: it preserves the non-negativity of h and it
performs relevant approximations of the dry states with h = 0 (for instance, see also
[33, 34] for relavant modelisations and approximations of dry areas).

Involving the framework of the hydrostatic reconstruction, we have to consider
robust schemes to approximate the weak solutions of (1.5). This avoids some useful
but sophisticated strategy (see [13] for a Godunov approach or [7] for a relaxation
scheme). Now, when approximating (1.5), several schemes come with the required
robustness, the Suliciu relaxation scheme [2, 3, 7] (see also [12, 26] for pioneer works),
for instance. However, another type of scheme is frequently used when considering the
shallow water flows; namely the VFRoe scheme [14, 15, 17]. Currently, this scheme is
known to be very easy to implement, it performs accurate numerical approximations
and it is able to deal with dry areas. Unfortunately, no robustness result is established
for the VFRoe scheme. This is the aim of the present work. The reader is also
refered to the work of Jin-Wen [24, 25], where another type of well-balanced scheme
is proposed; namely the interface-type numerical method, which also produces an easy
and accurate numerical scheme for the shallow-water equations.

The present paper is organized as follows. In the next section, we recall the deriva-
tion of the VFRoe scheme. The derivation is performed when involving the shallow
water equations. Section 3 is devoted to relaxation schemes. A relevant relaxation
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model is proposed and analyzed. Following the ideas introduced by Jin-Xin [26] (see
also [2, 3, 7, 12]), the resulting relaxation scheme is shown to coincide with the VFRoe
scheme. In other words, the VFRoe scheme is written as a relaxation scheme (see
LeVeque-Pelanti [31] where the Roe scheme is seen as a relaxation type method). As
a consequence, an approximate Riemann solver, associated with the VFRoe scheme,
is known and yields to establish the expected non-negativity of the numerical water
depth. Following the same idea, a class of robust relaxation schemes is exhibited. The
next section is devoted to the high order extensions. Following an idea introduced by
Perthame-Shu [37] (see also [4, 5, 6] for recent developments), we propose high order
MUSCL reconstruction which preserves the robustness property. At this level, the
robust full discretization of the shallow water equations (1.1) with topography is ob-
tained when considering the hydrostatic reconstruction. In the last section, numerical
tests are performed and attest the interest of the proposed numerical procedure.

2. The VFRoe scheme. The VFRoe schemes are approximate Godunov type
schemes [14, 15]. They turn out to be useful approximating the solutions of the shallow
water equations since such schemes are able to deal with the dry areas. Moreover,
their implementations are very easy. We briefly recall the basis of the VFRoe scheme,
proposed in [14], involving non-conservative variables. For the sake of simplicity, we
restrict ourselves to regular meshes of size ∆x such that ∆x = xi+ 1

2
− xi− 1

2
, i ∈ Z,

and we note the time step by ∆t with tn+1 = tn + ∆t, n ∈ N.
In a more general setting, we turn considering the numerical approximation of

hyperbolic system of conservation laws in the form (1.5). To access such an issue,
the VFRoe scheme is adopted. This approximate Godunov type scheme is based on
the evaluation of the value at the interface between two neighbouring cells when con-
sidering the following linearization. First, we adopt an admissible change of variable,
u = U(w). With some abuse in the notations, we set W(u) = w the inverse function
of U . Considering smooth enough solutions, the system (1.5) writes as follows:

∂tu + B(u)∂xu = 0, (2.1)

where B(u) = (∇uW(u))−1A(W(u))∇uW(u) and A(w) is the Jacobian matrix as-
sociated with the flux function f . Next, the following linearized Riemann problem is
considered:

∂tu + B(ũ)∂xu = 0, (2.2)

u(x, 0) =
{

uL = U(wL) if x < 0,
uR = U(wR) if x > 0,

(2.3)

where ũ := ũ(uL,uR) represents any averaging of the variable uL and uR. One of
the aim of the present paper is to discuss these averagings and to propose relevant
choice to preserve physical assumptions. With some abuse in the notations, we will
set B(ũ) := B̃(uL,uR).

Since the above problem is linear, the exact solution u∗(x/t;uL,uR) is easily
obtained. A numerical flux function is then defined as follows:

f∗(wL,wR) = f
(
W(u∗(0;U(wL),U(wR))

)
(2.4)

Hence the explicit form of the finite volume VFRoe scheme is given by:

wn+1
i = wn

i −
∆t

∆x

(
f∗

(
W(u∗(0;U(wn

i ),U(wn
i+1))

)
−f∗

(
W(u∗(0;U(wn

i−1),U(wn
i ))

))
.

(2.5)
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The numerical flux function is obviously consistent with the exact flux function since
we have u∗(0,u,u) = u for all u and then we get

f∗(w,w) = f(W(U(w))) = f(w).

This leads to a conservation scheme (2.5) for any linearization matrix B̃(uL,uR).
The solution of the linearized Riemann problem (2.2) is defined everywhere except

along x/t = λ̃k with the following relations:

u∗(x/t,uL,uR) = uL +
∑

x
t >λ̃k

(t l̃k · [u]RL) r̃k,

= uR −
∑

x
t <λ̃k

(t l̃k · [u]RL) r̃k ,
(2.6)

with [u]RL = uR − uL, where we have set l̃k, λ̃k and r̃k, k = 1, . . . , p respectively as
the left eigenvectors, eigenvalues and right eigenvectors of B(ũ).

We recall that the basic VFRoe scheme was first introduced in [35] with the more
simple choice U(w) = w and thus B(ũ) = A(w̃). In particular, the stability of the
VFRoe scheme in the scalar case is studied in [35]. Various changes of variables for
the Euler equations were examined in [8, 9] and in [13], [14] for the shallow water
equations.

Now, we specify the scheme when considering the shallow water equations (1.5).
The solution of the associated Riemann problem, in the absence of dry areas, is
composed of three distinct constant states separated by two genuinely non-linear
fields, of speeds u − c and u + c respectively, where the celerity is usually defined
by c =

√
gh. Motivated by the form of the Riemann invariant associated with the

wave speeds, and far away from the dry areas (h > 0), we consider herein the change
of variable U(w) = t(2c, u). The system (1.5) may be written related to u in the
following non conservation form:

{
∂t(2c) + u∂x(2c) + c∂xu = 0,
∂tu + c∂x(2c) + u∂xu = 0.

(2.7)

The Jacobian matrix B(u) becomes thus:

B(u) =
(

u c
c u

)
. (2.8)

In [14], the averaged state (uL + uR)/2 is proposed for the linearization involved in
B(ũ) and thus for the characterization of ũ and c̃. In the present work, the choice
of the linearization stays free and it will be specified later on. Independently on the
definition of ũ and c̃, we obtain the eigenvalues λ± = ũ± c̃. The exact solution of the
linearized Riemann problem (2.2) is easily computed to obtain

W(u∗(0;U(wn
i ),U(wn

i+1))) =





wn
i if (λ−)i+ 1

2
> 0,

W(ui+ 1
2
) if (λ−)i+ 1

2
< 0 < (λ+)i+ 1

2
,

wn
i+1 if (λ+)i+ 1

2
< 0,

(2.9)

where (λ±)i+ 1
2

= ũi+ 1
2
± c̃i+ 1

2
according to the choice of the adopted linearization of

ũ and c̃. Here, we have set ui+ 1
2

= t(2ci+ 1
2
, ui+ 1

2
) where

ci+ 1
2

=
1
2
(ci + ci+1)− 1

4
(ui+1 − ui), ui+ 1

2
=

1
2
(ui + ui+1)− (ci+1 − ci). (2.10)
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This concludes the presentation of the considered VFRoe scheme. Lastly, we empha-
size that actually, the definition of ũ and c̃ only influences the upwind definition to
use.

