Feuille 3: Algèbre linéaire symplectique.

Exercice 1:

Soit (V, ω) un espace vectoriel symplectique. Soit U_0, U_1 deux sous-espaces vectoriels de V. Montrer:

- $\bullet \ (U_0^{\,\omega})^{\omega} = U_0.$
- $\bullet \ (U_0 + U_1)^{\omega} = U_0^{\omega} \cap U_1^{\omega}.$
- $(U_0 \cap U_1)^{\omega} = U_0^{\omega} + U_1^{\omega}$.

Exercice 2:

Soit (V_0, ω_0) et (V_1, ω_1) deux espaces vectoriels de dimension 2n. symplectiques.

- 1. Montrer que $V_0 \oplus V_1$ muni de la forme $\omega := -\omega_0 \oplus \omega_1$ défini par $\omega((u_0,u_1),(v_0,v_1)) = -\omega_0(u_0,v_0) + \omega_1(u_1,v_1)$ est symplectique.
- 2. Soit $\phi: V_0 \to V_1$ un symplectomorphisme. Montrer $\Gamma(\phi) = \{(v, \phi(v)) | v \in V_0\}$ est un sous-espace lagrangien de $V_0 \oplus V_1$.

Exercice 3:

Soit E un espace vectoriel. On rappelle que $E \oplus E^*$ est muni d'une structure symplectique naturelle définie par $\omega_0(v_0,\alpha_0),(v_1,\alpha_1))=\alpha_1(v_0)-\alpha_0(v_1)$. Soit U un sous-espace vectoriel de E. On définit $Nil(U)=\{\alpha\in E^*|\alpha|_U=0\}$. Montrer que $U\oplus Nil(U)$ est lagrangien dans $E\oplus E^*$.

Exercice 4:

On considère \mathbb{R}^{2n} muni de sa structure symplectique standard. On rappelle que U(n) est un sous-groupe de Sp(n). Soit $L_0 = \{(q,0)|q \in \mathbb{R}^n\}$ un espace lagrangien. On note $\mathcal{L}(\mathbb{R}^{2n})$ l'ensemble de tout les sous-espaces lagrangiens.

- 1. Montrer que U(n) agit sur $\mathcal{L}(\mathbb{R}^{2n})$ de manière transitive.
- 2. Montrer que $Stab(L_0) = O(n)$.
- 3. En déduire que $\mathcal{L}(\mathbb{R}^{2n}) = U(n)/O(n)$ (cela muni donc l'espace des lagrangien d'une structure de variété lisse).

Exercice 5:

Soit (V_0, ω_0) , $(V_1, \omega_1 \text{ et } (V_2, \omega_2)$ trois espace vectoriel symplectique. On considère $V_0 \oplus V_1$ et $V_1 \oplus V_2$ munis des structures symplectiques de l'exercice 2.

- 1. Montrer que $\Delta = \{(v_0, v_1, v_1, v_2) | | v_0 \in V_0, v_1 \in V_1, v_2 \in V_2\}$ est co-isotrope dans $V_0 \oplus V_1 \oplus V_1 \oplus V_2$ muni la forme ω de l'exercice 2.
- 2. Montrer que la réduction Δ/Δ^{ω} est symplectomorphe à $V_0 \oplus V_2$.
- 3. Soit $\phi_1: V_0 \to V_1$ et $\phi_2: V_1 \to V_2$ deux symplectomorphismes. Montrer que $\Gamma(\phi_1) \oplus \Gamma(\phi_2)$ est lagrangien dans $V_0 \oplus V_1 \oplus V_1 \oplus V_2$. Identifier $\pi(\Gamma(\phi_1) \oplus \Gamma(\phi_2))$ en tant que sous-espace lagrangien de $V_0 \oplus V_2$.

Exercice 6:

Soit ω_0 la forme symplectique standard sur \mathbb{R}^{2n} et on note $\{e_1,\cdots,e_n,e'_1,\cdots,e'_n\}$ sa base canonique.

- 1. Montrer que en tant qu'élément de $\Lambda^2(\mathbb{R}^{2n})^*$, $\omega_0=\sum_{i=1}^n(e_i)^*\wedge(e_i')^*$.
- 2. En déduire que $\omega_0^n = n!(e_1)^* \wedge (e_1')^* \wedge \cdots \wedge (e_n)^* \wedge (e_n')^*$.
- 3. Soit $\phi \in Sp(n)$ une matrice symplectique, montrer que $\det \phi = 1$.

Exercice 7: Tassement lagrangien.

Soit ω_0 la forme symplectique standard sur $E \oplus E^*$.

- 1. Soit $f: E \to E$ un isomorphisme. Relever, en vous inspirant du chapitre précédent, f à un symplectomorphisme de $E \oplus E^*$.
- 2. En déduire pour tout $r,R\in\mathbb{R}$ il existe un symplectomorphisme de \mathbb{R}^{2n} tel que $B^{2n}(R)\subset C^{2n}_{\text{lag}}(r)$ où $C^{2n}_{\text{lag}}(r)=\{q_1,\cdots,q_n,p_1,\cdots p_n|q_1^2+q_2^2< r^2\}.$