Photo de Marianne Bessemoulin-Chatard

Marianne Bessemoulin-Chatard

Directrice de recherche CNRS
Laboratoire de Mathématiques Jean Leray - UMR 6629
Nantes Université

Mail : marianne.bessemoulin@univ-nantes.fr
Tél : (+33) 2 51 12 58 60

Thèmes de recherche

Publications

Articles en préparation ou soumis

  1. Discrete H-theorem for finite volume discretization of a nonlinear kinetic system: application to hypocoercivity
    M. Bessemoulin-Chatard, T. Laidin et T. Rey.
    Soumis (2025) [hal]

Articles acceptés ou publiés

  1. Relative entropy for the numerical diffusive limit of the linear Jin-Xin system
    M. Bessemoulin-Chatard et H. Mathis
    À paraître dans ESAIM: ProcS (2024) [hal]

  2. Discrete hypocoercivity for a nonlinear kinetic reaction model
    M. Bessemoulin-Chatard, T. Laidin et T. Rey
    À paraître dans IMA Journal of Numerical Analysis, Volume 45, Issue 4 (2025) [hal]

  3. On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system
    M. Bessemoulin-Chatard et F. Filbet
    SIAM Journal on Numerical Analysis, Volume 61, Issue 4 (2023) [hal]

  4. An Asymptotic Preserving scheme for the shallow-water equations with Manning friction using viscous correction of the HLL scheme
    S. Bulteau, C. Berthon et M. Bessemoulin-Chatard
    Numerical Methods for Partial Differential Equations, Volume 39, Issue 5, pp 3919-3941 (2023) [hal]

  5. On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system
    M. Bessemoulin-Chatard et F. Filbet
    Journal of Computational Physics, Volume 451 (2022) [hal]

  6. Numerical analysis of DDFV schemes for semiconductors energy-transport models
    M. Bessemoulin-Chatard, G. Lissoni et H. Mathis
    Computational and Applied Mathematics, Volume 41 (2022) [hal]

  7. A fully well-balanced and asymptotic preserving scheme for the shallow-water equations with Manning friction
    S. Bulteau, M. Badsi, C. Berthon et M. Bessemoulin-Chatard
    Calcolo, Volume 58 (2021) [hal]

  8. Analysis of numerical schemes for semiconductors energy-transport models
    M. Bessemoulin-Chatard, C. Chainais-Hillairet et H. Mathis
    Applied Numerical Mathematics, Volume 168, pp 143-169 (2021) [hal]

  9. Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations
    E. H. Quenjel, M. Saad, M. Ghilani et M. Bessemoulin-Chatard
    Calcolo, Volume 57, no. 2 (2020) [hal]

  10. A Riemann solution approximation based on the zero diffusion-dispersion limit of Dafermos reformulation type problem
    C. Berthon, M. Bessemoulin-Chatard, A. Crestetto et F. Foucher
    Calcolo, Volume 56, no. 3 (2019) [hal]

  11. Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations
    M. Bessemoulin-Chatard, M. Herda et T. Rey
    Mathematics of Computation, Volume 89, no. 323, pp 1093–1133 (2020) [hal]
  12. Uniform-in-time bounds for approximate solutions of the drift-diffusion system
    M. Bessemoulin-Chatard et C. Chainais-Hillairet
    Numerische Mathematik, Volume 141, issue 4, pp 881–916 (2019) [hal]

  13. Convergence rate of an Asymptotic Preserving scheme for the diffusive limit of the p-system with damping
    S. Bulteau, C. Berthon et M. Bessemoulin-Chatard
    Communications in Mathematical Sciences, Volume 17, no. 6, pp 1459–1486 (2019) [hal]

  14. Preserving monotony of combined edge finite volume–finite element scheme for a bone healing model on general mesh
    M. Bessemoulin-Chatard et M. Saad
    J. Comput. Appl. Math., Volume 309, pp 287–311 (2017) [hal]

  15. Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems
    M. Bessemoulin-Chatard et C. Chainais-Hillairet
    J. Numer. Math., Volume 25, no. 3, pp 147–168 (2017) [hal]

  16. Numerical convergence rate for a diffusive limit of hyperbolic systems : p-system with damping
    C. Berthon, M. Bessemoulin-Chatard et H. Mathis
    SMAI J. Comput. Math., Volume 2, pp 99–119 (2016) [hal]

  17. On discrete functional inequalities for some finite volume schemes
    M. Bessemoulin-Chatard, C. Chainais-Hillairet et F. Filbet
    IMA Journal of Numerical Analysis, Volume 35, Issue 3, pp 1125-1149 (2015) [hal]

  18. Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit
    M. Bessemoulin-Chatard, C. Chainais-Hillairet et M.-H. Vignal
    SIAM Journal on Numerical Analysis, Volume 52, Issue 4, pp 1666-1691 (2014) [hal]

  19. A finite volume scheme for a Keller–Segel model with additional cross-diffusion
    M. Bessemoulin-Chatard et A. Jüngel
    IMA Journal of Numerical Analysis, Volume 34, Issue 1, pp 96-122 (2014) [hal]

  20. A finite volume scheme for nonlinear degenerate parabolic equations
    M. Bessemoulin-Chatard et F. Filbet
    SIAM Journal on Scientific Computing, Volume 34, Issue 5, B559–B583 (2012) [hal]

  21. A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme
    M. Bessemoulin-Chatard
    Numerische Mathematik, Volume 121, Issue 4, pp 637–670 (2012) [hal]

Actes de congrès

  1. Numerical schemes for semiconductors energy-transport models
    M. Bessemoulin-Chatard, C. Chainais-Hillairet et H. Mathis
    Finite Volumes for Complex Applications IX (2020) [hal]

  2. Uniform L ∞ estimates for approximate solutions of the bipolar drift-diffusion system
    M. Bessemoulin-Chatard, C. Chainais-Hillairet et A. Jüngel
    Finite Volumes for Complex Applications VIII – Methods and theoretical aspects, 381–389, Springer Proc. Math. Stat., 199, Springer, Cham (2017) [hal]

  3. Monotone Combined Finite Volume-Finite Element Scheme for a Bone Healing Model
    M. Bessemoulin-Chatard et M. Saad
    Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, vol. 78 of Springer Proceedings in Mathematics & Statistics, p. 497–505. Springer International Publishing (2014) [hal]

  4. Asymptotic behavior of the Scharfetter-Gummel scheme for the drift-diffusion model
    M. Chatard
    J. Foyt et al. Finite Volumes for Complex Applications - Problems and Perspectives : Fvca 6, International Symposium, Prague, June 6-10, 2011, vol. 4. Springer Verlag (2011) [hal]

Thèse

Développement et analyse de schémas volumes finis motivés par la préservation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie. [tel]

Habilitation à diriger des recherches

Construction et analyse de schémas numériques pour des modèles issus de la physique. [tel]

Projets et encadrements

Projets scientifiques

Encadrements