3. A relaxation approach. Motivated by the pioneer work of Jin-Xin [26] (see
also [11, 32]), we propose to introduce a relevant relaxation scheme to obtain a suitable
interpretation of the VFRoe scheme (2.5)-(2.9). We approximate the weak solutions
of the system (1.5) by the weak solutions of a suitable first order system with singular
perturbations: the relaxation model. According to the work of Coquel-Perthame [12]
or Bouchut [7] (see also [2, 3]), we propose a relaxation model which preserves most
of the nonlinearities of the initial system. The resulting numerical scheme, based on
the relaxation model, will be seen to coincide with the VFRoe method.

3.1. The relaxation model. Following the work of Suliciu [39, 40] (see also
[2, 3, 7, 12]), we suggest substituting the celerity c and velocity u by the approximation
Σ and U . These two new variables are governed by





∂tΣ + ū∂xΣ +
c̄

2
∂xU = µ(c− Σ)

∂tU + 2c̄∂xΣ + ū∂xU = µ(u− U)

where c̄ and ū are relaxation parameters to be defined while µ is a parameter intended
to tend to infinity. The following first order system with singular perturbations:





∂th + ∂x(
Σ2

g
U) = 0, t > 0, x ∈ R,

∂t(hu) + ∂x

(Σ2

2g
(2U2 + Σ2)

)
= 0,

∂tΣ + ū∂xΣ +
c̄

2
∂xU = µ(c− Σ),

∂tU + 2c̄∂xΣ + ū∂xU = µ(u− U),

(3.1)

is considered to approximate the weak solutions of (1.5). Now, at least formally, in the
limit of µ to infinity, we recover the initial system (1.5). This limit will be referred to
as the equilibrium limit, defined by Σ = c and U = u. The conservation of the water
height h and the discharge hu in (3.1) then gives those of (1.5). In the following, we
establish that the scheme obtained from the relaxation model (3.1) is relevant, in a
sense to be precised, to approximate solutions involving dry areas.

For the sake of simplicity in the notations, let us introduce the following abstract
form of the relaxation system (3.1):

∂tW + ∂xF(W) = µR(W), (3.2)

where we have set W = t(h, hu, Σ, U) defined over the following convex set:

V =
{
W ∈ R4; h ≥ 0

}
.

One of the main interest of the relaxation model (3.1) stays in the linear degener-
acy property satisfied by all the fields. As a consequence, the Riemann problem turns
out to be easy to solve. The next statement is devoted to solve the Riemann problem.

Lemma 3.1. Let be given c̄ > 0 and ū ∈ R such that ū ± c̄ 6= 0. Assume µ = 0.
The first order system (3.1)µ=0 is hyperbolic for all W ∈ V. It admits λ0

1 = λ0
2 = 0

and λ± = ū± c̄ as eigenvalues and the associated fields are linearly degenerated.
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Let WL and WR be constant states in V and define

W0(x) =
{

WL if x < 0,
WR if x > 0,

(3.3)

the initial data of the Riemann problem for the system (3.1)µ=0. Let us set

Σ∗ =
ΣL + ΣR

2
− 1

4
(UR − UL), (3.4)

U∗ =
UL + UR

2
− (ΣR − ΣL). (3.5)

Then the weak solution of the system (3.1)µ=0 and for the initial data (3.3) is given by

1. If λ− < 0 < λ+:

W(x, t) =





WL if x/t < λ−

W∗
L if λ− < x/t < 0,

W∗
R if 0 < x/t < λ+,

WR if λ+ < x/t

where

W∗
L = t(h∗L, q∗L, Σ∗, U∗), W∗

R = t(h∗R, q∗R, Σ∗, U∗),

and the values of (h∗L, q∗L) and (h∗R, q∗R) are given by

h∗L = hL +
Σ∗2U∗ − Σ2

LUL

gλ−
, q∗L = (hu)L − I(Σ∗, U∗)− I(ΣL, UL)

λ−
, (3.6)

h∗R = hR +
Σ∗2U∗ − Σ2

RUR

gλ+
, q∗R = (hu)R − I(Σ∗, U∗)− I(ΣR, UR)

λ+
, (3.7)

where the function I : R2 → R is defined by

I(Σ, U) =
Σ2

2g
(Σ2 + 2U2). (3.8)

2. If 0 < λ− < λ+:

W(x, t) =





WL if x/t < 0
W∗

L if 0 < x/t < λ−,
W∗

R if λ− < x/t < λ+,
WR if λ+ < x/t,

where

W∗
L = t(h∗L, q∗L, ΣL, UL), W∗

R = t(h∗R, q∗R, Σ∗, U∗),

and the values of (h∗L, q∗L) and (h∗R, q∗R) are given by

h∗L = h∗R +
Σ2

LUL − Σ∗2U∗

gλ−
, q∗L = q∗R −

I(ΣL, UL)− I(Σ∗, U∗)
λ−

, (3.9)

h∗R = hR +
Σ∗2U∗ − Σ2

RUR

gλ+
, q∗R = (hu)R − I(Σ∗, U∗)− I(ΣR, UR)

λ+
, (3.10)

where the function I is defined by (3.8).
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3. If λ− < λ+ < 0:

W(x, t) =





WL if x/t < λ−

W∗
L if λ− < x/t < λ+,

W∗
R if λ+ < x/t < 0,

WR if 0 < x/t,

where

W∗
L = t(h∗L, q∗L, Σ∗, U∗), W∗

R = t(h∗R, q∗R, ΣR, UR),

and the values of (h∗L, q∗L) and (h∗R, q∗R) are given by

h∗L = hL +
Σ∗2U∗ − Σ2

LUL

gλ−
, q∗L = (hu)L − I(Σ∗, U∗)− I(ΣL, UL)

λ−
, (3.11)

h∗R = h∗L +
Σ2

RUR − Σ∗2U∗

gλ+
, q∗R = q∗L −

I(ΣR, UR)− I(Σ∗, U∗)
λ+

, (3.12)

where the function I is, once again, defined by (3.8).
Let us note from now on that the intermediate values Σ∗ and U∗ remain free

from the parameters c̄ and ū. This remark will be crucial in the sequel when estab-
lishing relevant relationship between the relaxation scheme and the VFRoe scheme.
Indeed, we will see that the relaxation numerical flux function solely depends on the
pair (Σ∗, U∗), but for the definition (3.4)-(3.5) this function will coincide with the
VFRoe numerical flux function given by (2.5)-(2.9). This remark will be obtained
independently from the precise definition of the pair (ū, c̄).

Proof. Considering the algebra of the system (3.2), the flux function Jacobian
matrix is given by

∇WF(W) =




0 0 2Σ U/g Σ2/g
0 0 Σ(U2 + Σ2)/g 2Σ2 U/g
0 0 ū c̄/2
0 0 2c̄ ū


 . (3.13)

Easy calculations ensure that the vectors given by r0
1 = t(1, 0, 0, 0), r0

2 = t(0, 1, 0, 0)
and

r± =




2ΣU/g ± 2Σ2/g
2Σ(U2 + Σ2)/g ± 4Σ2U/g
ū± c̄
±2(ū± c̄)


 ,

are the right eigenvectors respectively associated to the eigenvalues λ0
1 = λ0

2 = 0 and
λ± = ū± c̄. In addition, it is easy to see that all the fields are linearly degenerated.

The Riemann solution is made of four constant states WL, W∗
L, W∗

R, and WR,
separated by three contact discontinuities, a stationary and two propagating at ve-
locity λ±. The above third developed cases only aim at dealing with the location of
the wave velocities λ− and λ+ with respect to the stationary discontinuity. We recall
that across the jth-contact discontinuity, the Riemann invariants associated with the
jth-eigenvector are continuous. These Riemann invariants denoted φj are defined by
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∇φj · rj = 0 where rj is the jth right eigenvector introduced above. After straight-
forward computations, we obtain the following Riemann invariants, defined field by
field:

φ0
1 = Σ φ0

2 = U
φ±1 = 2Σ± U φ±2 = (ū± c̄)h− U Σ2/g φ±3 = (ū± c̄)hu− I(Σ, U) (3.14)

Now, considering the case λ− < 0 < λ+ and exploiting the continuity of these in-
variants across the associated contact discontinuity, we obtain the following system
of equations:

{
Σ∗L = Σ∗R
U∗

L = U∗
R

(3.15)




UL + 2ΣL = U∗ + 2Σ∗

λ−hL − ULΣ2
L

g = λ−h∗L − U∗(Σ∗)2

g

λ−(hu)L − I(ΣL, UL) = λ−q∗L − I(Σ∗, U∗)
(3.16)





U∗ − 2Σ∗ = UR − 2ΣR

λ+h∗R − U∗Σ2
L

g = λ+hR − URΣ2
R

g

λ+(hu)R − I(ΣR, UR) = λ+q∗R − I(Σ∗, U∗)
(3.17)

The unique solution of this system is given by (3.4)-(3.7). The two remaining cases
are developed following the same lines. The proof is thus completed.

This analysis of the Riemann problem solutions can be supplemented by a study
of the non-negativity of the water depth h, establishing that h∗L,R ≥ 0 as soon as
hL,R ≥ 0. At the moment, let us focus our attention on h∗L; the same approach will
be used considering h∗R.

Since Σ∗ and U∗ do not depend on the eigenvalues λ±, while λ± does not depend
on the unknowns but just on the fixed parameters ū and c̄, with hL > 0 and hR > 0 it
is clear that h∗L remains non-negative as soon as |λ±| is larger enough. Now, assume
hL = 0 and hR > 0, to write with UL = 0:

h∗L =
{ 1

λ−g (Σ∗)2U∗ if λ− < 0,

hR + 1
λ+g

(
(Σ∗)2U∗ − Σ2

RUR

)− 1
λ−g (Σ∗)2U∗ if λ− > 0.

Two cases must be distinguished. If U∗ < 0, we have just to set λ− < 0. Reversely, if
we have U∗ > 0, the parameters ū and c̄ must be chosen to enforce 0 < λ− < λ+ large
enough to satisfy h∗L > 0. Finally, in the case of hL = hR = 0, with the convention
UL = UR = 0, we obtain h∗L = 0. Involving the same analysis with h∗R, we have easily
established the following result:

Lemma 3.2. Assume hL ≥ 0 and hR ≥ 0 with the convention UL = 0 if hL = 0
and UR = 0 if hR = 0. Then there exist suitable parameters ū and c̄ such that the
functions h∗L and h∗R, defined in Lemma 3.1, are non-negative.

In order to help the reader in the full determination of the relaxation model, and
thus in the characterization of the relaxation scheme, we underline that the relevant
definition of the eigenvalues λ± coincides with the following choice of the relaxation
parameters (ū, c̄):

ū =
λ+ + λ−

2
and c̄ =

λ+ − λ−

2
.
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¿From a practical point of view, one wants to define ū = (uL + uR)/2 and c̄ = (cL +
cR)/2 (see [14]). As an example, such a choice can be considered and locally modified
as soon as the non-negativity of h∗L or h∗R is violated. Of course this local correction
of ū and c̄ is done according to Lemma 3.2. It is clear that many other choices can
be suggested and the numerical consequences resulting from the considered definition
of ū and c̄ will be detailed in the next section. Under a more general framework,
we can set ū := ū(WL,WR) and c̄ := c̄(WL,WR) which reads ū := ū(wL,wR)
and c̄ := c̄(wL,wR) as soon as the states WL and WR are assumed to satisfy the
equilibrium, defined by U = u and Σ =

√
gh.

3.2. The relaxation solver. For the sake of completeness, we briefly recall the
numerical relaxation procedure to approximate weak solution of (1.5), which is usual
in the framework of the relaxation scheme (see Jin-Xin [26], but also Coquel-Perthame
[12], Baudin et al.[2], Bouchut [7] or Berthon [3]).

We consider the same mesh notations as introduced in section 2. To approximate
the solution at time tn+1 = tn + ∆t, a splitting technique is adopted. In a first
step, we solve the relaxation model (3.2) omitting the relaxation source terms which
are considered in a second step. As usual, we assume that a piecewise constant
approximate equilibrium solution wh(x, tn) ∈ Ω is known at time tn, defined by

wh(x, tn) = wn
i = t (hn

i , (hu)n
i ) , x ∈ (xi− 1

2
, xi+ 1

2
).

At the initial time, we set

w0
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

w(x, 0)dx.

During the first step, we propose to evolve in time a relevant approximation of
the relaxation model (3.2). To access such an issue, we introduce Wh ∈ V such that
for all 0 < t < ∆t, the function Wh(x, tn + t) is the weak solution of the Cauchy
problem for the relaxation system (3.2)µ=0:

∂tW + ∂xF(W) = 0, (3.18)

supplemented by the following initial equilibrium data:

Wh(x, tn) = Wn
i

= t (hn
i , (hu)n

i , Σn
i , Un

i ) , x ∈ (xi− 1
2
, xi+ 1

2
),

where the equilibrium state is defined by Σn
i =

√
g hn

i and Un
i = (hu)n

i /hn
i . Under

the CFL like condition

∆t

∆x
max i∈Z

(
|λ−

i+ 1
2
|, |λ+

i+ 1
2
|
)
≤ 1

2
, (3.19)

the solution Wh at the time tn+∆t is made of the juxtaposition of the non-interacting
Riemann problem solution set at the cell interfaces xi+ 1

2
for i ∈ Z. Next, the projec-

tion of this solution on the piecewise constant functions reads:

Wn+1,−
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

Wh(x, tn + ∆t)dx.
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A local definition of the parameter ū and c̄ at each interface xi+ 1
2

is considered (for
instance, see [14]). At each interface xi+ 1

2
, we choose WL = Wn

i and WR = Wn
i+1

to define the parameters ūi+ 1
2

:= ū(wn
i ,wn

i+1) and c̄i+ 1
2

:= c̄(wn
i ,wn

i+1) according to
the non-negativity condition stated Lemma 3.2. Assuming the CFL restriction (3.19),
the relaxation parameters may vary from one interface to another. For convenience in
the sequel and to emphasize the admissible local choice of the parameters, we rewrite
Wn+1,−

i arguing the well-known formalism introduced by Harten, Lax and van Leer
[21]:

Wn+1,−
i =

1
2

(
W̄R(Wn

i−1,W
n
i ) + W̄L(Wn

i ,Wn
i+1)

)
, (3.20)

where

W̄L(WL,WR) =
2∆t

∆x

∫ 0

− ∆x
2∆t

Wr(ξ; WL,WR) dξ,

= WL − 2∆t

∆x
(F(Wr(0; WL,WR))− F(WL)) ,

(3.21)

and

W̄R(WL,WR) =
2∆t

∆x

∫ ∆x
2∆t

0

Wr(ξ; WL,WR) dξ,

= WR − 2∆t

∆x
(F(WR)− F(Wr(0; WL,WR))) .

(3.22)

The function Wr(.; WL,WR) denotes the solution of the Riemann problem for (3.18)
where the initial data is prescribed by (3.3).

As soon as WL := W(wL) and WR := W(wR) are defined from the equilibrium
states wL and wR, it is crucial to notice from now on the following identities:

F(WL)|[h, hu] = f(wL),
F(WR)|[h, hu] = f(wR),

where the notation F(.)|[h, hu] denotes the restriction of F to the component (h, hu).
The second step of the scheme is devoted to the relaxation procedure. At time

t = tn + ∆t, we define the updated approximate equilibrium solution wn+1(x) as
follows:

wn+1(x) = t
(
hn+1,−

i , (hu)n+1,−
i

)
, x ∈ (xi− 1

2
, xi+ 1

2
), (3.23)

and we set Σn+1
i =

√
ghn+1

i and Un+1
i = (hu)n+1

i /hn+1
i .

In fact, this second step amounts solving the system

∂tW = µR(W),

with the piecewise constant approximation Wn+1,−
i as initial data while µ tends to

infinity. The derivation of the relaxation scheme is thus achieved.
In fact, the numerical relaxation flux function, we have just derived, exactly

coincide with the VFRoe numerical flux function given by (2.5)-(2.9). Involving the
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classical framework of the finite volume method, the described relaxation scheme
summarizes as follows:

wn+1
i = wn

i −
∆t

∆x

(
fn
i+ 1

2
− fn

i− 1
2

)
, (3.24)

where the numerical flux function is defined by

fn
i+ 1

2
= f(wn

i ,wn
i+1),

= F
(
Wr(0; W(wn

i ),W(wn
i+1))

) |[h,hu],
(3.25)

with Wn
i = W(wn

i ) defined according to the equilibrium, i.e. Σn
i = cn

i and Un
i = un

i .
Now, it is clear that both relaxation scheme (3.24)-(3.25) and VFRoe scheme

(2.5)-(2.9) involve the same numerical flux function in the form:

f(wL,wR) =
(

(c∗)2u∗/g
(c∗)2(2(u∗)2 + (c∗)2)/(2g)

)
, (3.26)

where

c∗ =





cL if λ− > 0,
cL + cR

2
− 1

4
(uR − uL) if λ− < 0 < λ+,

cR if λ+ < 0,

u∗ =





uL if λ− > 0,
uL + uR

2
− (cR − cL) if λ− < 0 < λ+,

uR if λ+ < 0.

In fact, the two schemes may differ in the evaluation of the eigenvalues λ±. In this
sense, the VFRoe scheme (2.5)-(2.9) is closed when enforcing the linearization ũ = ū
and c̃ = c̄. We have thus proposed a relaxation interpretation of the well-known
VFRoe scheme. We conclude establishing the following expected robustness result:

Theorem 3.3. Assume that wn
i ∈ Ω for all i ∈ Z and assume that the eigenval-

ues λ±
i+ 1

2
are evaluated according to the depth non-negativity Lemma 3.2. Under the

CFL condition (3.19), the relaxation scheme (3.24)-(3.25), or equivalently the VFRoe
scheme (2.5)-(2.9), preserves the non-negativity of h: hn+1

i ≥ 0 for all i ∈ Z. In
addition, the scheme does not involve blow-up when dry areas are encountered.

Proof. Since Lemma 3.2 is satisfied, the intermediate states, involved in the
Riemann problem solution at each interface, preserve the non-negativity of the depth.
Then hh(x, tn + ∆t) ≥ 0 for all x ∈ R, while we have

hn+1
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

hh(x, tn + ∆t)dx.

We immediately deduce that hn+1
i ≥ 0.

3.3. A class of relaxation model. The characterization of the relaxation
model (3.1) was dictated by the definition of the VFRoe scheme. Following the
same strategy, many other relaxation models can be considered. For instance, the
reader is referred to [7, 3, 12] where Suliciu relaxation schemes are derived. These
schemes are accurate and stable but turn out to be, sometime, sophisticated in their
implementation.
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The aim of the present paper is to derive schemes which must be easy to imple-
ment, like the VFRoe method. Following the same idea, other relaxation methods,
involving easy linearization, can be proposed. For instance, let us consider the follow-
ing relaxation model:





∂th + ∂x(
Σ2

g
U) = 0, t > 0, x ∈ R,

∂t(hu) + ∂x

(Σ2

2g
(2U2 + Σ2)

)
= 0,

∂tΣ +
λ+ − λ−

α + β
∂xU +

αλ− + βλ+

α + β
∂xΣ = µ(c− Σ),

∂tU +
αλ+ + βλ−

α + β
∂xU − αβ

α + β
(λ+ − λ−)∂xΣ = µ(u− U),

(3.27)

where α and β are positive parameters to be fixed. This model is nothing but an
extension of (3.1). Indeed, (3.27) coincides with (3.1) as soon as α = β = 2. Consid-
ering physical applications, a suitable choice of the parameters α and β should give
more accurate simulations.

We skip the algebra analysis of this system which turns out to be easy (see also
the above section). After straightforward computations, the resulting scheme reads
in the form (3.24) where the numerical flux function is given by (3.26). Only the
definition of (u∗, c∗) has changed and now are given by:

c∗ =





cL if λ− > 0,
αcL + βcR

α + β
− 1

α + β
(uR − uL) if λ− < 0 < λ+,

cR if λ+ < 0,

u∗ =





uL if λ− > 0,
αuL + βuR

α + β
− αβ

α + β
(cR − cL) if λ− < 0 < λ+,

uR if λ+ < 0.

Once again, we can establish that the obtained updated depth hn+1
i remains non-

negative as soon as the relaxation wave speeds λ− and λ+ are judiciously chosen.

4. High order extension. We turn considering extension of the above first-
order schemes to increase the order of accuracy. To access such an issue, we adopt the
celebrate MUSCL method introduced by van Leer [29]. This technique is based on a
linear (or higher order) reconstruction instead of piecewise constant approximation.
This reconstruction allows to evaluate states wi+1,l and wi,r at each side of the
interface located at xi+ 1

2
. The MUSCL scheme thus reads as follows:

wn+1
i = wn

i −
∆t

∆x
(fi+ 1

2
− fi− 1

2
), (4.1)

but, at this time, the numerical flux function involves the high order evaluated states
at interfaces:

fi+ 1
2

= f(wi,r,wi+1,l). (4.2)

In order to enforce the required robustness of this modified scheme, several approaches
can be considered. The most usual (see [1, 7, 30]) implies conservative reconstruction
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in the following sense:

1
2
(wi,l + wi,r) = wn

i . (4.3)

As soon as the reconstructed states wi,l and wi,r stay in Ω, involving a relevant
half CFL restriction [7, 30], the updated states preserve the non-negativity of the
depth: hn+1

i ≥ 0. The assumption (4.3) appears as natural within the framework of
second-order MUSCL scheme, where linear reconstruction are proposed. Now, when
high-order reconstruction are suggested, the assumption (4.3) is too restrictive and
cannot be assumed. After an idea introduced by Perthame-Shu [37] (see also some
recent works [4, 5, 6]), relevant interface states can be evaluated in order to preserve
the expected depth non-negativity when (4.3) is violated.

We assume that the reconstructed states wi,l and wi,r belong to Ω and satisfy the
required order of accuracy. Following [4], we introduce an intermediate state, denoted
w∗

i , defined by

1
3
(wi,l + w∗

i + wi,r) = wn
i .

The reconstruction, or equivalently the characterization of wi,r and wi,l, for all i ∈ Z,
must be done to enforce wi,l ∈ Ω, wi,r ∈ Ω but also w∗

i ∈ Ω. Involving a relevant CFL
condition, formally divided by three, the MUSCL scheme (4.1)-(4.2) preserves the non-
negativity of hn+1

i . In other words, this procedure enforces the expected robustness
property independently of the reconstruction process. The robustness result, stated
in [4], can be applied in the present work. Thus we have:

Theorem 4.1. Assume that the reconstruction is such that wi,l, w∗
i and wi,r

belong to Ω for all i ∈ Z. Assume the CFL like condition:

∆t

∆x
max

(|λ±(wi,r,wi+1,l)|, |λ±(wi,l,w∗
i )|, |λ±(w∗

i ,wi,r)|
) ≤ 1

6
, (4.4)

where λ±(wL,wR) := ū(wL,wR) ± c̄(wL,wR) define the egeinvalues evaluated ac-
cording to the depth non-negativity Lemma 3.2. Then the updated states (wn+1

i )i∈Z,
defined by the MUSCL scheme (4.1)-(4.2), belong to Ω.

Proof. Involving the robust first-order VFRoe scheme (2.5)-(2.9), the updated
reconstructed states wi,l, wi,r and w∗

i can be written as follows:

wn+1
i,l = wi,l − ∆t

∆x/3
(f(wi,l,w∗

i )− f(wi−1,r,wi,l)) ,

w∗,n+1
i = w∗

i −
∆t

∆x/3
(f(w∗

i ,wi,r)− f(wi,l,w∗
i )) ,

wn+1
i,r = wi,r − ∆t

∆x/3
(f(wi,r,wi+1,l)− f(w∗

i ,wi,r)) .

Under the CFL restriction (4.4), we immediately deduce from Theorem 3.3 that the
three updated states belong to Ω. We have just to note that the state wn+1

i , defined
by (4.1)-(4.2), writes as follows:

wn+1
i =

1
3
(wn+1

i,l + w∗,n+1
i + wn+1

i,r ),

and the proof is completed.
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¿From a practical point of view, the reconstructed states at the interface read:

wi,l = wn
i + ∆−

i and wi,r = wn
i + ∆+

i , (4.5)

where ∆±
i are the reconstruction increments. When considering conservative recon-

structions, we have ∆−
i +∆+

i = 0. Now, as soon as ∆−
i +∆+

i 6= 0, we have to introduce
the intermediate sate w∗

i , defined by:

w∗
i = wn

i − (∆−
i + ∆+

i ).

Concerning the depth evaluation, the increments are modified to enforce the following
restrictions:

hn
i + (∆h)−i ≥ 0, hn

i + (∆h)+i ≥ 0, hn
i − ((∆h)−i + (∆h)+i ) ≥ 0. (4.6)

To illustrate this new restriction, we propose to introduce the following modified
limitation:

(∆h)−,lim
i = θ max ((∆h)−i ,−hn

i ), (∆h)+,lim
i = θ max ((∆h)+i ,−hn

i ), (4.7)

where we have set

θ =

{
1, if max ((∆h)−i ,−hn

i ) + max ((∆h)+i ,−hn
i ) ≤ 0,

min
(
1,

hn
i

max ((∆h)−i ,−hn
i )+ max ((∆h)+i ,−hn

i )

)
, otherwise.

Once this step is performed, the high order reconstructed variables are defined by (4.5)
but for the limited increments ∆−, lim and ∆+, lim. This additional limitation process
is more sophisticated than standard reconstruction but it satisfies the condition (4.6).
Of course other slope limitations can be suggested.

To conclude this brief robust MUSCL scheme presentation, let us note that the
additional limitation preserves the order of accuracy of the interface states as soon as
the exact solution at time tn, w(x, tn), is smooth enough.

To illustrate our purpose, a fourth-order MUSCL reconstruction is proposed in
the present work and used in the numerical investigations of Section 6. Following [43],
we set, for an arbitrary variable q:

(∆q)−i = −1
6
(2∆∗q̄i− 1

2
+ ∆∗q̃i+ 1

2
), (∆q)+i =

1
6
(∆∗q̄i− 1

2
+ 2∆∗q̃i+ 1

2
), (4.8)

where

∆∗q̄i− 1
2

= minmod
(
∆∗qi− 1

2
, b∆∗qi+ 1

2

)
,

∆∗q̃i+ 1
2

= minmod
(
∆∗qi+ 1

2
, b∆∗qi− 1

2

)
,

(4.9)

and

∆∗qi+ 1
2

= ∆qi+ 1
2
− 1

6∆3q̄i+ 1
2
,

∆3q̄i+ 1
2

= ∆q̄i− 1
2
− 2∆q̄i+ 1

2
+ ∆q̄i+ 3

2
,

∆q̄i− 1
2

= minmod
(
∆qi− 1

2
, c∆qi+ 1

2
, c∆qi+ 3

2

)
,

∆q̄i+ 1
2

= minmod
(
∆qi+ 1

2
, c∆qi+ 3

2
, c∆qi− 1

2

)
,

∆q̄i+ 3
2

= minmod
(
∆qi+ 3

2
, c∆qi− 1

2
, c∆qi+ 1

2

)
,

(4.10)
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with

∆qi+ 1
2

= qi+1 − qi,

and

1 < b ≤ 4, c = 2.

Concerning the numerical experiments proposed in the related section, the parameter
b will be set to 4. It is worth mentioning that this 4th-order reconstruction reduces to
a classical 3rd-order scheme when replacing ∆∗qi+ 1

2
by ∆qi+ 1

2
in (4.9), as developed in

[43]. Considering the shallow water system (1.1), one has to reconstuct conservative
variables h and hu following (4.8), (4.9), (4.10), and to apply the modified limitation
(4.7) only on h. Note that when considering well-balancing discretization of system
(1.1), one has also to reconstruct and apply (4.7) on H = h + d to preserve steady
states at rest, as developed in the next section.

5. Well-balancing for source terms. In this section we focus on the shallow
water system with a bed slope source term (1.1).

5.1. Hydrostatic reconstruction. We recall here how to obtain a high order
well-balanced scheme satisfying the preservation of steady states “at rest”, following
the lines of the method proposed first in [1] and extended to higher order of accuracy
in [36].
The first step is to build a high-order reconstruction of the values at each side of the
mesh interfaces. We find various ways to achieve such accuracy, including MUSCL
reconstructions [43] (see also the above section) or ENO/WENO polynomial recon-
structions [42, 36]. Note that the main limitation of all these methods concerns the
ability to deal with the occurrence of dry areas. In the following, we use the 4th order
MUSCL reconstruction (4.8), together with the modified limitation (4.7) to ensure
the preservation of the water depth positivity within the reconstruction. Considering
the cell i, we compute first reconstructions wi,r and wi,l respectively located at xi+ 1

2−
and xi− 1

2+. Values of Hi,l and Hi,r, where H = h + d, are also reconstructed, and we
deduce reconstructions of the topography di,l = Hi,l−hi,l and di,r = Hi,r−hi,r. It en-
sures that if ui = 0 and Hi = Hi+1 for all i, then ui,l = ui,r = 0 and Hi,l = Hi,r = Hi

for all i. Note that even if the VFRoe solver introduced in Section 1 is defined with
non-conservative variables, numerical investigations have shown that the choice of re-
constructing conservative variables gives better results in practice.
In a second step, we perform the “hydrostatic reconstruction” of the values at each
side of the mesh interfaces, taking into account the variations of the bottom and the
balance obtained static flows. Interface topography values di+ 1

2
are defined as follows:

di+ 1
2

= max (di,r, di+1,l). (5.1)

Then, the reconstruction of the water height on each side of the considered interface
is defined as follows:

hi+ 1
2− = max (0, hi,r + di,r − di+ 1

2
), hi+ 1

2+ = max (0, hi+1,l + di+1,l− di+ 1
2
), (5.2)

and we deduce from it the complete reconstructed values on each side of the interface:

wi+ 1
2− =

(
hi+ 1

2−
hi+ 1

2− ui,r

)
, wi+ 1

2+ =
(

hi+ 1
2+

hi+ 1
2+ ui+1,l

)
. (5.3)
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Then, using these new reconstructed values to compute the interface solution within
a VFRoe formalism and with the notations introduced in Section 2, the numerical
flux f∗

i+ 1
2 ,j

is defined as follows:

f∗i+ 1
2

= f
(
W(u∗(0;U(wi+ 1

2−),U(wi+ 1
2+))

)
. (5.4)

Motivated by balancing requirements for static flows, the source term Si is discretized
and distributed to the cell interfaces, using both high order and hydrostatic recon-
structed values of the water height:

Si = Si+ 1
2− + Si− 1

2+ =

(
0

g

2
h2

i+ 1
2− −

g

2
h2

i,r

)
+

(
0

g

2
h2

i,l −
g

2
h2

i− 1
2+

)
. (5.5)

A centered source term Sc,i is added to preserve consistency and well-balancing:

Sc,i =

(
0

g
hi,l + hi,r

2
(di,l − di,r)

)
. (5.6)

It leads to the following semi-discrete formulation:

d

dt
wi(t) +

1
∆x

(
f−
i+ 1

2
− f+

i− 1
2

)
= Sc,i. (5.7)

with left and right numerical fluxes through the mesh interfaces defined as follows:

f−
i+ 1

2
= f∗i+ 1

2
+ Si+ 1

2−

= f
(
W(u∗(0;U(wi+ 1

2−),U(wi+ 1
2+))

)
+

(
0

g

2
h2

i,r −
g

2
h2

i+ 1
2−

)
, (5.8)

f+
i+ 1

2
= f∗i+ 1

2
+ Si+ 1

2+

= f
(
W(u∗(0;U(wi+ 1

2−),U(wi+ 1
2+))

)
+

(
0

g

2
h2

i+1,l −
g

2
h2

i+ 1
2+

)
. (5.9)

5.2. Well-balancing for steady states. We briefly recall the proof for the
well-balanced property. Assuming that H = h + d is constant at time t and that
u = 0, we have Hi,r = Hi,l and

hi+ 1
2− = max (0,Hi,r − di+ 1

2
) = max (0,Hi,l − di+ 1

2
) = hi+ 1

2+, (5.10)

and by construction:

wi+ 1
2− =

(
hi+ 1

2−
0

)
=

(
hi+ 1

2+

0

)
= wi+ 1

2+. (5.11)

Considering (5.4) and (5.8), we obtain:

f−
i+ 1

2
=

(
0

g

2
h2

i,r

)
and f+

i− 1
2

=

(
0

g

2
h2

i,l

)
, (5.12)
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and the semi-discrete formulation (5.7) leads to the following identity:

∆x
d

dt

(
hi(t)

(hiui)(t)

)
+

(
0

g

2
h2

i,r

)
−

(
0

g

2
h2

i,l

)
=

(
0

g
hi,l + hi,r

2
(di,l − di,r)

)
.

(5.13)
Therefore, we have:

∆x
d

dt
(hiui)(t) = g

hi,l + hi,r

2
(hi,l − hi,r) + g

hi,l + hi,r

2

(
(Hi,l − hi,l)− (Hi,r − hi,r)

)
,

(5.14)
and

∆x
d

dt
(hiui)(t) = g

hi,l + hi,r

2
(Hi,r −Hi,l) = 0. (5.15)

The expected well-balanced property is thus satisfied.

6. Numerical results. In the following test cases, we use a fourth order accu-
rate scheme, based on the stabilized VFRoe scheme introduced in Section 2. The 4th

order MUSCL reconstruction (4.8) together with the new modified limitation proce-
dure (4.7) are considered. The hydrostatic reconstruction recalled in Section 5 is used
to account for topography variations in a well-balanced way. The semi-discrete dis-
cretization (5.7) is replaced by a 3rd order TVD Runge-Kutta time discretization [38].
To assess the improvements of accuracy obtained with this high order reconstruction,
we begin in the first two cases to perform a comparison with the present scheme and
classical first and second order VFRoe schemes. In all the following cases, we only
show numerical results obtained with the present 4th-order scheme, in situations in-
volving steady states and occurrences of dry states. The CFL are respectively set
to 0.5, 0.25 and 0.15 for first, second and fourth order reconstructions, in agreement
with the stability analysis performed in the above sections. Let us emphasize that,
according to the work of Masella et al. [35] (see also [20]), the present scheme is
modified in order to handle the sonic rarefaction wave invoking the standard entropy
correction.

6.1. Sinusoidal wave propagation in shallow water. This first test de-
scribes a sinusoidal wave propagating in a channel with a horizontal bottom, taken
from [22]. The channel is A = 1000m long and the still water depth is H0 = 10 m.
The period and amplitude of the sinusoidal wave are 20.193 s and 0.04 m, respectively.
In this case, the ratio A/H0 ≈ 0.016 is close to the limit of shallow water conditions.
Note that this test differs from the original one introduced in [22], since we used an
absorbing boundary [41] at the right boundary, in order to let the incoming wave exit
the computational domain without reflexions. The channel is divided into 250 cells
and the propagation is performed respectively with schemes of first, second and fourth
order of accuracy, to clearly exhibit the numerical diffusion induced by lower order
methods. We obtain a steady wave solution with a wavelength of 200 m, which is in
agreement with the expected wavelength. As can be seen in Figure 6.1, the 4th or-
der stabilized MUSCL reconstruction largely reduces the numerical diffusion observed
with 1st and 2nd order schemes, even with a small number of cells.

6.2. Subcritical flow over a bump. In this test, the bottom is defined as
follows:

d(x) =
{

0.2− 0.05(x− 10)2, if 8 m < x < 12 m,
0, else (6.1)
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Fig. 6.1. Sinusoidal wave propagation in shallow water. Free surface evolution: comparison
between 1st, 2nd and 4th order schemes for 250 cells.
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Fig. 6.2. Subcritical flow over a bump: water height at steady state.

and we consider a channel of 25 m long. The boundary conditions are hout = 2 m
and Qin = 4.42 m2/s, corresponding to a sub-critical flow. We obtain a stationary
solution, shown on Figure 6.2. We observe on this Figure the numerical results ob-
tained with the 4th order scheme at time T = 200 s with 100 cells, superposed with
the analytical solution. Since the results obtained with 1st, 2nd and 4th order schemes
are similar once the convergence is achieved, we also show on Figure 6.3 a comparison
between L2-error time-series for each order of accuracy. We can clearly observe the
convergence toward the steady state at rest in the three cases. For scaling reasons, the
transient part of the computation is partially truncated and we only show on Figure
6.3 time series of L2-error for values of time from t = 50 s and t = 200 s.
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Fig. 6.3. Subcritical flow over a bump: L2-error time series, comparison between 1st, 2nd and
4th order.

Lastly, we show the L2-errors table, computed for the water height, for various
numbers of cells, at t = 200 s:

cells 1st order scheme 2nd order scheme 4th order scheme
50 5.155E-3 1.700E-3 7.422E-4
100 2.704E-3 6.062E-4 1.961E-4
200 1.383E-3 1.759E-4 6.155E-5
400 6.993E-4 5.730E-5 2.103E-5
800 3.516E-4 1.950E-5 7.242E-6
1600 1.763E-4 6.787E-6 1.562E-6

We can observe some improvements obtained with the 4th order reconstruction pro-
posed. However, it is worth mentionning that we have only performed here a 2nd

order discretization of the source term, which lowered the overall accuracy. A better
accuracy can of course be obtained using a stabilized high order reconstruction to-
gether with a high order quadrature discretization rule for the source term, like the
one introduced in the recent work [36].

We conclude the analysis of the present numerical experiment with a comparison
of the efficiency of both 2nd and 4th order methods. To consider a similar L2-error
at time t = 200 s, we adopt the 2nd order scheme with 1600 cells while the 4th order
method is used with 800 cells. Invoking the CPU time for these two tests, we obtain
that the 4th scheme is twice more quickly than the 2nd order scheme.

6.3. Flow at rest with dry state. The initial condition of this test is a flow
at rest, involving a dry area. We impose h + d = max (d, 0.15) m and Q = 0 m2/s
over the whole channel. The bottom variations are defined with (6.1). Numerical
results, obtained with 100 cells at time T = 200 s are plotted on Figure 6.4 with and
without the modified limitation (4.7) (respectively in solid and dashed lines). We can
clearly show that the stabilized 4th order scheme proposed here is well-balanced and
can handle dry areas whereas large spurious oscillations are rapidly generated when
stabilization (4.7) is not applied.
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Fig. 6.4. Flow at rest with a dry state: water height. Comparison between stabilized 4th-order
and classical 4th order.

6.4. Drain on a non-flat bottom. The length of the channel and the topog-
raphy of this test are the same as in the two previous cases. The initial condition
here is a flow at rest, with a water heigth given by h + d = 0.5 m such that the bump
is entirely submerged and the initial discharge is set to Q = 0 m2/s over the whole
domain. For this more complex test, the whole domain is discretized into 500 cells.
The left boundary is a solid-wall boundary (defined within a classical “mirror-state”
procedure) and an outlet condition on a dry bed [13] at the right boundary. With
such a configuration, the water progressively exits the computational domain, asymp-
totically converging towards a steady state composed of a state at rest on the left
part of the bump with h + d = 0.2 m and Q = 0 m2/s and a dry state on the right
side of the bump. Results obtained with the 4th order stabilized scheme are shown
on Figure 6.5 for the water height and on Figure 6.6 for the discharge. These results
are qualitatively similar to those obtained with the second order scheme introduced
in [13]. We emphasize that the use of our stabilized 4th-order reconstruction (4.7)
allows accurate results even during the draining part of the simulation and that we
accurately converge toward the expected steady state. We can observe the generation
of tiny oscillations near the discontinuities.

6.5. Vacuum occurrence by a double rarefaction wave over a step. In
this last test, inroduced in [13], we do not study the convergence toward a steady
state but we rather focus on the ability of the proposed stabilized 4th order well-
balanced scheme to deal with dry areas over a discontinuous bottom. The topography
is different from previous tests and is defined as follows:

d(x) =
{

1, if 8.33 m < x < 12.5 m,
0, else, (6.2)

whereas the channel length is still 25 m, divided into 500 cells. The initial condition
is set to h + d = 10 m and the initial discharge is defined as follows:

Q(x) =
{ −350 m2/s, if x < 50/3 m,

350 m2/s, otherwise. (6.3)
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Fig. 6.5. Drain on a non-flat bottom: water height.
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Fig. 6.6. Drain on a non-flat bottom: discharge.

Results at several times are shown on Figure 6.7 and Figure 6.8 respectively for the
free surface and the discharge, at time 0, 0.10, 0.30, 0.40 and 0.60 s. For the sake
of clarity, we do not show the results obtained with 1st and 2nd-order schemes but
we stress out that the results obtained here with our stabilized 4th-order scheme are
qualitatively very similar. The main difference lies in the occurrence of tiny oscillations
near discontinuities for the water height, as observable on Figure 6.7.

6.6. The Carrier and Greenspan transient solution. We propose here to
study one of the test cases developped in [34] to highlight the improvement obtained
with the stabilized 4th order approach even in situations involving complex drying
and flooding processes. The reader is refered to [34] or to the original paper [10] for
a detailed description. Note that an analytical solution is provided in [10]. In this
test, the initial water surface elevation is assumed to be depressed near the shoreline,
defined as the frontier between the fluid domain and the dry area, and the fluid held
motionless. Then, the fluid is released at t = 0 and we mainly focus on the shoreline
evolution, During the evolution, the shoreline rises above the mean sea level of value
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Fig. 6.7. Vacuum occurrence by a double rarefaction wave over a step : water height.
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Fig. 6.8. Vacuum occurrence by a double rarefaction wave over a step : discharge.

e and then the water surface elevation asymptotically settles back to it. This initial
condition is the lower curve on Fig. 6.9. Let l be the typical length scale of this specific
problem and α the beach slope. Non-dimensional variables are defined as follows :

x∗ = x/l, h∗ = h/(α l), u∗ = u/
√

gαl, t∗ = t/
√

l/αg. (6.4)

The bottom slope α is taken to be 1/50, the results are presented here for e = 0.1
and the initial surface profile is imposed in the dimensional case with the length scale
l = 20 m. Note that the CFL is set to 0.7 for the 1st and 2nd order schemes and to
0.3 for the stabilized 4th order scheme. Fig. 6.9 shows comparisons between numerical
results obtained with the stabilized 4th order scheme and the analytical solution for
the surface elevation, at various values of time. These surface elevation profiles have
been scaled with the parameter e. It is worth mentionning that the results introduced
in [34] for this case and obtained with a second order well-balanced scheme were al-
ready very good. Thus a table of comparison of L2-errors obtained for various orders
and several numbers of cells is provided at t∗ = 10:
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Fig. 6.9. The Carrier and Greenspan’s transient solution. Comparison between numerical
results (in solid lines) obtained with the 4th and analytical solutions (in dotted lines) for the sur-
face elevation. Profiles of water height h∗/e are plotted versus x∗, for different values of time t∗,
increasing from t∗ = 0 (bottom curves) to t∗ = 1.4 (top curves).

cells 2nd order scheme 4th order scheme
250 3.095E-3 5.912E-4
500 2.249E-3 2.151E-4
1000 2.058E-3 1.516E-4
2000 8.690E-4 1.223E-5

From this table we observe that both schemes provide stability and good accuracy
in the computation of the slow convergence toward the mean water level. The L2-
error computed for large values of time with the 2nd order scheme seems to decrease
very slowly with respect to the number of cells. This feature is slightly improved with
the 4th order scheme. It appears from this test that the stabilized 4th order scheme
provides more accuracy for large values of time.

6.7. Oblique 2D dam-break on a dry bed. We study in this last test the
evolution of a mound of water over a flat bottom, which is suddenly released from an
initial position, generating a propagating front such that the line of water propagates
with an inclination of 45◦ with respect to the boundaries of the computational domain.
The base of this domain is a [−0.5, 0.5] × [−0.5, 0.5] square. The initial condition,
shown at Figure 6.10, is defined as follows :

h(0, x, y) =
{

hL for x + y ≤ 0
0 otherwise, (6.5)

and the initial discharge is set to zero. The purpose of this last test is to shown the
possibility of extension of the stabilized 4th-order scheme towards two-dimensional
simulations. The results shown here have been obtained using 100 cells in each direc-
tion and the CFL is set to 0.2. We only focus on the surface elevation computed on
the central cross-section orthogonal to the propagating front (the x = y plane) which
is compared to the one-dimensional analytical solution, assuming that the effects in-
duced by the boundaries can be neglected for this section and for a small time of
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Fig. 6.10. Oblique 2D dam-break on a dry bed : initial surface elevation
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Fig. 6.11. Oblique 2D dam-break on a dry bed : time evolution of the surface elevation in the
central cross section and comparison with the analytical 1D solution

evolution. A comparison with the analytical solution in the direction of propagation
is reported on Figure 6.11. The exact and approximated solutions are superposed.
To conclude this 2D test, after [5, 16], let us note that unstructured mesh extensions
can be performed.

7. Conclusion. In the present work, we have derived a numerical relaxation
scheme to approximate the weak solutions of the shallow water equation. The anal-
ysis of the obtained approximate Riemann solver allows us to prove the required
robustness results. Indeed, involving a suitable CFL like restriction, we establish the
non-negativity of the approximated depth. In addition, the considered relaxation
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scheme is able to deal with dry areas and no blow-up is developed. In fact, the relax-
ation scheme under consideration exactly coincides with one variant of the well-known
VFRoe scheme. As a consequence, we have established that the VFroe scheme does
not produce negative value of the water depth. This statement is obtained when
involving a relevant upwind technique. Next, we have proposed high-order exten-
sions of this VFRoe scheme (second- and fourth-order) based on the van Leer slope
reconstructions. Enforcing some suitable restriction in the gradient reconstruction
procedure, we have proved that the considered high-order extensions, once again,
preserve the non-negativity of the depth. The final well-balanced scheme is obtained
when assuming the hydrostatic reconstruction to approximate the geometrical source
terms. Several one-dimensional numerical experiments have shown the interest of
the method. The extension towards two-dimensional simulations is introduced and
currently under investigation for realistic problems.

REFERENCES

[1] E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein, B. Perthame, A fast and stable well-balanced
scheme with hydrostatic reconstruction for shallow water flows, SIAM J.Sci.Comp., 25,
2050–2065 (2004).

[2] M. Baudin, C. Berthon, F. Coquel, R. Masson, Q. H. Tran, A relaxation method for two-phase
flow models with hydrodynamic closure law, Num. Math., 99, 411–440 (2005).

[3] C. Berthon, Numerical approximations of the 10-moment Gaussian closure, Math. Comput.,
75, 1809–1831 (2006).

[4] C. Berthon, Stability of the MUSCL schemes for the Euler equations, Comm. Math. Sci., 3,
133–158 (2005).

[5] C. Berthon, Robustness of MUSCL schemes for 2D unstructured meshes, J. Comput. Phys.,
218, 495–509 (2006).

[6] C. Berthon, Why the MUSCL-Hancock scheme is L1-stable, Numer. Math., 104, 27–46 (2006).
[7] F .Bouchut, Non-linear stability of finite volume methods for hyperbolic conservation laws and

well-balanced schemes for sources, Frontiers in Mathematics, Birkhauser, 2004.
[8] T. Buffard, T. Gallouet, J.M. Herard, A naive Godunov scheme to solve shallow water equa-

tions, CR Acad. Sci. Paris, 326, 385–390 (1998).
[9] T. Buffard, T. Gallouet, J. M. Herard, A sequel to a rough Godunov scheme: application to

real gases, Computers and Fluids, 29, 813–847 (2000).
[10] G.F. Carrier and H.P. Greenspan, Water waves of finite amplitude on a sloping beach, J. Fluid

Mech., 4, 97–109 (1958).
[11] G.Q. Chen, C.D. Levermore, T.P. Liu, Hyperbolic Conservation Laws with Stiff Relaxation

Terms and Entropy, Comm. Pure Appl. Math., 47, 787–830 (1995).
[12] F. Coquel and B. Perthame, Relaxation of Energy and Approximate Riemann Solvers for

General Pressure Laws in Fluid Dynamics, SIAM J. Numer. Anal., 35, 2223–2249 (1998).
[13] T. Gallouet, J. M. Hérard, N.Seguin, Some approximate Godunov schemes to compute shallow-

water equations with topography, Computers and Fluids, 32, 479–513 (2003).
[14] T. Gallouet, J. M. Hérard, N.Seguin, On the use of some symetrizing variables to deal with

vacuum, Calcolo, 40, 163–194 (2003).
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